1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* Copyright (c) 2003-2005 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Neither the name of the Advanced Micro Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
* */
/*
* This is the main file used to add Durango graphics support to a software
* project. The main reason to have a single file include the other files
* is that it centralizes the location of the compiler options. This file
* should be tuned for a specific implementation, and then modified as needed
* for new Durango releases. The releases.txt file indicates any updates to
* this main file, such as a new definition for a new hardware platform.
*
* In other words, this file should be copied from the Durango source files
* once when a software project starts, and then maintained as necessary.
* It should not be recopied with new versions of Durango unless the
* developer is willing to tune the file again for the specific project.
* */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* COMPILER OPTIONS
* These compiler options specify how the Durango routines are compiled
* for the different hardware platforms. For best performance, a driver
* would build for a specific platform. The "dynamic" switches are set
* by diagnostic applications such as Darwin that will run on a variety
* of platforms and use the appropriate code at runtime. Each component
* may be separately dynamic, so that a driver has the option of being
* tuned for a specific 2D accelerator, but will still run with a variety
* of chipsets.
*/
#define GFX_DISPLAY_DYNAMIC 0 /* runtime selection */
#define GFX_DISPLAY_GU1 0 /* 1st generation display controller */
#define GFX_DISPLAY_GU2 1 /* 2nd generation display controller */
#define GFX_DISPLAY_GU3 0 /* 3nd generation display controller */
#define GFX_INIT_DYNAMIC 0 /* runtime selection */
#define GFX_INIT_GU1 0 /* Geode family */
#define GFX_INIT_GU2 1 /* Redcloud */
#define GFX_INIT_GU3 0 /* Castle */
#define GFX_MSR_DYNAMIC 1 /* runtime selection */
#define GFX_MSR_REDCLOUD 1 /* Redcloud */
#define GFX_2DACCEL_DYNAMIC 0 /* runtime selection */
#define GFX_2DACCEL_GU1 0 /* 1st generation 2D accelerator */
#define GFX_2DACCEL_GU2 1 /* 2nd generation 2D accelerator */
#define GFX_VIDEO_DYNAMIC 0 /* runtime selection */
#define GFX_VIDEO_CS5530 0 /* support for CS5530 */
#define GFX_VIDEO_SC1200 0 /* support for SC1200 */
#define GFX_VIDEO_REDCLOUD 1 /* support for Redcloud */
#define GFX_VIDEO_CASTLE 0 /* support for Castle */
#define GFX_VIP_DYNAMIC 0 /* runtime selection */
#define GFX_VIP_SC1200 0 /* support for SC1200 */
#define GFX_DECODER_DYNAMIC 0 /* runtime selection */
#define GFX_DECODER_SAA7114 0 /* Philips SAA7114 decoder */
#define GFX_TV_DYNAMIC 0 /* runtime selection */
#define GFX_TV_FS451 0 /* Focus Enhancements FS450 */
#define GFX_TV_SC1200 0 /* SC1200 integrated TV encoder */
#define GFX_I2C_DYNAMIC 0 /* runtime selection */
#define GFX_I2C_ACCESS 0 /* support for ACCESS.BUS */
#define GFX_I2C_GPIO 0 /* support for CS5530 GPIOs */
#define GFX_VGA_DYNAMIC 0 /* runtime selection */
#define GFX_VGA_GU1 0 /* 1st generation graphics unit */
#define FB4MB 1 /* Set to use 4Mb video ram for
* Pyramid */
#define GFX_NO_IO_IN_WAIT_MACROS 1 /* Set to remove I/O accesses in GP
* bit testing */
/* ROUTINES TO READ VALUES
* These are routines used by Darwin or other diagnostics to read the
* current state of the hardware. Display drivers or embedded applications
* can reduce the size of the Durango code by not including these routines.
*/
#define GFX_READ_ROUTINES 1 /* add routines to read values */
/* HEADER FILE FOR DURANGO ROUTINE DEFINITIONS
* Needed since some of the Durango routines call other Durango routines.
* Also defines the size of chipset array (GFX_CSPTR_SIZE).
*/
#include "gfx_rtns.h" /* routine definitions */
#include "gfx_priv.h"
/* VARIABLES USED FOR RUNTIME SELECTION
* If part of the graphics subsystem is declared as dynamic, then the
* following variables are used to specify which platform has been detected.
* The variables are set in the "gfx_detect_cpu" routine. The values should
* be bit flags to allow masks to be used to check for multiple platforms.
*/
#if GFX_DISPLAY_DYNAMIC
int gfx_display_type = 0;
#endif
#if GFX_INIT_DYNAMIC
int gfx_init_type = 0;
#endif
#if GFX_MSR_DYNAMIC
int gfx_msr_type = 0;
#endif
#if GFX_2DACCEL_DYNAMIC
int gfx_2daccel_type = 0;
#endif
#if GFX_VIDEO_DYNAMIC
int gfx_video_type = 0;
#endif
#if GFX_VIP_DYNAMIC
int gfx_vip_type = 0;
#endif
#if GFX_DECODER_DYNAMIC
int gfx_decoder_type = 0;
#endif
#if GFX_TV_DYNAMIC
int gfx_tv_type = 0;
#endif
#if GFX_I2C_DYNAMIC
int gfx_i2c_type = 0;
#endif
#if GFX_VGA_DYNAMIC
int gfx_vga_type = 0;
#endif
/* DEFINE POINTERS TO MEMORY MAPPED REGIONS
* These pointers are used by the Durango routines to access the hardware.
* The variables must be set by the project's initialization code after
* mapping the regions in the appropriate manner.
*/
/* DEFINE VIRTUAL ADDRESSES */
/* Note: These addresses define the starting base expected by all */
/* Durango offsets. Under an OS that requires these pointers */
/* to be mapped to linear addresses (i.e Windows), it may not */
/* be possible to keep these base offsets. In these cases, */
/* the addresses are modified to point to the beginning of the */
/* relevant memory region and the access macros are adjusted */
/* to subtract the offset from the default base. For example, */
/* the register pointer could be moved to be 0x40008000, while */
/* the WRITE_REG* macros are modified to subtract 0x8000 from */
/* the offset. */
unsigned char *gfx_virt_regptr = (unsigned char *)0x40000000;
unsigned char *gfx_virt_fbptr = (unsigned char *)0x40800000;
unsigned char *gfx_virt_vidptr = (unsigned char *)0x40010000;
unsigned char *gfx_virt_vipptr = (unsigned char *)0x40015000;
unsigned char *gfx_virt_spptr = (unsigned char *)0x40000000;
unsigned char *gfx_virt_gpptr = (unsigned char *)0x40000000;
/* DEFINE PHYSICAL ADDRESSES */
unsigned char *gfx_phys_regptr = (unsigned char *)0x40000000;
unsigned char *gfx_phys_fbptr = (unsigned char *)0x40800000;
unsigned char *gfx_phys_vidptr = (unsigned char *)0x40010000;
unsigned char *gfx_phys_vipptr = (unsigned char *)0x40015000;
/* HEADER FILE FOR GRAPHICS REGISTER DEFINITIONS
* This contains only constant definitions, so it should be able to be
* included in any software project as is.
*/
#include "gfx_regs.h" /* graphics register definitions */
/* HEADER FILE FOR REGISTER ACCESS MACROS
* This file contains the definitions of the WRITE_REG32 and similar macros
* used by the Durango routines to access the hardware. The file assumes
* that the environment can handle 32-bit pointer access. If this is not
* the case, or if there are special requirements, then this header file
* should not be included and the project must define the macros itself.
* (A project may define WRITE_REG32 to call a routine, for example).
*/
#include "gfx_defs.h" /* register access macros */
#include <xf86_ansic.h>
#include <compiler.h>
#define INB(port) inb(port)
#define INW(port) inw(port)
#define IND(port) inl(port)
#define OUTB(port,data) outb(port, data)
#define OUTW(port,data) outw(port, data)
#define OUTD(port,data) outl(port, data)
unsigned char gfx_inb(unsigned short port);
unsigned short gfx_inw(unsigned short port);
unsigned long gfx_ind(unsigned short port);
void gfx_outb(unsigned short port, unsigned char data);
void gfx_outw(unsigned short port, unsigned short data);
void gfx_outd(unsigned short port, unsigned long data);
unsigned char
gfx_inb(unsigned short port)
{
return inb(port);
}
unsigned short
gfx_inw(unsigned short port)
{
return inw(port);
}
unsigned long
gfx_ind(unsigned short port)
{
return inl(port);
}
void
gfx_outb(unsigned short port, unsigned char data)
{
outb(port, data);
}
void
gfx_outw(unsigned short port, unsigned short data)
{
outw(port, data);
}
void
gfx_outd(unsigned short port, unsigned long data)
{
outl(port, data);
}
/*-----------------------------------------------------------------
* gfx_msr_asm_read
* Read the contents of a 64 bit MSR into address pointers
*-----------------------------------------------------------------*/
#define gfx_msr_asm_read(msr,adr,high,low) \
__asm__ __volatile__( \
" mov $0x0AC1C, %%edx\n" \
" mov $0xFC530007, %%eax\n" \
" out %%eax,%%dx\n" \
" add $2,%%dl\n" \
" in %%dx, %%ax" \
: "=a" (*(low)), "=d" (*(high)) \
: "c" (msr | adr))
/*-----------------------------------------------------------------
* gfx_msr_asm_write
* Write the contents of address pointers to a MSR.
*-----------------------------------------------------------------*/
#define gfx_msr_asm_write(msr,adr,high,low) \
{ int d0, d1, d2, d3, d4; \
__asm__ __volatile__( \
" push %%ebx\n" \
" mov $0x0AC1C, %%edx\n" \
" mov $0xFC530007, %%eax\n" \
" out %%eax,%%dx\n" \
" add $2,%%dl\n" \
" mov %6, %%ebx\n" \
" mov %7, %0\n" \
" mov %5, %3\n" \
" xor %2, %2\n" \
" xor %1, %1\n" \
" out %%ax, %%dx\n" \
" pop %%ebx\n" \
: "=a"(d0),"=&D"(d1),"=&S"(d2), \
"=c"(d3),"=d"(d4) \
: "1"(msr | adr),"2"(*(high)),"3"(*(low))); \
}
/* INITIALIZATION ROUTINES
* These routines are used during the initialization of the driver to
* perform such tasks as detecting the type of CPU and video hardware.
* The routines require the use of IO, so the above IO routines need
* to be implemented before the initialization routines will work
* properly.
*/
#include "gfx_init.c"
/* INCLUDE MSR ACCESS ROUTINES */
#include "gfx_msr.c"
/* INCLUDE GRAPHICS ENGINE ROUTINES
* These routines are used to program the 2D graphics accelerator. If
* the project does not use graphics acceleration (direct frame buffer
* access only), then this file does not need to be included.
*/
#include "gfx_rndr.c" /* graphics engine routines */
/* INCLUDE DISPLAY CONTROLLER ROUTINES
* These routines are used if the display mode is set directly. If the
* project uses VGA registers to set a display mode, then these files
* do not need to be included.
*/
#include "gfx_mode.h" /* display mode tables */
#include "gfx_disp.c" /* display controller routines */
/* INCLUDE VIDEO OVERLAY ROUTINES
* These routines control the video overlay hardware.
*/
#include "gfx_vid.c" /* video overlay routines */
/* VIDEO PORT AND VIDEO DECODER ROUTINES
* These routines rely on the I2C routines.
*/
#include "gfx_vip.c" /* video port routines */
#include "gfx_dcdr.c" /* video decoder routines */
/* I2C BUS ACCESS ROUTINES
* These routines are used by the video decoder and possibly an
* external TV encoer.
*/
#include "gfx_i2c.c" /* I2C bus access routines */
/* TV ENCODER ROUTINES
* This file does not need to be included if the system does not
* support TV output.
*/
#include "gfx_tv.c" /* TV encoder routines */
/* VGA ROUTINES
* This file is used if setting display modes using VGA registers.
*/
#include "gfx_vga.c" /* VGA routines */
/* END OF FILE */
|