/* * Copyright © 2010-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_render.h" #include "sna_render_inline.h" #include "sna_reg.h" #include "sna_video.h" #include "gen3_render.h" #if DEBUG_RENDER #undef DBG #define DBG(x) ErrorF x #endif #define NO_COMPOSITE 0 #define NO_COMPOSITE_SPANS 0 #define NO_COPY 0 #define NO_COPY_BOXES 0 #define NO_FILL 0 #define NO_FILL_ONE 0 #define NO_FILL_BOXES 0 #define PREFER_BLT_FILL 1 enum { SHADER_NONE = 0, SHADER_ZERO, SHADER_BLACK, SHADER_WHITE, SHADER_CONSTANT, SHADER_LINEAR, SHADER_RADIAL, SHADER_TEXTURE, SHADER_OPACITY, }; #define MAX_3D_SIZE 2048 #define MAX_3D_PITCH 8192 #define OUT_BATCH(v) batch_emit(sna, v) #define OUT_BATCH_F(v) batch_emit_float(sna, v) #define OUT_VERTEX(v) vertex_emit(sna, v) enum gen3_radial_mode { RADIAL_ONE, RADIAL_TWO }; static const struct blendinfo { Bool dst_alpha; Bool src_alpha; uint32_t src_blend; uint32_t dst_blend; } gen3_blend_op[] = { /* Clear */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ZERO}, /* Src */ {0, 0, BLENDFACT_ONE, BLENDFACT_ZERO}, /* Dst */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ONE}, /* Over */ {0, 1, BLENDFACT_ONE, BLENDFACT_INV_SRC_ALPHA}, /* OverReverse */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ONE}, /* In */ {1, 0, BLENDFACT_DST_ALPHA, BLENDFACT_ZERO}, /* InReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_SRC_ALPHA}, /* Out */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ZERO}, /* OutReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_INV_SRC_ALPHA}, /* Atop */ {1, 1, BLENDFACT_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* AtopReverse */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_SRC_ALPHA}, /* Xor */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* Add */ {0, 0, BLENDFACT_ONE, BLENDFACT_ONE}, }; #define S6_COLOR_WRITE_ONLY \ (S6_COLOR_WRITE_ENABLE | \ BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | \ BLENDFACT_ONE << S6_CBUF_SRC_BLEND_FACT_SHIFT | \ BLENDFACT_ZERO << S6_CBUF_DST_BLEND_FACT_SHIFT) static const struct formatinfo { unsigned int fmt, xfmt; uint32_t card_fmt; Bool rb_reversed; } gen3_tex_formats[] = { {PICT_a8, 0, MAPSURF_8BIT | MT_8BIT_A8, FALSE}, {PICT_a8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_ARGB8888, FALSE}, {PICT_x8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_XRGB8888, FALSE}, {PICT_a8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_ABGR8888, FALSE}, {PICT_x8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_XBGR8888, FALSE}, {PICT_a2r10g10b10, PICT_x2r10g10b10, MAPSURF_32BIT | MT_32BIT_ARGB2101010, FALSE}, {PICT_a2b10g10r10, PICT_x2b10g10r10, MAPSURF_32BIT | MT_32BIT_ABGR2101010, FALSE}, {PICT_r5g6b5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, FALSE}, {PICT_b5g6r5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, TRUE}, {PICT_a1r5g5b5, PICT_x1r5g5b5, MAPSURF_16BIT | MT_16BIT_ARGB1555, FALSE}, {PICT_a1b5g5r5, PICT_x1b5g5r5, MAPSURF_16BIT | MT_16BIT_ARGB1555, TRUE}, {PICT_a4r4g4b4, PICT_x4r4g4b4, MAPSURF_16BIT | MT_16BIT_ARGB4444, FALSE}, {PICT_a4b4g4r4, PICT_x4b4g4r4, MAPSURF_16BIT | MT_16BIT_ARGB4444, TRUE}, }; #define xFixedToDouble(f) pixman_fixed_to_double(f) static inline bool too_large(int width, int height) { return width > MAX_3D_SIZE || height > MAX_3D_SIZE; } static inline uint32_t gen3_buf_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y; case I915_TILING_X: v |= BUF_3D_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static inline Bool gen3_check_pitch_3d(struct kgem_bo *bo) { return bo->pitch <= MAX_3D_PITCH; } static uint32_t gen3_get_blend_cntl(int op, Bool has_component_alpha, uint32_t dst_format) { uint32_t sblend = gen3_blend_op[op].src_blend; uint32_t dblend = gen3_blend_op[op].dst_blend; if (op <= PictOpSrc) /* for clear and src disable blending */ return S6_COLOR_WRITE_ONLY; /* If there's no dst alpha channel, adjust the blend op so that we'll * treat it as always 1. */ if (gen3_blend_op[op].dst_alpha) { if (PICT_FORMAT_A(dst_format) == 0) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_ONE; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_ZERO; } /* gen3 engine reads 8bit color buffer into green channel * in cases like color buffer blending etc., and also writes * back green channel. So with dst_alpha blend we should use * color factor. See spec on "8-bit rendering". */ if (dst_format == PICT_a8) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_DST_COLR; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_INV_DST_COLR; } } /* If the source alpha is being used, then we should only be in a case * where the source blend factor is 0, and the source blend value is the * mask channels multiplied by the source picture's alpha. */ if (has_component_alpha && gen3_blend_op[op].src_alpha) { if (dblend == BLENDFACT_SRC_ALPHA) dblend = BLENDFACT_SRC_COLR; else if (dblend == BLENDFACT_INV_SRC_ALPHA) dblend = BLENDFACT_INV_SRC_COLR; } return (S6_CBUF_BLEND_ENABLE | S6_COLOR_WRITE_ENABLE | BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | sblend << S6_CBUF_SRC_BLEND_FACT_SHIFT | dblend << S6_CBUF_DST_BLEND_FACT_SHIFT); } static Bool gen3_check_dst_format(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_r5g6b5: case PICT_b5g6r5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return TRUE; default: return FALSE; } } static Bool gen3_dst_rb_reversed(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_r5g6b5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: return FALSE; default: return TRUE; } } #define DSTORG_HORT_BIAS(x) ((x)<<20) #define DSTORG_VERT_BIAS(x) ((x)<<16) static uint32_t gen3_get_dst_format(uint32_t format) { #define BIAS (DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8)) switch (format) { default: case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: return BIAS | COLR_BUF_ARGB8888; case PICT_r5g6b5: case PICT_b5g6r5: return BIAS | COLR_BUF_RGB565; case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: return BIAS | COLR_BUF_ARGB1555; case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: return BIAS | COLR_BUF_ARGB2AAA; case PICT_a8: return BIAS | COLR_BUF_8BIT; case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return BIAS | COLR_BUF_ARGB4444; } #undef BIAS } static Bool gen3_check_format(PicturePtr p) { switch (p->format) { case PICT_a8: case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_a2r10g10b10: case PICT_a2b10g10r10: case PICT_r5g6b5: case PICT_b5g6r5: case PICT_a1r5g5b5: case PICT_a1b5g5r5: case PICT_a4r4g4b4: case PICT_a4b4g4r4: return TRUE; default: return FALSE; } } static Bool gen3_check_xformat(PicturePtr p) { switch (p->format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_r5g6b5: case PICT_b5g6r5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return TRUE; default: return FALSE; } } static uint32_t gen3_texture_repeat(uint32_t repeat) { #define REPEAT(x) \ (SS3_NORMALIZED_COORDS | \ TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \ TEXCOORDMODE_##x << SS3_TCY_ADDR_MODE_SHIFT) switch (repeat) { default: case RepeatNone: return REPEAT(CLAMP_BORDER); case RepeatNormal: return REPEAT(WRAP); case RepeatPad: return REPEAT(CLAMP_EDGE); case RepeatReflect: return REPEAT(MIRROR); } #undef REPEAT } static uint32_t gen3_gradient_repeat(uint32_t repeat) { #define REPEAT(x) \ (SS3_NORMALIZED_COORDS | \ TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \ TEXCOORDMODE_WRAP << SS3_TCY_ADDR_MODE_SHIFT) switch (repeat) { default: case RepeatNone: return REPEAT(CLAMP_BORDER); case RepeatNormal: return REPEAT(WRAP); case RepeatPad: return REPEAT(CLAMP_EDGE); case RepeatReflect: return REPEAT(MIRROR); } #undef REPEAT } static Bool gen3_check_repeat(PicturePtr p) { if (!p->repeat) return TRUE; switch (p->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: return TRUE; default: return FALSE; } } static uint32_t gen3_filter(uint32_t filter) { switch (filter) { default: assert(0); case PictFilterNearest: return (FILTER_NEAREST << SS2_MAG_FILTER_SHIFT | FILTER_NEAREST << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); case PictFilterBilinear: return (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT | FILTER_LINEAR << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); } } static bool gen3_check_filter(PicturePtr p) { switch (p->filter) { case PictFilterNearest: case PictFilterBilinear: return TRUE; default: return FALSE; } } static inline void gen3_emit_composite_dstcoord(struct sna *sna, int16_t dstX, int16_t dstY) { OUT_VERTEX(dstX); OUT_VERTEX(dstY); } fastcall static void gen3_emit_composite_primitive_constant(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t dst_x = r->dst.x + op->dst.x; int16_t dst_y = r->dst.y + op->dst.y; gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); } fastcall static void gen3_emit_composite_primitive_identity_gradient(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t dst_x, dst_y; int16_t src_x, src_y; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(src_x + r->width); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(src_x); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(src_x); OUT_VERTEX(src_y); } fastcall static void gen3_emit_composite_primitive_affine_gradient(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { PictTransform *transform = op->src.transform; int16_t dst_x, dst_y; int16_t src_x, src_y; float sx, sy; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(sx); OUT_VERTEX(sy); sna_get_transformed_coordinates(src_x, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(sx); OUT_VERTEX(sy); sna_get_transformed_coordinates(src_x, src_y, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(sx); OUT_VERTEX(sy); } fastcall static void gen3_emit_composite_primitive_identity_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->src.x + op->src.offset[0]) * op->src.scale[0]; v[2] = v[6] + w * op->src.scale[0]; v[11] = (r->src.y + op->src.offset[1]) * op->src.scale[1]; v[7] = v[3] = v[11] + h * op->src.scale[1]; } fastcall static void gen3_emit_composite_primitive_identity_source_no_offset(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x; v[9] = r->dst.y; v[0] = v[4] + w; v[5] = v[1] = v[9] + h; v[10] = v[6] = r->src.x * op->src.scale[0]; v[11] = r->src.y * op->src.scale[1]; v[2] = v[6] + w * op->src.scale[0]; v[7] = v[3] = v[11] + h * op->src.scale[1]; } fastcall static void gen3_emit_composite_primitive_affine_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { PictTransform *transform = op->src.transform; int16_t dst_x = r->dst.x + op->dst.x; int16_t dst_y = r->dst.y + op->dst.y; int src_x = r->src.x + (int)op->src.offset[0]; int src_y = r->src.y + (int)op->src.offset[1]; float sx, sy; _sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); _sna_get_transformed_coordinates(src_x, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); _sna_get_transformed_coordinates(src_x, src_y, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); } fastcall static void gen3_emit_composite_primitive_constant_identity_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->mask.x + op->mask.offset[0]) * op->mask.scale[0]; v[2] = v[6] + w * op->mask.scale[0]; v[11] = (r->mask.y + op->mask.offset[1]) * op->mask.scale[1]; v[7] = v[3] = v[11] + h * op->mask.scale[1]; } fastcall static void gen3_emit_composite_primitive_constant_identity_mask_no_offset(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x; v[9] = r->dst.y; v[0] = v[4] + w; v[5] = v[1] = v[9] + h; v[10] = v[6] = r->mask.x * op->mask.scale[0]; v[11] = r->mask.y * op->mask.scale[1]; v[2] = v[6] + w * op->mask.scale[0]; v[7] = v[3] = v[11] + h * op->mask.scale[1]; } fastcall static void gen3_emit_composite_primitive_identity_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float dst_x, dst_y; float src_x, src_y; float msk_x, msk_y; float w, h; float *v; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 18; v[0] = dst_x + w; v[1] = dst_y + h; v[2] = (src_x + w) * op->src.scale[0]; v[3] = (src_y + h) * op->src.scale[1]; v[4] = (msk_x + w) * op->mask.scale[0]; v[5] = (msk_y + h) * op->mask.scale[1]; v[6] = dst_x; v[7] = v[1]; v[8] = src_x * op->src.scale[0]; v[9] = v[3]; v[10] = msk_x * op->mask.scale[0]; v[11] =v[5]; v[12] = v[6]; v[13] = dst_y; v[14] = v[8]; v[15] = src_y * op->src.scale[1]; v[16] = v[10]; v[17] = msk_y * op->mask.scale[1]; } fastcall static void gen3_emit_composite_primitive_affine_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t src_x, src_y; float dst_x, dst_y; float msk_x, msk_y; float w, h; float *v; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 18; v[0] = dst_x + w; v[1] = dst_y + h; sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, op->src.transform, &v[2], &v[3]); v[2] *= op->src.scale[0]; v[3] *= op->src.scale[1]; v[4] = (msk_x + w) * op->mask.scale[0]; v[5] = (msk_y + h) * op->mask.scale[1]; v[6] = dst_x; v[7] = v[1]; sna_get_transformed_coordinates(src_x, src_y + r->height, op->src.transform, &v[8], &v[9]); v[8] *= op->src.scale[0]; v[9] *= op->src.scale[1]; v[10] = msk_x * op->mask.scale[0]; v[11] =v[5]; v[12] = v[6]; v[13] = dst_y; sna_get_transformed_coordinates(src_x, src_y, op->src.transform, &v[14], &v[15]); v[14] *= op->src.scale[0]; v[15] *= op->src.scale[1]; v[16] = v[10]; v[17] = msk_y * op->mask.scale[1]; } static void gen3_emit_composite_texcoord(struct sna *sna, const struct sna_composite_channel *channel, int16_t x, int16_t y) { float s = 0, t = 0, w = 1; switch (channel->u.gen3.type) { case SHADER_OPACITY: case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: x += channel->offset[0]; y += channel->offset[1]; if (channel->is_affine) { sna_get_transformed_coordinates(x, y, channel->transform, &s, &t); OUT_VERTEX(s * channel->scale[0]); OUT_VERTEX(t * channel->scale[1]); } else { sna_get_transformed_coordinates_3d(x, y, channel->transform, &s, &t, &w); OUT_VERTEX(s * channel->scale[0]); OUT_VERTEX(t * channel->scale[1]); OUT_VERTEX(0); OUT_VERTEX(w); } break; } } static void gen3_emit_composite_vertex(struct sna *sna, const struct sna_composite_op *op, int16_t srcX, int16_t srcY, int16_t maskX, int16_t maskY, int16_t dstX, int16_t dstY) { gen3_emit_composite_dstcoord(sna, dstX, dstY); gen3_emit_composite_texcoord(sna, &op->src, srcX, srcY); gen3_emit_composite_texcoord(sna, &op->mask, maskX, maskY); } fastcall static void gen3_emit_composite_primitive(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { gen3_emit_composite_vertex(sna, op, r->src.x + r->width, r->src.y + r->height, r->mask.x + r->width, r->mask.y + r->height, op->dst.x + r->dst.x + r->width, op->dst.y + r->dst.y + r->height); gen3_emit_composite_vertex(sna, op, r->src.x, r->src.y + r->height, r->mask.x, r->mask.y + r->height, op->dst.x + r->dst.x, op->dst.y + r->dst.y + r->height); gen3_emit_composite_vertex(sna, op, r->src.x, r->src.y, r->mask.x, r->mask.y, op->dst.x + r->dst.x, op->dst.y + r->dst.y); } static inline void gen3_2d_perspective(struct sna *sna, int in, int out) { gen3_fs_rcp(out, 0, gen3_fs_operand(in, W, W, W, W)); gen3_fs_mul(out, gen3_fs_operand(in, X, Y, ZERO, ONE), gen3_fs_operand_reg(out)); } static inline void gen3_linear_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->u.gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } gen3_fs_mov(out, gen3_fs_operand_zero()); gen3_fs_dp3(out, MASK_X, gen3_fs_operand(in, X, Y, ONE, ZERO), gen3_fs_operand_reg(c)); } static void gen3_radial_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->u.gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } switch (channel->u.gen3.mode) { case RADIAL_ONE: /* pdx = (x - c1x) / dr, pdy = (y - c1y) / dr; r² = pdx*pdx + pdy*pdy t = r²/sqrt(r²) - r1/dr; */ gen3_fs_mad(FS_U0, MASK_X | MASK_Y, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, Z, Z, ZERO, ZERO), gen3_fs_operand(c, NEG_X, NEG_Y, ZERO, ZERO)); gen3_fs_dp2add(FS_U0, MASK_X, gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand_zero()); gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U0, X, X, X, X)); gen3_fs_mad(out, 0, gen3_fs_operand(FS_U0, X, ZERO, ZERO, ZERO), gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c, W, ZERO, ZERO, ZERO)); break; case RADIAL_TWO: /* pdx = x - c1x, pdy = y - c1y; A = dx² + dy² - dr² B = -2*(pdx*dx + pdy*dy + r1*dr); C = pdx² + pdy² - r1²; det = B*B - 4*A*C; t = (-B + sqrt (det)) / (2 * A) */ /* u0.x = pdx, u0.y = pdy, u[0].z = r1; */ gen3_fs_add(FS_U0, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, X, Y, Z, ZERO)); /* u0.x = pdx, u0.y = pdy, u[0].z = r1, u[0].w = B; */ gen3_fs_dp3(FS_U0, MASK_W, gen3_fs_operand(FS_U0, X, Y, ONE, ZERO), gen3_fs_operand(c+1, X, Y, Z, ZERO)); /* u1.x = pdx² + pdy² - r1²; [C] */ gen3_fs_dp3(FS_U1, MASK_X, gen3_fs_operand(FS_U0, X, Y, Z, ZERO), gen3_fs_operand(FS_U0, X, Y, NEG_Z, ZERO)); /* u1.x = C, u1.y = B, u1.z=-4*A; */ gen3_fs_mov_masked(FS_U1, MASK_Y, gen3_fs_operand(FS_U0, W, W, W, W)); gen3_fs_mov_masked(FS_U1, MASK_Z, gen3_fs_operand(c, W, W, W, W)); /* u1.x = B² - 4*A*C */ gen3_fs_dp2add(FS_U1, MASK_X, gen3_fs_operand(FS_U1, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U1, Z, Y, ZERO, ZERO), gen3_fs_operand_zero()); /* out.x = -B + sqrt (B² - 4*A*C), */ gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U1, X, X, X, X)); gen3_fs_mad(out, MASK_X, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U1, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U0, NEG_W, ZERO, ZERO, ZERO)); /* out.x = (-B + sqrt (B² - 4*A*C)) / (2 * A), */ gen3_fs_mul(out, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c+1, W, ZERO, ZERO, ZERO)); break; } } static void gen3_composite_emit_shader(struct sna *sna, const struct sna_composite_op *op, uint8_t blend) { Bool dst_is_alpha = PIXMAN_FORMAT_RGB(op->dst.format) == 0; const struct sna_composite_channel *src, *mask; struct gen3_render_state *state = &sna->render_state.gen3; uint32_t shader_offset, id; int src_reg, mask_reg; int t, length; src = &op->src; mask = &op->mask; if (mask->u.gen3.type == SHADER_NONE) mask = NULL; if (mask && src->is_opaque && gen3_blend_op[blend].src_alpha && op->has_component_alpha) { src = mask; mask = NULL; } id = (src->u.gen3.type | src->is_affine << 4 | src->alpha_fixup << 5 | src->rb_reversed << 6); if (mask) { id |= (mask->u.gen3.type << 8 | mask->is_affine << 12 | gen3_blend_op[blend].src_alpha << 13 | op->has_component_alpha << 14 | mask->alpha_fixup << 15 | mask->rb_reversed << 16); } id |= dst_is_alpha << 24; id |= op->rb_reversed << 25; if (id == state->last_shader) return; state->last_shader = id; shader_offset = sna->kgem.nbatch++; t = 0; switch (src->u.gen3.type) { case SHADER_NONE: case SHADER_OPACITY: assert(0); case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: gen3_fs_dcl(FS_T8); src_reg = FS_T8; break; case SHADER_TEXTURE: case SHADER_RADIAL: case SHADER_LINEAR: gen3_fs_dcl(FS_S0); gen3_fs_dcl(FS_T0); t++; break; } if (mask == NULL) { switch (src->u.gen3.type) { case SHADER_ZERO: gen3_fs_mov(FS_OC, gen3_fs_operand_zero()); goto done; case SHADER_BLACK: if (dst_is_alpha) gen3_fs_mov(FS_OC, gen3_fs_operand_one()); else gen3_fs_mov(FS_OC, gen3_fs_operand(FS_R0, ZERO, ZERO, ZERO, ONE)); goto done; case SHADER_WHITE: gen3_fs_mov(FS_OC, gen3_fs_operand_one()); goto done; } if (src->alpha_fixup && dst_is_alpha) { gen3_fs_mov(FS_OC, gen3_fs_operand_one()); goto done; } /* No mask, so load directly to output color */ if (src->u.gen3.type != SHADER_CONSTANT) { if (dst_is_alpha || src->rb_reversed ^ op->rb_reversed) src_reg = FS_R0; else src_reg = FS_OC; } switch (src->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(src_reg, FS_S0, FS_T0); else gen3_fs_texldp(src_reg, FS_S0, FS_T0); break; case SHADER_NONE: case SHADER_WHITE: case SHADER_BLACK: case SHADER_ZERO: assert(0); case SHADER_CONSTANT: break; } if (src_reg != FS_OC) { if (src->alpha_fixup) gen3_fs_mov(FS_OC, src->rb_reversed ^ op->rb_reversed ? gen3_fs_operand(src_reg, Z, Y, X, ONE) : gen3_fs_operand(src_reg, X, Y, Z, ONE)); else if (dst_is_alpha) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, W, W, W, W)); else if (src->rb_reversed ^ op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, Z, Y, X, W)); else gen3_fs_mov(FS_OC, gen3_fs_operand_reg(src_reg)); } else if (src->alpha_fixup) gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one()); } else { int out_reg = FS_OC; if (op->rb_reversed) out_reg = FS_U0; switch (mask->u.gen3.type) { case SHADER_CONSTANT: gen3_fs_dcl(FS_T9); mask_reg = FS_T9; break; case SHADER_TEXTURE: case SHADER_LINEAR: case SHADER_RADIAL: gen3_fs_dcl(FS_S0 + t); case SHADER_OPACITY: gen3_fs_dcl(FS_T0 + t); break; case SHADER_ZERO: case SHADER_BLACK: assert(0); case SHADER_NONE: case SHADER_WHITE: break; } t = 0; switch (src->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(FS_R0, FS_S0, FS_T0); else gen3_fs_texldp(FS_R0, FS_S0, FS_T0); src_reg = FS_R0; t++; break; case SHADER_CONSTANT: case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; } if (src->alpha_fixup) gen3_fs_mov_masked(src_reg, MASK_W, gen3_fs_operand_one()); if (src->rb_reversed) gen3_fs_mov(src_reg, gen3_fs_operand(src_reg, Z, Y, X, W)); switch (mask->u.gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_RADIAL: gen3_radial_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_TEXTURE: if (mask->is_affine) gen3_fs_texld(FS_R1, FS_S0 + t, FS_T0 + t); else gen3_fs_texldp(FS_R1, FS_S0 + t, FS_T0 + t); mask_reg = FS_R1; break; case SHADER_OPACITY: switch (src->u.gen3.type) { case SHADER_BLACK: case SHADER_WHITE: if (dst_is_alpha || src->u.gen3.type == SHADER_WHITE) { gen3_fs_mov(out_reg, gen3_fs_operand(FS_T0 + t, X, X, X, X)); } else { gen3_fs_mov(out_reg, gen3_fs_operand(FS_T0 + t, ZERO, ZERO, ZERO, X)); } break; default: if (dst_is_alpha) { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } else { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, X, Y, Z, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } } goto mask_done; case SHADER_CONSTANT: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_NONE: break; } if (mask->alpha_fixup) gen3_fs_mov_masked(mask_reg, MASK_W, gen3_fs_operand_one()); if (mask->rb_reversed) gen3_fs_mov(mask_reg, gen3_fs_operand(mask_reg, Z, Y, X, W)); if (dst_is_alpha) { switch (src->u.gen3.type) { case SHADER_BLACK: case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, W, W, W, W)); break; default: gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(mask_reg, W, W, W, W)); break; } } else { /* If component alpha is active in the mask and the blend * operation uses the source alpha, then we know we don't * need the source value (otherwise we would have hit a * fallback earlier), so we provide the source alpha (src.A * * mask.X) as output color. * Conversely, if CA is set and we don't need the source alpha, * then we produce the source value (src.X * mask.X) and the * source alpha is unused. Otherwise, we provide the non-CA * source value (src.X * mask.A). */ if (op->has_component_alpha) { switch (src->u.gen3.type) { case SHADER_BLACK: if (gen3_blend_op[blend].src_alpha) gen3_fs_mov(out_reg, gen3_fs_operand_reg(mask_reg)); else gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W)); break; case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand_reg(mask_reg)); break; default: if (gen3_blend_op[blend].src_alpha) gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand_reg(mask_reg)); else gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand_reg(mask_reg)); break; } } else { switch (src->u.gen3.type) { case SHADER_WHITE: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, W, W, W, W)); break; case SHADER_BLACK: gen3_fs_mov(out_reg, gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W)); break; default: gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand(mask_reg, W, W, W, W)); break; } } } mask_done: if (op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(FS_U0, Z, Y, X, W)); } done: length = sna->kgem.nbatch - shader_offset; sna->kgem.batch[shader_offset] = _3DSTATE_PIXEL_SHADER_PROGRAM | (length - 2); } static uint32_t gen3_ms_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= MS3_TILE_WALK; case I915_TILING_X: v |= MS3_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static void gen3_emit_invariant(struct sna *sna) { /* Disable independent alpha blend */ OUT_BATCH(_3DSTATE_INDEPENDENT_ALPHA_BLEND_CMD | IAB_MODIFY_ENABLE | IAB_MODIFY_FUNC | BLENDFUNC_ADD << IAB_FUNC_SHIFT | IAB_MODIFY_SRC_FACTOR | BLENDFACT_ONE << IAB_SRC_FACTOR_SHIFT | IAB_MODIFY_DST_FACTOR | BLENDFACT_ZERO << IAB_DST_FACTOR_SHIFT); OUT_BATCH(_3DSTATE_COORD_SET_BINDINGS | CSB_TCB(0, 0) | CSB_TCB(1, 1) | CSB_TCB(2, 2) | CSB_TCB(3, 3) | CSB_TCB(4, 4) | CSB_TCB(5, 5) | CSB_TCB(6, 6) | CSB_TCB(7, 7)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(3) | I1_LOAD_S(4) | I1_LOAD_S(5) | I1_LOAD_S(6) | 3); OUT_BATCH(0); /* Disable texture coordinate wrap-shortest */ OUT_BATCH((1 << S4_POINT_WIDTH_SHIFT) | S4_LINE_WIDTH_ONE | S4_CULLMODE_NONE | S4_VFMT_XY); OUT_BATCH(0); /* Disable fog/stencil. *Enable* write mask. */ OUT_BATCH(S6_COLOR_WRITE_ONLY); /* Disable blending, depth */ OUT_BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT); OUT_BATCH(_3DSTATE_DEPTH_SUBRECT_DISABLE); OUT_BATCH(_3DSTATE_LOAD_INDIRECT); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_STIPPLE); OUT_BATCH(0x00000000); sna->render_state.gen3.need_invariant = FALSE; } #define MAX_OBJECTS 3 /* worst case: dst + src + mask */ static void gen3_get_batch(struct sna *sna) { kgem_set_mode(&sna->kgem, KGEM_RENDER); if (!kgem_check_batch(&sna->kgem, 200)) { DBG(("%s: flushing batch: size %d > %d\n", __FUNCTION__, 200, sna->kgem.surface-sna->kgem.nbatch)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS) { DBG(("%s: flushing batch: reloc %d >= %d\n", __FUNCTION__, sna->kgem.nreloc, (int)KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1) { DBG(("%s: flushing batch: exec %d >= %d\n", __FUNCTION__, sna->kgem.nexec, (int)KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->render_state.gen3.need_invariant) gen3_emit_invariant(sna); #undef MAX_OBJECTS } static void gen3_emit_target(struct sna *sna, struct kgem_bo *bo, int width, int height, int format) { struct gen3_render_state *state = &sna->render_state.gen3; /* BUF_INFO is an implicit flush, so skip if the target is unchanged. */ if (bo->unique_id != state->current_dst) { uint32_t v; DBG(("%s: setting new target id=%d, handle=%d\n", __FUNCTION__, bo->unique_id, bo->handle)); OUT_BATCH(_3DSTATE_BUF_INFO_CMD); OUT_BATCH(BUF_3D_ID_COLOR_BACK | gen3_buf_tiling(bo->tiling) | bo->pitch); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, bo, I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER, 0)); OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD); OUT_BATCH(gen3_get_dst_format(format)); v = DRAW_YMAX(height - 1) | DRAW_XMAX(width - 1); if (v != state->last_drawrect_limit) { OUT_BATCH(_3DSTATE_DRAW_RECT_CMD); OUT_BATCH(0); /* XXX dither origin? */ OUT_BATCH(0); OUT_BATCH(v); OUT_BATCH(0); state->last_drawrect_limit = v; } state->current_dst = bo->unique_id; } kgem_bo_mark_dirty(bo); } static void gen3_emit_composite_state(struct sna *sna, const struct sna_composite_op *op) { struct gen3_render_state *state = &sna->render_state.gen3; uint32_t map[4]; uint32_t sampler[4]; struct kgem_bo *bo[2]; unsigned int tex_count, n; uint32_t ss2; gen3_get_batch(sna); if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) { if (op->src.bo == op->dst.bo || op->mask.bo == op->dst.bo) OUT_BATCH(MI_FLUSH | MI_INVALIDATE_MAP_CACHE); else OUT_BATCH(_3DSTATE_MODES_5_CMD | PIPELINE_FLUSH_RENDER_CACHE | PIPELINE_FLUSH_TEXTURE_CACHE); kgem_clear_dirty(&sna->kgem); } gen3_emit_target(sna, op->dst.bo, op->dst.width, op->dst.height, op->dst.format); ss2 = ~0; tex_count = 0; switch (op->src.u.gen3.type) { case SHADER_OPACITY: case SHADER_NONE: assert(0); case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: if (op->src.u.gen3.mode != state->last_diffuse) { OUT_BATCH(_3DSTATE_DFLT_DIFFUSE_CMD); OUT_BATCH(op->src.u.gen3.mode); state->last_diffuse = op->src.u.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); map[tex_count * 2 + 0] = op->src.card_format | gen3_ms_tiling(op->src.bo->tiling) | (op->src.height - 1) << MS3_HEIGHT_SHIFT | (op->src.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->src.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->src.filter; sampler[tex_count * 2 + 1] = op->src.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->src.bo; tex_count++; break; } switch (op->mask.u.gen3.type) { case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: break; case SHADER_CONSTANT: if (op->mask.u.gen3.mode != state->last_specular) { OUT_BATCH(_3DSTATE_DFLT_SPEC_CMD); OUT_BATCH(op->mask.u.gen3.mode); state->last_specular = op->mask.u.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->mask.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); map[tex_count * 2 + 0] = op->mask.card_format | gen3_ms_tiling(op->mask.bo->tiling) | (op->mask.height - 1) << MS3_HEIGHT_SHIFT | (op->mask.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->mask.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->mask.filter; sampler[tex_count * 2 + 1] = op->mask.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->mask.bo; tex_count++; break; case SHADER_OPACITY: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_1D); break; } { uint32_t blend_offset = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(2) | I1_LOAD_S(6) | 1); OUT_BATCH(ss2); OUT_BATCH(gen3_get_blend_cntl(op->op, op->has_component_alpha, op->dst.format)); if (memcmp(sna->kgem.batch + state->last_blend + 1, sna->kgem.batch + blend_offset + 1, 2 * 4) == 0) sna->kgem.nbatch = blend_offset; else state->last_blend = blend_offset; } if (op->u.gen3.num_constants) { int count = op->u.gen3.num_constants; if (state->last_constants) { int last = sna->kgem.batch[state->last_constants+1]; if (last == (1 << (count >> 2)) - 1 && memcmp(&sna->kgem.batch[state->last_constants+2], op->u.gen3.constants, count * sizeof(uint32_t)) == 0) count = 0; } if (count) { state->last_constants = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | count); OUT_BATCH((1 << (count >> 2)) - 1); memcpy(sna->kgem.batch + sna->kgem.nbatch, op->u.gen3.constants, count * sizeof(uint32_t)); sna->kgem.nbatch += count; } } if (tex_count != 0) { uint32_t rewind; n = 0; if (tex_count == state->tex_count) { for (; n < tex_count; n++) { if (map[2*n+0] != state->tex_map[2*n+0] || map[2*n+1] != state->tex_map[2*n+1] || state->tex_handle[n] != bo[n]->handle || state->tex_delta[n] != bo[n]->delta) break; } } if (n < tex_count) { OUT_BATCH(_3DSTATE_MAP_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, bo[n], I915_GEM_DOMAIN_SAMPLER<< 16, 0)); OUT_BATCH(map[2*n + 0]); OUT_BATCH(map[2*n + 1]); state->tex_map[2*n+0] = map[2*n+0]; state->tex_map[2*n+1] = map[2*n+1]; state->tex_handle[n] = bo[n]->handle; state->tex_delta[n] = bo[n]->delta; } state->tex_count = n; } rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_SAMPLER_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(sampler[2*n + 0]); OUT_BATCH(sampler[2*n + 1]); OUT_BATCH(0); } if (state->last_sampler && memcmp(&sna->kgem.batch[state->last_sampler+1], &sna->kgem.batch[rewind + 1], (3*tex_count + 1)*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_sampler = rewind; } gen3_composite_emit_shader(sna, op, op->op); } static void gen3_magic_ca_pass(struct sna *sna, const struct sna_composite_op *op) { if (!op->need_magic_ca_pass) return; DBG(("%s(%d)\n", __FUNCTION__, sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0); OUT_BATCH(gen3_get_blend_cntl(PictOpAdd, TRUE, op->dst.format)); gen3_composite_emit_shader(sna, op, PictOpAdd); OUT_BATCH(PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(sna->render.vertex_start); sna->render_state.gen3.last_blend = 0; } static void gen3_vertex_flush(struct sna *sna) { assert(sna->render_state.gen3.vertex_offset); DBG(("%s[%x] = %d\n", __FUNCTION__, 4*sna->render_state.gen3.vertex_offset, sna->render.vertex_index - sna->render.vertex_start)); sna->kgem.batch[sna->render_state.gen3.vertex_offset] = PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start); sna->kgem.batch[sna->render_state.gen3.vertex_offset + 1] = sna->render.vertex_start; sna->render_state.gen3.vertex_offset = 0; } static int gen3_vertex_finish(struct sna *sna) { struct kgem_bo *bo; assert(sna->render.vertex_used); bo = sna->render.vbo; if (bo) { if (sna->render_state.gen3.vertex_offset) gen3_vertex_flush(sna); DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0])); sna->kgem.batch[sna->render.vertex_reloc[0]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0], bo, I915_GEM_DOMAIN_VERTEX << 16, 0); sna->render.vertex_reloc[0] = 0; sna->render.vertex_used = 0; sna->render.vertex_index = 0; kgem_bo_destroy(&sna->kgem, bo); } sna->render.vertices = NULL; sna->render.vbo = kgem_create_linear(&sna->kgem, 256*1024, CREATE_GTT_MAP); if (sna->render.vbo) sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo); if (sna->render.vertices == NULL) { kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; return 0; } if (sna->render.vertex_used) { memcpy(sna->render.vertices, sna->render.vertex_data, sizeof(float)*sna->render.vertex_used); } sna->render.vertex_size = 64 * 1024 - 1; return sna->render.vertex_size - sna->render.vertex_used; } static void gen3_vertex_close(struct sna *sna) { struct kgem_bo *bo, *free_bo = NULL; unsigned int delta = 0; assert(sna->render_state.gen3.vertex_offset == 0); DBG(("%s: used=%d, vbo active? %d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vbo != NULL)); if (sna->render.vertex_used == 0) { assert(sna->render.vbo == NULL); assert(sna->render.vertices == sna->render.vertex_data); assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data)); return; } bo = sna->render.vbo; if (bo) { if (sna->render.vertex_size - sna->render.vertex_used < 64) { DBG(("%s: discarding full vbo\n", __FUNCTION__)); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } else if (IS_CPU_MAP(bo->map)) { DBG(("%s: converting CPU map to GTT\n", __FUNCTION__)); sna->render.vertices = kgem_bo_map__gtt(&sna->kgem, bo); if (sna->render.vertices == NULL) { sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } } } else { if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) { DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__, sna->render.vertex_used, sna->kgem.nbatch)); memcpy(sna->kgem.batch + sna->kgem.nbatch, sna->render.vertex_data, sna->render.vertex_used * 4); delta = sna->kgem.nbatch * 4; bo = NULL; sna->kgem.nbatch += sna->render.vertex_used; } else { DBG(("%s: new vbo: %d\n", __FUNCTION__, sna->render.vertex_used)); bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used, 0); if (bo) kgem_bo_write(&sna->kgem, bo, sna->render.vertex_data, 4*sna->render.vertex_used); free_bo = bo; } } DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0])); if (sna->render.vertex_reloc[0]) { sna->kgem.batch[sna->render.vertex_reloc[0]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0], bo, I915_GEM_DOMAIN_VERTEX << 16, delta); sna->render.vertex_reloc[0] = 0; } if (sna->render.vbo == NULL) { sna->render.vertex_used = 0; sna->render.vertex_index = 0; assert(sna->render.vertices == sna->render.vertex_data); assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data)); } if (free_bo) kgem_bo_destroy(&sna->kgem, free_bo); } static bool gen3_rectangle_begin(struct sna *sna, const struct sna_composite_op *op) { struct gen3_render_state *state = &sna->render_state.gen3; int ndwords, i1_cmd = 0, i1_len = 0; ndwords = 2; if (op->need_magic_ca_pass) ndwords += 100; if (sna->render.vertex_reloc[0] == 0) i1_len++, i1_cmd |= I1_LOAD_S(0), ndwords++; if (state->floats_per_vertex != op->floats_per_vertex) i1_len++, i1_cmd |= I1_LOAD_S(1), ndwords++; if (!kgem_check_batch(&sna->kgem, ndwords+1)) return false; if (i1_cmd) { OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | i1_cmd | (i1_len - 1)); if (sna->render.vertex_reloc[0] == 0) sna->render.vertex_reloc[0] = sna->kgem.nbatch++; if (state->floats_per_vertex != op->floats_per_vertex) { state->floats_per_vertex = op->floats_per_vertex; OUT_BATCH(state->floats_per_vertex << S1_VERTEX_WIDTH_SHIFT | state->floats_per_vertex << S1_VERTEX_PITCH_SHIFT); } } if (sna->kgem.nbatch == 2 + state->last_vertex_offset) { state->vertex_offset = state->last_vertex_offset; } else { state->vertex_offset = sna->kgem.nbatch; OUT_BATCH(MI_NOOP); /* to be filled later */ OUT_BATCH(MI_NOOP); sna->render.vertex_start = sna->render.vertex_index; state->last_vertex_offset = state->vertex_offset; } return true; } static int gen3_get_rectangles__flush(struct sna *sna, const struct sna_composite_op *op) { if (!kgem_check_batch(&sna->kgem, op->need_magic_ca_pass ? 105: 5)) return 0; if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - 2) return 0; if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - 1) return 0; if (op->need_magic_ca_pass && sna->render.vbo) return 0; return gen3_vertex_finish(sna); } inline static int gen3_get_rectangles(struct sna *sna, const struct sna_composite_op *op, int want) { int rem; DBG(("%s: want=%d, rem=%d\n", __FUNCTION__, want*op->floats_per_rect, vertex_space(sna))); assert(sna->render.vertex_index * op->floats_per_vertex == sna->render.vertex_used); start: rem = vertex_space(sna); if (unlikely(op->floats_per_rect > rem)) { DBG(("flushing vbo for %s: %d < %d\n", __FUNCTION__, rem, op->floats_per_rect)); rem = gen3_get_rectangles__flush(sna, op); if (unlikely(rem == 0)) goto flush; } if (unlikely(sna->render_state.gen3.vertex_offset == 0 && !gen3_rectangle_begin(sna, op))) goto flush; if (want > 1 && want * op->floats_per_rect > rem) want = rem / op->floats_per_rect; sna->render.vertex_index += 3*want; assert(want); assert(sna->render.vertex_index * op->floats_per_vertex <= sna->render.vertex_size); return want; flush: DBG(("%s: flushing batch\n", __FUNCTION__)); if (sna->render_state.gen3.vertex_offset) { gen3_vertex_flush(sna); gen3_magic_ca_pass(sna, op); } _kgem_submit(&sna->kgem); gen3_emit_composite_state(sna, op); goto start; } fastcall static void gen3_render_composite_blt(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__, r->src.x, r->src.y, op->src.offset[0], op->src.offset[1], r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1], r->dst.x, r->dst.y, op->dst.x, op->dst.y, r->width, r->height)); gen3_get_rectangles(sna, op, 1); op->prim_emit(sna, op, r); } fastcall static void gen3_render_composite_box(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box) { struct sna_composite_rectangles r; DBG(("%s: src=+(%d, %d), mask=+(%d, %d), dst=+(%d, %d)\n", __FUNCTION__, op->src.offset[0], op->src.offset[1], op->mask.offset[0], op->mask.offset[1], op->dst.x, op->dst.y)); gen3_get_rectangles(sna, op, 1); r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.src = r.mask = r.dst; op->prim_emit(sna, op, &r); } static void gen3_render_composite_boxes(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("%s: nbox=%d, src=+(%d, %d), mask=+(%d, %d), dst=+(%d, %d)\n", __FUNCTION__, nbox, op->src.offset[0], op->src.offset[1], op->mask.offset[0], op->mask.offset[1], op->dst.x, op->dst.y)); do { int nbox_this_time; nbox_this_time = gen3_get_rectangles(sna, op, nbox); nbox -= nbox_this_time; do { struct sna_composite_rectangles r; DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.src = r.mask = r.dst; op->prim_emit(sna, op, &r); box++; } while (--nbox_this_time); } while (nbox); } static void gen3_render_composite_done(struct sna *sna, const struct sna_composite_op *op) { DBG(("%s()\n", __FUNCTION__)); if (sna->render_state.gen3.vertex_offset) { gen3_vertex_flush(sna); gen3_magic_ca_pass(sna, op); } if (op->mask.bo) kgem_bo_destroy(&sna->kgem, op->mask.bo); if (op->src.bo) kgem_bo_destroy(&sna->kgem, op->src.bo); sna_render_composite_redirect_done(sna, op); } static void gen3_render_reset(struct sna *sna) { struct gen3_render_state *state = &sna->render_state.gen3; state->need_invariant = TRUE; state->current_dst = 0; state->tex_count = 0; state->last_drawrect_limit = ~0U; state->last_target = 0; state->last_blend = 0; state->last_constants = 0; state->last_sampler = 0; state->last_shader = 0x7fffffff; state->last_diffuse = 0xcc00ffee; state->last_specular = 0xcc00ffee; state->floats_per_vertex = 0; state->last_floats_per_vertex = 0; state->last_vertex_offset = 0; state->vertex_offset = 0; if (sna->render.vbo && !kgem_bo_is_mappable(&sna->kgem, sna->render.vbo)) { DBG(("%s: discarding unmappable vbo\n", __FUNCTION__)); kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); } } static void gen3_render_retire(struct kgem *kgem) { struct sna *sna; sna = container_of(kgem, struct sna, kgem); if (!kgem->need_retire && kgem->nbatch == 0 && sna->render.vbo) { DBG(("%s: discarding vbo\n", __FUNCTION__)); kgem_bo_destroy(kgem, sna->render.vbo); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); sna->render.vertex_used = 0; sna->render.vertex_index = 0; } } static Bool gen3_composite_channel_set_format(struct sna_composite_channel *channel, CARD32 format) { unsigned int i; for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) { if (gen3_tex_formats[i].fmt == format) { channel->card_format = gen3_tex_formats[i].card_fmt; channel->rb_reversed = gen3_tex_formats[i].rb_reversed; return TRUE; } } return FALSE; } static Bool source_is_covered(PicturePtr picture, int x, int y, int width, int height) { int x1, y1, x2, y2; if (picture->repeat && picture->repeatType != RepeatNone) return TRUE; if (picture->pDrawable == NULL) return FALSE; if (picture->transform) { pixman_box16_t sample; sample.x1 = x; sample.y1 = y; sample.x2 = x + width; sample.y2 = y + height; pixman_transform_bounds(picture->transform, &sample); x1 = sample.x1; x2 = sample.x2; y1 = sample.y1; y2 = sample.y2; } else { x1 = x; y1 = y; x2 = x + width; y2 = y + height; } return x1 >= 0 && y1 >= 0 && x2 <= picture->pDrawable->width && y2 <= picture->pDrawable->height; } static Bool gen3_composite_channel_set_xformat(PicturePtr picture, struct sna_composite_channel *channel, int x, int y, int width, int height) { unsigned int i; if (PICT_FORMAT_A(picture->format) != 0) return FALSE; if (width == 0 || height == 0) return FALSE; if (!source_is_covered(picture, x, y, width, height)) return FALSE; for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) { if (gen3_tex_formats[i].xfmt == picture->format) { channel->card_format = gen3_tex_formats[i].card_fmt; channel->rb_reversed = gen3_tex_formats[i].rb_reversed; channel->alpha_fixup = true; return TRUE; } } return FALSE; } static int gen3_init_solid(struct sna_composite_channel *channel, uint32_t color) { channel->u.gen3.mode = color; channel->u.gen3.type = SHADER_CONSTANT; if (color == 0) channel->u.gen3.type = SHADER_ZERO; else if (color == 0xff000000) channel->u.gen3.type = SHADER_BLACK; else if (color == 0xffffffff) channel->u.gen3.type = SHADER_WHITE; channel->bo = NULL; channel->is_opaque = (color >> 24) == 0xff; channel->is_affine = 1; channel->alpha_fixup = 0; channel->rb_reversed = 0; DBG(("%s: color=%08x, is_opaque=%d, type=%d\n", __FUNCTION__, color, channel->is_opaque, channel->u.gen3.type)); /* for consistency */ channel->repeat = RepeatNormal; channel->filter = PictFilterNearest; channel->pict_format = PICT_a8r8g8b8; channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888; return 1; } static void gen3_composite_channel_convert(struct sna_composite_channel *channel) { if (channel->u.gen3.type == SHADER_TEXTURE) channel->repeat = gen3_texture_repeat(channel->repeat); else channel->repeat = gen3_gradient_repeat(channel->repeat); channel->filter = gen3_filter(channel->filter); if (channel->card_format == 0) gen3_composite_channel_set_format(channel, channel->pict_format); } static Bool gen3_gradient_setup(struct sna *sna, PicturePtr picture, struct sna_composite_channel *channel, int16_t ox, int16_t oy) { int16_t dx, dy; if (picture->repeat == 0) { channel->repeat = RepeatNone; } else switch (picture->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: channel->repeat = picture->repeatType; break; default: return FALSE; } channel->bo = sna_render_get_gradient(sna, (PictGradient *)picture->pSourcePict); if (channel->bo == NULL) return FALSE; channel->pict_format = PICT_a8r8g8b8; channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888; channel->filter = PictFilterNearest; channel->is_affine = sna_transform_is_affine(picture->transform); if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); ox += dx; oy += dy; channel->transform = NULL; } else channel->transform = picture->transform; channel->width = channel->bo->pitch / 4; channel->height = 1; channel->offset[0] = ox; channel->offset[1] = oy; channel->scale[0] = channel->scale[1] = 1; return TRUE; } static int gen3_init_linear(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int ox, int oy) { PictLinearGradient *linear = (PictLinearGradient *)picture->pSourcePict; float x0, y0, sf; float dx, dy, offset; int n; DBG(("%s: p1=(%f, %f), p2=(%f, %f)\n", __FUNCTION__, xFixedToDouble(linear->p1.x), xFixedToDouble(linear->p1.y), xFixedToDouble(linear->p2.x), xFixedToDouble(linear->p2.y))); if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y) return 0; dx = xFixedToDouble(linear->p2.x - linear->p1.x); dy = xFixedToDouble(linear->p2.y - linear->p1.y); sf = dx*dx + dy*dy; dx /= sf; dy /= sf; x0 = xFixedToDouble(linear->p1.x); y0 = xFixedToDouble(linear->p1.y); offset = dx*x0 + dy*y0; n = op->u.gen3.num_constants; channel->u.gen3.constants = FS_C0 + n / 4; op->u.gen3.constants[n++] = dx; op->u.gen3.constants[n++] = dy; op->u.gen3.constants[n++] = -offset; op->u.gen3.constants[n++] = 0; if (!gen3_gradient_setup(sna, picture, channel, ox, oy)) return -1; channel->u.gen3.type = SHADER_LINEAR; op->u.gen3.num_constants = n; DBG(("%s: dx=%f, dy=%f, offset=%f, constants=%d\n", __FUNCTION__, dx, dy, -offset, channel->u.gen3.constants - FS_C0)); return 1; } static int gen3_init_radial(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int ox, int oy) { PictRadialGradient *radial = (PictRadialGradient *)picture->pSourcePict; double dx, dy, dr, r1; int n; dx = xFixedToDouble(radial->c2.x - radial->c1.x); dy = xFixedToDouble(radial->c2.y - radial->c1.y); dr = xFixedToDouble(radial->c2.radius - radial->c1.radius); r1 = xFixedToDouble(radial->c1.radius); n = op->u.gen3.num_constants; channel->u.gen3.constants = FS_C0 + n / 4; if (radial->c2.x == radial->c1.x && radial->c2.y == radial->c1.y) { if (radial->c2.radius == radial->c1.radius) { channel->u.gen3.type = SHADER_ZERO; return 1; } op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.x) / dr; op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.y) / dr; op->u.gen3.constants[n++] = 1. / dr; op->u.gen3.constants[n++] = -r1 / dr; channel->u.gen3.mode = RADIAL_ONE; } else { op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.x); op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.y); op->u.gen3.constants[n++] = r1; op->u.gen3.constants[n++] = -4 * (dx*dx + dy*dy - dr*dr); op->u.gen3.constants[n++] = -2 * dx; op->u.gen3.constants[n++] = -2 * dy; op->u.gen3.constants[n++] = -2 * r1 * dr; op->u.gen3.constants[n++] = 1 / (2 * (dx*dx + dy*dy - dr*dr)); channel->u.gen3.mode = RADIAL_TWO; } if (!gen3_gradient_setup(sna, picture, channel, ox, oy)) return -1; channel->u.gen3.type = SHADER_RADIAL; op->u.gen3.num_constants = n; return 1; } static Bool sna_picture_is_clear(PicturePtr picture, int x, int y, int w, int h, uint32_t *color) { struct sna_pixmap *priv; if (!picture->pDrawable) return FALSE; priv = sna_pixmap(get_drawable_pixmap(picture->pDrawable)); if (priv == NULL || !priv->clear) return FALSE; if (!source_is_covered(picture, x, y, w, h)) return FALSE; *color = priv->clear_color; return TRUE; } static Bool gen3_composite_picture(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int16_t x, int16_t y, int16_t w, int16_t h, int16_t dst_x, int16_t dst_y, bool precise) { PixmapPtr pixmap; uint32_t color; int16_t dx, dy; DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n", __FUNCTION__, x, y, w, h, dst_x, dst_y)); channel->card_format = 0; if (picture->pDrawable == NULL) { SourcePict *source = picture->pSourcePict; int ret = -1; switch (source->type) { case SourcePictTypeSolidFill: DBG(("%s: solid fill [%08x], format %x\n", __FUNCTION__, source->solidFill.color, picture->format)); ret = gen3_init_solid(channel, source->solidFill.color); break; case SourcePictTypeLinear: ret = gen3_init_linear(sna, picture, op, channel, x - dst_x, y - dst_y); break; case SourcePictTypeRadial: ret = gen3_init_radial(sna, picture, op, channel, x - dst_x, y - dst_y); break; } if (ret == -1) { if (!precise) ret = sna_render_picture_approximate_gradient(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (ret == -1) ret = sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } return ret; } if (picture->alphaMap) { DBG(("%s -- fallback, alphamap\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (sna_picture_is_solid(picture, &color)) { DBG(("%s: solid drawable [%08x]\n", __FUNCTION__, color)); return gen3_init_solid(channel, color); } if (sna_picture_is_clear(picture, x, y, w, h, &color)) { DBG(("%s: clear drawable [%08x]\n", __FUNCTION__, color)); return gen3_init_solid(channel, color_convert(color, picture->format, PICT_a8r8g8b8)); } if (!gen3_check_repeat(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (!gen3_check_filter(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->filter = picture->filter; channel->pict_format = picture->format; pixmap = get_drawable_pixmap(picture->pDrawable); get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy); x += dx + picture->pDrawable->x; y += dy + picture->pDrawable->y; if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); x += dx; y += dy; channel->transform = NULL; channel->filter = PictFilterNearest; } else { channel->transform = picture->transform; channel->is_affine = sna_transform_is_affine(picture->transform); } if (!gen3_composite_channel_set_format(channel, picture->format) && !gen3_composite_channel_set_xformat(picture, channel, x, y, w, h)) return sna_render_picture_convert(sna, picture, channel, pixmap, x, y, w, h, dst_x, dst_y); if (too_large(pixmap->drawable.width, pixmap->drawable.height)) return sna_render_picture_extract(sna, picture, channel, x, y, w, h, dst_x, dst_y); return sna_render_pixmap_bo(sna, channel, pixmap, x, y, w, h, dst_x, dst_y); } static inline bool source_use_blt(struct sna *sna, PicturePtr picture) { /* If it is a solid, try to use the BLT paths */ if (!picture->pDrawable) return picture->pSourcePict->type == SourcePictTypeSolidFill; if (picture->pDrawable->width == 1 && picture->pDrawable->height == 1 && picture->repeat) return true; if (too_large(picture->pDrawable->width, picture->pDrawable->height)) return true; return is_cpu(picture->pDrawable) || is_dirty(picture->pDrawable); } static Bool try_blt(struct sna *sna, PicturePtr dst, PicturePtr src, int width, int height) { if (sna->kgem.mode != KGEM_RENDER) { DBG(("%s: already performing BLT\n", __FUNCTION__)); return TRUE; } if (too_large(width, height)) { DBG(("%s: operation too large for 3D pipe (%d, %d)\n", __FUNCTION__, width, height)); return TRUE; } if (too_large(dst->pDrawable->width, dst->pDrawable->height)) { DBG(("%s: target too large for 3D pipe (%d, %d)\n", __FUNCTION__, dst->pDrawable->width, dst->pDrawable->height)); return TRUE; } /* is the source picture only in cpu memory e.g. a shm pixmap? */ return source_use_blt(sna, src); } static void gen3_align_vertex(struct sna *sna, const struct sna_composite_op *op) { if (op->floats_per_vertex != sna->render_state.gen3.last_floats_per_vertex) { if (sna->render.vertex_size - sna->render.vertex_used < 2*op->floats_per_rect) gen3_vertex_finish(sna); DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n", sna->render_state.gen3.last_floats_per_vertex, op->floats_per_vertex, sna->render.vertex_index, (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex)); sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex; sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex; assert(sna->render.vertex_used < sna->render.vertex_size - op->floats_per_rect); sna->render_state.gen3.last_floats_per_vertex = op->floats_per_vertex; } } static Bool gen3_composite_set_target(struct sna *sna, struct sna_composite_op *op, PicturePtr dst) { struct sna_pixmap *priv; op->dst.pixmap = get_drawable_pixmap(dst->pDrawable); op->dst.format = dst->format; op->dst.width = op->dst.pixmap->drawable.width; op->dst.height = op->dst.pixmap->drawable.height; priv = sna_pixmap(op->dst.pixmap); op->dst.bo = NULL; priv = sna_pixmap(op->dst.pixmap); if (priv && priv->gpu_bo == NULL && priv->cpu_bo && priv->cpu_bo->domain != DOMAIN_CPU) { op->dst.bo = priv->cpu_bo; op->damage = &priv->cpu_damage; } if (op->dst.bo == NULL) { priv = sna_pixmap_force_to_gpu(op->dst.pixmap, MOVE_READ | MOVE_WRITE); if (priv == NULL) return FALSE; /* For single-stream mode there should be no minimum alignment * required, except that the width must be at least 2 elements. */ if (priv->gpu_bo->pitch < 2*op->dst.pixmap->drawable.bitsPerPixel) { struct kgem_bo *bo; if (priv->pinned) return FALSE; bo = kgem_replace_bo(&sna->kgem, priv->gpu_bo, op->dst.width, op->dst.height, 2*op->dst.pixmap->drawable.bitsPerPixel, op->dst.pixmap->drawable.bitsPerPixel); if (bo == NULL) return FALSE; kgem_bo_destroy(&sna->kgem, priv->gpu_bo); priv->gpu_bo = bo; } assert(priv->gpu_bo->proxy == NULL); op->dst.bo = priv->gpu_bo; op->damage = &priv->gpu_damage; } if (sna_damage_is_all(op->damage, op->dst.width, op->dst.height)) op->damage = NULL; get_drawable_deltas(dst->pDrawable, op->dst.pixmap, &op->dst.x, &op->dst.y); DBG(("%s: pixmap=%p, format=%08x, size=%dx%d, pitch=%d, delta=(%d,%d),damage=%p\n", __FUNCTION__, op->dst.pixmap, (int)op->dst.format, op->dst.width, op->dst.height, op->dst.bo->pitch, op->dst.x, op->dst.y, op->damage ? *op->damage : (void *)-1)); return TRUE; } static inline uint8_t mul_8_8(uint8_t a, uint8_t b) { uint16_t t = a * (uint16_t)b + 0x7f; return ((t >> 8) + t) >> 8; } static inline uint8_t multa(uint32_t s, uint32_t m, int shift) { return mul_8_8((s >> shift) & 0xff, m >> 24) << shift; } static inline bool is_constant_ps(uint32_t type) { switch (type) { case SHADER_NONE: /* be warned! */ case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: return true; default: return false; } } static bool has_alphamap(PicturePtr p) { return p->alphaMap != NULL; } static bool untransformed(PicturePtr p) { return !p->transform || pixman_transform_is_int_translate(p->transform); } static bool need_upload(PicturePtr p) { return p->pDrawable && unattached(p->pDrawable) && untransformed(p); } static bool source_is_busy(PixmapPtr pixmap) { struct sna_pixmap *priv = sna_pixmap(pixmap); if (priv == NULL) return false; if (priv->clear) return false; if (priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo)) return true; if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo)) return true; return priv->gpu_damage && !priv->cpu_damage; } static bool source_fallback(PicturePtr p, PixmapPtr pixmap) { if (sna_picture_is_solid(p, NULL)) return false; if (!gen3_check_xformat(p) || !gen3_check_repeat(p)) return true; if (pixmap && source_is_busy(pixmap)) return false; return has_alphamap(p) || !gen3_check_filter(p) || need_upload(p); } static bool gen3_composite_fallback(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst) { struct sna_pixmap *priv; PixmapPtr src_pixmap; PixmapPtr mask_pixmap; PixmapPtr dst_pixmap; bool src_fallback, mask_fallback; if (!gen3_check_dst_format(dst->format)) { DBG(("%s: unknown destination format: %d\n", __FUNCTION__, dst->format)); return TRUE; } dst_pixmap = get_drawable_pixmap(dst->pDrawable); src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL; src_fallback = source_fallback(src, src_pixmap); if (mask) { mask_pixmap = mask->pDrawable ? get_drawable_pixmap(mask->pDrawable) : NULL; mask_fallback = source_fallback(mask, mask_pixmap); } else { mask_pixmap = NULL; mask_fallback = false; } /* If we are using the destination as a source and need to * readback in order to upload the source, do it all * on the cpu. */ if (src_pixmap == dst_pixmap && src_fallback) { DBG(("%s: src is dst and will fallback\n",__FUNCTION__)); return TRUE; } if (mask_pixmap == dst_pixmap && mask_fallback) { DBG(("%s: mask is dst and will fallback\n",__FUNCTION__)); return TRUE; } if (mask && mask->componentAlpha && PICT_FORMAT_RGB(mask->format) && op != PictOpOver) { DBG(("%s: component-alpha mask with op=%d, should fallback\n", __FUNCTION__, op)); return TRUE; } /* If anything is on the GPU, push everything out to the GPU */ priv = sna_pixmap(dst_pixmap); if (priv && priv->gpu_damage && !priv->clear) { DBG(("%s: dst is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } if (src_pixmap && !src_fallback) { DBG(("%s: src is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } if (mask_pixmap && !mask_fallback) { DBG(("%s: mask is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } /* However if the dst is not on the GPU and we need to * render one of the sources using the CPU, we may * as well do the entire operation in place onthe CPU. */ if (src_fallback) { DBG(("%s: dst is on the CPU and src will fallback\n", __FUNCTION__)); return TRUE; } if (mask && mask_fallback) { DBG(("%s: dst is on the CPU and mask will fallback\n", __FUNCTION__)); return TRUE; } DBG(("%s: dst is not on the GPU and the operation should not fallback\n", __FUNCTION__)); return FALSE; } static int reuse_source(struct sna *sna, PicturePtr src, struct sna_composite_channel *sc, int src_x, int src_y, PicturePtr mask, struct sna_composite_channel *mc, int msk_x, int msk_y) { if (src_x != msk_x || src_y != msk_y) return FALSE; if (mask == src) { *mc = *sc; if (mc->bo) kgem_bo_reference(mc->bo); return TRUE; } if ((src->pDrawable == NULL || mask->pDrawable != src->pDrawable)) return FALSE; if (sc->is_solid) return FALSE; DBG(("%s: mask reuses source drawable\n", __FUNCTION__)); if (!sna_transform_equal(src->transform, mask->transform)) return FALSE; if (!sna_picture_alphamap_equal(src, mask)) return FALSE; if (!gen3_check_repeat(mask)) return FALSE; if (!gen3_check_filter(mask)) return FALSE; if (!gen3_check_format(mask)) return FALSE; DBG(("%s: reusing source channel for mask with a twist\n", __FUNCTION__)); *mc = *sc; mc->repeat = gen3_texture_repeat(mask->repeat ? mask->repeatType : RepeatNone); mc->filter = gen3_filter(mask->filter); mc->pict_format = mask->format; gen3_composite_channel_set_format(mc, mask->format); if (mc->bo) kgem_bo_reference(mc->bo); return TRUE; } static Bool gen3_render_composite(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t mask_x, int16_t mask_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, struct sna_composite_op *tmp) { DBG(("%s()\n", __FUNCTION__)); if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } #if NO_COMPOSITE if (mask) return FALSE; return sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp); #endif /* Try to use the BLT engine unless it implies a * 3D -> 2D context switch. */ if (mask == NULL && try_blt(sna, dst, src, width, height) && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp)) return TRUE; if (gen3_composite_fallback(sna, op, src, mask, dst)) return FALSE; if (need_tiling(sna, width, height)) return sna_tiling_composite(op, src, mask, dst, src_x, src_y, mask_x, mask_y, dst_x, dst_y, width, height, tmp); if (!gen3_composite_set_target(sna, tmp, dst)) { DBG(("%s: unable to set render target\n", __FUNCTION__)); return FALSE; } if (mask == NULL && sna->kgem.mode != KGEM_RENDER && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp)) return TRUE; sna_render_reduce_damage(tmp, dst_x, dst_y, width, height); tmp->op = op; tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format); if (too_large(tmp->dst.width, tmp->dst.height) || !gen3_check_pitch_3d(tmp->dst.bo)) { if (!sna_render_composite_redirect(sna, tmp, dst_x, dst_y, width, height)) return FALSE; } tmp->u.gen3.num_constants = 0; tmp->src.u.gen3.type = SHADER_TEXTURE; tmp->src.is_affine = TRUE; DBG(("%s: preparing source\n", __FUNCTION__)); switch (gen3_composite_picture(sna, src, tmp, &tmp->src, src_x, src_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_dst; case 0: tmp->src.u.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->src); break; } DBG(("%s: source type=%d\n", __FUNCTION__, tmp->src.u.gen3.type)); tmp->mask.u.gen3.type = SHADER_NONE; tmp->mask.is_affine = TRUE; tmp->need_magic_ca_pass = FALSE; tmp->has_component_alpha = FALSE; if (mask && tmp->src.u.gen3.type != SHADER_ZERO) { if (!reuse_source(sna, src, &tmp->src, src_x, src_y, mask, &tmp->mask, mask_x, mask_y)) { tmp->mask.u.gen3.type = SHADER_TEXTURE; DBG(("%s: preparing mask\n", __FUNCTION__)); switch (gen3_composite_picture(sna, mask, tmp, &tmp->mask, mask_x, mask_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_src; case 0: tmp->mask.u.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->mask); break; } } DBG(("%s: mask type=%d\n", __FUNCTION__, tmp->mask.u.gen3.type)); if (tmp->mask.u.gen3.type == SHADER_ZERO) { if (tmp->src.bo) { kgem_bo_destroy(&sna->kgem, tmp->src.bo); tmp->src.bo = NULL; } tmp->src.u.gen3.type = SHADER_ZERO; tmp->mask.u.gen3.type = SHADER_NONE; } if (tmp->mask.u.gen3.type != SHADER_NONE) { if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) { /* Check if it's component alpha that relies on a source alpha * and on the source value. We can only get one of those * into the single source value that we get to blend with. */ DBG(("%s: component-alpha mask: %d\n", __FUNCTION__, tmp->mask.u.gen3.type)); tmp->has_component_alpha = TRUE; if (tmp->mask.u.gen3.type == SHADER_WHITE) { tmp->mask.u.gen3.type = SHADER_NONE; tmp->has_component_alpha = FALSE; } else if (gen3_blend_op[op].src_alpha && (gen3_blend_op[op].src_blend != BLENDFACT_ZERO)) { if (op != PictOpOver) goto cleanup_mask; tmp->need_magic_ca_pass = TRUE; tmp->op = PictOpOutReverse; sna->render.vertex_start = sna->render.vertex_index; } } else { if (tmp->mask.is_opaque) { tmp->mask.u.gen3.type = SHADER_NONE; } else if (is_constant_ps(tmp->src.u.gen3.type) && is_constant_ps(tmp->mask.u.gen3.type)) { uint32_t v; v = multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 24); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 16); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 8); v |= multa(tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, 0); DBG(("%s: combining constant source/mask: %x x %x -> %x\n", __FUNCTION__, tmp->src.u.gen3.mode, tmp->mask.u.gen3.mode, v)); tmp->src.u.gen3.type = SHADER_CONSTANT; tmp->src.u.gen3.mode = v; tmp->mask.u.gen3.type = SHADER_NONE; } } } } DBG(("%s: final src/mask type=%d/%d, affine=%d/%d\n", __FUNCTION__, tmp->src.u.gen3.type, tmp->mask.u.gen3.type, tmp->src.is_affine, tmp->mask.is_affine)); tmp->prim_emit = gen3_emit_composite_primitive; if (is_constant_ps(tmp->mask.u.gen3.type)) { switch (tmp->src.u.gen3.type) { case SHADER_NONE: case SHADER_ZERO: case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: tmp->prim_emit = gen3_emit_composite_primitive_constant; break; case SHADER_LINEAR: case SHADER_RADIAL: if (tmp->src.transform == NULL) tmp->prim_emit = gen3_emit_composite_primitive_identity_gradient; else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_gradient; break; case SHADER_TEXTURE: if (tmp->src.transform == NULL) { if ((tmp->src.offset[0]|tmp->src.offset[1]|tmp->dst.x|tmp->dst.y) == 0) tmp->prim_emit = gen3_emit_composite_primitive_identity_source_no_offset; else tmp->prim_emit = gen3_emit_composite_primitive_identity_source; } else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_source; break; } } else if (tmp->mask.u.gen3.type == SHADER_TEXTURE) { if (tmp->mask.transform == NULL) { if (is_constant_ps(tmp->src.u.gen3.type)) { if ((tmp->mask.offset[0]|tmp->mask.offset[1]|tmp->dst.x|tmp->dst.y) == 0) tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask_no_offset; else tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask; } else if (tmp->src.transform == NULL) tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask; else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_source_mask; } } tmp->floats_per_vertex = 2; if (!is_constant_ps(tmp->src.u.gen3.type)) tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4; if (!is_constant_ps(tmp->mask.u.gen3.type)) tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4; DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__, !is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0, !is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0, tmp->floats_per_vertex, tmp->prim_emit != gen3_emit_composite_primitive)); tmp->floats_per_rect = 3 * tmp->floats_per_vertex; tmp->blt = gen3_render_composite_blt; tmp->box = gen3_render_composite_box; tmp->boxes = gen3_render_composite_boxes; tmp->done = gen3_render_composite_done; if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) goto cleanup_mask; } gen3_emit_composite_state(sna, tmp); gen3_align_vertex(sna, tmp); return TRUE; cleanup_mask: if (tmp->mask.bo) kgem_bo_destroy(&sna->kgem, tmp->mask.bo); cleanup_src: if (tmp->src.bo) kgem_bo_destroy(&sna->kgem, tmp->src.bo); cleanup_dst: if (tmp->redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->dst.bo); return FALSE; } static void gen3_emit_composite_spans_vertex(struct sna *sna, const struct sna_composite_spans_op *op, int16_t x, int16_t y, float opacity) { gen3_emit_composite_dstcoord(sna, x + op->base.dst.x, y + op->base.dst.y); gen3_emit_composite_texcoord(sna, &op->base.src, x, y); OUT_VERTEX(opacity); } fastcall static void gen3_emit_composite_spans_primitive_zero(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 6; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = op->base.dst.x + box->x1; v[3] = v[1]; v[4] = v[2]; v[5] = op->base.dst.x + box->y1; } fastcall static void gen3_emit_composite_spans_primitive_zero_no_offset(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 6; v[0] = box->x2; v[3] = v[1] = box->y2; v[4] = v[2] = box->x1; v[5] = box->y1; } fastcall static void gen3_emit_composite_spans_primitive_constant(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; v[0] = op->base.dst.x + box->x2; v[6] = v[3] = op->base.dst.x + box->x1; v[4] = v[1] = op->base.dst.y + box->y2; v[7] = op->base.dst.y + box->y1; v[8] = v[5] = v[2] = opacity; } fastcall static void gen3_emit_composite_spans_primitive_constant_no_offset(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; v[0] = box->x2; v[6] = v[3] = box->x1; v[4] = v[1] = box->y2; v[7] = box->y1; v[8] = v[5] = v[2] = opacity; } fastcall static void gen3_emit_composite_spans_primitive_identity_source(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = (op->base.src.offset[0] + box->x2) * op->base.src.scale[0]; v[3] = (op->base.src.offset[1] + box->y2) * op->base.src.scale[1]; v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; v[7] = (op->base.src.offset[0] + box->x1) * op->base.src.scale[0]; v[8] = v[3]; v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; v[12] = v[7]; v[13] = (op->base.src.offset[1] + box->y1) * op->base.src.scale[1]; v[14] = opacity; } fastcall static void gen3_emit_composite_spans_primitive_affine_source(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { PictTransform *transform = op->base.src.transform; float x, y, *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[6] = v[1] = op->base.dst.y + box->y2; v[10] = v[5] = op->base.dst.x + box->x1; v[11] = op->base.dst.y + box->y1; v[4] = opacity; v[9] = opacity; v[14] = opacity; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2, (int)op->base.src.offset[1] + box->y2, transform, &x, &y); v[2] = x * op->base.src.scale[0]; v[3] = y * op->base.src.scale[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y2, transform, &x, &y); v[7] = x * op->base.src.scale[0]; v[8] = y * op->base.src.scale[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y1, transform, &x, &y); v[12] = x * op->base.src.scale[0]; v[13] = y * op->base.src.scale[1]; } fastcall static void gen3_emit_composite_spans_primitive_identity_gradient(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = op->base.src.offset[0] + box->x2; v[3] = op->base.src.offset[1] + box->y2; v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; v[7] = op->base.src.offset[0] + box->x1; v[8] = v[3]; v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; v[12] = v[7]; v[13] = op->base.src.offset[1] + box->y1; v[14] = opacity; } fastcall static void gen3_emit_composite_spans_primitive_affine_gradient(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { PictTransform *transform = op->base.src.transform; float *v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2, (int)op->base.src.offset[1] + box->y2, transform, &v[2], &v[3]); v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y2, transform, &v[7], &v[8]); v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y1, transform, &v[12], &v[13]); v[14] = opacity; } fastcall static void gen3_emit_composite_spans_primitive(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { gen3_emit_composite_spans_vertex(sna, op, box->x2, box->y2, opacity); gen3_emit_composite_spans_vertex(sna, op, box->x1, box->y2, opacity); gen3_emit_composite_spans_vertex(sna, op, box->x1, box->y1, opacity); } fastcall static void gen3_render_composite_spans_constant_box(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v; DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n", __FUNCTION__, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); gen3_get_rectangles(sna, &op->base, 1); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; v[0] = box->x2; v[6] = v[3] = box->x1; v[4] = v[1] = box->y2; v[7] = box->y1; v[8] = v[5] = v[2] = opacity; } fastcall static void gen3_render_composite_spans_box(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n", __FUNCTION__, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); gen3_get_rectangles(sna, &op->base, 1); op->prim_emit(sna, op, box, opacity); } static void gen3_render_composite_spans_boxes(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, int nbox, float opacity) { DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n", __FUNCTION__, nbox, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y)); do { int nbox_this_time; nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox); nbox -= nbox_this_time; do { DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); op->prim_emit(sna, op, box++, opacity); } while (--nbox_this_time); } while (nbox); } fastcall static void gen3_render_composite_spans_done(struct sna *sna, const struct sna_composite_spans_op *op) { if (sna->render_state.gen3.vertex_offset) gen3_vertex_flush(sna); DBG(("%s()\n", __FUNCTION__)); if (op->base.src.bo) kgem_bo_destroy(&sna->kgem, op->base.src.bo); sna_render_composite_redirect_done(sna, &op->base); } static Bool gen3_render_composite_spans(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, unsigned flags, struct sna_composite_spans_op *tmp) { bool no_offset; DBG(("%s(src=(%d, %d), dst=(%d, %d), size=(%d, %d))\n", __FUNCTION__, src_x, src_y, dst_x, dst_y, width, height)); #if NO_COMPOSITE_SPANS return FALSE; #endif if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } if (gen3_composite_fallback(sna, op, src, NULL, dst)) return FALSE; if (need_tiling(sna, width, height)) { DBG(("%s: fallback, operation (%dx%d) too wide for pipeline\n", __FUNCTION__, width, height)); return FALSE; } if (!gen3_composite_set_target(sna, &tmp->base, dst)) { DBG(("%s: unable to set render target\n", __FUNCTION__)); return FALSE; } sna_render_reduce_damage(&tmp->base, dst_x, dst_y, width, height); tmp->base.op = op; tmp->base.rb_reversed = gen3_dst_rb_reversed(tmp->base.dst.format); if (too_large(tmp->base.dst.width, tmp->base.dst.height) || !gen3_check_pitch_3d(tmp->base.dst.bo)) { if (!sna_render_composite_redirect(sna, &tmp->base, dst_x, dst_y, width, height)) return FALSE; } tmp->base.src.u.gen3.type = SHADER_TEXTURE; tmp->base.src.is_affine = TRUE; DBG(("%s: preparing source\n", __FUNCTION__)); switch (gen3_composite_picture(sna, src, &tmp->base, &tmp->base.src, src_x, src_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_dst; case 0: tmp->base.src.u.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->base.src); break; } DBG(("%s: source type=%d\n", __FUNCTION__, tmp->base.src.u.gen3.type)); if (tmp->base.src.u.gen3.type != SHADER_ZERO) tmp->base.mask.u.gen3.type = SHADER_OPACITY; no_offset = tmp->base.dst.x == 0 && tmp->base.dst.y == 0; tmp->box = gen3_render_composite_spans_box; tmp->boxes = gen3_render_composite_spans_boxes; tmp->done = gen3_render_composite_spans_done; tmp->prim_emit = gen3_emit_composite_spans_primitive; switch (tmp->base.src.u.gen3.type) { case SHADER_NONE: assert(0); case SHADER_ZERO: tmp->prim_emit = no_offset ? gen3_emit_composite_spans_primitive_zero_no_offset : gen3_emit_composite_spans_primitive_zero; break; case SHADER_BLACK: case SHADER_WHITE: case SHADER_CONSTANT: if (no_offset) { tmp->box = gen3_render_composite_spans_constant_box; tmp->prim_emit = gen3_emit_composite_spans_primitive_constant_no_offset; } else tmp->prim_emit = gen3_emit_composite_spans_primitive_constant; break; case SHADER_LINEAR: case SHADER_RADIAL: if (tmp->base.src.transform == NULL) tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_gradient; else if (tmp->base.src.is_affine) tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_gradient; break; case SHADER_TEXTURE: if (tmp->base.src.transform == NULL) tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_source; else if (tmp->base.src.is_affine) tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_source; break; } tmp->base.mask.bo = NULL; tmp->base.floats_per_vertex = 2; if (!is_constant_ps(tmp->base.src.u.gen3.type)) tmp->base.floats_per_vertex += tmp->base.src.is_affine ? 2 : 3; tmp->base.floats_per_vertex += tmp->base.mask.u.gen3.type == SHADER_OPACITY; tmp->base.floats_per_rect = 3 * tmp->base.floats_per_vertex; if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo, tmp->base.src.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo, tmp->base.src.bo, NULL)) goto cleanup_src; } gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; cleanup_src: if (tmp->base.src.bo) kgem_bo_destroy(&sna->kgem, tmp->base.src.bo); cleanup_dst: if (tmp->base.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo); return FALSE; } static void gen3_emit_video_state(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, PixmapPtr pixmap, struct kgem_bo *dst_bo, int width, int height) { struct gen3_render_state *state = &sna->render_state.gen3; uint32_t id, ms3, rewind; gen3_emit_target(sna, dst_bo, width, height, sna_format_for_depth(pixmap->drawable.depth)); /* XXX share with composite? Is it worth the effort? */ if ((state->last_shader & (1<<31)) == 0) { OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(1) | I1_LOAD_S(2) | I1_LOAD_S(6) | 2); OUT_BATCH((4 << S1_VERTEX_WIDTH_SHIFT) | (4 << S1_VERTEX_PITCH_SHIFT)); OUT_BATCH(S2_TEXCOORD_FMT(0, TEXCOORDFMT_2D) | S2_TEXCOORD_FMT(1, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(2, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(3, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(4, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(5, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(6, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(7, TEXCOORDFMT_NOT_PRESENT)); OUT_BATCH((2 << S6_CBUF_SRC_BLEND_FACT_SHIFT) | (1 << S6_CBUF_DST_BLEND_FACT_SHIFT) | S6_COLOR_WRITE_ENABLE); state->last_blend = 0; state->floats_per_vertex = 4; } if (!is_planar_fourcc(frame->id)) { rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | 4); OUT_BATCH(0x0000001); /* constant 0 */ /* constant 0: brightness/contrast */ OUT_BATCH_F(video->brightness / 128.0); OUT_BATCH_F(video->contrast / 255.0); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); if (state->last_constants && memcmp(&sna->kgem.batch[state->last_constants], &sna->kgem.batch[rewind], 6*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_constants = rewind; rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_SAMPLER_STATE | 3); OUT_BATCH(0x00000001); OUT_BATCH(SS2_COLORSPACE_CONVERSION | (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (0 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); if (state->last_sampler && memcmp(&sna->kgem.batch[state->last_sampler], &sna->kgem.batch[rewind], 5*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_sampler = rewind; OUT_BATCH(_3DSTATE_MAP_STATE | 3); OUT_BATCH(0x00000001); /* texture map #1 */ OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, 0)); ms3 = MAPSURF_422; switch (frame->id) { case FOURCC_YUY2: ms3 |= MT_422_YCRCB_NORMAL; break; case FOURCC_UYVY: ms3 |= MT_422_YCRCB_SWAPY; break; } ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); id = 1<<31 | 1<<1 | !!video->brightness; if (state->last_shader != id) { state->last_shader = id; id = sna->kgem.nbatch++; gen3_fs_dcl(FS_S0); gen3_fs_dcl(FS_T0); gen3_fs_texld(FS_OC, FS_S0, FS_T0); if (video->brightness != 0) { gen3_fs_add(FS_OC, gen3_fs_operand_reg(FS_OC), gen3_fs_operand(FS_C0, X, X, X, ZERO)); } sna->kgem.batch[id] = _3DSTATE_PIXEL_SHADER_PROGRAM | (sna->kgem.nbatch - id - 2); } } else { /* For the planar formats, we set up three samplers -- * one for each plane, in a Y8 format. Because I * couldn't get the special PLANAR_TO_PACKED * shader setup to work, I did the manual pixel shader: * * y' = y - .0625 * u' = u - .5 * v' = v - .5; * * r = 1.1643 * y' + 0.0 * u' + 1.5958 * v' * g = 1.1643 * y' - 0.39173 * u' - 0.81290 * v' * b = 1.1643 * y' + 2.017 * u' + 0.0 * v' * * register assignment: * r0 = (y',u',v',0) * r1 = (y,y,y,y) * r2 = (u,u,u,u) * r3 = (v,v,v,v) * OC = (r,g,b,1) */ rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | (22 - 2)); OUT_BATCH(0x000001f); /* constants 0-4 */ /* constant 0: normalization offsets */ OUT_BATCH_F(-0.0625); OUT_BATCH_F(-0.5); OUT_BATCH_F(-0.5); OUT_BATCH_F(0.0); /* constant 1: r coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(0.0); OUT_BATCH_F(1.5958); OUT_BATCH_F(0.0); /* constant 2: g coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(-0.39173); OUT_BATCH_F(-0.81290); OUT_BATCH_F(0.0); /* constant 3: b coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(2.017); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); /* constant 4: brightness/contrast */ OUT_BATCH_F(video->brightness / 128.0); OUT_BATCH_F(video->contrast / 255.0); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); if (state->last_constants && memcmp(&sna->kgem.batch[state->last_constants], &sna->kgem.batch[rewind], 22*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_constants = rewind; rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_SAMPLER_STATE | 9); OUT_BATCH(0x00000007); /* sampler 0 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (0 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); /* sampler 1 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (1 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); /* sampler 2 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (2 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); if (state->last_sampler && memcmp(&sna->kgem.batch[state->last_sampler], &sna->kgem.batch[rewind], 11*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_sampler = rewind; OUT_BATCH(_3DSTATE_MAP_STATE | 9); OUT_BATCH(0x00000007); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, 0)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); /* check to see if Y has special pitch than normal * double u/v pitch, e.g i915 XvMC hw requires at * least 1K alignment, so Y pitch might * be same as U/V's.*/ if (frame->pitch[1]) OUT_BATCH(((frame->pitch[1] / 4) - 1) << MS4_PITCH_SHIFT); else OUT_BATCH(((frame->pitch[0] * 2 / 4) - 1) << MS4_PITCH_SHIFT); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->UBufOffset)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->VBufOffset)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); id = 1<<31 | 2<<1 | !!video->brightness; if (state->last_shader != id) { state->last_shader = id; id = sna->kgem.nbatch++; /* Declare samplers */ gen3_fs_dcl(FS_S0); /* Y */ gen3_fs_dcl(FS_S1); /* U */ gen3_fs_dcl(FS_S2); /* V */ gen3_fs_dcl(FS_T0); /* normalized coords */ /* Load samplers to temporaries. */ gen3_fs_texld(FS_R1, FS_S0, FS_T0); gen3_fs_texld(FS_R2, FS_S1, FS_T0); gen3_fs_texld(FS_R3, FS_S2, FS_T0); /* Move the sampled YUV data in R[123] to the first * 3 channels of R0. */ gen3_fs_mov_masked(FS_R0, MASK_X, gen3_fs_operand_reg(FS_R1)); gen3_fs_mov_masked(FS_R0, MASK_Y, gen3_fs_operand_reg(FS_R2)); gen3_fs_mov_masked(FS_R0, MASK_Z, gen3_fs_operand_reg(FS_R3)); /* Normalize the YUV data */ gen3_fs_add(FS_R0, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C0)); /* dot-product the YUV data in R0 by the vectors of * coefficients for calculating R, G, and B, storing * the results in the R, G, or B channels of the output * color. The OC results are implicitly clamped * at the end of the program. */ gen3_fs_dp3(FS_OC, MASK_X, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C1)); gen3_fs_dp3(FS_OC, MASK_Y, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C2)); gen3_fs_dp3(FS_OC, MASK_Z, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C3)); /* Set alpha of the output to 1.0, by wiring W to 1 * and not actually using the source. */ gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one()); if (video->brightness != 0) { gen3_fs_add(FS_OC, gen3_fs_operand_reg(FS_OC), gen3_fs_operand(FS_C4, X, X, X, ZERO)); } sna->kgem.batch[id] = _3DSTATE_PIXEL_SHADER_PROGRAM | (sna->kgem.nbatch - id - 2); } } } static void gen3_video_get_batch(struct sna *sna) { kgem_set_mode(&sna->kgem, KGEM_RENDER); if (!kgem_check_batch(&sna->kgem, 120) || !kgem_check_reloc(&sna->kgem, 4) || !kgem_check_exec(&sna->kgem, 2)) { _kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->render_state.gen3.need_invariant) gen3_emit_invariant(sna); } static int gen3_get_inline_rectangles(struct sna *sna, int want, int floats_per_vertex) { int size = floats_per_vertex * 3; int rem = batch_space(sna) - 1; if (size * want > rem) want = rem / size; return want; } static Bool gen3_render_video(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, RegionPtr dstRegion, short src_w, short src_h, short drw_w, short drw_h, PixmapPtr pixmap) { struct sna_pixmap *priv = sna_pixmap(pixmap); BoxPtr pbox = REGION_RECTS(dstRegion); int nbox = REGION_NUM_RECTS(dstRegion); int dxo = dstRegion->extents.x1; int dyo = dstRegion->extents.y1; int width = dstRegion->extents.x2 - dxo; int height = dstRegion->extents.y2 - dyo; float src_scale_x, src_scale_y; int pix_xoff, pix_yoff; struct kgem_bo *dst_bo; int copy = 0; DBG(("%s: %dx%d -> %dx%d\n", __FUNCTION__, src_w, src_h, drw_w, drw_h)); dst_bo = priv->gpu_bo; if (dst_bo == NULL) return FALSE; if (too_large(pixmap->drawable.width, pixmap->drawable.height) || !gen3_check_pitch_3d(dst_bo)) { int bpp = pixmap->drawable.bitsPerPixel; dst_bo = kgem_create_2d(&sna->kgem, width, height, bpp, kgem_choose_tiling(&sna->kgem, I915_TILING_X, width, height, bpp), 0); if (!dst_bo) return FALSE; pix_xoff = -dxo; pix_yoff = -dyo; copy = 1; } else { width = pixmap->drawable.width; height = pixmap->drawable.height; /* Set up the offset for translating from the given region * (in screen coordinates) to the backing pixmap. */ #ifdef COMPOSITE pix_xoff = -pixmap->screen_x + pixmap->drawable.x; pix_yoff = -pixmap->screen_y + pixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif } src_scale_x = ((float)src_w / frame->width) / drw_w; src_scale_y = ((float)src_h / frame->height) / drw_h; DBG(("%s: src offset=(%d, %d), scale=(%f, %f), dst offset=(%d, %d)\n", __FUNCTION__, dxo, dyo, src_scale_x, src_scale_y, pix_xoff, pix_yoff)); gen3_video_get_batch(sna); gen3_emit_video_state(sna, video, frame, pixmap, dst_bo, width, height); do { int nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4); if (nbox_this_time == 0) { gen3_video_get_batch(sna); gen3_emit_video_state(sna, video, frame, pixmap, dst_bo, width, height); nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4); } nbox -= nbox_this_time; OUT_BATCH(PRIM3D_RECTLIST | (12 * nbox_this_time - 1)); while (nbox_this_time--) { int box_x1 = pbox->x1; int box_y1 = pbox->y1; int box_x2 = pbox->x2; int box_y2 = pbox->y2; pbox++; DBG(("%s: box (%d, %d), (%d, %d)\n", __FUNCTION__, box_x1, box_y1, box_x2, box_y2)); /* bottom right */ OUT_BATCH_F(box_x2 + pix_xoff); OUT_BATCH_F(box_y2 + pix_yoff); OUT_BATCH_F((box_x2 - dxo) * src_scale_x); OUT_BATCH_F((box_y2 - dyo) * src_scale_y); /* bottom left */ OUT_BATCH_F(box_x1 + pix_xoff); OUT_BATCH_F(box_y2 + pix_yoff); OUT_BATCH_F((box_x1 - dxo) * src_scale_x); OUT_BATCH_F((box_y2 - dyo) * src_scale_y); /* top left */ OUT_BATCH_F(box_x1 + pix_xoff); OUT_BATCH_F(box_y1 + pix_yoff); OUT_BATCH_F((box_x1 - dxo) * src_scale_x); OUT_BATCH_F((box_y1 - dyo) * src_scale_y); } } while (nbox); if (copy) { #ifdef COMPOSITE pix_xoff = -pixmap->screen_x + pixmap->drawable.x; pix_yoff = -pixmap->screen_y + pixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif sna_blt_copy_boxes(sna, GXcopy, dst_bo, -dxo, -dyo, priv->gpu_bo, pix_xoff, pix_yoff, pixmap->drawable.bitsPerPixel, REGION_RECTS(dstRegion), REGION_NUM_RECTS(dstRegion)); kgem_bo_destroy(&sna->kgem, dst_bo); } if (!DAMAGE_IS_ALL(priv->gpu_damage)) { if ((pix_xoff | pix_yoff) == 0) { sna_damage_add(&priv->gpu_damage, dstRegion); sna_damage_subtract(&priv->cpu_damage, dstRegion); } else { sna_damage_add_boxes(&priv->gpu_damage, REGION_RECTS(dstRegion), REGION_NUM_RECTS(dstRegion), pix_xoff, pix_yoff); sna_damage_subtract_boxes(&priv->cpu_damage, REGION_RECTS(dstRegion), REGION_NUM_RECTS(dstRegion), pix_xoff, pix_yoff); } } priv->clear = false; return TRUE; } static void gen3_render_copy_setup_source(struct sna_composite_channel *channel, PixmapPtr pixmap, struct kgem_bo *bo) { channel->u.gen3.type = SHADER_TEXTURE; channel->filter = gen3_filter(PictFilterNearest); channel->repeat = gen3_texture_repeat(RepeatNone); channel->width = pixmap->drawable.width; channel->height = pixmap->drawable.height; channel->scale[0] = 1.f/pixmap->drawable.width; channel->scale[1] = 1.f/pixmap->drawable.height; channel->offset[0] = 0; channel->offset[1] = 0; gen3_composite_channel_set_format(channel, sna_format_for_depth(pixmap->drawable.depth)); channel->bo = bo; channel->is_affine = 1; } static Bool gen3_render_copy_boxes(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy, PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const BoxRec *box, int n) { struct sna_composite_op tmp; #if NO_COPY_BOXES if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n); #endif DBG(("%s (%d, %d)->(%d, %d) x %d\n", __FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n)); if (sna_blt_compare_depth(&src->drawable, &dst->drawable) && sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n)) return TRUE; if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo || /* XXX handle overlap using 3D ? */ src_bo->pitch > MAX_3D_PITCH || too_large(src->drawable.width, src->drawable.height)) { fallback_blt: if (!kgem_bo_can_blt(&sna->kgem, src_bo) || !kgem_bo_can_blt(&sna->kgem, dst_bo)) return FALSE; return sna_blt_copy_boxes_fallback(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) goto fallback_blt; } memset(&tmp, 0, sizeof(tmp)); tmp.op = alu == GXcopy ? PictOpSrc : PictOpClear; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = dst_bo; tmp.dst.x = tmp.dst.y = 0; tmp.damage = NULL; sna_render_composite_redirect_init(&tmp); if (too_large(tmp.dst.width, tmp.dst.height) || dst_bo->pitch > MAX_3D_PITCH) { BoxRec extents = box[0]; int i; for (i = 1; i < n; i++) { if (extents.x1 < box[i].x1) extents.x1 = box[i].x1; if (extents.y1 < box[i].y1) extents.y1 = box[i].y1; if (extents.x2 > box[i].x2) extents.x2 = box[i].x2; if (extents.y2 > box[i].y2) extents.y2 = box[i].y2; } if (!sna_render_composite_redirect(sna, &tmp, extents.x1 + dst_dx, extents.y1 + dst_dy, extents.x2 - extents.x1, extents.y2 - extents.y1)) goto fallback_tiled; } gen3_render_copy_setup_source(&tmp.src, src, src_bo); tmp.floats_per_vertex = 4; tmp.floats_per_rect = 12; tmp.mask.bo = NULL; tmp.mask.u.gen3.type = SHADER_NONE; dst_dx += tmp.dst.x; dst_dy += tmp.dst.y; tmp.dst.x = tmp.dst.y = 0; gen3_emit_composite_state(sna, &tmp); gen3_align_vertex(sna, &tmp); do { int n_this_time; n_this_time = gen3_get_rectangles(sna, &tmp, n); n -= n_this_time; do { DBG((" (%d, %d) -> (%d, %d) + (%d, %d)\n", box->x1 + src_dx, box->y1 + src_dy, box->x1 + dst_dx, box->y1 + dst_dy, box->x2 - box->x1, box->y2 - box->y1)); OUT_VERTEX(box->x2 + dst_dx); OUT_VERTEX(box->y2 + dst_dy); OUT_VERTEX((box->x2 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]); OUT_VERTEX(box->x1 + dst_dx); OUT_VERTEX(box->y2 + dst_dy); OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]); OUT_VERTEX(box->x1 + dst_dx); OUT_VERTEX(box->y1 + dst_dy); OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y1 + src_dy) * tmp.src.scale[1]); box++; } while (--n_this_time); } while (n); gen3_vertex_flush(sna); sna_render_composite_redirect_done(sna, &tmp); return TRUE; fallback_tiled: return sna_tiling_copy_boxes(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } static void gen3_render_copy_blt(struct sna *sna, const struct sna_copy_op *op, int16_t sx, int16_t sy, int16_t w, int16_t h, int16_t dx, int16_t dy) { gen3_get_rectangles(sna, &op->base, 1); OUT_VERTEX(dx+w); OUT_VERTEX(dy+h); OUT_VERTEX((sx+w)*op->base.src.scale[0]); OUT_VERTEX((sy+h)*op->base.src.scale[1]); OUT_VERTEX(dx); OUT_VERTEX(dy+h); OUT_VERTEX(sx*op->base.src.scale[0]); OUT_VERTEX((sy+h)*op->base.src.scale[1]); OUT_VERTEX(dx); OUT_VERTEX(dy); OUT_VERTEX(sx*op->base.src.scale[0]); OUT_VERTEX(sy*op->base.src.scale[1]); } static void gen3_render_copy_done(struct sna *sna, const struct sna_copy_op *op) { if (sna->render_state.gen3.vertex_offset) gen3_vertex_flush(sna); } static Bool gen3_render_copy(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr dst, struct kgem_bo *dst_bo, struct sna_copy_op *tmp) { #if NO_COPY if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, tmp); #endif /* Prefer to use the BLT */ if (sna->kgem.mode != KGEM_RENDER && sna_blt_compare_depth(&src->drawable, &dst->drawable) && sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, tmp)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || too_large(src->drawable.width, src->drawable.height) || too_large(dst->drawable.width, dst->drawable.height) || src_bo->pitch > MAX_3D_PITCH || dst_bo->pitch > MAX_3D_PITCH) { fallback: if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, tmp); } tmp->base.op = alu == GXcopy ? PictOpSrc : PictOpClear; tmp->base.dst.pixmap = dst; tmp->base.dst.width = dst->drawable.width; tmp->base.dst.height = dst->drawable.height; tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth); tmp->base.dst.bo = dst_bo; gen3_render_copy_setup_source(&tmp->base.src, src, src_bo); tmp->base.floats_per_vertex = 4; tmp->base.floats_per_rect = 12; tmp->base.mask.bo = NULL; tmp->base.mask.u.gen3.type = SHADER_NONE; if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) goto fallback; } tmp->blt = gen3_render_copy_blt; tmp->done = gen3_render_copy_done; gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; } static Bool gen3_render_fill_boxes_try_blt(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, PixmapPtr dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { uint8_t alu; uint32_t pixel; if (dst_bo->tiling == I915_TILING_Y) { DBG(("%s: y-tiling, can't blit\n", __FUNCTION__)); assert(!too_large(dst->drawable.width, dst->drawable.height)); return FALSE; } if (op > PictOpSrc) return FALSE; if (op == PictOpClear) { alu = GXclear; pixel = 0; } else if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, format)) return FALSE; else alu = GXcopy; return sna_blt_fill_boxes(sna, alu, dst_bo, dst->drawable.bitsPerPixel, pixel, box, n); } static inline Bool prefer_fill_blt(struct sna *sna) { #if PREFER_BLT_FILL return true; #else return sna->kgem.mode != KGEM_RENDER; #endif } static Bool gen3_render_fill_boxes(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, PixmapPtr dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { struct sna_composite_op tmp; uint32_t pixel; if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } #if NO_FILL_BOXES return gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n); #endif DBG(("%s (op=%d, format=%x, color=(%04x,%04x,%04x, %04x))\n", __FUNCTION__, op, (int)format, color->red, color->green, color->blue, color->alpha)); if (too_large(dst->drawable.width, dst->drawable.height) || dst_bo->pitch > MAX_3D_PITCH || !gen3_check_dst_format(format)) { DBG(("%s: try blt, too large or incompatible destination\n", __FUNCTION__)); if (gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n)) return TRUE; if (!gen3_check_dst_format(format)) return FALSE; return sna_tiling_fill_boxes(sna, op, format, color, dst, dst_bo, box, n); } if (prefer_fill_blt(sna) && gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n)) return TRUE; if (op == PictOpClear) { pixel = 0; } else { if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, PICT_a8r8g8b8)) { assert(0); return FALSE; } } DBG(("%s: using shader for op=%d, format=%x, pixel=%x\n", __FUNCTION__, op, (int)format, pixel)); tmp.op = op; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = format; tmp.dst.bo = dst_bo; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.rb_reversed = 0; tmp.has_component_alpha = 0; tmp.need_magic_ca_pass = false; gen3_init_solid(&tmp.src, pixel); tmp.mask.bo = NULL; tmp.mask.u.gen3.type = SHADER_NONE; tmp.u.gen3.num_constants = 0; if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, dst_bo, NULL)); } gen3_emit_composite_state(sna, &tmp); gen3_align_vertex(sna, &tmp); do { int n_this_time; n_this_time = gen3_get_rectangles(sna, &tmp, n); n -= n_this_time; do { DBG((" (%d, %d), (%d, %d): %x\n", box->x1, box->y1, box->x2, box->y2, pixel)); OUT_VERTEX(box->x2); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y1); box++; } while (--n_this_time); } while (n); gen3_vertex_flush(sna); return TRUE; } static void gen3_render_fill_op_blt(struct sna *sna, const struct sna_fill_op *op, int16_t x, int16_t y, int16_t w, int16_t h) { gen3_get_rectangles(sna, &op->base, 1); OUT_VERTEX(x+w); OUT_VERTEX(y+h); OUT_VERTEX(x); OUT_VERTEX(y+h); OUT_VERTEX(x); OUT_VERTEX(y); } fastcall static void gen3_render_fill_op_box(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box) { gen3_get_rectangles(sna, &op->base, 1); OUT_VERTEX(box->x2); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y1); } fastcall static void gen3_render_fill_op_boxes(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box, int nbox) { DBG(("%s: (%d, %d),(%d, %d)... x %d\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2, nbox)); do { int nbox_this_time; nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox); nbox -= nbox_this_time; do { OUT_VERTEX(box->x2); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y1); box++; } while (--nbox_this_time); } while (nbox); } static void gen3_render_fill_op_done(struct sna *sna, const struct sna_fill_op *op) { if (sna->render_state.gen3.vertex_offset) gen3_vertex_flush(sna); } static Bool gen3_render_fill(struct sna *sna, uint8_t alu, PixmapPtr dst, struct kgem_bo *dst_bo, uint32_t color, struct sna_fill_op *tmp) { #if NO_FILL return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, tmp); #endif /* Prefer to use the BLT if already engaged */ if (prefer_fill_blt(sna) && sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, tmp)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height) || dst_bo->pitch > MAX_3D_PITCH) return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, tmp); if (alu == GXclear) color = 0; tmp->base.op = color == 0 ? PictOpClear : PictOpSrc; tmp->base.dst.pixmap = dst; tmp->base.dst.width = dst->drawable.width; tmp->base.dst.height = dst->drawable.height; tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth); tmp->base.dst.bo = dst_bo; tmp->base.floats_per_vertex = 2; tmp->base.floats_per_rect = 6; tmp->base.need_magic_ca_pass = 0; tmp->base.has_component_alpha = 0; tmp->base.rb_reversed = 0; gen3_init_solid(&tmp->base.src, sna_rgba_for_color(color, dst->drawable.depth)); tmp->base.mask.bo = NULL; tmp->base.mask.u.gen3.type = SHADER_NONE; tmp->base.u.gen3.num_constants = 0; if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, dst_bo, NULL)); } tmp->blt = gen3_render_fill_op_blt; tmp->box = gen3_render_fill_op_box; tmp->boxes = gen3_render_fill_op_boxes; tmp->done = gen3_render_fill_op_done; gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; } static Bool gen3_render_fill_one_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { BoxRec box; box.x1 = x1; box.y1 = y1; box.x2 = x2; box.y2 = y2; return sna_blt_fill_boxes(sna, alu, bo, dst->drawable.bitsPerPixel, color, &box, 1); } static Bool gen3_render_fill_one(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { struct sna_composite_op tmp; #if NO_FILL_ONE return gen3_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu); #endif /* Prefer to use the BLT if already engaged */ if (prefer_fill_blt(sna) && gen3_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height) || bo->pitch > MAX_3D_PITCH) return gen3_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu); if (alu == GXclear) color = 0; tmp.op = color == 0 ? PictOpClear : PictOpSrc; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = bo; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.need_magic_ca_pass = 0; tmp.has_component_alpha = 0; tmp.rb_reversed = 0; gen3_init_solid(&tmp.src, sna_rgba_for_color(color, dst->drawable.depth)); tmp.mask.bo = NULL; tmp.mask.u.gen3.type = SHADER_NONE; tmp.u.gen3.num_constants = 0; if (!kgem_check_bo(&sna->kgem, bo, NULL)) { kgem_submit(&sna->kgem); if (gen3_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu)) return TRUE; } gen3_emit_composite_state(sna, &tmp); gen3_align_vertex(sna, &tmp); gen3_get_rectangles(sna, &tmp, 1); DBG((" (%d, %d), (%d, %d): %x\n", x1, y1, x2, y2, color)); OUT_VERTEX(x2); OUT_VERTEX(y2); OUT_VERTEX(x1); OUT_VERTEX(y2); OUT_VERTEX(x1); OUT_VERTEX(y1); gen3_vertex_flush(sna); return TRUE; } static void gen3_render_flush(struct sna *sna) { gen3_vertex_close(sna); } static void gen3_render_fini(struct sna *sna) { } Bool gen3_render_init(struct sna *sna) { struct sna_render *render = &sna->render; render->composite = gen3_render_composite; render->composite_spans = gen3_render_composite_spans; render->video = gen3_render_video; render->copy_boxes = gen3_render_copy_boxes; render->copy = gen3_render_copy; render->fill_boxes = gen3_render_fill_boxes; render->fill = gen3_render_fill; render->fill_one = gen3_render_fill_one; render->reset = gen3_render_reset; render->flush = gen3_render_flush; render->fini = gen3_render_fini; render->max_3d_size = MAX_3D_SIZE; render->max_3d_pitch = MAX_3D_PITCH; sna->kgem.retire = gen3_render_retire; return TRUE; }