/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "xf86.h" #include "xf86_OSproc.h" #include "xf86xv.h" #include "fourcc.h" #include "i830.h" #include "i830_video.h" #include "brw_defines.h" #include "brw_structs.h" #include /* Make assert() work. */ #undef NDEBUG #include static const uint32_t sip_kernel_static[][4] = { /* wait (1) a0<1>UW a145<0,1,0>UW { align1 + } */ { 0x00000030, 0x20000108, 0x00001220, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, /* nop (4) g0<1>UD { align1 + } */ { 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 }, }; /* * this program computes dA/dx and dA/dy for the texture coordinates along * with the base texture coordinate. It was extracted from the Mesa driver. * It uses about 10 GRF registers. */ #define SF_KERNEL_NUM_GRF 16 #define SF_MAX_THREADS 1 static const uint32_t sf_kernel_static[][4] = { #include "sf_prog.h" }; /* * Ok, this kernel picks up the required data flow values in g0 and g1 * and passes those along in m0 and m1. In m2-m9, it sticks constant * values (bright pink). */ /* Our PS kernel uses less than 32 GRF registers (about 20) */ #define PS_KERNEL_NUM_GRF 32 #define PS_MAX_THREADS 32 #define BRW_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1) static const uint32_t ps_kernel_static[][4] = { #include "wm_prog.h" }; #define ALIGN(i,m) (((i) + (m) - 1) & ~((m) - 1)) #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define WM_BINDING_TABLE_ENTRIES 2 static uint32_t float_to_uint (float f) { union {uint32_t i; float f;} x; x.f = f; return x.i; } #if 0 static struct { uint32_t svg_ctl; char *name; } svg_ctl_bits[] = { { BRW_SVG_CTL_GS_BA, "General State Base Address" }, { BRW_SVG_CTL_SS_BA, "Surface State Base Address" }, { BRW_SVG_CTL_IO_BA, "Indirect Object Base Address" }, { BRW_SVG_CTL_GS_AUB, "Generate State Access Upper Bound" }, { BRW_SVG_CTL_IO_AUB, "Indirect Object Access Upper Bound" }, { BRW_SVG_CTL_SIP, "System Instruction Pointer" }, { 0, 0 }, }; static void brw_debug (ScrnInfoPtr pScrn, char *when) { I830Ptr pI830 = I830PTR(pScrn); int i; uint32_t v; I830Sync (pScrn); ErrorF("brw_debug: %s\n", when); for (i = 0; svg_ctl_bits[i].name; i++) { OUTREG(BRW_SVG_CTL, svg_ctl_bits[i].svg_ctl); v = INREG(BRW_SVG_RDATA); ErrorF("\t%34.34s: 0x%08x\n", svg_ctl_bits[i].name, v); } } #endif #define WATCH_SF 0 #define WATCH_WIZ 0 #define WATCH_STATS 0 void I965DisplayVideoTextured(ScrnInfoPtr pScrn, I830PortPrivPtr pPriv, int id, RegionPtr dstRegion, short width, short height, int video_pitch, int x1, int y1, int x2, int y2, short src_w, short src_h, short drw_w, short drw_h, PixmapPtr pPixmap) { I830Ptr pI830 = I830PTR(pScrn); BoxPtr pbox; int nbox, dxo, dyo, pix_xoff, pix_yoff; int urb_vs_start, urb_vs_size; int urb_gs_start, urb_gs_size; int urb_clip_start, urb_clip_size; int urb_sf_start, urb_sf_size; int urb_cs_start, urb_cs_size; struct brw_surface_state *dest_surf_state; struct brw_surface_state *src_surf_state; struct brw_sampler_state *src_sampler_state; struct brw_vs_unit_state *vs_state; struct brw_sf_unit_state *sf_state; struct brw_wm_unit_state *wm_state; struct brw_cc_unit_state *cc_state; struct brw_cc_viewport *cc_viewport; struct brw_instruction *sf_kernel; struct brw_instruction *ps_kernel; struct brw_instruction *sip_kernel; float *vb; float src_scale_x, src_scale_y; uint32_t *binding_table; Bool first_output = TRUE; int dest_surf_offset, src_surf_offset, src_sampler_offset, vs_offset; int sf_offset, wm_offset, cc_offset, vb_offset, cc_viewport_offset; int wm_scratch_offset; int sf_kernel_offset, ps_kernel_offset, sip_kernel_offset; int binding_table_offset; int next_offset, total_state_size; int vb_size = (4 * 4) * 4; /* 4 DWORDS per vertex */ char *state_base; int state_base_offset; #if 0 ErrorF("BroadwaterDisplayVideoTextured: %dx%d (pitch %d)\n", width, height, video_pitch); #endif /* enable debug */ OUTREG (INST_PM, (1 << (16 + 4)) | (1 << 4)); #if 0 ErrorF ("INST_PM 0x%08x\n", INREG(INST_PM)); #endif assert((id == FOURCC_UYVY) || (id == FOURCC_YUY2)); IntelEmitInvarientState(pScrn); *pI830->last_3d = LAST_3D_VIDEO; next_offset = 0; /* Set up our layout of state in framebuffer. First the general state: */ vs_offset = ALIGN(next_offset, 64); next_offset = vs_offset + sizeof(*vs_state); sf_offset = ALIGN(next_offset, 32); next_offset = sf_offset + sizeof(*sf_state); wm_offset = ALIGN(next_offset, 32); next_offset = wm_offset + sizeof(*wm_state); wm_scratch_offset = ALIGN(next_offset, 1024); next_offset = wm_scratch_offset + 1024 * PS_MAX_THREADS; cc_offset = ALIGN(next_offset, 32); next_offset = cc_offset + sizeof(*cc_state); sf_kernel_offset = ALIGN(next_offset, 64); next_offset = sf_kernel_offset + sizeof (sf_kernel_static); ps_kernel_offset = ALIGN(next_offset, 64); next_offset = ps_kernel_offset + sizeof (ps_kernel_static); sip_kernel_offset = ALIGN(next_offset, 64); next_offset = sip_kernel_offset + sizeof (sip_kernel_static); cc_viewport_offset = ALIGN(next_offset, 32); next_offset = cc_viewport_offset + sizeof(*cc_viewport); src_sampler_offset = ALIGN(next_offset, 32); next_offset = src_sampler_offset + sizeof(*src_sampler_state); /* Align VB to native size of elements, for safety */ vb_offset = ALIGN(next_offset, 8); next_offset = vb_offset + vb_size; /* And then the general state: */ dest_surf_offset = ALIGN(next_offset, 32); next_offset = dest_surf_offset + sizeof(*dest_surf_state); src_surf_offset = ALIGN(next_offset, 32); next_offset = src_surf_offset + sizeof(*src_surf_state); binding_table_offset = ALIGN(next_offset, 32); next_offset = binding_table_offset + (WM_BINDING_TABLE_ENTRIES * 4); /* Allocate an area in framebuffer for our state layout we just set up */ total_state_size = next_offset; assert (total_state_size < BRW_LINEAR_EXTRA); /* * Use the extra space allocated at the end of the Xv buffer */ state_base_offset = pPriv->extra_offset; state_base_offset = ALIGN(state_base_offset, 64); state_base = (char *)(pI830->FbBase + state_base_offset); /* Set up our pointers to state structures in framebuffer. It would * probably be a good idea to fill these structures out in system memory * and then dump them there, instead. */ vs_state = (void *)(state_base + vs_offset); sf_state = (void *)(state_base + sf_offset); wm_state = (void *)(state_base + wm_offset); cc_state = (void *)(state_base + cc_offset); sf_kernel = (void *)(state_base + sf_kernel_offset); ps_kernel = (void *)(state_base + ps_kernel_offset); sip_kernel = (void *)(state_base + sip_kernel_offset); cc_viewport = (void *)(state_base + cc_viewport_offset); dest_surf_state = (void *)(state_base + dest_surf_offset); src_surf_state = (void *)(state_base + src_surf_offset); src_sampler_state = (void *)(state_base + src_sampler_offset); binding_table = (void *)(state_base + binding_table_offset); vb = (void *)(state_base + vb_offset); #if 0 ErrorF("vs: 0x%08x\n", state_base_offset + vs_offset); ErrorF("wm: 0x%08x\n", state_base_offset + wm_offset); ErrorF("sf: 0x%08x\n", state_base_offset + sf_offset); ErrorF("cc: 0x%08x\n", state_base_offset + cc_offset); ErrorF("sf kernel: 0x%08x\n", state_base_offset + sf_kernel_offset); ErrorF("ps kernel: 0x%08x\n", state_base_offset + ps_kernel_offset); ErrorF("sip kernel: 0x%08x\n", state_base_offset + sip_kernel_offset); ErrorF("cc_vp: 0x%08x\n", state_base_offset + cc_viewport_offset); ErrorF("src sampler: 0x%08x\n", state_base_offset + src_sampler_offset); ErrorF("vb: 0x%08x\n", state_base_offset + vb_offset); ErrorF("dst surf: 0x%08x\n", state_base_offset + dest_surf_offset); ErrorF("src surf: 0x%08x\n", state_base_offset + src_surf_offset); ErrorF("binding table: 0x%08x\n", state_base_offset + binding_table_offset); #endif /* For 3D, the VS must have 8, 12, 16, 24, or 32 VUEs allocated to it. * A VUE consists of a 256-bit vertex header followed by the vertex data, * which in our case is 4 floats (128 bits), thus a single 512-bit URB * entry. */ #define URB_VS_ENTRIES 8 #define URB_VS_ENTRY_SIZE 1 #define URB_GS_ENTRIES 0 #define URB_GS_ENTRY_SIZE 0 #define URB_CLIP_ENTRIES 0 #define URB_CLIP_ENTRY_SIZE 0 /* The SF kernel we use outputs only 4 256-bit registers, leading to an * entry size of 2 512-bit URBs. We don't need to have many entries to * output as we're generally working on large rectangles and don't care * about having WM threads running on different rectangles simultaneously. */ #define URB_SF_ENTRIES 1 #define URB_SF_ENTRY_SIZE 2 #define URB_CS_ENTRIES 0 #define URB_CS_ENTRY_SIZE 0 urb_vs_start = 0; urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE; urb_gs_start = urb_vs_start + urb_vs_size; urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE; urb_clip_start = urb_gs_start + urb_gs_size; urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE; urb_sf_start = urb_clip_start + urb_clip_size; urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE; urb_cs_start = urb_sf_start + urb_sf_size; urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE; /* We'll be poking the state buffers that could be in use by the 3d * hardware here, but we should have synced the 3D engine already in * I830PutImage. */ memset (cc_viewport, 0, sizeof (*cc_viewport)); cc_viewport->min_depth = -1.e35; cc_viewport->max_depth = 1.e35; /* Color calculator state */ memset(cc_state, 0, sizeof(*cc_state)); cc_state->cc0.stencil_enable = 0; /* disable stencil */ cc_state->cc2.depth_test = 0; /* disable depth test */ cc_state->cc2.logicop_enable = 1; /* enable logic op */ cc_state->cc3.ia_blend_enable = 1; /* blend alpha just like colors */ cc_state->cc3.blend_enable = 0; /* disable color blend */ cc_state->cc3.alpha_test = 0; /* disable alpha test */ cc_state->cc4.cc_viewport_state_offset = (state_base_offset + cc_viewport_offset) >> 5; cc_state->cc5.dither_enable = 0; /* disable dither */ cc_state->cc5.logicop_func = 0xc; /* WHITE */ cc_state->cc5.statistics_enable = 1; cc_state->cc5.ia_blend_function = BRW_BLENDFUNCTION_ADD; cc_state->cc5.ia_src_blend_factor = BRW_BLENDFACTOR_ONE; cc_state->cc5.ia_dest_blend_factor = BRW_BLENDFACTOR_ONE; /* Upload system kernel */ memcpy (sip_kernel, sip_kernel_static, sizeof (sip_kernel_static)); /* Set up the state buffer for the destination surface */ memset(dest_surf_state, 0, sizeof(*dest_surf_state)); dest_surf_state->ss0.surface_type = BRW_SURFACE_2D; dest_surf_state->ss0.data_return_format = BRW_SURFACERETURNFORMAT_FLOAT32; if (pI830->cpp == 2) { dest_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_B5G6R5_UNORM; } else { dest_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM; } dest_surf_state->ss0.writedisable_alpha = 0; dest_surf_state->ss0.writedisable_red = 0; dest_surf_state->ss0.writedisable_green = 0; dest_surf_state->ss0.writedisable_blue = 0; dest_surf_state->ss0.color_blend = 1; dest_surf_state->ss0.vert_line_stride = 0; dest_surf_state->ss0.vert_line_stride_ofs = 0; dest_surf_state->ss0.mipmap_layout_mode = 0; dest_surf_state->ss0.render_cache_read_mode = 0; dest_surf_state->ss1.base_addr = intel_get_pixmap_offset(pPixmap); dest_surf_state->ss2.height = pScrn->virtualY - 1; dest_surf_state->ss2.width = pScrn->virtualX - 1; dest_surf_state->ss2.mip_count = 0; dest_surf_state->ss2.render_target_rotation = 0; dest_surf_state->ss3.pitch = intel_get_pixmap_pitch(pPixmap) - 1; dest_surf_state->ss3.tiled_surface = i830_pixmap_tiled(pPixmap); dest_surf_state->ss3.tile_walk = 0; /* TileX */ /* Set up the source surface state buffer */ memset(src_surf_state, 0, sizeof(*src_surf_state)); src_surf_state->ss0.surface_type = BRW_SURFACE_2D; /* src_surf_state->ss0.data_return_format = BRW_SURFACERETURNFORMAT_FLOAT32; */ switch (id) { case FOURCC_YUY2: src_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_YCRCB_NORMAL; break; case FOURCC_UYVY: src_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_YCRCB_SWAPY; break; } src_surf_state->ss0.writedisable_alpha = 0; src_surf_state->ss0.writedisable_red = 0; src_surf_state->ss0.writedisable_green = 0; src_surf_state->ss0.writedisable_blue = 0; src_surf_state->ss0.color_blend = 1; src_surf_state->ss0.vert_line_stride = 0; src_surf_state->ss0.vert_line_stride_ofs = 0; src_surf_state->ss0.mipmap_layout_mode = 0; src_surf_state->ss0.render_cache_read_mode = 0; src_surf_state->ss1.base_addr = pPriv->YBuf0offset; src_surf_state->ss2.width = width - 1; src_surf_state->ss2.height = height - 1; src_surf_state->ss2.mip_count = 0; src_surf_state->ss2.render_target_rotation = 0; src_surf_state->ss3.pitch = video_pitch - 1; /* FIXME: account for tiling if we ever do it */ /* Set up a binding table for our two surfaces. Only the PS will use it */ /* XXX: are these offset from the right place? */ binding_table[0] = state_base_offset + dest_surf_offset; binding_table[1] = state_base_offset + src_surf_offset; /* Set up the packed YUV source sampler. Doesn't do colorspace conversion. */ memset(src_sampler_state, 0, sizeof(*src_sampler_state)); src_sampler_state->ss0.min_filter = BRW_MAPFILTER_LINEAR; src_sampler_state->ss0.mag_filter = BRW_MAPFILTER_LINEAR; src_sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP; src_sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP; src_sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP; /* Set up the vertex shader to be disabled (passthrough) */ memset(vs_state, 0, sizeof(*vs_state)); vs_state->thread4.nr_urb_entries = URB_VS_ENTRIES; vs_state->thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1; vs_state->vs6.vs_enable = 0; vs_state->vs6.vert_cache_disable = 1; /* Set up the SF kernel to do coord interp: for each attribute, * calculate dA/dx and dA/dy. Hand these interpolation coefficients * back to SF which then hands pixels off to WM. */ memcpy (sf_kernel, sf_kernel_static, sizeof (sf_kernel_static)); memset(sf_state, 0, sizeof(*sf_state)); sf_state->thread0.kernel_start_pointer = (state_base_offset + sf_kernel_offset) >> 6; sf_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(SF_KERNEL_NUM_GRF); sf_state->sf1.single_program_flow = 1; /* XXX */ sf_state->sf1.binding_table_entry_count = 0; sf_state->sf1.thread_priority = 0; sf_state->sf1.floating_point_mode = 0; /* Mesa does this */ sf_state->sf1.illegal_op_exception_enable = 1; sf_state->sf1.mask_stack_exception_enable = 1; sf_state->sf1.sw_exception_enable = 1; sf_state->thread2.per_thread_scratch_space = 0; /* scratch space is not used in our kernel */ sf_state->thread2.scratch_space_base_pointer = 0; sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */ sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */ sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */ sf_state->thread3.urb_entry_read_offset = 0; sf_state->thread3.dispatch_grf_start_reg = 3; sf_state->thread4.max_threads = SF_MAX_THREADS - 1; sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1; sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES; sf_state->thread4.stats_enable = 1; sf_state->sf5.viewport_transform = FALSE; /* skip viewport */ sf_state->sf6.cull_mode = BRW_CULLMODE_NONE; sf_state->sf6.scissor = 0; sf_state->sf7.trifan_pv = 2; sf_state->sf6.dest_org_vbias = 0x8; sf_state->sf6.dest_org_hbias = 0x8; memcpy (ps_kernel, ps_kernel_static, sizeof (ps_kernel_static)); memset (wm_state, 0, sizeof (*wm_state)); wm_state->thread0.kernel_start_pointer = (state_base_offset + ps_kernel_offset) >> 6; wm_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(PS_KERNEL_NUM_GRF); wm_state->thread1.single_program_flow = 1; /* XXX */ wm_state->thread1.binding_table_entry_count = 2; /* Though we never use the scratch space in our WM kernel, it has to be * set, and the minimum allocation is 1024 bytes. */ wm_state->thread2.scratch_space_base_pointer = (state_base_offset + wm_scratch_offset) >> 10; wm_state->thread2.per_thread_scratch_space = 0; /* 1024 bytes */ wm_state->thread3.dispatch_grf_start_reg = 3; /* XXX */ wm_state->thread3.const_urb_entry_read_length = 0; wm_state->thread3.const_urb_entry_read_offset = 0; wm_state->thread3.urb_entry_read_length = 1; /* XXX */ wm_state->thread3.urb_entry_read_offset = 0; /* XXX */ wm_state->wm4.stats_enable = 1; wm_state->wm4.sampler_state_pointer = (state_base_offset + src_sampler_offset) >> 5; wm_state->wm4.sampler_count = 1; /* 1-4 samplers used */ wm_state->wm5.max_threads = PS_MAX_THREADS - 1; wm_state->wm5.thread_dispatch_enable = 1; wm_state->wm5.enable_16_pix = 1; wm_state->wm5.enable_8_pix = 0; wm_state->wm5.early_depth_test = 1; { BEGIN_LP_RING(2); OUT_RING(MI_FLUSH | MI_STATE_INSTRUCTION_CACHE_FLUSH | BRW_MI_GLOBAL_SNAPSHOT_RESET); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); } /* brw_debug (pScrn, "before base address modify"); */ { BEGIN_LP_RING(12); /* Match Mesa driver setup */ if (IS_IGD_GM(pI830)) OUT_RING(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D); else OUT_RING(BRW_PIPELINE_SELECT | PIPELINE_SELECT_3D); /* Mesa does this. Who knows... */ OUT_RING(BRW_CS_URB_STATE | 0); OUT_RING((0 << 4) | /* URB Entry Allocation Size */ (0 << 0)); /* Number of URB Entries */ /* Zero out the two base address registers so all offsets are * absolute */ OUT_RING(BRW_STATE_BASE_ADDRESS | 4); OUT_RING(0 | BASE_ADDRESS_MODIFY); /* Generate state base address */ OUT_RING(0 | BASE_ADDRESS_MODIFY); /* Surface state base address */ OUT_RING(0 | BASE_ADDRESS_MODIFY); /* media base addr, don't care */ /* general state max addr, disabled */ OUT_RING(0x10000000 | BASE_ADDRESS_MODIFY); /* media object state max addr, disabled */ OUT_RING(0x10000000 | BASE_ADDRESS_MODIFY); /* Set system instruction pointer */ OUT_RING(BRW_STATE_SIP | 0); /* system instruction pointer */ OUT_RING(state_base_offset + sip_kernel_offset); OUT_RING(MI_NOOP); ADVANCE_LP_RING(); } /* brw_debug (pScrn, "after base address modify"); */ { BEGIN_LP_RING(42); /* Enable VF statistics */ OUT_RING(BRW_3DSTATE_VF_STATISTICS | 1); /* Pipe control */ OUT_RING(BRW_PIPE_CONTROL | BRW_PIPE_CONTROL_NOWRITE | BRW_PIPE_CONTROL_IS_FLUSH | 2); OUT_RING(0); /* Destination address */ OUT_RING(0); /* Immediate data low DW */ OUT_RING(0); /* Immediate data high DW */ /* Binding table pointers */ OUT_RING(BRW_3DSTATE_BINDING_TABLE_POINTERS | 4); OUT_RING(0); /* vs */ OUT_RING(0); /* gs */ OUT_RING(0); /* clip */ OUT_RING(0); /* sf */ /* Only the PS uses the binding table */ OUT_RING(state_base_offset + binding_table_offset); /* ps */ /* Blend constant color (magenta is fun) */ OUT_RING(BRW_3DSTATE_CONSTANT_COLOR | 3); OUT_RING(float_to_uint (1.0)); OUT_RING(float_to_uint (0.0)); OUT_RING(float_to_uint (1.0)); OUT_RING(float_to_uint (1.0)); /* The drawing rectangle clipping is always on. Set it to values that * shouldn't do any clipping. */ OUT_RING(BRW_3DSTATE_DRAWING_RECTANGLE | 2); /* XXX 3 for BLC or CTG */ OUT_RING(0x00000000); /* ymin, xmin */ OUT_RING((pScrn->virtualX - 1) | (pScrn->virtualY - 1) << 16); /* ymax, xmax */ OUT_RING(0x00000000); /* yorigin, xorigin */ /* skip the depth buffer */ /* skip the polygon stipple */ /* skip the polygon stipple offset */ /* skip the line stipple */ /* Set the pointers to the 3d pipeline state */ OUT_RING(BRW_3DSTATE_PIPELINED_POINTERS | 5); OUT_RING(state_base_offset + vs_offset); /* 32 byte aligned */ /* disable GS, resulting in passthrough */ OUT_RING(BRW_GS_DISABLE); /* disable CLIP, resulting in passthrough */ OUT_RING(BRW_CLIP_DISABLE); OUT_RING(state_base_offset + sf_offset); /* 32 byte aligned */ OUT_RING(state_base_offset + wm_offset); /* 32 byte aligned */ OUT_RING(state_base_offset + cc_offset); /* 64 byte aligned */ /* URB fence */ OUT_RING(BRW_URB_FENCE | UF0_CS_REALLOC | UF0_SF_REALLOC | UF0_CLIP_REALLOC | UF0_GS_REALLOC | UF0_VS_REALLOC | 1); OUT_RING(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) | ((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) | ((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT)); OUT_RING(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) | ((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT)); /* Constant buffer state */ OUT_RING(BRW_CS_URB_STATE | 0); OUT_RING(((URB_CS_ENTRY_SIZE - 1) << 4) | (URB_CS_ENTRIES << 0)); /* Set up the pointer to our vertex buffer */ OUT_RING(BRW_3DSTATE_VERTEX_BUFFERS | 2); /* four 32-bit floats per vertex */ OUT_RING((0 << VB0_BUFFER_INDEX_SHIFT) | VB0_VERTEXDATA | ((4 * 4) << VB0_BUFFER_PITCH_SHIFT)); OUT_RING(state_base_offset + vb_offset); OUT_RING(3); /* four corners to our rectangle */ /* Set up our vertex elements, sourced from the single vertex buffer. */ OUT_RING(BRW_3DSTATE_VERTEX_ELEMENTS | 3); /* offset 0: X,Y -> {X, Y, 1.0, 1.0} */ OUT_RING((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID | (BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) | (0 << VE0_OFFSET_SHIFT)); OUT_RING((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) | (BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) | (0 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* offset 8: S0, T0 -> {S0, T0, 1.0, 1.0} */ OUT_RING((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID | (BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) | (8 << VE0_OFFSET_SHIFT)); OUT_RING((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) | (BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) | (BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) | (4 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); OUT_RING(MI_NOOP); /* pad to quadword */ ADVANCE_LP_RING(); } /* Set up the offset for translating from the given region (in screen * coordinates) to the backing pixmap. */ #ifdef COMPOSITE pix_xoff = -pPixmap->screen_x + pPixmap->drawable.x; pix_yoff = -pPixmap->screen_y + pPixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif dxo = dstRegion->extents.x1; dyo = dstRegion->extents.y1; /* Use normalized texture coordinates */ src_scale_x = ((float)src_w / width) / (float)drw_w; src_scale_y = ((float)src_h / height) / (float)drw_h; pbox = REGION_RECTS(dstRegion); nbox = REGION_NUM_RECTS(dstRegion); while (nbox--) { int box_x1 = pbox->x1; int box_y1 = pbox->y1; int box_x2 = pbox->x2; int box_y2 = pbox->y2; int i; if (!first_output) { /* Since we use the same little vertex buffer over and over, sync * for subsequent rectangles. */ i830WaitSync(pScrn); } pbox++; i = 0; vb[i++] = (box_x2 - dxo) * src_scale_x; vb[i++] = (box_y2 - dyo) * src_scale_y; vb[i++] = (float) box_x2 + pix_xoff; vb[i++] = (float) box_y2 + pix_yoff; vb[i++] = (box_x1 - dxo) * src_scale_x; vb[i++] = (box_y2 - dyo) * src_scale_y; vb[i++] = (float) box_x1 + pix_xoff; vb[i++] = (float) box_y2 + pix_yoff; vb[i++] = (box_x1 - dxo) * src_scale_x; vb[i++] = (box_y1 - dyo) * src_scale_y; vb[i++] = (float) box_x1 + pix_xoff; vb[i++] = (float) box_y1 + pix_yoff; #if 0 ErrorF ("before EU_ATT 0x%08x%08x EU_ATT_DATA 0x%08x%08x\n", INREG(BRW_EU_ATT_1), INREG(BRW_EU_ATT_0), INREG(BRW_EU_ATT_DATA_1), INREG(BRW_EU_ATT_DATA_0)); OUTREG(BRW_VF_CTL, BRW_VF_CTL_SNAPSHOT_MUX_SELECT_THREADID | BRW_VF_CTL_SNAPSHOT_TYPE_VERTEX_INDEX | BRW_VF_CTL_SNAPSHOT_ENABLE); OUTREG(BRW_VF_STRG_VAL, 0); #endif #if 0 OUTREG(BRW_VS_CTL, BRW_VS_CTL_SNAPSHOT_ALL_THREADS | BRW_VS_CTL_SNAPSHOT_MUX_VALID_COUNT | BRW_VS_CTL_THREAD_SNAPSHOT_ENABLE); OUTREG(BRW_VS_STRG_VAL, 0); #endif #if WATCH_SF OUTREG(BRW_SF_CTL, BRW_SF_CTL_SNAPSHOT_MUX_VERTEX_COUNT | BRW_SF_CTL_SNAPSHOT_ALL_THREADS | BRW_SF_CTL_THREAD_SNAPSHOT_ENABLE); OUTREG(BRW_SF_STRG_VAL, 0); #endif #if WATCH_WIZ OUTREG(BRW_WIZ_CTL, BRW_WIZ_CTL_SNAPSHOT_MUX_SUBSPAN_INSTANCE | BRW_WIZ_CTL_SNAPSHOT_ALL_THREADS | BRW_WIZ_CTL_SNAPSHOT_ENABLE); OUTREG(BRW_WIZ_STRG_VAL, (box_x1) | (box_y1 << 16)); #endif #if 0 OUTREG(BRW_TS_CTL, BRW_TS_CTL_SNAPSHOT_MESSAGE_ERROR | BRW_TS_CTL_SNAPSHOT_ALL_CHILD_THREADS | BRW_TS_CTL_SNAPSHOT_ALL_ROOT_THREADS | BRW_TS_CTL_SNAPSHOT_ENABLE); #endif BEGIN_LP_RING(6); OUT_RING(BRW_3DPRIMITIVE | BRW_3DPRIMITIVE_VERTEX_SEQUENTIAL | (_3DPRIM_RECTLIST << BRW_3DPRIMITIVE_TOPOLOGY_SHIFT) | (0 << 9) | /* CTG - indirect vertex count */ 4); OUT_RING(3); /* vertex count per instance */ OUT_RING(0); /* start vertex offset */ OUT_RING(1); /* single instance */ OUT_RING(0); /* start instance location */ OUT_RING(0); /* index buffer offset, ignored */ ADVANCE_LP_RING(); #if 0 for (j = 0; j < 100000; j++) { ctl = INREG(BRW_VF_CTL); if (ctl & BRW_VF_CTL_SNAPSHOT_COMPLETE) break; } rdata = INREG(BRW_VF_RDATA); OUTREG(BRW_VF_CTL, 0); ErrorF ("VF_CTL: 0x%08x VF_RDATA: 0x%08x\n", ctl, rdata); #endif #if 0 for (j = 0; j < 1000000; j++) { ctl = INREG(BRW_VS_CTL); if (ctl & BRW_VS_CTL_SNAPSHOT_COMPLETE) break; } rdata = INREG(BRW_VS_RDATA); for (k = 0; k <= 3; k++) { OUTREG(BRW_VS_CTL, BRW_VS_CTL_SNAPSHOT_COMPLETE | (k << 8)); rdata = INREG(BRW_VS_RDATA); ErrorF ("VS_CTL: 0x%08x VS_RDATA(%d): 0x%08x\n", ctl, k, rdata); } OUTREG(BRW_VS_CTL, 0); #endif #if WATCH_SF for (j = 0; j < 1000000; j++) { ctl = INREG(BRW_SF_CTL); if (ctl & BRW_SF_CTL_SNAPSHOT_COMPLETE) break; } for (k = 0; k <= 7; k++) { OUTREG(BRW_SF_CTL, BRW_SF_CTL_SNAPSHOT_COMPLETE | (k << 8)); rdata = INREG(BRW_SF_RDATA); ErrorF("SF_CTL: 0x%08x SF_RDATA(%d): 0x%08x\n", ctl, k, rdata); } OUTREG(BRW_SF_CTL, 0); #endif #if WATCH_WIZ for (j = 0; j < 100000; j++) { ctl = INREG(BRW_WIZ_CTL); if (ctl & BRW_WIZ_CTL_SNAPSHOT_COMPLETE) break; } rdata = INREG(BRW_WIZ_RDATA); OUTREG(BRW_WIZ_CTL, 0); ErrorF("WIZ_CTL: 0x%08x WIZ_RDATA: 0x%08x\n", ctl, rdata); #endif #if 0 for (j = 0; j < 100000; j++) { ctl = INREG(BRW_TS_CTL); if (ctl & BRW_TS_CTL_SNAPSHOT_COMPLETE) break; } rdata = INREG(BRW_TS_RDATA); OUTREG(BRW_TS_CTL, 0); ErrorF("TS_CTL: 0x%08x TS_RDATA: 0x%08x\n", ctl, rdata); ErrorF("after EU_ATT 0x%08x%08x EU_ATT_DATA 0x%08x%08x\n", INREG(BRW_EU_ATT_1), INREG(BRW_EU_ATT_0), INREG(BRW_EU_ATT_DATA_1), INREG(BRW_EU_ATT_DATA_0)); #endif #if 0 for (j = 0; j < 256; j++) { OUTREG(BRW_TD_CTL, j << BRW_TD_CTL_MUX_SHIFT); rdata = INREG(BRW_TD_RDATA); ErrorF ("TD_RDATA(%d): 0x%08x\n", j, rdata); } #endif first_output = FALSE; i830MarkSync(pScrn); } i830WaitSync(pScrn); #if WATCH_STATS i830_dump_error_state(pScrn); #endif }