/* * Copyright © 2006,2008 Intel Corporation * Copyright © 2007 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Wang Zhenyu * Eric Anholt * Carl Worth * Keith Packard * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "xf86.h" #include "i830.h" #include "i915_reg.h" /* bring in brw structs */ #include "brw_defines.h" #include "brw_structs.h" /* 24 = 4 vertices/composite * 3 texcoords/vertex * 2 floats/texcoord * * This is an upper-bound based on the case of a non-affine * transformation and with a mask, but useful for sizing all cases for * simplicity. */ #define VERTEX_FLOATS_PER_COMPOSITE 24 #define VERTEX_BUFFER_SIZE (256 * VERTEX_FLOATS_PER_COMPOSITE) struct blendinfo { Bool dst_alpha; Bool src_alpha; uint32_t src_blend; uint32_t dst_blend; }; struct formatinfo { int fmt; uint32_t card_fmt; }; // refer vol2, 3d rasterization 3.8.1 /* defined in brw_defines.h */ static struct blendinfo i965_blend_op[] = { /* Clear */ {0, 0, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_ZERO}, /* Src */ {0, 0, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_ZERO}, /* Dst */ {0, 0, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_ONE}, /* Over */ {0, 1, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_INV_SRC_ALPHA}, /* OverReverse */ {1, 0, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_ONE}, /* In */ {1, 0, BRW_BLENDFACTOR_DST_ALPHA, BRW_BLENDFACTOR_ZERO}, /* InReverse */ {0, 1, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_SRC_ALPHA}, /* Out */ {1, 0, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_ZERO}, /* OutReverse */ {0, 1, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_INV_SRC_ALPHA}, /* Atop */ {1, 1, BRW_BLENDFACTOR_DST_ALPHA, BRW_BLENDFACTOR_INV_SRC_ALPHA}, /* AtopReverse */ {1, 1, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_SRC_ALPHA}, /* Xor */ {1, 1, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_INV_SRC_ALPHA}, /* Add */ {0, 0, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_ONE}, }; /** * Highest-valued BLENDFACTOR used in i965_blend_op. * * This leaves out BRW_BLENDFACTOR_INV_DST_COLOR, * BRW_BLENDFACTOR_INV_CONST_{COLOR,ALPHA}, * BRW_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA} */ #define BRW_BLENDFACTOR_COUNT (BRW_BLENDFACTOR_INV_DST_ALPHA + 1) /* FIXME: surface format defined in brw_defines.h, shared Sampling engine * 1.7.2 */ static struct formatinfo i965_tex_formats[] = { {PICT_a8r8g8b8, BRW_SURFACEFORMAT_B8G8R8A8_UNORM }, {PICT_x8r8g8b8, BRW_SURFACEFORMAT_B8G8R8X8_UNORM }, {PICT_a8b8g8r8, BRW_SURFACEFORMAT_R8G8B8A8_UNORM }, {PICT_x8b8g8r8, BRW_SURFACEFORMAT_R8G8B8X8_UNORM }, {PICT_r5g6b5, BRW_SURFACEFORMAT_B5G6R5_UNORM }, {PICT_a1r5g5b5, BRW_SURFACEFORMAT_B5G5R5A1_UNORM }, {PICT_a8, BRW_SURFACEFORMAT_A8_UNORM }, }; static void i965_get_blend_cntl(int op, PicturePtr pMask, uint32_t dst_format, uint32_t *sblend, uint32_t *dblend) { *sblend = i965_blend_op[op].src_blend; *dblend = i965_blend_op[op].dst_blend; /* If there's no dst alpha channel, adjust the blend op so that we'll treat * it as always 1. */ if (PICT_FORMAT_A(dst_format) == 0 && i965_blend_op[op].dst_alpha) { if (*sblend == BRW_BLENDFACTOR_DST_ALPHA) *sblend = BRW_BLENDFACTOR_ONE; else if (*sblend == BRW_BLENDFACTOR_INV_DST_ALPHA) *sblend = BRW_BLENDFACTOR_ZERO; } /* If the source alpha is being used, then we should only be in a case where * the source blend factor is 0, and the source blend value is the mask * channels multiplied by the source picture's alpha. */ if (pMask && pMask->componentAlpha && PICT_FORMAT_RGB(pMask->format) && i965_blend_op[op].src_alpha) { if (*dblend == BRW_BLENDFACTOR_SRC_ALPHA) { *dblend = BRW_BLENDFACTOR_SRC_COLOR; } else if (*dblend == BRW_BLENDFACTOR_INV_SRC_ALPHA) { *dblend = BRW_BLENDFACTOR_INV_SRC_COLOR; } } } static Bool i965_get_dest_format(PicturePtr pDstPicture, uint32_t *dst_format) { ScrnInfoPtr pScrn = xf86Screens[pDstPicture->pDrawable->pScreen->myNum]; switch (pDstPicture->format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: *dst_format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM; break; case PICT_r5g6b5: *dst_format = BRW_SURFACEFORMAT_B5G6R5_UNORM; break; case PICT_a1r5g5b5: *dst_format = BRW_SURFACEFORMAT_B5G5R5A1_UNORM; break; case PICT_x1r5g5b5: *dst_format = BRW_SURFACEFORMAT_B5G5R5X1_UNORM; break; case PICT_a8: *dst_format = BRW_SURFACEFORMAT_A8_UNORM; break; case PICT_a4r4g4b4: case PICT_x4r4g4b4: *dst_format = BRW_SURFACEFORMAT_B4G4R4A4_UNORM; break; default: I830FALLBACK("Unsupported dest format 0x%x\n", (int)pDstPicture->format); } return TRUE; } static Bool i965_check_composite_texture(PicturePtr pPict, int unit) { ScrnInfoPtr pScrn = xf86Screens[pPict->pDrawable->pScreen->myNum]; int w = pPict->pDrawable->width; int h = pPict->pDrawable->height; int i; if ((w > 8192) || (h > 8192)) I830FALLBACK("Picture w/h too large (%dx%d)\n", w, h); for (i = 0; i < sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]); i++) { if (i965_tex_formats[i].fmt == pPict->format) break; } if (i == sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0])) I830FALLBACK("Unsupported picture format 0x%x\n", (int)pPict->format); if (pPict->repeatType > RepeatReflect) I830FALLBACK("extended repeat (%d) not supported\n", pPict->repeatType); if (pPict->filter != PictFilterNearest && pPict->filter != PictFilterBilinear) { I830FALLBACK("Unsupported filter 0x%x\n", pPict->filter); } return TRUE; } Bool i965_check_composite(int op, PicturePtr pSrcPicture, PicturePtr pMaskPicture, PicturePtr pDstPicture) { ScrnInfoPtr pScrn = xf86Screens[pDstPicture->pDrawable->pScreen->myNum]; uint32_t tmp1; /* Check for unsupported compositing operations. */ if (op >= sizeof(i965_blend_op) / sizeof(i965_blend_op[0])) I830FALLBACK("Unsupported Composite op 0x%x\n", op); if (pMaskPicture && pMaskPicture->componentAlpha && PICT_FORMAT_RGB(pMaskPicture->format)) { /* Check if it's component alpha that relies on a source alpha and on * the source value. We can only get one of those into the single * source value that we get to blend with. */ if (i965_blend_op[op].src_alpha && (i965_blend_op[op].src_blend != BRW_BLENDFACTOR_ZERO)) { I830FALLBACK("Component alpha not supported with source " "alpha and source value blending.\n"); } } if (!i965_check_composite_texture(pSrcPicture, 0)) I830FALLBACK("Check Src picture texture\n"); if (pMaskPicture != NULL && !i965_check_composite_texture(pMaskPicture, 1)) I830FALLBACK("Check Mask picture texture\n"); if (!i965_get_dest_format(pDstPicture, &tmp1)) I830FALLBACK("Get Color buffer format\n"); return TRUE; } #define ALIGN(i,m) (((i) + (m) - 1) & ~((m) - 1)) #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define BRW_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1) /* Set up a default static partitioning of the URB, which is supposed to * allow anything we would want to do, at potentially lower performance. */ #define URB_CS_ENTRY_SIZE 0 #define URB_CS_ENTRIES 0 #define URB_VS_ENTRY_SIZE 1 // each 512-bit row #define URB_VS_ENTRIES 8 // we needs at least 8 entries #define URB_GS_ENTRY_SIZE 0 #define URB_GS_ENTRIES 0 #define URB_CLIP_ENTRY_SIZE 0 #define URB_CLIP_ENTRIES 0 #define URB_SF_ENTRY_SIZE 2 #define URB_SF_ENTRIES 1 static const uint32_t sip_kernel_static[][4] = { /* wait (1) a0<1>UW a145<0,1,0>UW { align1 + } */ { 0x00000030, 0x20000108, 0x00001220, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, }; /* * this program computes dA/dx and dA/dy for the texture coordinates along * with the base texture coordinate. It was extracted from the Mesa driver */ #define SF_KERNEL_NUM_GRF 16 #define SF_MAX_THREADS 2 static const uint32_t sf_kernel_static[][4] = { #include "exa_sf.g4b" }; static const uint32_t sf_kernel_mask_static[][4] = { #include "exa_sf_mask.g4b" }; /* ps kernels */ #define PS_KERNEL_NUM_GRF 32 #define PS_MAX_THREADS 48 #define PS_SCRATCH_SPACE 1024 #define PS_SCRATCH_SPACE_LOG 0 /* log2 (PS_SCRATCH_SPACE) - 10 (1024 is 0, 2048 is 1) */ static const uint32_t ps_kernel_nomask_affine_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_nomask_projective_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_affine_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_projective_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_srcalpha_affine_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_a.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca_srcalpha.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_srcalpha_projective_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_a.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca_srcalpha.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_masknoca_affine_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_a.g4b" #include "exa_wm_noca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_masknoca_projective_static [][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_a.g4b" #include "exa_wm_noca.g4b" #include "exa_wm_write.g4b" }; /** * Storage for the static kernel data with template name, rounded to 64 bytes. */ #define KERNEL_DECL(template) \ uint32_t template [((sizeof (template ## _static) + 63) & ~63) / 16][4]; #define WM_STATE_DECL(kernel) \ struct brw_wm_unit_state wm_state_ ## kernel[SAMPLER_STATE_FILTER_COUNT] \ [SAMPLER_STATE_EXTEND_COUNT] \ [SAMPLER_STATE_FILTER_COUNT] \ [SAMPLER_STATE_EXTEND_COUNT] /* Many of the fields in the state structure must be aligned to a * 64-byte boundary, (or a 32-byte boundary, but 64 is good enough for * those too). */ #define PAD64_MULTI(previous, idx, factor) char previous ## _pad ## idx [(64 - (sizeof(struct previous) * (factor)) % 64) % 64] #define PAD64(previous, idx) PAD64_MULTI(previous, idx, 1) typedef enum { SAMPLER_STATE_FILTER_NEAREST, SAMPLER_STATE_FILTER_BILINEAR, SAMPLER_STATE_FILTER_COUNT } sampler_state_filter_t; typedef enum { SAMPLER_STATE_EXTEND_NONE, SAMPLER_STATE_EXTEND_REPEAT, SAMPLER_STATE_EXTEND_PAD, SAMPLER_STATE_EXTEND_REFLECT, SAMPLER_STATE_EXTEND_COUNT } sampler_state_extend_t; typedef struct _brw_cc_unit_state_padded { struct brw_cc_unit_state state; char pad[64 - sizeof (struct brw_cc_unit_state)]; } brw_cc_unit_state_padded; typedef struct brw_surface_state_padded { struct brw_surface_state state; char pad[32 - sizeof (struct brw_surface_state)]; } brw_surface_state_padded; /** * Gen4 rendering state buffer structure. * * This structure contains static data for all of the combinations of * state that we use for Render acceleration. */ typedef struct _gen4_static_state { uint8_t wm_scratch[128 * PS_MAX_THREADS]; KERNEL_DECL (sip_kernel); KERNEL_DECL (sf_kernel); KERNEL_DECL (sf_kernel_mask); KERNEL_DECL (ps_kernel_nomask_affine); KERNEL_DECL (ps_kernel_nomask_projective); KERNEL_DECL (ps_kernel_maskca_affine); KERNEL_DECL (ps_kernel_maskca_projective); KERNEL_DECL (ps_kernel_maskca_srcalpha_affine); KERNEL_DECL (ps_kernel_maskca_srcalpha_projective); KERNEL_DECL (ps_kernel_masknoca_affine); KERNEL_DECL (ps_kernel_masknoca_projective); struct brw_vs_unit_state vs_state; PAD64 (brw_vs_unit_state, 0); struct brw_sf_unit_state sf_state; PAD64 (brw_sf_unit_state, 0); struct brw_sf_unit_state sf_state_mask; PAD64 (brw_sf_unit_state, 1); WM_STATE_DECL (nomask_affine); WM_STATE_DECL (nomask_projective); WM_STATE_DECL (maskca_affine); WM_STATE_DECL (maskca_projective); WM_STATE_DECL (maskca_srcalpha_affine); WM_STATE_DECL (maskca_srcalpha_projective); WM_STATE_DECL (masknoca_affine); WM_STATE_DECL (masknoca_projective); /* Index by [src_filter][src_extend][mask_filter][mask_extend]. Two of * the structs happen to add to 32 bytes. */ struct brw_sampler_state sampler_state[SAMPLER_STATE_FILTER_COUNT] [SAMPLER_STATE_EXTEND_COUNT] [SAMPLER_STATE_FILTER_COUNT] [SAMPLER_STATE_EXTEND_COUNT][2]; struct brw_sampler_legacy_border_color sampler_border_color; PAD64 (brw_sampler_legacy_border_color, 0); /* Index by [src_blend][dst_blend] */ brw_cc_unit_state_padded cc_state[BRW_BLENDFACTOR_COUNT] [BRW_BLENDFACTOR_COUNT]; struct brw_cc_viewport cc_viewport; PAD64 (brw_cc_viewport, 0); } gen4_static_state_t; typedef float gen4_vertex_buffer[VERTEX_BUFFER_SIZE]; typedef struct gen4_composite_op { int op; PicturePtr source_picture; PicturePtr mask_picture; PicturePtr dest_picture; PixmapPtr source; PixmapPtr mask; PixmapPtr dest; drm_intel_bo *binding_table_bo; sampler_state_filter_t src_filter; sampler_state_filter_t mask_filter; sampler_state_extend_t src_extend; sampler_state_extend_t mask_extend; Bool is_affine; } gen4_composite_op; /** Private data for gen4 render accel implementation. */ struct gen4_render_state { gen4_static_state_t *static_state; uint32_t static_state_offset; dri_bo* vertex_buffer_bo; gen4_composite_op composite_op; int vb_offset; int vertex_size; Bool needs_state_emit; }; /** * Sets up the SF state pointing at an SF kernel. * * The SF kernel does coord interp: for each attribute, * calculate dA/dx and dA/dy. Hand these interpolation coefficients * back to SF which then hands pixels off to WM. */ static void sf_state_init (struct brw_sf_unit_state *sf_state, int kernel_offset) { memset(sf_state, 0, sizeof(*sf_state)); sf_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(SF_KERNEL_NUM_GRF); sf_state->sf1.single_program_flow = 1; sf_state->sf1.binding_table_entry_count = 0; sf_state->sf1.thread_priority = 0; sf_state->sf1.floating_point_mode = 0; /* Mesa does this */ sf_state->sf1.illegal_op_exception_enable = 1; sf_state->sf1.mask_stack_exception_enable = 1; sf_state->sf1.sw_exception_enable = 1; sf_state->thread2.per_thread_scratch_space = 0; /* scratch space is not used in our kernel */ sf_state->thread2.scratch_space_base_pointer = 0; sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */ sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */ sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */ /* don't smash vertex header, read start from dw8 */ sf_state->thread3.urb_entry_read_offset = 1; sf_state->thread3.dispatch_grf_start_reg = 3; sf_state->thread4.max_threads = SF_MAX_THREADS - 1; sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1; sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES; sf_state->thread4.stats_enable = 1; sf_state->sf5.viewport_transform = FALSE; /* skip viewport */ sf_state->sf6.cull_mode = BRW_CULLMODE_NONE; sf_state->sf6.scissor = 0; sf_state->sf7.trifan_pv = 2; sf_state->sf6.dest_org_vbias = 0x8; sf_state->sf6.dest_org_hbias = 0x8; assert((kernel_offset & 63) == 0); sf_state->thread0.kernel_start_pointer = kernel_offset >> 6; } static void sampler_state_init (struct brw_sampler_state *sampler_state, sampler_state_filter_t filter, sampler_state_extend_t extend, int border_color_offset) { /* PS kernel use this sampler */ memset(sampler_state, 0, sizeof(*sampler_state)); sampler_state->ss0.lod_preclamp = 1; /* GL mode */ /* We use the legacy mode to get the semantics specified by * the Render extension. */ sampler_state->ss0.border_color_mode = BRW_BORDER_COLOR_MODE_LEGACY; switch(filter) { default: case SAMPLER_STATE_FILTER_NEAREST: sampler_state->ss0.min_filter = BRW_MAPFILTER_NEAREST; sampler_state->ss0.mag_filter = BRW_MAPFILTER_NEAREST; break; case SAMPLER_STATE_FILTER_BILINEAR: sampler_state->ss0.min_filter = BRW_MAPFILTER_LINEAR; sampler_state->ss0.mag_filter = BRW_MAPFILTER_LINEAR; break; } switch (extend) { default: case SAMPLER_STATE_EXTEND_NONE: sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER; break; case SAMPLER_STATE_EXTEND_REPEAT: sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_WRAP; sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_WRAP; sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_WRAP; break; case SAMPLER_STATE_EXTEND_PAD: sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP; sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP; sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP; break; case SAMPLER_STATE_EXTEND_REFLECT: sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_MIRROR; sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_MIRROR; sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_MIRROR; break; } assert((border_color_offset & 31) == 0); sampler_state->ss2.border_color_pointer = border_color_offset >> 5; sampler_state->ss3.chroma_key_enable = 0; /* disable chromakey */ } static void cc_state_init (struct brw_cc_unit_state *cc_state, int src_blend, int dst_blend, int cc_viewport_offset) { memset(cc_state, 0, sizeof(*cc_state)); cc_state->cc0.stencil_enable = 0; /* disable stencil */ cc_state->cc2.depth_test = 0; /* disable depth test */ cc_state->cc2.logicop_enable = 0; /* disable logic op */ cc_state->cc3.ia_blend_enable = 0; /* blend alpha same as colors */ cc_state->cc3.blend_enable = 1; /* enable color blend */ cc_state->cc3.alpha_test = 0; /* disable alpha test */ assert((cc_viewport_offset & 31) == 0); cc_state->cc4.cc_viewport_state_offset = cc_viewport_offset >> 5; cc_state->cc5.dither_enable = 0; /* disable dither */ cc_state->cc5.logicop_func = 0xc; /* COPY */ cc_state->cc5.statistics_enable = 1; cc_state->cc5.ia_blend_function = BRW_BLENDFUNCTION_ADD; /* Fill in alpha blend factors same as color, for the future. */ cc_state->cc5.ia_src_blend_factor = src_blend; cc_state->cc5.ia_dest_blend_factor = dst_blend; cc_state->cc6.blend_function = BRW_BLENDFUNCTION_ADD; cc_state->cc6.clamp_post_alpha_blend = 1; cc_state->cc6.clamp_pre_alpha_blend = 1; cc_state->cc6.clamp_range = 0; /* clamp range [0,1] */ cc_state->cc6.src_blend_factor = src_blend; cc_state->cc6.dest_blend_factor = dst_blend; } static void wm_state_init (struct brw_wm_unit_state *wm_state, Bool has_mask, int scratch_offset, int kernel_offset, int sampler_state_offset) { memset(wm_state, 0, sizeof (*wm_state)); wm_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(PS_KERNEL_NUM_GRF); wm_state->thread1.single_program_flow = 0; assert((scratch_offset & 1023) == 0); wm_state->thread2.scratch_space_base_pointer = scratch_offset >> 10; wm_state->thread2.per_thread_scratch_space = PS_SCRATCH_SPACE_LOG; wm_state->thread3.const_urb_entry_read_length = 0; wm_state->thread3.const_urb_entry_read_offset = 0; wm_state->thread3.urb_entry_read_offset = 0; /* wm kernel use urb from 3, see wm_program in compiler module */ wm_state->thread3.dispatch_grf_start_reg = 3; /* must match kernel */ wm_state->wm4.stats_enable = 1; /* statistic */ assert((sampler_state_offset & 31) == 0); wm_state->wm4.sampler_state_pointer = sampler_state_offset >> 5; wm_state->wm4.sampler_count = 1; /* 1-4 samplers used */ wm_state->wm5.max_threads = PS_MAX_THREADS - 1; wm_state->wm5.transposed_urb_read = 0; wm_state->wm5.thread_dispatch_enable = 1; /* just use 16-pixel dispatch (4 subspans), don't need to change kernel * start point */ wm_state->wm5.enable_16_pix = 1; wm_state->wm5.enable_8_pix = 0; wm_state->wm5.early_depth_test = 1; assert((kernel_offset & 63) == 0); wm_state->thread0.kernel_start_pointer = kernel_offset >> 6; /* Each pair of attributes (src/mask coords) is two URB entries */ if (has_mask) { wm_state->thread1.binding_table_entry_count = 3; /* 2 tex and fb */ wm_state->thread3.urb_entry_read_length = 4; } else { wm_state->thread1.binding_table_entry_count = 2; /* 1 tex and fb */ wm_state->thread3.urb_entry_read_length = 2; } } /** * Called at EnterVT to fill in our state buffer with any static information. */ static void gen4_static_state_init (gen4_static_state_t *static_state, uint32_t static_state_offset) { int i, j, k, l; #define KERNEL_COPY(kernel) \ memcpy(static_state->kernel, kernel ## _static, sizeof(kernel ## _static)) KERNEL_COPY (sip_kernel); KERNEL_COPY (sf_kernel); KERNEL_COPY (sf_kernel_mask); KERNEL_COPY (ps_kernel_nomask_affine); KERNEL_COPY (ps_kernel_nomask_projective); KERNEL_COPY (ps_kernel_maskca_affine); KERNEL_COPY (ps_kernel_maskca_projective); KERNEL_COPY (ps_kernel_maskca_srcalpha_affine); KERNEL_COPY (ps_kernel_maskca_srcalpha_projective); KERNEL_COPY (ps_kernel_masknoca_affine); KERNEL_COPY (ps_kernel_masknoca_projective); #undef KERNEL_COPY /* Set up the vertex shader to be disabled (passthrough) */ memset(&static_state->vs_state, 0, sizeof(static_state->vs_state)); static_state->vs_state.thread4.nr_urb_entries = URB_VS_ENTRIES; static_state->vs_state.thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1; static_state->vs_state.vs6.vs_enable = 0; static_state->vs_state.vs6.vert_cache_disable = 1; /* Set up the sampler border color (always transparent black) */ memset(&static_state->sampler_border_color, 0, sizeof(static_state->sampler_border_color)); static_state->sampler_border_color.color[0] = 0; /* R */ static_state->sampler_border_color.color[1] = 0; /* G */ static_state->sampler_border_color.color[2] = 0; /* B */ static_state->sampler_border_color.color[3] = 0; /* A */ static_state->cc_viewport.min_depth = -1.e35; static_state->cc_viewport.max_depth = 1.e35; sf_state_init (&static_state->sf_state, static_state_offset + offsetof (gen4_static_state_t, sf_kernel)); sf_state_init (&static_state->sf_state_mask, static_state_offset + offsetof (gen4_static_state_t, sf_kernel_mask)); for (i = 0; i < SAMPLER_STATE_FILTER_COUNT; i++) { for (j = 0; j < SAMPLER_STATE_EXTEND_COUNT; j++) { for (k = 0; k < SAMPLER_STATE_FILTER_COUNT; k++) { for (l = 0; l < SAMPLER_STATE_EXTEND_COUNT; l++) { sampler_state_init (&static_state->sampler_state[i][j][k][l][0], i, j, static_state_offset + offsetof (gen4_static_state_t, sampler_border_color)); sampler_state_init (&static_state->sampler_state[i][j][k][l][1], k, l, static_state_offset + offsetof (gen4_static_state_t, sampler_border_color)); } } } } for (i = 0; i < BRW_BLENDFACTOR_COUNT; i++) { for (j = 0; j < BRW_BLENDFACTOR_COUNT; j++) { cc_state_init (&static_state->cc_state[i][j].state, i, j, static_state_offset + offsetof (gen4_static_state_t, cc_viewport)); } } #define SETUP_WM_STATE(kernel, has_mask) \ wm_state_init(&static_state->wm_state_ ## kernel [i][j][k][l], \ has_mask, \ static_state_offset + offsetof(gen4_static_state_t, \ wm_scratch), \ static_state_offset + offsetof(gen4_static_state_t, \ ps_kernel_ ## kernel), \ static_state_offset + offsetof(gen4_static_state_t, \ sampler_state[i][j][k][l])); for (i = 0; i < SAMPLER_STATE_FILTER_COUNT; i++) { for (j = 0; j < SAMPLER_STATE_EXTEND_COUNT; j++) { for (k = 0; k < SAMPLER_STATE_FILTER_COUNT; k++) { for (l = 0; l < SAMPLER_STATE_EXTEND_COUNT; l++) { SETUP_WM_STATE (nomask_affine, FALSE); SETUP_WM_STATE (nomask_projective, FALSE); SETUP_WM_STATE (maskca_affine, TRUE); SETUP_WM_STATE (maskca_projective, TRUE); SETUP_WM_STATE (maskca_srcalpha_affine, TRUE); SETUP_WM_STATE (maskca_srcalpha_projective, TRUE); SETUP_WM_STATE (masknoca_affine, TRUE); SETUP_WM_STATE (masknoca_projective, TRUE); } } } } #undef SETUP_WM_STATE } static uint32_t i965_get_card_format(PicturePtr pPict) { int i; for (i = 0; i < sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]); i++) { if (i965_tex_formats[i].fmt == pPict->format) break; } assert(i != sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0])); return i965_tex_formats[i].card_fmt; } static sampler_state_filter_t sampler_state_filter_from_picture (int filter) { switch (filter) { case PictFilterNearest: return SAMPLER_STATE_FILTER_NEAREST; case PictFilterBilinear: return SAMPLER_STATE_FILTER_BILINEAR; default: return -1; } } static sampler_state_extend_t sampler_state_extend_from_picture (int repeat_type) { switch (repeat_type) { case RepeatNone: return SAMPLER_STATE_EXTEND_NONE; case RepeatNormal: return SAMPLER_STATE_EXTEND_REPEAT; case RepeatPad: return SAMPLER_STATE_EXTEND_PAD; case RepeatReflect: return SAMPLER_STATE_EXTEND_REFLECT; default: return -1; } } /** * Sets up the common fields for a surface state buffer for the given * picture in the given surface state buffer. */ static void i965_set_picture_surface_state(dri_bo *ss_bo, int ss_index, PicturePtr pPicture, PixmapPtr pPixmap, Bool is_dst) { struct brw_surface_state_padded *ss; struct brw_surface_state local_ss; dri_bo *pixmap_bo = i830_get_pixmap_bo(pPixmap); ss = (struct brw_surface_state_padded *)ss_bo->virtual + ss_index; /* Since ss is a pointer to WC memory, do all of our bit operations * into a local temporary first. */ memset(&local_ss, 0, sizeof(local_ss)); local_ss.ss0.surface_type = BRW_SURFACE_2D; if (is_dst) { uint32_t dst_format = 0; Bool ret = TRUE; ret = i965_get_dest_format(pPicture, &dst_format); assert(ret == TRUE); local_ss.ss0.surface_format = dst_format; } else { local_ss.ss0.surface_format = i965_get_card_format(pPicture); } local_ss.ss0.data_return_format = BRW_SURFACERETURNFORMAT_FLOAT32; local_ss.ss0.writedisable_alpha = 0; local_ss.ss0.writedisable_red = 0; local_ss.ss0.writedisable_green = 0; local_ss.ss0.writedisable_blue = 0; local_ss.ss0.color_blend = 1; local_ss.ss0.vert_line_stride = 0; local_ss.ss0.vert_line_stride_ofs = 0; local_ss.ss0.mipmap_layout_mode = 0; local_ss.ss0.render_cache_read_mode = 0; if (pixmap_bo != NULL) local_ss.ss1.base_addr = pixmap_bo->offset; else local_ss.ss1.base_addr = intel_get_pixmap_offset(pPixmap); local_ss.ss2.mip_count = 0; local_ss.ss2.render_target_rotation = 0; local_ss.ss2.height = pPixmap->drawable.height - 1; local_ss.ss2.width = pPixmap->drawable.width - 1; local_ss.ss3.pitch = intel_get_pixmap_pitch(pPixmap) - 1; local_ss.ss3.tile_walk = 0; /* Tiled X */ local_ss.ss3.tiled_surface = i830_pixmap_tiled(pPixmap) ? 1 : 0; memcpy(ss, &local_ss, sizeof(local_ss)); if (pixmap_bo != NULL) { uint32_t write_domain, read_domains; if (is_dst) { write_domain = I915_GEM_DOMAIN_RENDER; read_domains = I915_GEM_DOMAIN_RENDER; } else { write_domain = 0; read_domains = I915_GEM_DOMAIN_SAMPLER; } dri_bo_emit_reloc(ss_bo, read_domains, write_domain, 0, ss_index * sizeof(*ss) + offsetof(struct brw_surface_state, ss1), pixmap_bo); } } static void i965_emit_composite_state(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state= pI830->gen4_render_state; gen4_composite_op *composite_op = &render_state->composite_op; int op = composite_op->op; PicturePtr pMaskPicture = composite_op->mask_picture; PicturePtr pDstPicture = composite_op->dest_picture; PixmapPtr pMask = composite_op->mask; PixmapPtr pDst = composite_op->dest; uint32_t sf_state_offset; sampler_state_filter_t src_filter = composite_op->src_filter; sampler_state_filter_t mask_filter = composite_op->mask_filter; sampler_state_extend_t src_extend = composite_op->src_extend; sampler_state_extend_t mask_extend = composite_op->mask_extend; Bool is_affine = composite_op->is_affine; int urb_vs_start, urb_vs_size; int urb_gs_start, urb_gs_size; int urb_clip_start, urb_clip_size; int urb_sf_start, urb_sf_size; int urb_cs_start, urb_cs_size; char *state_base; int state_base_offset; uint32_t src_blend, dst_blend; dri_bo *binding_table_bo = composite_op->binding_table_bo; render_state->needs_state_emit = FALSE; IntelEmitInvarientState(pScrn); *pI830->last_3d = LAST_3D_RENDER; state_base_offset = pI830->gen4_render_state_mem->offset; assert((state_base_offset & 63) == 0); state_base = (char *)(pI830->FbBase + state_base_offset); urb_vs_start = 0; urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE; urb_gs_start = urb_vs_start + urb_vs_size; urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE; urb_clip_start = urb_gs_start + urb_gs_size; urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE; urb_sf_start = urb_clip_start + urb_clip_size; urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE; urb_cs_start = urb_sf_start + urb_sf_size; urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE; i965_get_blend_cntl(op, pMaskPicture, pDstPicture->format, &src_blend, &dst_blend); /* Begin the long sequence of commands needed to set up the 3D * rendering pipe */ { BEGIN_BATCH(2); OUT_BATCH(MI_FLUSH | MI_STATE_INSTRUCTION_CACHE_FLUSH | BRW_MI_GLOBAL_SNAPSHOT_RESET); OUT_BATCH(MI_NOOP); ADVANCE_BATCH(); } { BEGIN_BATCH(12); /* Match Mesa driver setup */ if (IS_G4X(pI830)) OUT_BATCH(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D); else OUT_BATCH(BRW_PIPELINE_SELECT | PIPELINE_SELECT_3D); OUT_BATCH(BRW_CS_URB_STATE | 0); OUT_BATCH((0 << 4) | /* URB Entry Allocation Size */ (0 << 0)); /* Number of URB Entries */ /* Zero out the two base address registers so all offsets are * absolute. */ OUT_BATCH(BRW_STATE_BASE_ADDRESS | 4); OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Generate state base address */ OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Surface state base address */ OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* media base addr, don't care */ /* general state max addr, disabled */ OUT_BATCH(0x10000000 | BASE_ADDRESS_MODIFY); /* media object state max addr, disabled */ OUT_BATCH(0x10000000 | BASE_ADDRESS_MODIFY); /* Set system instruction pointer */ OUT_BATCH(BRW_STATE_SIP | 0); OUT_BATCH(state_base_offset + offsetof(gen4_static_state_t, sip_kernel)); OUT_BATCH(MI_NOOP); ADVANCE_BATCH(); } { BEGIN_BATCH(26); /* Pipe control */ OUT_BATCH(BRW_PIPE_CONTROL | BRW_PIPE_CONTROL_NOWRITE | BRW_PIPE_CONTROL_IS_FLUSH | 2); OUT_BATCH(0); /* Destination address */ OUT_BATCH(0); /* Immediate data low DW */ OUT_BATCH(0); /* Immediate data high DW */ /* Binding table pointers */ OUT_BATCH(BRW_3DSTATE_BINDING_TABLE_POINTERS | 4); OUT_BATCH(0); /* vs */ OUT_BATCH(0); /* gs */ OUT_BATCH(0); /* clip */ OUT_BATCH(0); /* sf */ /* Only the PS uses the binding table */ OUT_RELOC(binding_table_bo, I915_GEM_DOMAIN_SAMPLER, 0, 0); /* The drawing rectangle clipping is always on. Set it to values that * shouldn't do any clipping. */ OUT_BATCH(BRW_3DSTATE_DRAWING_RECTANGLE | 2); /* XXX 3 for BLC or CTG */ OUT_BATCH(0x00000000); /* ymin, xmin */ OUT_BATCH(DRAW_YMAX(pDst->drawable.height - 1) | DRAW_XMAX(pDst->drawable.width - 1)); /* ymax, xmax */ OUT_BATCH(0x00000000); /* yorigin, xorigin */ /* skip the depth buffer */ /* skip the polygon stipple */ /* skip the polygon stipple offset */ /* skip the line stipple */ /* Set the pointers to the 3d pipeline state */ OUT_BATCH(BRW_3DSTATE_PIPELINED_POINTERS | 5); assert((offsetof(gen4_static_state_t, vs_state) & 31) == 0); OUT_BATCH(state_base_offset + offsetof(gen4_static_state_t, vs_state)); OUT_BATCH(BRW_GS_DISABLE); /* disable GS, resulting in passthrough */ OUT_BATCH(BRW_CLIP_DISABLE); /* disable CLIP, resulting in passthrough */ if (pMask) { sf_state_offset = state_base_offset + offsetof(gen4_static_state_t, sf_state_mask); } else { sf_state_offset = state_base_offset + offsetof(gen4_static_state_t, sf_state); } assert((sf_state_offset & 31) == 0); OUT_BATCH(sf_state_offset); /* Shorthand for long array lookup */ #define OUT_WM_KERNEL(kernel) do { \ uint32_t offset = state_base_offset + \ offsetof(gen4_static_state_t, \ wm_state_ ## kernel \ [src_filter] \ [src_extend] \ [mask_filter] \ [mask_extend]); \ assert((offset & 31) == 0); \ OUT_BATCH(offset); \ } while (0) if (pMask) { if (pMaskPicture->componentAlpha && PICT_FORMAT_RGB(pMaskPicture->format)) { if (i965_blend_op[op].src_alpha) { if (is_affine) OUT_WM_KERNEL(maskca_srcalpha_affine); else OUT_WM_KERNEL(maskca_srcalpha_projective); } else { if (is_affine) OUT_WM_KERNEL(maskca_affine); else OUT_WM_KERNEL(maskca_projective); } } else { if (is_affine) OUT_WM_KERNEL(masknoca_affine); else OUT_WM_KERNEL(masknoca_projective); } } else { if (is_affine) OUT_WM_KERNEL(nomask_affine); else OUT_WM_KERNEL(nomask_projective); } #undef OUT_WM_KERNEL /* 64 byte aligned */ assert((offsetof(gen4_static_state_t, cc_state[src_blend][dst_blend]) & 63) == 0); OUT_BATCH(state_base_offset + offsetof(gen4_static_state_t, cc_state[src_blend][dst_blend])); /* URB fence */ OUT_BATCH(BRW_URB_FENCE | UF0_CS_REALLOC | UF0_SF_REALLOC | UF0_CLIP_REALLOC | UF0_GS_REALLOC | UF0_VS_REALLOC | 1); OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) | ((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) | ((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT)); OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) | ((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT)); /* Constant buffer state */ OUT_BATCH(BRW_CS_URB_STATE | 0); OUT_BATCH(((URB_CS_ENTRY_SIZE - 1) << 4) | (URB_CS_ENTRIES << 0)); ADVANCE_BATCH(); } { /* * number of extra parameters per vertex */ int nelem = pMask ? 2: 1; /* * size of extra parameters: * 3 for homogenous (xyzw) * 2 for cartesian (xy) */ int selem = is_affine ? 2 : 3; uint32_t w_component; uint32_t src_format; render_state->vertex_size = 4 * (2 + nelem * selem); if (is_affine) { src_format = BRW_SURFACEFORMAT_R32G32_FLOAT; w_component = BRW_VFCOMPONENT_STORE_1_FLT; } else { src_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT; w_component = BRW_VFCOMPONENT_STORE_SRC; } BEGIN_BATCH(pMask?7:5); /* Set up our vertex elements, sourced from the single vertex buffer. * that will be set up later. */ OUT_BATCH(BRW_3DSTATE_VERTEX_ELEMENTS | ((2 * (1 + nelem)) - 1)); /* x,y */ OUT_BATCH((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID | (BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) | (0 << VE0_OFFSET_SHIFT)); OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) | (BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) | (4 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* u0, v0, w0 */ OUT_BATCH((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID | (src_format << VE0_FORMAT_SHIFT) | ((2 * 4) << VE0_OFFSET_SHIFT)); /* offset vb in bytes */ OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) | (BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) | (w_component << VE1_VFCOMPONENT_2_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) | ((4 + 4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* VUE offset in dwords */ /* u1, v1, w1 */ if (pMask) { OUT_BATCH((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID | (src_format << VE0_FORMAT_SHIFT) | (((2 + selem) * 4) << VE0_OFFSET_SHIFT)); /* vb offset in bytes */ OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) | (BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) | (w_component << VE1_VFCOMPONENT_2_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) | ((4 + 4 + 4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* VUE offset in dwords */ } ADVANCE_BATCH(); } #ifdef I830DEBUG ErrorF("try to sync to show any errors...\n"); I830Sync(pScrn); #endif } /** * Returns whether the current set of composite state plus vertex buffer is * expected to fit in the aperture. */ static Bool i965_composite_check_aperture(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state= pI830->gen4_render_state; gen4_composite_op *composite_op = &render_state->composite_op; drm_intel_bo *bo_table[] = { pI830->batch_bo, composite_op->binding_table_bo, render_state->vertex_buffer_bo, }; return drm_intel_bufmgr_check_aperture_space(bo_table, ARRAY_SIZE(bo_table)) == 0; } Bool i965_prepare_composite(int op, PicturePtr pSrcPicture, PicturePtr pMaskPicture, PicturePtr pDstPicture, PixmapPtr pSrc, PixmapPtr pMask, PixmapPtr pDst) { ScrnInfoPtr pScrn = xf86Screens[pSrcPicture->pDrawable->pScreen->myNum]; I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state= pI830->gen4_render_state; gen4_composite_op *composite_op = &render_state->composite_op; uint32_t *binding_table; drm_intel_bo *binding_table_bo, *surface_state_bo; if (composite_op->src_filter < 0) I830FALLBACK("Bad src filter 0x%x\n", pSrcPicture->filter); composite_op->src_extend = sampler_state_extend_from_picture(pSrcPicture->repeatType); if (composite_op->src_extend < 0) I830FALLBACK("Bad src repeat 0x%x\n", pSrcPicture->repeatType); if (pMaskPicture) { composite_op->mask_filter = sampler_state_filter_from_picture(pMaskPicture->filter); if (composite_op->mask_filter < 0) I830FALLBACK("Bad mask filter 0x%x\n", pMaskPicture->filter); composite_op->mask_extend = sampler_state_extend_from_picture(pMaskPicture->repeatType); if (composite_op->mask_extend < 0) I830FALLBACK("Bad mask repeat 0x%x\n", pMaskPicture->repeatType); } else { composite_op->mask_filter = SAMPLER_STATE_FILTER_NEAREST; composite_op->mask_extend = SAMPLER_STATE_EXTEND_NONE; } /* Set up the surface states. */ surface_state_bo = dri_bo_alloc(pI830->bufmgr, "surface_state", 3 * sizeof (brw_surface_state_padded), 4096); if (dri_bo_map(surface_state_bo, 1) != 0) return FALSE; /* Set up the state buffer for the destination surface */ i965_set_picture_surface_state(surface_state_bo, 0, pDstPicture, pDst, TRUE); /* Set up the source surface state buffer */ i965_set_picture_surface_state(surface_state_bo, 1, pSrcPicture, pSrc, FALSE); if (pMask) { /* Set up the mask surface state buffer */ i965_set_picture_surface_state(surface_state_bo, 2, pMaskPicture, pMask, FALSE); } dri_bo_unmap(surface_state_bo); /* Set up the binding table of surface indices to surface state. */ binding_table_bo = dri_bo_alloc(pI830->bufmgr, "binding_table", 3 * sizeof(uint32_t), 4096); if (dri_bo_map (binding_table_bo, 1) != 0) { dri_bo_unreference(surface_state_bo); return FALSE; } binding_table = binding_table_bo->virtual; binding_table[0] = intel_emit_reloc(binding_table_bo, 0 * sizeof(uint32_t), surface_state_bo, 0 * sizeof(brw_surface_state_padded), I915_GEM_DOMAIN_INSTRUCTION, 0); binding_table[1] = intel_emit_reloc(binding_table_bo, 1 * sizeof(uint32_t), surface_state_bo, 1 * sizeof(brw_surface_state_padded), I915_GEM_DOMAIN_INSTRUCTION, 0); if (pMask) { binding_table[2] = intel_emit_reloc(binding_table_bo, 2 * sizeof(uint32_t), surface_state_bo, 2 * sizeof(brw_surface_state_padded), I915_GEM_DOMAIN_INSTRUCTION, 0); } else { binding_table[2] = 0; } dri_bo_unmap(binding_table_bo); /* All refs to surface_state are now contained in binding_table_bo. */ drm_intel_bo_unreference(surface_state_bo); composite_op->op = op; composite_op->source_picture = pSrcPicture; composite_op->mask_picture = pMaskPicture; composite_op->dest_picture = pDstPicture; composite_op->source = pSrc; composite_op->mask = pMask; composite_op->dest = pDst; drm_intel_bo_unreference(composite_op->binding_table_bo); composite_op->binding_table_bo = binding_table_bo; composite_op->src_filter = sampler_state_filter_from_picture(pSrcPicture->filter); if (!i965_composite_check_aperture(pScrn)) { intel_batch_flush(pScrn, FALSE); if (!i965_composite_check_aperture(pScrn)) I830FALLBACK("Couldn't fit render operation in aperture\n"); } pI830->scale_units[0][0] = pSrc->drawable.width; pI830->scale_units[0][1] = pSrc->drawable.height; pI830->transform[0] = pSrcPicture->transform; composite_op->is_affine = i830_transform_is_affine(pI830->transform[0]); if (!pMask) { pI830->transform[1] = NULL; pI830->scale_units[1][0] = -1; pI830->scale_units[1][1] = -1; } else { pI830->transform[1] = pMaskPicture->transform; pI830->scale_units[1][0] = pMask->drawable.width; pI830->scale_units[1][1] = pMask->drawable.height; composite_op->is_affine |= i830_transform_is_affine(pI830->transform[1]); } render_state->needs_state_emit = TRUE; return TRUE; } static drm_intel_bo * i965_get_vb_space(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state = pI830->gen4_render_state; /* If the vertex buffer is too full, then we free the old and a new one * gets made. */ if (render_state->vb_offset + VERTEX_FLOATS_PER_COMPOSITE > VERTEX_BUFFER_SIZE) { drm_intel_bo_unreference(render_state->vertex_buffer_bo); render_state->vertex_buffer_bo = NULL; } /* Alloc a new vertex buffer if necessary. */ if (render_state->vertex_buffer_bo == NULL) { render_state->vertex_buffer_bo = drm_intel_bo_alloc(pI830->bufmgr, "vb", sizeof(gen4_vertex_buffer), 4096); render_state->vb_offset = 0; } /* Map the vertex_buffer buffer object so we can write to it. */ if (drm_intel_bo_map(render_state->vertex_buffer_bo, 1) != 0) { ErrorF("i965_get_vb_space(): couldn't map vb\n"); return NULL; } drm_intel_bo_reference(render_state->vertex_buffer_bo); return render_state->vertex_buffer_bo; } void i965_composite(PixmapPtr pDst, int srcX, int srcY, int maskX, int maskY, int dstX, int dstY, int w, int h) { ScrnInfoPtr pScrn = xf86Screens[pDst->drawable.pScreen->myNum]; I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state = pI830->gen4_render_state; Bool has_mask; float src_x[3], src_y[3], src_w[3], mask_x[3], mask_y[3], mask_w[3]; int i; drm_intel_bo *vb_bo; float *vb; Bool is_affine = render_state->composite_op.is_affine; if (is_affine) { if (!i830_get_transformed_coordinates(srcX, srcY, pI830->transform[0], &src_x[0], &src_y[0])) return; if (!i830_get_transformed_coordinates(srcX, srcY + h, pI830->transform[0], &src_x[1], &src_y[1])) return; if (!i830_get_transformed_coordinates(srcX + w, srcY + h, pI830->transform[0], &src_x[2], &src_y[2])) return; } else { if (!i830_get_transformed_coordinates_3d(srcX, srcY, pI830->transform[0], &src_x[0], &src_y[0], &src_w[0])) return; if (!i830_get_transformed_coordinates_3d(srcX, srcY + h, pI830->transform[0], &src_x[1], &src_y[1], &src_w[1])) return; if (!i830_get_transformed_coordinates_3d(srcX + w, srcY + h, pI830->transform[0], &src_x[2], &src_y[2], &src_w[2])) return; } if (pI830->scale_units[1][0] == -1 || pI830->scale_units[1][1] == -1) { has_mask = FALSE; } else { has_mask = TRUE; if (is_affine) { if (!i830_get_transformed_coordinates(maskX, maskY, pI830->transform[1], &mask_x[0], &mask_y[0])) return; if (!i830_get_transformed_coordinates(maskX, maskY + h, pI830->transform[1], &mask_x[1], &mask_y[1])) return; if (!i830_get_transformed_coordinates(maskX + w, maskY + h, pI830->transform[1], &mask_x[2], &mask_y[2])) return; } else { if (!i830_get_transformed_coordinates_3d(maskX, maskY, pI830->transform[1], &mask_x[0], &mask_y[0], &mask_w[0])) return; if (!i830_get_transformed_coordinates_3d(maskX, maskY + h, pI830->transform[1], &mask_x[1], &mask_y[1], &mask_w[1])) return; if (!i830_get_transformed_coordinates_3d(maskX + w, maskY + h, pI830->transform[1], &mask_x[2], &mask_y[2], &mask_w[2])) return; } } vb_bo = i965_get_vb_space(pScrn); if (vb_bo == NULL) return; vb = vb_bo->virtual; i = render_state->vb_offset; /* rect (x2,y2) */ vb[i++] = (float)(dstX + w); vb[i++] = (float)(dstY + h); vb[i++] = src_x[2] / pI830->scale_units[0][0]; vb[i++] = src_y[2] / pI830->scale_units[0][1]; if (!is_affine) vb[i++] = src_w[2]; if (has_mask) { vb[i++] = mask_x[2] / pI830->scale_units[1][0]; vb[i++] = mask_y[2] / pI830->scale_units[1][1]; if (!is_affine) vb[i++] = mask_w[2]; } /* rect (x1,y2) */ vb[i++] = (float)dstX; vb[i++] = (float)(dstY + h); vb[i++] = src_x[1] / pI830->scale_units[0][0]; vb[i++] = src_y[1] / pI830->scale_units[0][1]; if (!is_affine) vb[i++] = src_w[1]; if (has_mask) { vb[i++] = mask_x[1] / pI830->scale_units[1][0]; vb[i++] = mask_y[1] / pI830->scale_units[1][1]; if (!is_affine) vb[i++] = mask_w[1]; } /* rect (x1,y1) */ vb[i++] = (float)dstX; vb[i++] = (float)dstY; vb[i++] = src_x[0] / pI830->scale_units[0][0]; vb[i++] = src_y[0] / pI830->scale_units[0][1]; if (!is_affine) vb[i++] = src_w[0]; if (has_mask) { vb[i++] = mask_x[0] / pI830->scale_units[1][0]; vb[i++] = mask_y[0] / pI830->scale_units[1][1]; if (!is_affine) vb[i++] = mask_w[0]; } assert (i <= VERTEX_BUFFER_SIZE); drm_intel_bo_unmap(vb_bo); if (!i965_composite_check_aperture(pScrn)) intel_batch_flush(pScrn, FALSE); intel_batch_start_atomic(pScrn, 200); if (render_state->needs_state_emit) i965_emit_composite_state(pScrn); BEGIN_BATCH(12); OUT_BATCH(MI_FLUSH); /* Set up the pointer to our (single) vertex buffer */ OUT_BATCH(BRW_3DSTATE_VERTEX_BUFFERS | 3); OUT_BATCH((0 << VB0_BUFFER_INDEX_SHIFT) | VB0_VERTEXDATA | (render_state->vertex_size << VB0_BUFFER_PITCH_SHIFT)); OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, render_state->vb_offset * 4); OUT_BATCH(3); OUT_BATCH(0); // ignore for VERTEXDATA, but still there OUT_BATCH(BRW_3DPRIMITIVE | BRW_3DPRIMITIVE_VERTEX_SEQUENTIAL | (_3DPRIM_RECTLIST << BRW_3DPRIMITIVE_TOPOLOGY_SHIFT) | (0 << 9) | /* CTG - indirect vertex count */ 4); OUT_BATCH(3); /* vertex count per instance */ OUT_BATCH(0); /* start vertex offset */ OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ ADVANCE_BATCH(); render_state->vb_offset = i; drm_intel_bo_unreference(vb_bo); intel_batch_end_atomic(pScrn); #ifdef I830DEBUG ErrorF("sync after 3dprimitive\n"); I830Sync(pScrn); #endif } void i965_batch_flush_notify(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state = pI830->gen4_render_state; /* Once a batch is emitted, we never want to map again any buffer * object being referenced by that batch, (which would be very * expensive). */ if (render_state->vertex_buffer_bo) { dri_bo_unreference (render_state->vertex_buffer_bo); render_state->vertex_buffer_bo = NULL; } render_state->needs_state_emit = TRUE; } /** * Called at EnterVT so we can set up our offsets into the state buffer. */ void gen4_render_state_init(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state; int ret; if (pI830->gen4_render_state == NULL) pI830->gen4_render_state = calloc(sizeof(*render_state), 1); render_state = pI830->gen4_render_state; render_state->static_state_offset = pI830->gen4_render_state_mem->offset; if (pI830->use_drm_mode) { ret = dri_bo_map(pI830->gen4_render_state_mem->bo, 1); if (ret) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Failed to map gen4 state\n"); return; } render_state->static_state = pI830->gen4_render_state_mem->bo->virtual; } else { render_state->static_state = (gen4_static_state_t *) (pI830->FbBase + render_state->static_state_offset); } gen4_static_state_init(render_state->static_state, render_state->static_state_offset); } /** * Called at LeaveVT. */ void gen4_render_state_cleanup(ScrnInfoPtr pScrn) { I830Ptr pI830 = I830PTR(pScrn); struct gen4_render_state *render_state= pI830->gen4_render_state; if (render_state->vertex_buffer_bo) { dri_bo_unreference (render_state->vertex_buffer_bo); render_state->vertex_buffer_bo = NULL; } if (pI830->use_drm_mode) { dri_bo_unmap(pI830->gen4_render_state_mem->bo); dri_bo_unreference(pI830->gen4_render_state_mem->bo); } render_state->static_state = NULL; } unsigned int gen4_render_state_size(ScrnInfoPtr pScrn) { return sizeof(gen4_static_state_t); }