#define DEBUG_VERB 2 /* * Copyright © 2002 David Dawes * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the author(s) shall * not be used in advertising or otherwise to promote the sale, use or other * dealings in this Software without prior written authorization from * the author(s). * * Authors: David Dawes * * $XFree86: xc/programs/Xserver/hw/xfree86/os-support/vbe/vbeModes.c,v 1.6 2002/11/02 01:38:25 dawes Exp $ */ /* * Modified by Alan Hourihane * to support extended BIOS modes for the Intel chipsets */ #include "xf86.h" #include "xf86_ansic.h" #include "vbe.h" #include "vbeModes.h" #include "i830.h" #include #define rint(x) floor(x) #define MARGIN_PERCENT 1.8 /* % of active vertical image */ #define CELL_GRAN 8.0 /* assumed character cell granularity */ #define MIN_PORCH 1 /* minimum front porch */ #define V_SYNC_RQD 3 /* width of vsync in lines */ #define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */ #define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */ #define M 600.0 /* blanking formula gradient */ #define C 40.0 /* blanking formula offset */ #define K 128.0 /* blanking formula scaling factor */ #define J 20.0 /* blanking formula scaling factor */ /* C' and M' are part of the Blanking Duty Cycle computation */ #define C_PRIME (((C - J) * K/256.0) + J) #define M_PRIME (K/256.0 * M) extern const int i830refreshes[]; static DisplayModePtr I830GetGTF (int h_pixels, int v_lines, float freq, int interlaced, int margins) { float h_pixels_rnd; float v_lines_rnd; float v_field_rate_rqd; float top_margin; float bottom_margin; float interlace; float h_period_est; float vsync_plus_bp; float v_back_porch; float total_v_lines; float v_field_rate_est; float h_period; float v_field_rate; float v_frame_rate; float left_margin; float right_margin; float total_active_pixels; float ideal_duty_cycle; float h_blank; float total_pixels; float pixel_freq; float h_freq; float h_sync; float h_front_porch; float v_odd_front_porch_lines; char modename[20]; DisplayModePtr m; m = xnfcalloc(sizeof(DisplayModeRec), 1); /* 1. In order to give correct results, the number of horizontal * pixels requested is first processed to ensure that it is divisible * by the character size, by rounding it to the nearest character * cell boundary: * * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) */ h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN; /* 2. If interlace is requested, the number of vertical lines assumed * by the calculation must be halved, as the computation calculates * the number of vertical lines per field. In either case, the * number of lines is rounded to the nearest integer. * * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), * ROUND([V LINES],0)) */ v_lines_rnd = interlaced ? rint((float) v_lines) / 2.0 : rint((float) v_lines); /* 3. Find the frame rate required: * * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, * [I/P FREQ RQD]) */ v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq); /* 4. Find number of lines in Top margin: * * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", * ROUND(([MARGIN%]/100*[V LINES RND]),0), * 0) */ top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0); /* 5. Find number of lines in Bottom margin: * * [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y", * ROUND(([MARGIN%]/100*[V LINES RND]),0), * 0) */ bottom_margin = margins ? rint(MARGIN_PERCENT/100.0 * v_lines_rnd) : (0.0); /* 6. If interlace is required, then set variable [INTERLACE]=0.5: * * [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) */ interlace = interlaced ? 0.5 : 0.0; /* 7. Estimate the Horizontal period * * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + * [MIN PORCH RND]+[INTERLACE]) * 1000000 */ h_period_est = (((1.0/v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP/1000000.0)) / (v_lines_rnd + (2*top_margin) + MIN_PORCH + interlace) * 1000000.0); /* 8. Find the number of lines in V sync + back porch: * * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) */ vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP/h_period_est); /* 9. Find the number of lines in V back porch alone: * * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] * * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? */ v_back_porch = vsync_plus_bp - V_SYNC_RQD; /* 10. Find the total number of lines in Vertical field period: * * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + * [MIN PORCH RND] */ total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp + interlace + MIN_PORCH; /* 11. Estimate the Vertical field frequency: * * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 */ v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0; /* 12. Find the actual horizontal period: * * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) */ h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est); /* 13. Find the actual Vertical field frequency: * * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 */ v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0; /* 14. Find the Vertical frame frequency: * * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) */ v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate; /* 15. Find number of pixels in left margin: * * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / * [CELL GRAN RND]),0)) * [CELL GRAN RND], * 0)) */ left_margin = margins ? rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 0.0; /* 16. Find number of pixels in right margin: * * [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / * [CELL GRAN RND]),0)) * [CELL GRAN RND], * 0)) */ right_margin = margins ? rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : 0.0; /* 17. Find total number of active pixels in image and left and right * margins: * * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + * [RIGHT MARGIN (PIXELS)] */ total_active_pixels = h_pixels_rnd + left_margin + right_margin; /* 18. Find the ideal blanking duty cycle from the blanking duty cycle * equation: * * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) */ ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0); /* 19. Find the number of pixels in the blanking time to the nearest * double character cell: * * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * * [IDEAL DUTY CYCLE] / * (100-[IDEAL DUTY CYCLE]) / * (2*[CELL GRAN RND])), 0)) * * (2*[CELL GRAN RND]) */ h_blank = rint(total_active_pixels * ideal_duty_cycle / (100.0 - ideal_duty_cycle) / (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN); /* 20. Find total number of pixels: * * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] */ total_pixels = total_active_pixels + h_blank; /* 21. Find pixel clock frequency: * * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] */ pixel_freq = total_pixels / h_period; /* 22. Find horizontal frequency: * * [H FREQ] = 1000 / [H PERIOD] */ h_freq = 1000.0 / h_period; /* Stage 1 computations are now complete; I should really pass the results to another function and do the Stage 2 computations, but I only need a few more values so I'll just append the computations here for now */ /* 17. Find the number of pixels in the horizontal sync period: * * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / * [CELL GRAN RND]),0))*[CELL GRAN RND] */ h_sync = rint(H_SYNC_PERCENT/100.0 * total_pixels / CELL_GRAN) * CELL_GRAN; /* 18. Find the number of pixels in the horizontal front porch period: * * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] */ h_front_porch = (h_blank / 2.0) - h_sync; /* 36. Find the number of lines in the odd front porch period: * * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) */ v_odd_front_porch_lines = MIN_PORCH + interlace; /* finally, pack the results in the DisplayMode struct */ m->HDisplay = (int) (h_pixels_rnd); m->HSyncStart = (int) (h_pixels_rnd + h_front_porch); m->HSyncEnd = (int) (h_pixels_rnd + h_front_porch + h_sync); m->HTotal = (int) (total_pixels); m->VDisplay = (int) (v_lines_rnd); m->VSyncStart = (int) (v_lines_rnd + v_odd_front_porch_lines); m->VSyncEnd = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD); m->VTotal = (int) (total_v_lines); m->Clock = (int)(pixel_freq * 1000); m->SynthClock = m->Clock; m->HSync = h_freq; m->VRefresh = freq; snprintf(modename, sizeof(modename), "%dx%d", m->HDisplay,m->VDisplay); m->name = xnfstrdup(modename); return (m); } static DisplayModePtr CheckMode(ScrnInfoPtr pScrn, vbeInfoPtr pVbe, VbeInfoBlock *vbe, int id, int flags) { CARD16 major, minor; VbeModeInfoBlock *mode; DisplayModePtr pMode = NULL; VbeModeInfoData *data; Bool modeOK = FALSE; ModeStatus status = MODE_OK; major = (unsigned)(vbe->VESAVersion >> 8); minor = vbe->VESAVersion & 0xff; if ((mode = VBEGetModeInfo(pVbe, id)) == NULL) return NULL; /* Does the mode match the depth/bpp? */ /* Some BIOS's set BitsPerPixel to 15 instead of 16 for 15/16 */ if (VBE_MODE_USABLE(mode, flags) && ((pScrn->bitsPerPixel == 1 && !VBE_MODE_COLOR(mode)) || (mode->BitsPerPixel > 8 && (mode->RedMaskSize + mode->GreenMaskSize + mode->BlueMaskSize) == pScrn->depth && mode->BitsPerPixel == pScrn->bitsPerPixel) || (mode->BitsPerPixel == 15 && pScrn->depth == 15) || (mode->BitsPerPixel <= 8 && mode->BitsPerPixel == pScrn->bitsPerPixel))) { modeOK = TRUE; xf86ErrorFVerb(DEBUG_VERB, "*"); } /* * Check if there's a valid monitor mode that this one can be matched * up with. The actual matching is done later. */ if (modeOK) { float vrefresh = 0.0f; int i; for (i=0;imonitor->nVrefresh;i++) { for (vrefresh = pScrn->monitor->vrefresh[i].hi; vrefresh >= pScrn->monitor->vrefresh[i].lo; vrefresh -= 1.0f) { if (vrefresh != (float)0.0f) { float best_vrefresh; int int_vrefresh; /* Find the best refresh for the Intel chipsets */ int_vrefresh = I830GetBestRefresh(pScrn, (int)vrefresh); best_vrefresh = (float)i830refreshes[int_vrefresh]; /* Now, grab the best mode from the available refresh */ pMode = I830GetGTF(mode->XResolution, mode->YResolution, best_vrefresh, 0, 0); pMode->type = M_T_BUILTIN; status = xf86CheckModeForMonitor(pMode, pScrn->monitor); if (status == MODE_OK) { if (major >= 3) { if (pMode->Clock * 1000 <= mode->MaxPixelClock) modeOK = TRUE; else modeOK = FALSE; } else modeOK = TRUE; } else modeOK = FALSE; pMode->status = status; } else { modeOK = FALSE; } if (modeOK) break; } if (modeOK) break; } } xf86ErrorFVerb(DEBUG_VERB, "Mode: %x (%dx%d)\n", id, mode->XResolution, mode->YResolution); xf86ErrorFVerb(DEBUG_VERB, " ModeAttributes: 0x%x\n", mode->ModeAttributes); xf86ErrorFVerb(DEBUG_VERB, " WinAAttributes: 0x%x\n", mode->WinAAttributes); xf86ErrorFVerb(DEBUG_VERB, " WinBAttributes: 0x%x\n", mode->WinBAttributes); xf86ErrorFVerb(DEBUG_VERB, " WinGranularity: %d\n", mode->WinGranularity); xf86ErrorFVerb(DEBUG_VERB, " WinSize: %d\n", mode->WinSize); xf86ErrorFVerb(DEBUG_VERB, " WinASegment: 0x%x\n", mode->WinASegment); xf86ErrorFVerb(DEBUG_VERB, " WinBSegment: 0x%x\n", mode->WinBSegment); xf86ErrorFVerb(DEBUG_VERB, " WinFuncPtr: 0x%x\n", mode->WinFuncPtr); xf86ErrorFVerb(DEBUG_VERB, " BytesPerScanline: %d\n", mode->BytesPerScanline); xf86ErrorFVerb(DEBUG_VERB, " XResolution: %d\n", mode->XResolution); xf86ErrorFVerb(DEBUG_VERB, " YResolution: %d\n", mode->YResolution); xf86ErrorFVerb(DEBUG_VERB, " XCharSize: %d\n", mode->XCharSize); xf86ErrorFVerb(DEBUG_VERB, " YCharSize: %d\n", mode->YCharSize); xf86ErrorFVerb(DEBUG_VERB, " NumberOfPlanes: %d\n", mode->NumberOfPlanes); xf86ErrorFVerb(DEBUG_VERB, " BitsPerPixel: %d\n", mode->BitsPerPixel); xf86ErrorFVerb(DEBUG_VERB, " NumberOfBanks: %d\n", mode->NumberOfBanks); xf86ErrorFVerb(DEBUG_VERB, " MemoryModel: %d\n", mode->MemoryModel); xf86ErrorFVerb(DEBUG_VERB, " BankSize: %d\n", mode->BankSize); xf86ErrorFVerb(DEBUG_VERB, " NumberOfImages: %d\n", mode->NumberOfImages); xf86ErrorFVerb(DEBUG_VERB, " RedMaskSize: %d\n", mode->RedMaskSize); xf86ErrorFVerb(DEBUG_VERB, " RedFieldPosition: %d\n", mode->RedFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " GreenMaskSize: %d\n", mode->GreenMaskSize); xf86ErrorFVerb(DEBUG_VERB, " GreenFieldPosition: %d\n", mode->GreenFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " BlueMaskSize: %d\n", mode->BlueMaskSize); xf86ErrorFVerb(DEBUG_VERB, " BlueFieldPosition: %d\n", mode->BlueFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " RsvdMaskSize: %d\n", mode->RsvdMaskSize); xf86ErrorFVerb(DEBUG_VERB, " RsvdFieldPosition: %d\n", mode->RsvdFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " DirectColorModeInfo: %d\n", mode->DirectColorModeInfo); if (major >= 2) { xf86ErrorFVerb(DEBUG_VERB, " PhysBasePtr: 0x%x\n", mode->PhysBasePtr); if (major >= 3) { xf86ErrorFVerb(DEBUG_VERB, " LinBytesPerScanLine: %d\n", mode->LinBytesPerScanLine); xf86ErrorFVerb(DEBUG_VERB, " BnkNumberOfImagePages: %d\n", mode->BnkNumberOfImagePages); xf86ErrorFVerb(DEBUG_VERB, " LinNumberOfImagePages: %d\n", mode->LinNumberOfImagePages); xf86ErrorFVerb(DEBUG_VERB, " LinRedMaskSize: %d\n", mode->LinRedMaskSize); xf86ErrorFVerb(DEBUG_VERB, " LinRedFieldPosition: %d\n", mode->LinRedFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " LinGreenMaskSize: %d\n", mode->LinGreenMaskSize); xf86ErrorFVerb(DEBUG_VERB, " LinGreenFieldPosition: %d\n", mode->LinGreenFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " LinBlueMaskSize: %d\n", mode->LinBlueMaskSize); xf86ErrorFVerb(DEBUG_VERB, " LinBlueFieldPosition: %d\n", mode->LinBlueFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " LinRsvdMaskSize: %d\n", mode->LinRsvdMaskSize); xf86ErrorFVerb(DEBUG_VERB, " LinRsvdFieldPosition: %d\n", mode->LinRsvdFieldPosition); xf86ErrorFVerb(DEBUG_VERB, " MaxPixelClock: %d\n", mode->MaxPixelClock); } } if (!modeOK) { VBEFreeModeInfo(mode); if (pMode) xfree(pMode); return NULL; } pMode->status = MODE_OK; pMode->type = M_T_BUILTIN; /* for adjust frame */ pMode->HDisplay = mode->XResolution; pMode->VDisplay = mode->YResolution; data = xnfcalloc(sizeof(VbeModeInfoData), 1); data->mode = id; data->data = mode; pMode->PrivSize = sizeof(VbeModeInfoData); pMode->Private = (INT32*)data; pMode->next = NULL; return pMode; } /* * Check the available BIOS modes, and extract those that match the * requirements into the modePool. Note: modePool is a NULL-terminated * list. */ DisplayModePtr i830GetModePool(ScrnInfoPtr pScrn, vbeInfoPtr pVbe, VbeInfoBlock *vbe, int modeTypes) { DisplayModePtr pMode, p = NULL, modePool = NULL; int i = 0; if (modeTypes & V_MODETYPE_VBE) { while (vbe->VideoModePtr[i] != 0xffff) { int id = vbe->VideoModePtr[i++]; if ((pMode = CheckMode(pScrn, pVbe, vbe, id, modeTypes)) != NULL) { ModeStatus status = MODE_OK; /* Check the mode against a specified virtual size (if any) */ if (pScrn->display->virtualX > 0 && pMode->HDisplay > pScrn->display->virtualX) { status = MODE_VIRTUAL_X; } if (pScrn->display->virtualY > 0 && pMode->VDisplay > pScrn->display->virtualY) { status = MODE_VIRTUAL_Y; } if (status != MODE_OK) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Not using mode \"%dx%d\" (%s)\n", pMode->HDisplay, pMode->VDisplay, xf86ModeStatusToString(status)); } else { if (p == NULL) { modePool = pMode; } else { p->next = pMode; } pMode->prev = NULL; p = pMode; } } } } if (modeTypes & V_MODETYPE_VGA) { for (i = 0; i < 0x7F; i++) { if ((pMode = CheckMode(pScrn, pVbe, vbe, i, modeTypes)) != NULL) { ModeStatus status = MODE_OK; /* Check the mode against a specified virtual size (if any) */ if (pScrn->display->virtualX > 0 && pMode->HDisplay > pScrn->display->virtualX) { status = MODE_VIRTUAL_X; } if (pScrn->display->virtualY > 0 && pMode->VDisplay > pScrn->display->virtualY) { status = MODE_VIRTUAL_Y; } if (status != MODE_OK) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Not using mode \"%dx%d\" (%s)\n", pMode->HDisplay, pMode->VDisplay, xf86ModeStatusToString(status)); } else { if (p == NULL) { modePool = pMode; } else { p->next = pMode; } pMode->prev = NULL; p = pMode; } } } } return modePool; } /* * Go through the monitor modes and selecting the best set of * parameters for each BIOS mode. Note: This is only supported in * VBE version 3.0 or later. */ void i830SetModeParameters(ScrnInfoPtr pScrn, vbeInfoPtr pVbe) { DisplayModePtr pMode; VbeModeInfoData *data; pMode = pScrn->modes; do { int clock; data = (VbeModeInfoData*)pMode->Private; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Attempting to use %dHz refresh for mode \"%s\" (%x)\n", (int)pMode->VRefresh, pMode->name, data->mode); data->block = xcalloc(sizeof(VbeCRTCInfoBlock), 1); data->block->HorizontalTotal = pMode->HTotal; data->block->HorizontalSyncStart = pMode->HSyncStart; data->block->HorizontalSyncEnd = pMode->HSyncEnd; data->block->VerticalTotal = pMode->VTotal; data->block->VerticalSyncStart = pMode->VSyncStart; data->block->VerticalSyncEnd = pMode->VSyncEnd; data->block->Flags = ((pMode->Flags & V_NHSYNC) ? CRTC_NHSYNC : 0) | ((pMode->Flags & V_NVSYNC) ? CRTC_NVSYNC : 0); data->block->PixelClock = pMode->Clock * 1000; /* XXX May not have this. */ clock = VBEGetPixelClock(pVbe, data->mode, data->block->PixelClock); #ifdef DEBUG ErrorF("Setting clock %.2fMHz, closest is %.2fMHz\n", (double)data->block->PixelClock / 1000000.0, (double)clock / 1000000.0); #endif if (clock) data->block->PixelClock = clock; data->mode |= (1 << 11); data->block->RefreshRate = ((double)(data->block->PixelClock) / (double)(pMode->HTotal * pMode->VTotal)) * 100; data->block->RefreshRate = i830refreshes[I830GetBestRefresh(pScrn, data->block->RefreshRate / 100)] * 100; #ifdef DEBUG ErrorF("Video Modeline: ID: 0x%x Name: %s %i %i %i %i - " " %i %i %i %i %.2f MHz Refresh: %.2f Hz\n", data->mode, pMode->name, pMode->HDisplay, pMode->HSyncStart, pMode->HSyncEnd, pMode->HTotal, pMode->VDisplay, pMode->VSyncStart,pMode->VSyncEnd,pMode->VTotal, (double)data->block->PixelClock/1000000.0, (double)data->block->RefreshRate/100); #endif pMode = pMode->next; } while (pMode != pScrn->modes); } void i830PrintModes(ScrnInfoPtr scrp) { DisplayModePtr p; float hsync, refresh = 0; char *desc, *desc2, *prefix, *uprefix; if (scrp == NULL) return; xf86DrvMsg(scrp->scrnIndex, scrp->virtualFrom, "Virtual size is %dx%d " "(pitch %d)\n", scrp->virtualX, scrp->virtualY, scrp->displayWidth); p = scrp->modes; if (p == NULL) return; do { desc = desc2 = ""; if (p->HSync > 0.0) hsync = p->HSync; else if (p->HTotal > 0) hsync = (float)p->Clock / (float)p->HTotal; else hsync = 0.0; if (p->VTotal > 0) refresh = hsync * 1000.0 / p->VTotal; if (p->Flags & V_INTERLACE) { refresh *= 2.0; desc = " (I)"; } if (p->Flags & V_DBLSCAN) { refresh /= 2.0; desc = " (D)"; } if (p->VScan > 1) { refresh /= p->VScan; desc2 = " (VScan)"; } if (p->VRefresh > 0.0) refresh = p->VRefresh; if (p->type & M_T_BUILTIN) prefix = "Built-in mode"; else if (p->type & M_T_DEFAULT) prefix = "Default mode"; else prefix = "Mode"; if (p->type & M_T_USERDEF) uprefix = "*"; else uprefix = " "; if (p->name) xf86DrvMsg(scrp->scrnIndex, X_CONFIG, "%s%s \"%s\"\n", uprefix, prefix, p->name); else xf86DrvMsg(scrp->scrnIndex, X_PROBED, "%s%s %dx%d (unnamed)\n", uprefix, prefix, p->HDisplay, p->VDisplay); p = p->next; } while (p != NULL && p != scrp->modes); }