/* * Copyright 2000 ATI Technologies Inc., Markham, Ontario, and * VA Linux Systems Inc., Fremont, California. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation on the rights to use, copy, modify, merge, * publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NON-INFRINGEMENT. IN NO EVENT SHALL ATI, VA LINUX SYSTEMS AND/OR * THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include /* X and server generic header files */ #include "xf86.h" #include "xf86_OSproc.h" #include "vgaHW.h" #include "xf86Modes.h" /* Driver data structures */ #include "radeon.h" #include "radeon_reg.h" #include "radeon_macros.h" #include "radeon_probe.h" #include "radeon_version.h" #ifdef XF86DRI #define _XF86DRI_SERVER_ #include "radeon_drm.h" #include "sarea.h" #endif extern void atombios_crtc_mode_set(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode, int x, int y); extern void atombios_crtc_dpms(xf86CrtcPtr crtc, int mode); extern void RADEONInitDispBandwidthLegacy(ScrnInfoPtr pScrn, DisplayModePtr mode1, int pixel_bytes1, DisplayModePtr mode2, int pixel_bytes2); extern void RADEONInitDispBandwidthAVIVO(ScrnInfoPtr pScrn, DisplayModePtr mode1, int pixel_bytes1, DisplayModePtr mode2, int pixel_bytes2); void radeon_crtc_dpms(xf86CrtcPtr crtc, int mode) { RADEONInfoPtr info = RADEONPTR(crtc->scrn); RADEONEntPtr pRADEONEnt = RADEONEntPriv(crtc->scrn); RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; xf86CrtcPtr crtc0 = pRADEONEnt->pCrtc[0]; if ((mode == DPMSModeOn) && radeon_crtc->enabled) return; if (mode == DPMSModeOff) radeon_crtc_modeset_ioctl(crtc, FALSE); if (IS_AVIVO_VARIANT || info->r4xx_atom) { atombios_crtc_dpms(crtc, mode); } else { /* need to restore crtc1 before crtc0 or we may get a blank screen * in some cases */ if ((radeon_crtc->crtc_id == 1) && (mode == DPMSModeOn)) { if (crtc0->enabled) legacy_crtc_dpms(crtc0, DPMSModeOff); } legacy_crtc_dpms(crtc, mode); if ((radeon_crtc->crtc_id == 1) && (mode == DPMSModeOn)) { if (crtc0->enabled) legacy_crtc_dpms(crtc0, mode); } } if (mode != DPMSModeOff) { radeon_crtc_modeset_ioctl(crtc, TRUE); radeon_crtc_load_lut(crtc); } if (mode == DPMSModeOn) radeon_crtc->enabled = TRUE; else radeon_crtc->enabled = FALSE; } static Bool radeon_crtc_mode_fixup(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode) { return TRUE; } static void radeon_crtc_mode_prepare(xf86CrtcPtr crtc) { RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; if (radeon_crtc->enabled) crtc->funcs->hide_cursor(crtc); } static uint32_t RADEONDiv(CARD64 n, uint32_t d) { return (n + (d / 2)) / d; } static void RADEONComputePLL_old(RADEONPLLPtr pll, unsigned long freq, uint32_t *chosen_dot_clock_freq, uint32_t *chosen_feedback_div, uint32_t *chosen_frac_feedback_div, uint32_t *chosen_reference_div, uint32_t *chosen_post_div, int flags) { uint32_t min_ref_div = pll->min_ref_div; uint32_t max_ref_div = pll->max_ref_div; uint32_t min_post_div = pll->min_post_div; uint32_t max_post_div = pll->max_post_div; uint32_t min_fractional_feed_div = 0; uint32_t max_fractional_feed_div = 0; uint32_t best_vco = pll->best_vco; uint32_t best_post_div = 1; uint32_t best_ref_div = 1; uint32_t best_feedback_div = 1; uint32_t best_frac_feedback_div = 0; uint32_t best_freq = -1; uint32_t best_error = 0xffffffff; uint32_t best_vco_diff = 1; uint32_t post_div; freq = freq * 1000; ErrorF("freq: %lu\n", freq); if (flags & RADEON_PLL_USE_REF_DIV) min_ref_div = max_ref_div = pll->reference_div; else { while (min_ref_div < max_ref_div-1) { uint32_t mid=(min_ref_div+max_ref_div)/2; uint32_t pll_in = pll->reference_freq / mid; if (pll_in < pll->pll_in_min) max_ref_div = mid; else if (pll_in > pll->pll_in_max) min_ref_div = mid; else break; } } if (flags & RADEON_PLL_USE_POST_DIV) min_post_div = max_post_div = pll->post_div; if (flags & RADEON_PLL_USE_FRAC_FB_DIV) { min_fractional_feed_div = pll->min_frac_feedback_div; max_fractional_feed_div = pll->max_frac_feedback_div; } for (post_div = min_post_div; post_div <= max_post_div; ++post_div) { uint32_t ref_div; if ((flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1)) continue; /* legacy radeons only have a few post_divs */ if (flags & RADEON_PLL_LEGACY) { if ((post_div == 5) || (post_div == 7) || (post_div == 9) || (post_div == 10) || (post_div == 11)) continue; } for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) { uint32_t feedback_div, current_freq = 0, error, vco_diff; uint32_t pll_in = pll->reference_freq / ref_div; uint32_t min_feed_div = pll->min_feedback_div; uint32_t max_feed_div = pll->max_feedback_div+1; if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max) continue; while (min_feed_div < max_feed_div) { uint32_t vco; uint32_t min_frac_feed_div = min_fractional_feed_div; uint32_t max_frac_feed_div = max_fractional_feed_div+1; uint32_t frac_feedback_div; CARD64 tmp; feedback_div = (min_feed_div+max_feed_div)/2; tmp = (CARD64)pll->reference_freq * feedback_div; vco = RADEONDiv(tmp, ref_div); if (vco < pll->pll_out_min) { min_feed_div = feedback_div+1; continue; } else if(vco > pll->pll_out_max) { max_feed_div = feedback_div; continue; } while (min_frac_feed_div < max_frac_feed_div) { frac_feedback_div = (min_frac_feed_div+max_frac_feed_div)/2; tmp = (CARD64)pll->reference_freq * 10000 * feedback_div; tmp += (CARD64)pll->reference_freq * 1000 * frac_feedback_div; current_freq = RADEONDiv(tmp, ref_div * post_div); if (flags & RADEON_PLL_PREFER_CLOSEST_LOWER) { error = freq - current_freq; error = (int32_t)error < 0 ? 0xffffffff : error; } else error = abs(current_freq - freq); vco_diff = abs(vco - best_vco); if ((best_vco == 0 && error < best_error) || (best_vco != 0 && (error < best_error - 100 || (abs(error - best_error) < 100 && vco_diff < best_vco_diff )))) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } else if (current_freq == freq) { if (best_freq == -1) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } else if (((flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) || ((flags & RADEON_PLL_PREFER_HIGH_REF_DIV) && (ref_div > best_ref_div)) || ((flags & RADEON_PLL_PREFER_LOW_FB_DIV) && (feedback_div < best_feedback_div)) || ((flags & RADEON_PLL_PREFER_HIGH_FB_DIV) && (feedback_div > best_feedback_div)) || ((flags & RADEON_PLL_PREFER_LOW_POST_DIV) && (post_div < best_post_div)) || ((flags & RADEON_PLL_PREFER_HIGH_POST_DIV) && (post_div > best_post_div))) { best_post_div = post_div; best_ref_div = ref_div; best_feedback_div = feedback_div; best_frac_feedback_div = frac_feedback_div; best_freq = current_freq; best_error = error; best_vco_diff = vco_diff; } } if (current_freq < freq) min_frac_feed_div = frac_feedback_div+1; else max_frac_feed_div = frac_feedback_div; } if (current_freq < freq) min_feed_div = feedback_div+1; else max_feed_div = feedback_div; } } } ErrorF("best_freq: %u\n", (unsigned int)best_freq); ErrorF("best_feedback_div: %u\n", (unsigned int)best_feedback_div); ErrorF("best_frac_feedback_div: %u\n", (unsigned int)best_frac_feedback_div); ErrorF("best_ref_div: %u\n", (unsigned int)best_ref_div); ErrorF("best_post_div: %u\n", (unsigned int)best_post_div); if (best_freq == -1) FatalError("Couldn't find valid PLL dividers\n"); *chosen_dot_clock_freq = best_freq / 10000; *chosen_feedback_div = best_feedback_div; *chosen_frac_feedback_div = best_frac_feedback_div; *chosen_reference_div = best_ref_div; *chosen_post_div = best_post_div; } static Bool calc_fb_div(RADEONPLLPtr pll, unsigned long freq, int flags, int post_div, int ref_div, int *fb_div, int *fb_div_frac) { float ffreq = freq / 10; float vco_freq = ffreq * post_div; float feedback_divider = vco_freq * ref_div / pll->reference_freq; if (flags & RADEON_PLL_USE_FRAC_FB_DIV) { feedback_divider = floor((feedback_divider * 10.0) + 0.5) * 0.1; *fb_div = floor(feedback_divider); *fb_div_frac = fmod(feedback_divider, 1.0) * 10.0; } else { *fb_div = floor(feedback_divider + 0.5); *fb_div_frac = 0; } if ((*fb_div < pll->min_feedback_div) || (*fb_div > pll->max_feedback_div)) return FALSE; else return TRUE; } static Bool calc_fb_ref_div(RADEONPLLPtr pll, unsigned long freq, int flags, int post_div, int *fb_div, int *fb_div_frac, int *ref_div) { float ffreq = freq / 10; float max_error = ffreq * 0.0025; float vco, error, pll_out; for ((*ref_div) = pll->min_ref_div; (*ref_div) < pll->max_ref_div; ++(*ref_div)) { if (calc_fb_div(pll, freq, flags, post_div, (*ref_div), fb_div, fb_div_frac)) { vco = pll->reference_freq * ((*fb_div) + ((*fb_div_frac) * 0.1)) / (*ref_div); if ((vco < pll->pll_out_min) || (vco > pll->pll_out_max)) continue; pll_out = vco / post_div; error = pll_out - ffreq; if ((fabs(error) <= max_error) && (error >= 0)) return TRUE; } } return FALSE; } static void RADEONComputePLL_new(RADEONPLLPtr pll, unsigned long freq, uint32_t *chosen_dot_clock_freq, uint32_t *chosen_feedback_div, uint32_t *chosen_frac_feedback_div, uint32_t *chosen_reference_div, uint32_t *chosen_post_div, int flags) { float ffreq = freq / 10; float vco_frequency; int fb_div = 0, fb_div_frac = 0, post_div = 0, ref_div = 0; uint32_t best_freq = 0; if (flags & RADEON_PLL_USE_POST_DIV) { post_div = pll->post_div; if ((post_div < pll->min_post_div) || (post_div > pll->max_post_div)) goto done; vco_frequency = ffreq * post_div; if ((vco_frequency < pll->pll_out_min) || (vco_frequency > pll->pll_out_max)) goto done; if (flags & RADEON_PLL_USE_REF_DIV) { ref_div = pll->reference_div; if ((ref_div < pll->min_ref_div) || (ref_div > pll->max_ref_div)) goto done; if (!calc_fb_div(pll, freq, flags, post_div, ref_div, &fb_div, &fb_div_frac)) goto done; } } else { for (post_div = pll->max_post_div; post_div >= pll->min_post_div; --post_div) { if (flags & RADEON_PLL_LEGACY) { if ((post_div == 5) || (post_div == 7) || (post_div == 9) || (post_div == 10) || (post_div == 11)) continue; } if ((flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1)) continue; vco_frequency = ffreq * post_div; if ((vco_frequency < pll->pll_out_min) || (vco_frequency > pll->pll_out_max)) continue; if (flags & RADEON_PLL_USE_REF_DIV) { ref_div = pll->reference_div; if ((ref_div < pll->min_ref_div) || (ref_div > pll->max_ref_div)) goto done; if (calc_fb_div(pll, freq, flags, post_div, ref_div, &fb_div, &fb_div_frac)) break; } else { if (calc_fb_ref_div(pll, freq, flags, post_div, &fb_div, &fb_div_frac, &ref_div)) break; } } } best_freq = pll->reference_freq * 10 * fb_div; best_freq += pll->reference_freq * fb_div_frac; best_freq = best_freq / (ref_div * post_div); ErrorF("best_freq: %u\n", (unsigned int)best_freq); ErrorF("best_feedback_div: %u\n", (unsigned int)fb_div); ErrorF("best_frac_feedback_div: %u\n", (unsigned int)fb_div_frac); ErrorF("best_ref_div: %u\n", (unsigned int)ref_div); ErrorF("best_post_div: %u\n", (unsigned int)post_div); done: if (best_freq == 0) FatalError("Couldn't find valid PLL dividers\n"); *chosen_dot_clock_freq = best_freq; *chosen_feedback_div = fb_div; *chosen_frac_feedback_div = fb_div_frac; *chosen_reference_div = ref_div; *chosen_post_div = post_div; } void RADEONComputePLL(xf86CrtcPtr crtc, RADEONPLLPtr pll, unsigned long freq, uint32_t *chosen_dot_clock_freq, uint32_t *chosen_feedback_div, uint32_t *chosen_frac_feedback_div, uint32_t *chosen_reference_div, uint32_t *chosen_post_div, int flags) { RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; switch (radeon_crtc->pll_algo) { case RADEON_PLL_OLD: RADEONComputePLL_old(pll, freq, chosen_dot_clock_freq, chosen_feedback_div, chosen_frac_feedback_div, chosen_reference_div, chosen_post_div, flags); break; case RADEON_PLL_NEW: /* disable frac fb dividers */ flags &= ~RADEON_PLL_USE_FRAC_FB_DIV; RADEONComputePLL_new(pll, freq, chosen_dot_clock_freq, chosen_feedback_div, chosen_frac_feedback_div, chosen_reference_div, chosen_post_div, flags); break; } } static void radeon_crtc_mode_set(xf86CrtcPtr crtc, DisplayModePtr mode, DisplayModePtr adjusted_mode, int x, int y) { ScrnInfoPtr pScrn = crtc->scrn; RADEONInfoPtr info = RADEONPTR(pScrn); if (IS_AVIVO_VARIANT || info->r4xx_atom) { atombios_crtc_mode_set(crtc, mode, adjusted_mode, x, y); } else { legacy_crtc_mode_set(crtc, mode, adjusted_mode, x, y); } } static void radeon_crtc_mode_commit(xf86CrtcPtr crtc) { if (crtc->scrn->pScreen != NULL) xf86_reload_cursors(crtc->scrn->pScreen); } void radeon_crtc_load_lut(xf86CrtcPtr crtc) { ScrnInfoPtr pScrn = crtc->scrn; RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; RADEONInfoPtr info = RADEONPTR(pScrn); unsigned char *RADEONMMIO = info->MMIO; int i; if (!crtc->enabled) return; if (IS_DCE4_VARIANT) { OUTREG(EVERGREEN_DC_LUT_CONTROL + radeon_crtc->crtc_offset, 0); OUTREG(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0); OUTREG(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0); OUTREG(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0); OUTREG(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0x0000ffff); OUTREG(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0x0000ffff); OUTREG(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0x0000ffff); OUTREG(EVERGREEN_DC_LUT_RW_MODE + radeon_crtc->crtc_offset, 0); OUTREG(EVERGREEN_DC_LUT_WRITE_EN_MASK + radeon_crtc->crtc_offset, 0x00000007); for (i = 0; i < 256; i++) { OUTREG(EVERGREEN_DC_LUT_RW_INDEX + radeon_crtc->crtc_offset, i); OUTREG(EVERGREEN_DC_LUT_30_COLOR + radeon_crtc->crtc_offset, (((radeon_crtc->lut_r[i]) << 20) | ((radeon_crtc->lut_g[i]) << 10) | (radeon_crtc->lut_b[i]))); } } else { if (IS_AVIVO_VARIANT) { OUTREG(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0); OUTREG(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0); OUTREG(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0); OUTREG(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0); OUTREG(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0x0000ffff); OUTREG(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0x0000ffff); OUTREG(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0x0000ffff); } PAL_SELECT(radeon_crtc->crtc_id); if (IS_AVIVO_VARIANT) { OUTREG(AVIVO_DC_LUT_RW_MODE, 0); OUTREG(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f); } for (i = 0; i < 256; i++) { OUTPAL(i, radeon_crtc->lut_r[i], radeon_crtc->lut_g[i], radeon_crtc->lut_b[i]); } if (IS_AVIVO_VARIANT) OUTREG(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id); } } static void radeon_crtc_gamma_set(xf86CrtcPtr crtc, uint16_t *red, uint16_t *green, uint16_t *blue, int size) { RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; int i; for (i = 0; i < 256; i++) { radeon_crtc->lut_r[i] = red[i] >> 6; radeon_crtc->lut_g[i] = green[i] >> 6; radeon_crtc->lut_b[i] = blue[i] >> 6; } radeon_crtc_load_lut(crtc); } static Bool radeon_crtc_lock(xf86CrtcPtr crtc) { ScrnInfoPtr pScrn = crtc->scrn; RADEONInfoPtr info = RADEONPTR(pScrn); #ifdef XF86DRI if (info->cp->CPStarted && pScrn->pScreen) { DRILock(pScrn->pScreen, 0); if (info->accelOn) RADEON_SYNC(info, pScrn); return TRUE; } #endif if (info->accelOn) RADEON_SYNC(info, pScrn); return FALSE; } static void radeon_crtc_unlock(xf86CrtcPtr crtc) { ScrnInfoPtr pScrn = crtc->scrn; RADEONInfoPtr info = RADEONPTR(pScrn); #ifdef XF86DRI if (info->cp->CPStarted && pScrn->pScreen) DRIUnlock(pScrn->pScreen); #endif if (info->accelOn) RADEON_SYNC(info, pScrn); } /** * Allocates memory for a locked-in-framebuffer shadow of the given * width and height for this CRTC's rotated shadow framebuffer. */ static void * radeon_crtc_shadow_allocate (xf86CrtcPtr crtc, int width, int height) { ScrnInfoPtr pScrn = crtc->scrn; RADEONInfoPtr info = RADEONPTR(pScrn); RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; unsigned long rotate_pitch; unsigned long rotate_offset; int size; int cpp = pScrn->bitsPerPixel / 8; /* No rotation without accel */ if (((info->ChipFamily >= CHIP_FAMILY_R600) && !info->directRenderingEnabled) || xf86ReturnOptValBool(info->Options, OPTION_NOACCEL, FALSE)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Acceleration required for rotation\n"); return NULL; } rotate_pitch = pScrn->displayWidth * cpp; size = rotate_pitch * height; /* We could get close to what we want here by just creating a pixmap like * normal, but we have to lock it down in framebuffer, and there is no * setter for offscreen area locking in EXA currently. So, we just * allocate offscreen memory and fake up a pixmap header for it. */ rotate_offset = radeon_legacy_allocate_memory(pScrn, &radeon_crtc->crtc_rotate_mem, size, RADEON_GPU_PAGE_SIZE, RADEON_GEM_DOMAIN_VRAM); if (rotate_offset == 0) return NULL; return info->FB + rotate_offset; } /** * Creates a pixmap for this CRTC's rotated shadow framebuffer. */ static PixmapPtr radeon_crtc_shadow_create(xf86CrtcPtr crtc, void *data, int width, int height) { ScrnInfoPtr pScrn = crtc->scrn; unsigned long rotate_pitch; PixmapPtr rotate_pixmap; int cpp = pScrn->bitsPerPixel / 8; if (!data) data = radeon_crtc_shadow_allocate(crtc, width, height); rotate_pitch = pScrn->displayWidth * cpp; rotate_pixmap = GetScratchPixmapHeader(pScrn->pScreen, width, height, pScrn->depth, pScrn->bitsPerPixel, rotate_pitch, data); if (rotate_pixmap == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Couldn't allocate shadow pixmap for rotated CRTC\n"); } return rotate_pixmap; } static void radeon_crtc_shadow_destroy(xf86CrtcPtr crtc, PixmapPtr rotate_pixmap, void *data) { ScrnInfoPtr pScrn = crtc->scrn; RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; if (rotate_pixmap) FreeScratchPixmapHeader(rotate_pixmap); if (data) { radeon_legacy_free_memory(pScrn, radeon_crtc->crtc_rotate_mem); radeon_crtc->crtc_rotate_mem = NULL; } } #if XF86_CRTC_VERSION >= 2 #include "radeon_atombios.h" extern AtomBiosResult atombios_lock_crtc(atomBiosHandlePtr atomBIOS, int crtc, int lock); extern void RADEONInitCrtcBase(xf86CrtcPtr crtc, RADEONSavePtr save, int x, int y); extern void RADEONInitCrtc2Base(xf86CrtcPtr crtc, RADEONSavePtr save, int x, int y); extern void RADEONRestoreCrtcBase(ScrnInfoPtr pScrn, RADEONSavePtr restore); extern void RADEONRestoreCrtc2Base(ScrnInfoPtr pScrn, RADEONSavePtr restore); static void radeon_crtc_set_origin(xf86CrtcPtr crtc, int x, int y) { ScrnInfoPtr pScrn = crtc->scrn; RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; RADEONInfoPtr info = RADEONPTR(pScrn); unsigned char *RADEONMMIO = info->MMIO; if (IS_DCE4_VARIANT) { x &= ~3; y &= ~1; atombios_lock_crtc(info->atomBIOS, radeon_crtc->crtc_id, 1); OUTREG(EVERGREEN_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); atombios_lock_crtc(info->atomBIOS, radeon_crtc->crtc_id, 0); } else if (IS_AVIVO_VARIANT) { x &= ~3; y &= ~1; atombios_lock_crtc(info->atomBIOS, radeon_crtc->crtc_id, 1); OUTREG(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); atombios_lock_crtc(info->atomBIOS, radeon_crtc->crtc_id, 0); } else { switch (radeon_crtc->crtc_id) { case 0: RADEONInitCrtcBase(crtc, info->ModeReg, x, y); RADEONRestoreCrtcBase(pScrn, info->ModeReg); break; case 1: RADEONInitCrtc2Base(crtc, info->ModeReg, x, y); RADEONRestoreCrtc2Base(pScrn, info->ModeReg); break; default: break; } } } #endif static xf86CrtcFuncsRec radeon_crtc_funcs = { .dpms = radeon_crtc_dpms, .save = NULL, /* XXX */ .restore = NULL, /* XXX */ .mode_fixup = radeon_crtc_mode_fixup, .prepare = radeon_crtc_mode_prepare, .mode_set = radeon_crtc_mode_set, .commit = radeon_crtc_mode_commit, .gamma_set = radeon_crtc_gamma_set, .lock = radeon_crtc_lock, .unlock = radeon_crtc_unlock, .shadow_create = radeon_crtc_shadow_create, .shadow_allocate = radeon_crtc_shadow_allocate, .shadow_destroy = radeon_crtc_shadow_destroy, .set_cursor_colors = radeon_crtc_set_cursor_colors, .set_cursor_position = radeon_crtc_set_cursor_position, .show_cursor = radeon_crtc_show_cursor, .hide_cursor = radeon_crtc_hide_cursor, .load_cursor_argb = radeon_crtc_load_cursor_argb, .destroy = NULL, /* XXX */ #if XF86_CRTC_VERSION >= 2 .set_origin = radeon_crtc_set_origin, #endif }; void RADEONInitDispBandwidth(ScrnInfoPtr pScrn) { RADEONInfoPtr info = RADEONPTR(pScrn); xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn); DisplayModePtr mode1 = NULL, mode2 = NULL; int pixel_bytes1 = info->CurrentLayout.pixel_bytes; int pixel_bytes2 = info->CurrentLayout.pixel_bytes; /* XXX fix me */ if (IS_DCE4_VARIANT) return; if (xf86_config->num_crtc == 2) { if (xf86_config->crtc[1]->enabled && xf86_config->crtc[0]->enabled) { mode1 = &xf86_config->crtc[0]->mode; mode2 = &xf86_config->crtc[1]->mode; } else if (xf86_config->crtc[0]->enabled) { mode1 = &xf86_config->crtc[0]->mode; } else if (xf86_config->crtc[1]->enabled) { mode2 = &xf86_config->crtc[1]->mode; } else return; } else { if (info->IsPrimary) mode1 = &xf86_config->crtc[0]->mode; else if (info->IsSecondary) mode2 = &xf86_config->crtc[0]->mode; else if (xf86_config->crtc[0]->enabled) mode1 = &xf86_config->crtc[0]->mode; else return; } if (IS_AVIVO_VARIANT) RADEONInitDispBandwidthAVIVO(pScrn, mode1, pixel_bytes1, mode2, pixel_bytes2); else RADEONInitDispBandwidthLegacy(pScrn, mode1, pixel_bytes1, mode2, pixel_bytes2); } Bool RADEONAllocateControllers(ScrnInfoPtr pScrn, int mask) { RADEONEntPtr pRADEONEnt = RADEONEntPriv(pScrn); RADEONInfoPtr info = RADEONPTR(pScrn); int i; if (!xf86ReturnOptValBool(info->Options, OPTION_NOACCEL, FALSE)) { radeon_crtc_funcs.shadow_create = radeon_crtc_shadow_create; radeon_crtc_funcs.shadow_allocate = radeon_crtc_shadow_allocate; radeon_crtc_funcs.shadow_destroy = radeon_crtc_shadow_destroy; } if (mask & 1) { if (pRADEONEnt->Controller[0]) return TRUE; pRADEONEnt->pCrtc[0] = xf86CrtcCreate(pScrn, &radeon_crtc_funcs); if (!pRADEONEnt->pCrtc[0]) return FALSE; pRADEONEnt->Controller[0] = xnfcalloc(sizeof(RADEONCrtcPrivateRec), 1); if (!pRADEONEnt->Controller[0]) return FALSE; pRADEONEnt->pCrtc[0]->driver_private = pRADEONEnt->Controller[0]; pRADEONEnt->Controller[0]->crtc_id = 0; pRADEONEnt->Controller[0]->crtc_offset = 0; pRADEONEnt->Controller[0]->initialized = FALSE; if (info->allowColorTiling) pRADEONEnt->Controller[0]->can_tile = 1; else pRADEONEnt->Controller[0]->can_tile = 0; pRADEONEnt->Controller[0]->pll_id = -1; } if (mask & 2) { if (!pRADEONEnt->HasCRTC2) return TRUE; pRADEONEnt->pCrtc[1] = xf86CrtcCreate(pScrn, &radeon_crtc_funcs); if (!pRADEONEnt->pCrtc[1]) return FALSE; pRADEONEnt->Controller[1] = xnfcalloc(sizeof(RADEONCrtcPrivateRec), 1); if (!pRADEONEnt->Controller[1]) { free(pRADEONEnt->Controller[0]); return FALSE; } pRADEONEnt->pCrtc[1]->driver_private = pRADEONEnt->Controller[1]; pRADEONEnt->Controller[1]->crtc_id = 1; if (IS_DCE4_VARIANT) pRADEONEnt->Controller[1]->crtc_offset = EVERGREEN_CRTC1_REGISTER_OFFSET; else pRADEONEnt->Controller[1]->crtc_offset = AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL; pRADEONEnt->Controller[1]->initialized = FALSE; if (info->allowColorTiling) pRADEONEnt->Controller[1]->can_tile = 1; else pRADEONEnt->Controller[1]->can_tile = 0; pRADEONEnt->Controller[1]->pll_id = -1; } /* 6 crtcs on DCE4 chips */ if (IS_DCE4_VARIANT && ((mask & 3) == 3) && !IS_DCE41_VARIANT) { for (i = 2; i < RADEON_MAX_CRTC; i++) { pRADEONEnt->pCrtc[i] = xf86CrtcCreate(pScrn, &radeon_crtc_funcs); if (!pRADEONEnt->pCrtc[i]) return FALSE; pRADEONEnt->Controller[i] = xnfcalloc(sizeof(RADEONCrtcPrivateRec), 1); if (!pRADEONEnt->Controller[i]) { free(pRADEONEnt->Controller[i]); return FALSE; } pRADEONEnt->pCrtc[i]->driver_private = pRADEONEnt->Controller[i]; pRADEONEnt->Controller[i]->crtc_id = i; switch (i) { case 0: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC0_REGISTER_OFFSET; break; case 1: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC1_REGISTER_OFFSET; break; case 2: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC2_REGISTER_OFFSET; break; case 3: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC3_REGISTER_OFFSET; break; case 4: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC4_REGISTER_OFFSET; break; case 5: pRADEONEnt->Controller[i]->crtc_offset = EVERGREEN_CRTC5_REGISTER_OFFSET; break; } pRADEONEnt->Controller[i]->initialized = FALSE; if (info->allowColorTiling) pRADEONEnt->Controller[i]->can_tile = 1; else pRADEONEnt->Controller[i]->can_tile = 0; pRADEONEnt->Controller[i]->pll_id = -1; } } return TRUE; } /** * In the current world order, there are lists of modes per output, which may * or may not include the mode that was asked to be set by XFree86's mode * selection. Find the closest one, in the following preference order: * * - Equality * - Closer in size to the requested mode, but no larger * - Closer in refresh rate to the requested mode. */ DisplayModePtr RADEONCrtcFindClosestMode(xf86CrtcPtr crtc, DisplayModePtr pMode) { ScrnInfoPtr pScrn = crtc->scrn; xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn); DisplayModePtr pBest = NULL, pScan = NULL; int i; /* Assume that there's only one output connected to the given CRTC. */ for (i = 0; i < xf86_config->num_output; i++) { xf86OutputPtr output = xf86_config->output[i]; if (output->crtc == crtc && output->probed_modes != NULL) { pScan = output->probed_modes; break; } } /* If the pipe doesn't have any detected modes, just let the system try to * spam the desired mode in. */ if (pScan == NULL) { RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "No crtc mode list for crtc %d," "continuing with desired mode\n", radeon_crtc->crtc_id); return pMode; } for (; pScan != NULL; pScan = pScan->next) { assert(pScan->VRefresh != 0.0); /* If there's an exact match, we're done. */ if (xf86ModesEqual(pScan, pMode)) { pBest = pMode; break; } /* Reject if it's larger than the desired mode. */ if (pScan->HDisplay > pMode->HDisplay || pScan->VDisplay > pMode->VDisplay) { continue; } if (pBest == NULL) { pBest = pScan; continue; } /* Find if it's closer to the right size than the current best * option. */ if ((pScan->HDisplay > pBest->HDisplay && pScan->VDisplay >= pBest->VDisplay) || (pScan->HDisplay >= pBest->HDisplay && pScan->VDisplay > pBest->VDisplay)) { pBest = pScan; continue; } /* Find if it's still closer to the right refresh than the current * best resolution. */ if (pScan->HDisplay == pBest->HDisplay && pScan->VDisplay == pBest->VDisplay && (fabs(pScan->VRefresh - pMode->VRefresh) < fabs(pBest->VRefresh - pMode->VRefresh))) { pBest = pScan; } } if (pBest == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "No suitable mode found to program for the pipe.\n" " continuing with desired mode %dx%d@%.1f\n", pMode->HDisplay, pMode->VDisplay, pMode->VRefresh); } else if (!xf86ModesEqual(pBest, pMode)) { RADEONCrtcPrivatePtr radeon_crtc = crtc->driver_private; int crtc = radeon_crtc->crtc_id; xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Choosing pipe %d's mode %dx%d@%.1f instead of xf86 " "mode %dx%d@%.1f\n", crtc, pBest->HDisplay, pBest->VDisplay, pBest->VRefresh, pMode->HDisplay, pMode->VDisplay, pMode->VRefresh); pMode = pBest; } return pMode; } void RADEONBlank(ScrnInfoPtr pScrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn); xf86OutputPtr output; xf86CrtcPtr crtc; int o, c; for (c = 0; c < xf86_config->num_crtc; c++) { crtc = xf86_config->crtc[c]; for (o = 0; o < xf86_config->num_output; o++) { output = xf86_config->output[o]; if (output->crtc != crtc) continue; output->funcs->dpms(output, DPMSModeOff); } crtc->funcs->dpms(crtc, DPMSModeOff); } } void RADEONUnblank(ScrnInfoPtr pScrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn); xf86OutputPtr output; xf86CrtcPtr crtc; int o, c; for (c = 0; c < xf86_config->num_crtc; c++) { crtc = xf86_config->crtc[c]; if(!crtc->enabled) continue; crtc->funcs->dpms(crtc, DPMSModeOn); for (o = 0; o < xf86_config->num_output; o++) { output = xf86_config->output[o]; if (output->crtc != crtc) continue; output->funcs->dpms(output, DPMSModeOn); } } } Bool RADEONSetTiling(ScrnInfoPtr pScrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn); RADEONInfoPtr info = RADEONPTR(pScrn); RADEONCrtcPrivatePtr radeon_crtc; xf86CrtcPtr crtc; int c; int can_tile = 1; Bool changed = FALSE; for (c = 0; c < xf86_config->num_crtc; c++) { crtc = xf86_config->crtc[c]; radeon_crtc = crtc->driver_private; if (crtc->enabled) { if (!radeon_crtc->can_tile) can_tile = 0; } } if (info->tilingEnabled != can_tile) changed = TRUE; #ifdef XF86DRI if (info->directRenderingEnabled && (info->tilingEnabled != can_tile)) { drm_radeon_sarea_t *pSAREAPriv; if (RADEONDRISetParam(pScrn, RADEON_SETPARAM_SWITCH_TILING, (can_tile ? 1 : 0)) < 0) xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "[drm] failed changing tiling status\n"); /* if this is called during ScreenInit() we don't have pScrn->pScreen yet */ pSAREAPriv = DRIGetSAREAPrivate(screenInfo.screens[pScrn->scrnIndex]); info->tilingEnabled = pSAREAPriv->tiling_enabled ? TRUE : FALSE; } #endif return changed; }