/* * Copyright © 2010-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_render.h" #include "sna_render_inline.h" #include "sna_reg.h" #include "sna_video.h" #include "gen3_render.h" #if DEBUG_RENDER #undef DBG #define DBG(x) ErrorF x #else #define NDEBUG 1 #endif #define NO_COMPOSITE 0 #define NO_COMPOSITE_SPANS 0 #define NO_COPY 0 #define NO_COPY_BOXES 0 #define NO_FILL 0 #define NO_FILL_BOXES 0 enum { SHADER_NONE = 0, SHADER_ZERO, SHADER_CONSTANT, SHADER_LINEAR, SHADER_RADIAL, SHADER_TEXTURE, SHADER_OPACITY, }; #define OUT_BATCH(v) batch_emit(sna, v) #define OUT_BATCH_F(v) batch_emit_float(sna, v) #define OUT_VERTEX(v) vertex_emit(sna, v) enum gen3_radial_mode { RADIAL_ONE, RADIAL_TWO }; static const struct blendinfo { Bool dst_alpha; Bool src_alpha; uint32_t src_blend; uint32_t dst_blend; } gen3_blend_op[] = { /* Clear */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ZERO}, /* Src */ {0, 0, BLENDFACT_ONE, BLENDFACT_ZERO}, /* Dst */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ONE}, /* Over */ {0, 1, BLENDFACT_ONE, BLENDFACT_INV_SRC_ALPHA}, /* OverReverse */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ONE}, /* In */ {1, 0, BLENDFACT_DST_ALPHA, BLENDFACT_ZERO}, /* InReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_SRC_ALPHA}, /* Out */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ZERO}, /* OutReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_INV_SRC_ALPHA}, /* Atop */ {1, 1, BLENDFACT_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* AtopReverse */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_SRC_ALPHA}, /* Xor */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA}, /* Add */ {0, 0, BLENDFACT_ONE, BLENDFACT_ONE}, }; static const struct formatinfo { int fmt, xfmt; uint32_t card_fmt; Bool rb_reversed; } gen3_tex_formats[] = { {PICT_a8, 0, MAPSURF_8BIT | MT_8BIT_A8, FALSE}, {PICT_a8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_ARGB8888, FALSE}, {PICT_x8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_XRGB8888, FALSE}, {PICT_a8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_ABGR8888, FALSE}, {PICT_x8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_XBGR8888, FALSE}, {PICT_a2r10g10b10, PICT_x2r10g10b10, MAPSURF_32BIT | MT_32BIT_ARGB2101010, FALSE}, {PICT_a2b10g10r10, PICT_x2b10g10r10, MAPSURF_32BIT | MT_32BIT_ABGR2101010, FALSE}, {PICT_r5g6b5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, FALSE}, {PICT_b5g6r5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, TRUE}, {PICT_a1r5g5b5, PICT_x1r5g5b5, MAPSURF_16BIT | MT_16BIT_ARGB1555, FALSE}, {PICT_a1b5g5r5, PICT_x1b5g5r5, MAPSURF_16BIT | MT_16BIT_ARGB1555, TRUE}, {PICT_a4r4g4b4, PICT_x4r4g4b4, MAPSURF_16BIT | MT_16BIT_ARGB4444, FALSE}, {PICT_a4b4g4r4, PICT_x4b4g4r4, MAPSURF_16BIT | MT_16BIT_ARGB4444, TRUE}, }; #define xFixedToDouble(f) pixman_fixed_to_double(f) static inline uint32_t gen3_buf_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y; case I915_TILING_X: v |= BUF_3D_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static inline Bool gen3_check_pitch_3d(struct kgem_bo *bo) { return bo->pitch <= 8192; } static uint32_t gen3_get_blend_cntl(int op, Bool has_component_alpha, uint32_t dst_format) { uint32_t sblend = gen3_blend_op[op].src_blend; uint32_t dblend = gen3_blend_op[op].dst_blend; /* If there's no dst alpha channel, adjust the blend op so that we'll * treat it as always 1. */ if (gen3_blend_op[op].dst_alpha) { if (PICT_FORMAT_A(dst_format) == 0) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_ONE; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_ZERO; } /* gen3 engine reads 8bit color buffer into green channel * in cases like color buffer blending etc., and also writes * back green channel. So with dst_alpha blend we should use * color factor. See spec on "8-bit rendering". */ if (dst_format == PICT_a8) { if (sblend == BLENDFACT_DST_ALPHA) sblend = BLENDFACT_DST_COLR; else if (sblend == BLENDFACT_INV_DST_ALPHA) sblend = BLENDFACT_INV_DST_COLR; } } /* If the source alpha is being used, then we should only be in a case * where the source blend factor is 0, and the source blend value is the * mask channels multiplied by the source picture's alpha. */ if (has_component_alpha && gen3_blend_op[op].src_alpha) { if (dblend == BLENDFACT_SRC_ALPHA) dblend = BLENDFACT_SRC_COLR; else if (dblend == BLENDFACT_INV_SRC_ALPHA) dblend = BLENDFACT_INV_SRC_COLR; } return (S6_CBUF_BLEND_ENABLE | S6_COLOR_WRITE_ENABLE | BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | sblend << S6_CBUF_SRC_BLEND_FACT_SHIFT | dblend << S6_CBUF_DST_BLEND_FACT_SHIFT); } static Bool gen3_check_dst_format(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_r5g6b5: case PICT_b5g6r5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return TRUE; default: return FALSE; } } static Bool gen3_dst_rb_reversed(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_r5g6b5: case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: return FALSE; default: return TRUE; } } #define DSTORG_HORT_BIAS(x) ((x)<<20) #define DSTORG_VERT_BIAS(x) ((x)<<16) static uint32_t gen3_get_dst_format(uint32_t format) { #define BIAS (DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8)) switch (format) { default: case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: return BIAS | COLR_BUF_ARGB8888; case PICT_r5g6b5: case PICT_b5g6r5: return BIAS | COLR_BUF_RGB565; case PICT_a1r5g5b5: case PICT_x1r5g5b5: case PICT_a1b5g5r5: case PICT_x1b5g5r5: return BIAS | COLR_BUF_ARGB1555; case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_a2b10g10r10: case PICT_x2b10g10r10: return BIAS | COLR_BUF_ARGB2AAA; case PICT_a8: return BIAS | COLR_BUF_8BIT; case PICT_a4r4g4b4: case PICT_x4r4g4b4: case PICT_a4b4g4r4: case PICT_x4b4g4r4: return BIAS | COLR_BUF_ARGB4444; } #undef BIAS } static uint32_t gen3_texture_repeat(uint32_t repeat) { #define REPEAT(x) \ (SS3_NORMALIZED_COORDS | \ TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \ TEXCOORDMODE_##x << SS3_TCY_ADDR_MODE_SHIFT) switch (repeat) { default: case RepeatNone: return REPEAT(CLAMP_BORDER); case RepeatNormal: return REPEAT(WRAP); case RepeatPad: return REPEAT(CLAMP_EDGE); case RepeatReflect: return REPEAT(MIRROR); } #undef REPEAT } static uint32_t gen3_gradient_repeat(uint32_t repeat) { #define REPEAT(x) \ (SS3_NORMALIZED_COORDS | \ TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \ TEXCOORDMODE_WRAP << SS3_TCY_ADDR_MODE_SHIFT) switch (repeat) { default: case RepeatNone: return REPEAT(CLAMP_BORDER); case RepeatNormal: return REPEAT(WRAP); case RepeatPad: return REPEAT(CLAMP_EDGE); case RepeatReflect: return REPEAT(MIRROR); } #undef REPEAT } static Bool gen3_check_repeat(uint32_t repeat) { switch (repeat) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: return TRUE; default: return FALSE; } } static uint32_t gen3_filter(uint32_t filter) { switch (filter) { default: assert(0); case PictFilterNearest: return (FILTER_NEAREST << SS2_MAG_FILTER_SHIFT | FILTER_NEAREST << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); case PictFilterBilinear: return (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT | FILTER_LINEAR << SS2_MIN_FILTER_SHIFT | MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT); } } static bool gen3_check_filter(uint32_t filter) { switch (filter) { case PictFilterNearest: case PictFilterBilinear: return TRUE; default: return FALSE; } } static inline void gen3_emit_composite_dstcoord(struct sna *sna, int16_t dstX, int16_t dstY) { OUT_VERTEX(dstX); OUT_VERTEX(dstY); } fastcall static void gen3_emit_composite_primitive_constant(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t dst_x = r->dst.x + op->dst.x; int16_t dst_y = r->dst.y + op->dst.y; gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); } fastcall static void gen3_emit_composite_primitive_identity_gradient(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t dst_x, dst_y; int16_t src_x, src_y; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(src_x + r->width); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(src_x); OUT_VERTEX(src_y + r->height); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(src_x); OUT_VERTEX(src_y); } fastcall static void gen3_emit_composite_primitive_affine_gradient(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { PictTransform *transform = op->src.transform; int16_t dst_x, dst_y; int16_t src_x, src_y; float sx, sy; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(sx); OUT_VERTEX(sy); sna_get_transformed_coordinates(src_x, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(sx); OUT_VERTEX(sy); sna_get_transformed_coordinates(src_x, src_y, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(sx); OUT_VERTEX(sy); } fastcall static void gen3_emit_composite_primitive_identity_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->src.x + op->src.offset[0]) * op->src.scale[0]; v[2] = v[6] + w * op->src.scale[0]; v[11] = (r->src.y + op->src.offset[1]) * op->src.scale[1]; v[7] = v[3] = v[11] + h * op->src.scale[1]; } fastcall static void gen3_emit_composite_primitive_affine_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { PictTransform *transform = op->src.transform; int16_t dst_x = r->dst.x + op->dst.x; int16_t dst_y = r->dst.y + op->dst.y; int src_x = r->src.x + (int)op->src.offset[0]; int src_y = r->src.y + (int)op->src.offset[1]; float sx, sy; _sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); _sna_get_transformed_coordinates(src_x, src_y + r->height, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); _sna_get_transformed_coordinates(src_x, src_y, transform, &sx, &sy); gen3_emit_composite_dstcoord(sna, dst_x, dst_y); OUT_VERTEX(sx * op->src.scale[0]); OUT_VERTEX(sy * op->src.scale[1]); } fastcall static void gen3_emit_composite_primitive_constant_identity_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float w = r->width; float h = r->height; float *v; v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 12; v[8] = v[4] = r->dst.x + op->dst.x; v[0] = v[4] + w; v[9] = r->dst.y + op->dst.y; v[5] = v[1] = v[9] + h; v[10] = v[6] = (r->mask.x + op->mask.offset[0]) * op->mask.scale[0]; v[2] = v[6] + w * op->mask.scale[0]; v[11] = (r->mask.y + op->mask.offset[1]) * op->mask.scale[1]; v[7] = v[3] = v[11] + h * op->mask.scale[1]; } fastcall static void gen3_emit_composite_primitive_identity_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float dst_x, dst_y; float src_x, src_y; float msk_x, msk_y; float w, h; float *v; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 18; v[0] = dst_x + w; v[1] = dst_y + h; v[2] = (src_x + w) * op->src.scale[0]; v[3] = (src_y + h) * op->src.scale[1]; v[4] = (msk_x + w) * op->mask.scale[0]; v[5] = (msk_y + h) * op->mask.scale[1]; v[6] = dst_x; v[7] = v[1]; v[8] = src_x * op->src.scale[0]; v[9] = v[3]; v[10] = msk_x * op->mask.scale[0]; v[11] =v[5]; v[12] = v[6]; v[13] = dst_y; v[14] = v[8]; v[15] = src_y * op->src.scale[1]; v[16] = v[10]; v[17] = msk_y * op->mask.scale[1]; } fastcall static void gen3_emit_composite_primitive_affine_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { int16_t src_x, src_y; float dst_x, dst_y; float msk_x, msk_y; float w, h; float *v; dst_x = r->dst.x + op->dst.x; dst_y = r->dst.y + op->dst.y; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 18; v[0] = dst_x + w; v[1] = dst_y + h; sna_get_transformed_coordinates(src_x + r->width, src_y + r->height, op->src.transform, &v[2], &v[3]); v[2] *= op->src.scale[0]; v[3] *= op->src.scale[1]; v[4] = (msk_x + w) * op->mask.scale[0]; v[5] = (msk_y + h) * op->mask.scale[1]; v[6] = dst_x; v[7] = v[1]; sna_get_transformed_coordinates(src_x, src_y + r->height, op->src.transform, &v[8], &v[9]); v[8] *= op->src.scale[0]; v[9] *= op->src.scale[1]; v[10] = msk_x * op->mask.scale[0]; v[11] =v[5]; v[12] = v[6]; v[13] = dst_y; sna_get_transformed_coordinates(src_x, src_y, op->src.transform, &v[14], &v[15]); v[14] *= op->src.scale[0]; v[15] *= op->src.scale[1]; v[16] = v[10]; v[17] = msk_y * op->mask.scale[1]; } static void gen3_emit_composite_texcoord(struct sna *sna, const struct sna_composite_channel *channel, int16_t x, int16_t y) { float s = 0, t = 0, w = 1; switch (channel->gen3.type) { case SHADER_OPACITY: case SHADER_NONE: case SHADER_ZERO: case SHADER_CONSTANT: break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: x += channel->offset[0]; y += channel->offset[1]; if (channel->is_affine) { sna_get_transformed_coordinates(x, y, channel->transform, &s, &t); OUT_VERTEX(s * channel->scale[0]); OUT_VERTEX(t * channel->scale[1]); } else { sna_get_transformed_coordinates_3d(x, y, channel->transform, &s, &t, &w); OUT_VERTEX(s * channel->scale[0]); OUT_VERTEX(t * channel->scale[1]); OUT_VERTEX(0); OUT_VERTEX(w); } break; } } static void gen3_emit_composite_vertex(struct sna *sna, const struct sna_composite_op *op, int16_t srcX, int16_t srcY, int16_t maskX, int16_t maskY, int16_t dstX, int16_t dstY) { gen3_emit_composite_dstcoord(sna, dstX, dstY); gen3_emit_composite_texcoord(sna, &op->src, srcX, srcY); gen3_emit_composite_texcoord(sna, &op->mask, maskX, maskY); } fastcall static void gen3_emit_composite_primitive(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { gen3_emit_composite_vertex(sna, op, r->src.x + r->width, r->src.y + r->height, r->mask.x + r->width, r->mask.y + r->height, op->dst.x + r->dst.x + r->width, op->dst.y + r->dst.y + r->height); gen3_emit_composite_vertex(sna, op, r->src.x, r->src.y + r->height, r->mask.x, r->mask.y + r->height, op->dst.x + r->dst.x, op->dst.y + r->dst.y + r->height); gen3_emit_composite_vertex(sna, op, r->src.x, r->src.y, r->mask.x, r->mask.y, op->dst.x + r->dst.x, op->dst.y + r->dst.y); } static inline void gen3_2d_perspective(struct sna *sna, int in, int out) { gen3_fs_rcp(out, 0, gen3_fs_operand(in, W, W, W, W)); gen3_fs_mul(out, gen3_fs_operand(in, X, Y, ZERO, ONE), gen3_fs_operand_reg(out)); } static inline void gen3_linear_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } gen3_fs_mov(out, gen3_fs_operand_zero()); gen3_fs_dp3(out, MASK_X, gen3_fs_operand(in, X, Y, ONE, ZERO), gen3_fs_operand_reg(c)); } static void gen3_radial_coord(struct sna *sna, const struct sna_composite_channel *channel, int in, int out) { int c = channel->gen3.constants; if (!channel->is_affine) { gen3_2d_perspective(sna, in, FS_U0); in = FS_U0; } switch (channel->gen3.mode) { case RADIAL_ONE: /* pdx = (x - c1x) / dr, pdy = (y - c1y) / dr; r² = pdx*pdx + pdy*pdy t = r²/sqrt(r²) - r1/dr; */ gen3_fs_mad(FS_U0, MASK_X | MASK_Y, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, Z, Z, ZERO, ZERO), gen3_fs_operand(c, NEG_X, NEG_Y, ZERO, ZERO)); gen3_fs_dp2add(FS_U0, MASK_X, gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO), gen3_fs_operand_zero()); gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U0, X, X, X, X)); gen3_fs_mad(out, 0, gen3_fs_operand(FS_U0, X, ZERO, ZERO, ZERO), gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c, W, ZERO, ZERO, ZERO)); break; case RADIAL_TWO: /* pdx = x - c1x, pdy = y - c1y; A = dx² + dy² - dr² B = -2*(pdx*dx + pdy*dy + r1*dr); C = pdx² + pdy² - r1²; det = B*B - 4*A*C; t = (-B + sqrt (det)) / (2 * A) */ /* u0.x = pdx, u0.y = pdy, u[0].z = r1; */ gen3_fs_add(FS_U0, gen3_fs_operand(in, X, Y, ZERO, ZERO), gen3_fs_operand(c, X, Y, Z, ZERO)); /* u0.x = pdx, u0.y = pdy, u[0].z = r1, u[0].w = B; */ gen3_fs_dp3(FS_U0, MASK_W, gen3_fs_operand(FS_U0, X, Y, ONE, ZERO), gen3_fs_operand(c+1, X, Y, Z, ZERO)); /* u1.x = pdx² + pdy² - r1²; [C] */ gen3_fs_dp3(FS_U1, MASK_X, gen3_fs_operand(FS_U0, X, Y, Z, ZERO), gen3_fs_operand(FS_U0, X, Y, NEG_Z, ZERO)); /* u1.x = C, u1.y = B, u1.z=-4*A; */ gen3_fs_mov_masked(FS_U1, MASK_Y, gen3_fs_operand(FS_U0, W, W, W, W)); gen3_fs_mov_masked(FS_U1, MASK_Z, gen3_fs_operand(c, W, W, W, W)); /* u1.x = B² - 4*A*C */ gen3_fs_dp2add(FS_U1, MASK_X, gen3_fs_operand(FS_U1, X, Y, ZERO, ZERO), gen3_fs_operand(FS_U1, Z, Y, ZERO, ZERO), gen3_fs_operand_zero()); /* out.x = -B + sqrt (B² - 4*A*C), */ gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U1, X, X, X, X)); gen3_fs_mad(out, MASK_X, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U1, X, ZERO, ZERO, ZERO), gen3_fs_operand(FS_U0, NEG_W, ZERO, ZERO, ZERO)); /* out.x = (-B + sqrt (B² - 4*A*C)) / (2 * A), */ gen3_fs_mul(out, gen3_fs_operand(out, X, ZERO, ZERO, ZERO), gen3_fs_operand(c+1, W, ZERO, ZERO, ZERO)); break; } } static void gen3_composite_emit_shader(struct sna *sna, const struct sna_composite_op *op, uint8_t blend) { Bool dst_is_alpha = PIXMAN_FORMAT_RGB(op->dst.format) == 0; const struct sna_composite_channel *src, *mask; struct gen3_render_state *state = &sna->render_state.gen3; uint32_t shader_offset, id; int src_reg, mask_reg; int t, length; src = &op->src; mask = &op->mask; if (mask->gen3.type == SHADER_NONE) mask = NULL; if (mask && src->is_opaque && gen3_blend_op[blend].src_alpha && op->has_component_alpha) { src = mask; mask = NULL; } id = (src->gen3.type | src->is_affine << 4 | src->alpha_fixup << 5 | src->rb_reversed << 6); if (mask) { id |= (mask->gen3.type << 8 | mask->is_affine << 12 | gen3_blend_op[blend].src_alpha << 13 | op->has_component_alpha << 14 | mask->alpha_fixup << 15 | mask->rb_reversed << 16); } id |= dst_is_alpha << 24; id |= op->rb_reversed << 25; if (id == state->last_shader) return; state->last_shader = id; shader_offset = sna->kgem.nbatch++; t = 0; switch (src->gen3.type) { case SHADER_NONE: case SHADER_OPACITY: assert(0); case SHADER_ZERO: break; case SHADER_CONSTANT: gen3_fs_dcl(FS_T8); src_reg = FS_T8; break; case SHADER_TEXTURE: case SHADER_RADIAL: case SHADER_LINEAR: gen3_fs_dcl(FS_S0); gen3_fs_dcl(FS_T0); t++; break; } if (mask == NULL) { if (src->gen3.type == SHADER_ZERO) { gen3_fs_mov(FS_OC, gen3_fs_operand_zero()); goto done; } if (src->alpha_fixup && dst_is_alpha) { gen3_fs_mov(FS_OC, gen3_fs_operand_one()); goto done; } /* No mask, so load directly to output color */ if (src->gen3.type != SHADER_CONSTANT) { if (dst_is_alpha || src->rb_reversed ^ op->rb_reversed) src_reg = FS_R0; else src_reg = FS_OC; } switch (src->gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(src_reg, FS_S0, FS_R0); break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(src_reg, FS_S0, FS_T0); else gen3_fs_texldp(src_reg, FS_S0, FS_T0); break; case SHADER_NONE: case SHADER_CONSTANT: case SHADER_ZERO: break; } if (src_reg != FS_OC) { if (src->alpha_fixup) gen3_fs_mov(FS_OC, src->rb_reversed ^ op->rb_reversed ? gen3_fs_operand(src_reg, Z, Y, X, ONE) : gen3_fs_operand(src_reg, X, Y, Z, ONE)); else if (dst_is_alpha) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, W, W, W, W)); else if (src->rb_reversed ^ op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, Z, Y, X, W)); else gen3_fs_mov(FS_OC, gen3_fs_operand_reg(src_reg)); } else if (src->alpha_fixup) gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one()); } else { int out_reg = FS_OC; if (op->rb_reversed) out_reg = FS_U0; switch (mask->gen3.type) { case SHADER_CONSTANT: gen3_fs_dcl(FS_T9); mask_reg = FS_T9; break; case SHADER_TEXTURE: case SHADER_LINEAR: case SHADER_RADIAL: gen3_fs_dcl(FS_S0 + t); case SHADER_OPACITY: gen3_fs_dcl(FS_T0 + t); break; case SHADER_NONE: case SHADER_ZERO: assert(0); break; } t = 0; switch (src->gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_RADIAL: gen3_radial_coord(sna, src, FS_T0, FS_R0); gen3_fs_texld(FS_R0, FS_S0, FS_R0); src_reg = FS_R0; t++; break; case SHADER_TEXTURE: if (src->is_affine) gen3_fs_texld(FS_R0, FS_S0, FS_T0); else gen3_fs_texldp(FS_R0, FS_S0, FS_T0); src_reg = FS_R0; t++; break; case SHADER_CONSTANT: case SHADER_NONE: case SHADER_ZERO: break; } if (src->alpha_fixup) gen3_fs_mov_masked(src_reg, MASK_W, gen3_fs_operand_one()); if (src->rb_reversed) gen3_fs_mov(src_reg, gen3_fs_operand(src_reg, Z, Y, X, W)); switch (mask->gen3.type) { case SHADER_LINEAR: gen3_linear_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_RADIAL: gen3_radial_coord(sna, mask, FS_T0 + t, FS_R1); gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1); mask_reg = FS_R1; break; case SHADER_TEXTURE: if (mask->is_affine) gen3_fs_texld(FS_R1, FS_S0 + t, FS_T0 + t); else gen3_fs_texldp(FS_R1, FS_S0 + t, FS_T0 + t); mask_reg = FS_R1; break; case SHADER_OPACITY: if (dst_is_alpha) { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } else { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, X, Y, Z, W), gen3_fs_operand(FS_T0 + t, X, X, X, X)); } goto mask_done; case SHADER_CONSTANT: case SHADER_NONE: case SHADER_ZERO: break; } if (mask->alpha_fixup) gen3_fs_mov_masked(mask_reg, MASK_W, gen3_fs_operand_one()); if (mask->rb_reversed) gen3_fs_mov(mask_reg, gen3_fs_operand(mask_reg, Z, Y, X, W)); if (dst_is_alpha) { gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand(mask_reg, W, W, W, W)); } else { /* If component alpha is active in the mask and the blend * operation uses the source alpha, then we know we don't * need the source value (otherwise we would have hit a * fallback earlier), so we provide the source alpha (src.A * * mask.X) as output color. * Conversely, if CA is set and we don't need the source alpha, * then we produce the source value (src.X * mask.X) and the * source alpha is unused. Otherwise, we provide the non-CA * source value (src.X * mask.A). */ if (op->has_component_alpha) { if (gen3_blend_op[blend].src_alpha) gen3_fs_mul(out_reg, gen3_fs_operand(src_reg, W, W, W, W), gen3_fs_operand_reg(mask_reg)); else gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand_reg(mask_reg)); } else { gen3_fs_mul(out_reg, gen3_fs_operand_reg(src_reg), gen3_fs_operand(mask_reg, W, W, W, W)); } } mask_done: if (op->rb_reversed) gen3_fs_mov(FS_OC, gen3_fs_operand(FS_U0, Z, Y, X, W)); } done: length = sna->kgem.nbatch - shader_offset; sna->kgem.batch[shader_offset] = _3DSTATE_PIXEL_SHADER_PROGRAM | (length - 2); } static uint32_t gen3_ms_tiling(uint32_t tiling) { uint32_t v = 0; switch (tiling) { case I915_TILING_Y: v |= MS3_TILE_WALK; case I915_TILING_X: v |= MS3_TILED_SURFACE; case I915_TILING_NONE: break; } return v; } static void gen3_emit_invariant(struct sna *sna) { /* Disable independent alpha blend */ OUT_BATCH(_3DSTATE_INDEPENDENT_ALPHA_BLEND_CMD | IAB_MODIFY_ENABLE | IAB_MODIFY_FUNC | BLENDFUNC_ADD << IAB_FUNC_SHIFT | IAB_MODIFY_SRC_FACTOR | BLENDFACT_ONE << IAB_SRC_FACTOR_SHIFT | IAB_MODIFY_DST_FACTOR | BLENDFACT_ZERO << IAB_DST_FACTOR_SHIFT); OUT_BATCH(_3DSTATE_COORD_SET_BINDINGS | CSB_TCB(0, 0) | CSB_TCB(1, 1) | CSB_TCB(2, 2) | CSB_TCB(3, 3) | CSB_TCB(4, 4) | CSB_TCB(5, 5) | CSB_TCB(6, 6) | CSB_TCB(7, 7)); OUT_BATCH(_3DSTATE_MODES_4_CMD | ENABLE_LOGIC_OP_FUNC | LOGIC_OP_FUNC(LOGICOP_COPY)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(3) | I1_LOAD_S(4) | I1_LOAD_S(5) | 2); OUT_BATCH(0x00000000); /* Disable texture coordinate wrap-shortest */ OUT_BATCH((1 << S4_POINT_WIDTH_SHIFT) | S4_LINE_WIDTH_ONE | S4_CULLMODE_NONE | S4_VFMT_XY); OUT_BATCH(0x00000000); /* Stencil. */ OUT_BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT); OUT_BATCH(_3DSTATE_DEPTH_SUBRECT_DISABLE); OUT_BATCH(_3DSTATE_LOAD_INDIRECT); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_STIPPLE); OUT_BATCH(0x00000000); sna->render_state.gen3.need_invariant = FALSE; } static void gen3_get_batch(struct sna *sna, const struct sna_composite_op *op) { #define MAX_OBJECTS 3 /* worst case: dst + src + mask */ kgem_set_mode(&sna->kgem, KGEM_RENDER); if (!kgem_check_batch(&sna->kgem, 200)) { DBG(("%s: flushing batch: size %d > %d\n", __FUNCTION__, 200, sna->kgem.surface-sna->kgem.nbatch)); kgem_submit(&sna->kgem); } if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS) { DBG(("%s: flushing batch: reloc %d >= %d\n", __FUNCTION__, sna->kgem.nreloc, (int)KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS)); kgem_submit(&sna->kgem); } if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1) { DBG(("%s: flushing batch: exec %d >= %d\n", __FUNCTION__, sna->kgem.nexec, (int)KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1)); kgem_submit(&sna->kgem); } if (sna->render_state.gen3.need_invariant) gen3_emit_invariant(sna); #undef MAX_OBJECTS } static void gen3_emit_composite_state(struct sna *sna, const struct sna_composite_op *op) { struct gen3_render_state *state = &sna->render_state.gen3; uint32_t map[4]; uint32_t sampler[4]; struct kgem_bo *bo[2]; int tex_count, n; uint32_t ss2; gen3_get_batch(sna, op); /* BUF_INFO is an implicit flush, so skip if the target is unchanged. */ if (op->dst.bo->unique_id != state->current_dst) { uint32_t v; OUT_BATCH(_3DSTATE_BUF_INFO_CMD); OUT_BATCH(BUF_3D_ID_COLOR_BACK | gen3_buf_tiling(op->dst.bo->tiling) | op->dst.bo->pitch); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, op->dst.bo, I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER, 0)); OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD); OUT_BATCH(gen3_get_dst_format(op->dst.format)); v = (DRAW_YMAX(op->dst.height - 1) | DRAW_XMAX(op->dst.width - 1)); if (v != state->last_drawrect_limit) { OUT_BATCH(_3DSTATE_DRAW_RECT_CMD); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(v); OUT_BATCH(0); state->last_drawrect_limit = v; } state->current_dst = op->dst.bo->unique_id; } kgem_bo_mark_dirty(op->dst.bo); ss2 = ~0; tex_count = 0; switch (op->src.gen3.type) { case SHADER_OPACITY: case SHADER_NONE: assert(0); case SHADER_ZERO: break; case SHADER_CONSTANT: if (op->src.gen3.mode != state->last_diffuse) { OUT_BATCH(_3DSTATE_DFLT_DIFFUSE_CMD); OUT_BATCH(op->src.gen3.mode); state->last_diffuse = op->src.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); map[tex_count * 2 + 0] = op->src.card_format | gen3_ms_tiling(op->src.bo->tiling) | (op->src.height - 1) << MS3_HEIGHT_SHIFT | (op->src.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->src.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->src.filter; sampler[tex_count * 2 + 1] = op->src.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->src.bo; tex_count++; break; } switch (op->mask.gen3.type) { case SHADER_NONE: case SHADER_ZERO: break; case SHADER_CONSTANT: if (op->mask.gen3.mode != state->last_specular) { OUT_BATCH(_3DSTATE_DFLT_SPEC_CMD); OUT_BATCH(op->mask.gen3.mode); state->last_specular = op->mask.gen3.mode; } break; case SHADER_LINEAR: case SHADER_RADIAL: case SHADER_TEXTURE: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, op->mask.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D); map[tex_count * 2 + 0] = op->mask.card_format | gen3_ms_tiling(op->mask.bo->tiling) | (op->mask.height - 1) << MS3_HEIGHT_SHIFT | (op->mask.width - 1) << MS3_WIDTH_SHIFT; map[tex_count * 2 + 1] = (op->mask.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT; sampler[tex_count * 2 + 0] = op->mask.filter; sampler[tex_count * 2 + 1] = op->mask.repeat | tex_count << SS3_TEXTUREMAP_INDEX_SHIFT; bo[tex_count] = op->mask.bo; tex_count++; break; case SHADER_OPACITY: ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT); ss2 |= S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_1D); break; } { uint32_t blend_offset = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(2) | I1_LOAD_S(6) | 1); OUT_BATCH(ss2); OUT_BATCH(gen3_get_blend_cntl(op->op, op->has_component_alpha, op->dst.format)); if (memcmp(sna->kgem.batch + state->last_blend + 1, sna->kgem.batch + blend_offset + 1, 2 * 4) == 0) sna->kgem.nbatch = blend_offset; else state->last_blend = blend_offset; } if (op->u.gen3.num_constants) { int count = op->u.gen3.num_constants; if (state->last_constants) { int last = sna->kgem.batch[state->last_constants+1]; if (last == (1 << (count >> 2)) - 1 && memcmp(&sna->kgem.batch[state->last_constants+2], op->u.gen3.constants, count * sizeof(uint32_t)) == 0) count = 0; } if (count) { state->last_constants = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | count); OUT_BATCH((1 << (count >> 2)) - 1); memcpy(sna->kgem.batch + sna->kgem.nbatch, op->u.gen3.constants, count * sizeof(uint32_t)); sna->kgem.nbatch += count; } } if (tex_count != 0) { uint32_t rewind; n = 0; if (tex_count == state->tex_count) { for (; n < tex_count; n++) { if (map[2*n+0] != state->tex_map[2*n+0] || map[2*n+1] != state->tex_map[2*n+1] || state->tex_handle[n] != bo[n]->handle || state->tex_delta[n] != bo[n]->delta) break; } } if (n < tex_count) { OUT_BATCH(_3DSTATE_MAP_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, bo[n], I915_GEM_DOMAIN_SAMPLER<< 16, 0)); OUT_BATCH(map[2*n + 0]); OUT_BATCH(map[2*n + 1]); state->tex_map[2*n+0] = map[2*n+0]; state->tex_map[2*n+1] = map[2*n+1]; state->tex_handle[n] = bo[n]->handle; state->tex_delta[n] = bo[n]->delta; } state->tex_count = n; } rewind = sna->kgem.nbatch; OUT_BATCH(_3DSTATE_SAMPLER_STATE | (3 * tex_count)); OUT_BATCH((1 << tex_count) - 1); for (n = 0; n < tex_count; n++) { OUT_BATCH(sampler[2*n + 0]); OUT_BATCH(sampler[2*n + 1]); OUT_BATCH(0); } if (state->last_sampler && memcmp(&sna->kgem.batch[state->last_sampler+1], &sna->kgem.batch[rewind + 1], (3*tex_count + 1)*sizeof(uint32_t)) == 0) sna->kgem.nbatch = rewind; else state->last_sampler = rewind; } gen3_composite_emit_shader(sna, op, op->op); } static void gen3_magic_ca_pass(struct sna *sna, const struct sna_composite_op *op) { if (!op->need_magic_ca_pass) return; DBG(("%s(%d)\n", __FUNCTION__, sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0); OUT_BATCH(gen3_get_blend_cntl(PictOpAdd, TRUE, op->dst.format)); gen3_composite_emit_shader(sna, op, PictOpAdd); OUT_BATCH(PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start)); OUT_BATCH(sna->render.vertex_start); } static void gen3_vertex_flush(struct sna *sna) { if (sna->render_state.gen3.vertex_offset == 0 || sna->render.vertex_index == sna->render.vertex_start) return; DBG(("%s[%x] = %d\n", __FUNCTION__, 4*sna->render_state.gen3.vertex_offset, sna->render.vertex_index - sna->render.vertex_start)); sna->kgem.batch[sna->render_state.gen3.vertex_offset] = PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL | (sna->render.vertex_index - sna->render.vertex_start); sna->kgem.batch[sna->render_state.gen3.vertex_offset + 1] = sna->render.vertex_start; if (sna->render.op) gen3_magic_ca_pass(sna, sna->render.op); sna->render_state.gen3.vertex_offset = 0; } static void gen3_vertex_finish(struct sna *sna, Bool last) { struct kgem_bo *bo; int delta; DBG(("%s: last? %d\n", __FUNCTION__, last)); gen3_vertex_flush(sna); if (!sna->render.vertex_used) return; if (last && sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) { DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__, sna->render.vertex_used, sna->kgem.nbatch)); memcpy(sna->kgem.batch + sna->kgem.nbatch, sna->render.vertex_data, sna->render.vertex_used * 4); delta = sna->kgem.nbatch * 4; bo = NULL; sna->kgem.nbatch += sna->render.vertex_used; } else { bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used); if (bo && !kgem_bo_write(&sna->kgem, bo, sna->render.vertex_data, 4*sna->render.vertex_used)) { kgem_bo_destroy(&sna->kgem, bo); return; } delta = 0; DBG(("%s: new vbo: %d\n", __FUNCTION__, sna->render.vertex_used)); } DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0])); sna->kgem.batch[sna->render.vertex_reloc[0]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0], bo, I915_GEM_DOMAIN_VERTEX << 16, delta); sna->render.vertex_reloc[0] = 0; sna->render.vertex_used = 0; sna->render.vertex_index = 0; if (bo) kgem_bo_destroy(&sna->kgem, bo); } static bool gen3_rectangle_begin(struct sna *sna, const struct sna_composite_op *op) { int ndwords, i1_cmd = 0, i1_len = 0; struct gen3_render_state *state = &sna->render_state.gen3; ndwords = 0; if (state->vertex_offset == 0) { ndwords += 2; if (op->need_magic_ca_pass) ndwords += 100; } if (sna->render.vertex_reloc[0] == 0) i1_len++, i1_cmd |= I1_LOAD_S(0), ndwords++; if (state->floats_per_vertex != op->floats_per_vertex) i1_len++, i1_cmd |= I1_LOAD_S(1), ndwords++; if (ndwords == 0) return true; if (!kgem_check_batch(&sna->kgem, ndwords+1)) return false; if (i1_cmd) { OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | i1_cmd | (i1_len - 1)); if (sna->render.vertex_reloc[0] == 0) sna->render.vertex_reloc[0] = sna->kgem.nbatch++; if (state->floats_per_vertex != op->floats_per_vertex) { state->floats_per_vertex = op->floats_per_vertex; OUT_BATCH(state->floats_per_vertex << S1_VERTEX_WIDTH_SHIFT | state->floats_per_vertex << S1_VERTEX_PITCH_SHIFT); } } if (state->vertex_offset == 0) { if (sna->kgem.nbatch == 2 + state->last_vertex_offset) { state->vertex_offset = state->last_vertex_offset; } else { state->vertex_offset = sna->kgem.nbatch; OUT_BATCH(MI_NOOP); /* to be filled later */ OUT_BATCH(MI_NOOP); sna->render.vertex_start = sna->render.vertex_index; state->last_vertex_offset = state->vertex_offset; } } return true; } static int gen3_get_rectangles__flush(struct sna *sna, bool ca) { if (!kgem_check_batch(&sna->kgem, ca ? 105: 5)) return 0; if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - 2) return 0; if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - 1) return 0; gen3_vertex_finish(sna, FALSE); assert(sna->render.vertex_index == 0); assert(sna->render.vertex_used == 0); return ARRAY_SIZE(sna->render.vertex_data); } inline static int gen3_get_rectangles(struct sna *sna, const struct sna_composite_op *op, int want) { int rem = vertex_space(sna); DBG(("%s: want=%d, rem=%d\n", __FUNCTION__, 3*want*op->floats_per_vertex, rem)); assert(sna->render.vertex_index * op->floats_per_vertex == sna->render.vertex_used); if (op->floats_per_vertex*3 > rem) { DBG(("flushing vbo for %s: %d < %d\n", __FUNCTION__, rem, 3*op->floats_per_vertex)); rem = gen3_get_rectangles__flush(sna, op->need_magic_ca_pass); if (rem == 0) return 0; } if (!gen3_rectangle_begin(sna, op)) { DBG(("%s: flushing batch\n", __FUNCTION__)); return 0; } if (want > 1 && want * op->floats_per_vertex*3 > rem) want = rem / (3*op->floats_per_vertex); sna->render.vertex_index += 3*want; assert(want); assert(sna->render.vertex_index * op->floats_per_vertex <= ARRAY_SIZE(sna->render.vertex_data)); return want; } fastcall static void gen3_render_composite_blt(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__, r->src.x, r->src.y, op->src.offset[0], op->src.offset[1], r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1], r->dst.x, r->dst.y, op->dst.x, op->dst.y, r->width, r->height)); if (!gen3_get_rectangles(sna, op, 1)) { gen3_emit_composite_state(sna, op); gen3_get_rectangles(sna, op, 1); } op->prim_emit(sna, op, r); } static void gen3_render_composite_boxes(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("%s: nbox=%d, src=+(%d, %d), mask=+(%d, %d), dst=+(%d, %d)\n", __FUNCTION__, nbox, op->src.offset[0], op->src.offset[1], op->mask.offset[0], op->mask.offset[1], op->dst.x, op->dst.y)); do { int nbox_this_time; nbox_this_time = gen3_get_rectangles(sna, op, nbox); if (nbox_this_time == 0) { gen3_emit_composite_state(sna, op); nbox_this_time = gen3_get_rectangles(sna, op, nbox); } nbox -= nbox_this_time; do { struct sna_composite_rectangles r; DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.src = r.mask = r.dst; op->prim_emit(sna, op, &r); box++; } while (--nbox_this_time); } while (nbox); } static void gen3_render_composite_done(struct sna *sna, const struct sna_composite_op *op) { assert(sna->render.op == op); gen3_vertex_flush(sna); sna->render.op = NULL; _kgem_set_mode(&sna->kgem, KGEM_RENDER); DBG(("%s()\n", __FUNCTION__)); sna_render_composite_redirect_done(sna, op); if (op->src.bo) kgem_bo_destroy(&sna->kgem, op->src.bo); if (op->mask.bo) kgem_bo_destroy(&sna->kgem, op->mask.bo); } static void gen3_render_reset(struct sna *sna) { struct gen3_render_state *state = &sna->render_state.gen3; state->need_invariant = TRUE; state->current_dst = 0; state->tex_count = 0; state->last_drawrect_limit = ~0U; state->last_target = 0; state->last_blend = 0; state->last_constants = 0; state->last_sampler = 0; state->last_shader = 0; state->last_diffuse = 0xcc00ffee; state->last_specular = 0xcc00ffee; state->floats_per_vertex = 0; state->last_floats_per_vertex = 0; state->last_vertex_offset = 0; state->vertex_offset = 0; assert(sna->render.vertex_used == 0); assert(sna->render.vertex_index == 0); assert(sna->render.vertex_reloc[0] == 0); } static Bool gen3_composite_channel_set_format(struct sna_composite_channel *channel, CARD32 format) { int i; for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) { if (gen3_tex_formats[i].fmt == format) { channel->card_format = gen3_tex_formats[i].card_fmt; channel->rb_reversed = gen3_tex_formats[i].rb_reversed; return TRUE; } } return FALSE; } static Bool source_is_covered(PicturePtr picture, int x, int y, int width, int height) { int x1, y1, x2, y2; if (picture->repeat && picture->repeatType != RepeatNone) return TRUE; if (picture->pDrawable == NULL) return FALSE; if (picture->transform) { pixman_box16_t sample; sample.x1 = x; sample.y1 = y; sample.x2 = x + width; sample.y2 = y + height; pixman_transform_bounds(picture->transform, &sample); x1 = sample.x1; x2 = sample.x2; y1 = sample.y1; y2 = sample.y2; } else { x1 = x; y1 = y; x2 = x + width; y2 = y + height; } return x1 >= 0 && y1 >= 0 && x2 <= picture->pDrawable->width && y2 <= picture->pDrawable->height; } static Bool gen3_composite_channel_set_xformat(PicturePtr picture, struct sna_composite_channel *channel, int x, int y, int width, int height) { int i; if (PICT_FORMAT_A(picture->format) != 0) return FALSE; if (width == 0 || height == 0) return FALSE; if (!source_is_covered(picture, x, y, width, height)) return FALSE; for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) { if (gen3_tex_formats[i].xfmt == picture->format) { channel->card_format = gen3_tex_formats[i].card_fmt; channel->rb_reversed = gen3_tex_formats[i].rb_reversed; channel->alpha_fixup = true; return TRUE; } } return FALSE; } static int gen3_init_solid(struct sna *sna, struct sna_composite_channel *channel, uint32_t color) { channel->gen3.mode = color; channel->gen3.type = SHADER_CONSTANT; if (color == 0) channel->gen3.type = SHADER_ZERO; if ((color & 0xff000000) == 0xff000000) channel->is_opaque = true; /* for consistency */ channel->repeat = RepeatNormal; channel->filter = PictFilterNearest; channel->pict_format = PICT_a8r8g8b8; channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888; return 1; } static void gen3_composite_channel_convert(struct sna_composite_channel *channel) { if (channel->gen3.type == SHADER_TEXTURE) channel->repeat = gen3_texture_repeat(channel->repeat); else channel->repeat = gen3_gradient_repeat(channel->repeat); channel->filter = gen3_filter(channel->filter); if (channel->card_format == 0) gen3_composite_channel_set_format(channel, channel->pict_format); } static Bool gen3_gradient_setup(struct sna *sna, PicturePtr picture, struct sna_composite_channel *channel, int16_t ox, int16_t oy) { int16_t dx, dy; if (picture->repeat == 0) { channel->repeat = RepeatNone; } else switch (picture->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: channel->repeat = picture->repeatType; break; default: return FALSE; } channel->bo = sna_render_get_gradient(sna, (PictGradient *)picture->pSourcePict); if (channel->bo == NULL) return FALSE; channel->pict_format = PICT_a8r8g8b8; channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888; channel->filter = PictFilterBilinear; channel->is_affine = sna_transform_is_affine(picture->transform); if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); ox += dx; oy += dy; channel->transform = NULL; } else channel->transform = picture->transform; channel->width = channel->bo->pitch / 4; channel->height = 1; channel->offset[0] = ox; channel->offset[1] = oy; channel->scale[0] = channel->scale[1] = 1; return TRUE; } static int gen3_init_linear(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int ox, int oy) { PictLinearGradient *linear = (PictLinearGradient *)picture->pSourcePict; float x0, y0, sf; float dx, dy, offset; int n; DBG(("%s: p1=(%f, %f), p2=(%f, %f)\n", __FUNCTION__, xFixedToDouble(linear->p1.x), xFixedToDouble(linear->p1.y), xFixedToDouble(linear->p2.x), xFixedToDouble(linear->p2.y))); if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y) return 0; dx = xFixedToDouble(linear->p2.x - linear->p1.x); dy = xFixedToDouble(linear->p2.y - linear->p1.y); sf = dx*dx + dy*dy; dx /= sf; dy /= sf; x0 = xFixedToDouble(linear->p1.x); y0 = xFixedToDouble(linear->p1.y); offset = dx*x0 + dy*y0; n = op->u.gen3.num_constants; channel->gen3.constants = FS_C0 + n / 4; op->u.gen3.constants[n++] = dx; op->u.gen3.constants[n++] = dy; op->u.gen3.constants[n++] = -offset; op->u.gen3.constants[n++] = 0; if (!gen3_gradient_setup(sna, picture, channel, ox, oy)) return 0; channel->gen3.type = SHADER_LINEAR; op->u.gen3.num_constants = n; DBG(("%s: dx=%f, dy=%f, offset=%f, constants=%d\n", __FUNCTION__, dx, dy, -offset, channel->gen3.constants - FS_C0)); return 1; } static int gen3_init_radial(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int ox, int oy) { PictRadialGradient *radial = (PictRadialGradient *)picture->pSourcePict; double dx, dy, dr, r1; int n; dx = xFixedToDouble(radial->c2.x - radial->c1.x); dy = xFixedToDouble(radial->c2.y - radial->c1.y); dr = xFixedToDouble(radial->c2.radius - radial->c1.radius); r1 = xFixedToDouble(radial->c1.radius); n = op->u.gen3.num_constants; channel->gen3.constants = FS_C0 + n / 4; if (radial->c2.x == radial->c1.x && radial->c2.y == radial->c1.y) { if (radial->c2.radius == radial->c1.radius) return 0; op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.x) / dr; op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.y) / dr; op->u.gen3.constants[n++] = 1. / dr; op->u.gen3.constants[n++] = -r1 / dr; channel->gen3.mode = RADIAL_ONE; } else { op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.x); op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.y); op->u.gen3.constants[n++] = r1; op->u.gen3.constants[n++] = -4 * (dx*dx + dy*dy - dr*dr); op->u.gen3.constants[n++] = -2 * dx; op->u.gen3.constants[n++] = -2 * dy; op->u.gen3.constants[n++] = -2 * r1 * dr; op->u.gen3.constants[n++] = 1 / (2 * (dx*dx + dy*dy - dr*dr)); channel->gen3.mode = RADIAL_TWO; } if (!gen3_gradient_setup(sna, picture, channel, ox, oy)) return 0; channel->gen3.type = SHADER_RADIAL; op->u.gen3.num_constants = n; return 1; } static Bool gen3_composite_picture(struct sna *sna, PicturePtr picture, struct sna_composite_op *op, struct sna_composite_channel *channel, int16_t x, int16_t y, int16_t w, int16_t h, int16_t dst_x, int16_t dst_y) { PixmapPtr pixmap; uint32_t color; int16_t dx, dy; DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n", __FUNCTION__, x, y, w, h, dst_x, dst_y)); channel->card_format = 0; if (picture->pDrawable == NULL) { SourcePict *source = picture->pSourcePict; int ret = 0; switch (source->type) { case SourcePictTypeSolidFill: ret = gen3_init_solid(sna, channel, source->solidFill.color); break; case SourcePictTypeLinear: ret = gen3_init_linear(sna, picture, op, channel, x - dst_x, y - dst_y); break; case SourcePictTypeRadial: ret = gen3_init_radial(sna, picture, op, channel, x - dst_x, y - dst_y); break; } if (ret == 0) ret = sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); return ret; } if (sna_picture_is_solid(picture, &color)) return gen3_init_solid(sna, channel, color); if (!gen3_check_repeat(picture->repeat)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (!gen3_check_filter(picture->filter)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->filter = picture->filter; channel->pict_format = picture->format; pixmap = get_drawable_pixmap(picture->pDrawable); get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy); x += dx + picture->pDrawable->x; y += dy + picture->pDrawable->y; channel->is_affine = sna_transform_is_affine(picture->transform); if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); x += dx; y += dy; channel->transform = NULL; channel->filter = PictFilterNearest; } else channel->transform = picture->transform; if (!gen3_composite_channel_set_format(channel, picture->format) && !gen3_composite_channel_set_xformat(picture, channel, x, y, w, h)) return sna_render_picture_convert(sna, picture, channel, pixmap, x, y, w, h, dst_x, dst_y); if (pixmap->drawable.width > 2048 || pixmap->drawable.height > 2048) return sna_render_picture_extract(sna, picture, channel, x, y, w, h, dst_x, dst_y); return sna_render_pixmap_bo(sna, channel, pixmap, x, y, w, h, dst_x, dst_y); } static inline Bool picture_is_cpu(PicturePtr picture) { if (!picture->pDrawable) return FALSE; /* If it is a solid, try to use the render paths */ if (picture->pDrawable->width == 1 && picture->pDrawable->height == 1 && picture->repeat) return FALSE; return is_cpu(picture->pDrawable); } static Bool try_blt(struct sna *sna, PicturePtr dst, PicturePtr source, int width, int height) { if (sna->kgem.mode == KGEM_BLT) { DBG(("%s: already performing BLT\n", __FUNCTION__)); return TRUE; } if (width > 2048 || height > 2048) { DBG(("%s: operation too large for 3D pipe (%d, %d)\n", __FUNCTION__, width, height)); return TRUE; } /* If we can sample directly from user-space, do so */ if (sna->kgem.has_vmap) return FALSE; /* is the source picture only in cpu memory e.g. a shm pixmap? */ return picture_is_cpu(source); } static void gen3_align_vertex(struct sna *sna, struct sna_composite_op *op) { if (op->floats_per_vertex != sna->render_state.gen3.last_floats_per_vertex) { DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n", sna->render_state.gen3.last_floats_per_vertex, op->floats_per_vertex, sna->render.vertex_index, (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex)); sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex; sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex; sna->render_state.gen3.last_floats_per_vertex = op->floats_per_vertex; } } static Bool gen3_composite_set_target(struct sna *sna, struct sna_composite_op *op, PicturePtr dst) { struct sna_pixmap *priv; op->dst.pixmap = get_drawable_pixmap(dst->pDrawable); op->dst.format = dst->format; op->dst.width = op->dst.pixmap->drawable.width; op->dst.height = op->dst.pixmap->drawable.height; priv = sna_pixmap(op->dst.pixmap); op->dst.bo = NULL; if (priv && priv->gpu_bo == NULL) { op->dst.bo = priv->cpu_bo; op->damage = &priv->cpu_damage; } if (op->dst.bo == NULL) { priv = sna_pixmap_force_to_gpu(op->dst.pixmap); if (priv == NULL) return FALSE; op->dst.bo = priv->gpu_bo; if (!priv->gpu_only) op->damage = &priv->gpu_damage; } get_drawable_deltas(dst->pDrawable, op->dst.pixmap, &op->dst.x, &op->dst.y); DBG(("%s: pixmap=%p, format=%08x, size=%dx%d, pitch=%d, delta=(%d,%d)\n", __FUNCTION__, op->dst.pixmap, (int)op->dst.format, op->dst.width, op->dst.height, op->dst.bo->pitch, op->dst.x, op->dst.y)); return TRUE; } static inline uint8_t mult(uint32_t s, uint32_t m, int shift) { s = (s >> shift) & 0xff; m = (m >> shift) & 0xff; return (s * m) >> 8; } static Bool gen3_render_composite(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t mask_x, int16_t mask_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, struct sna_composite_op *tmp) { DBG(("%s()\n", __FUNCTION__)); #if NO_COMPOSITE return sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp); #endif /* Try to use the BLT engine unless it implies a * 3D -> 2D context switch. */ if (mask == NULL && try_blt(sna, dst, src, width, height) && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp)) return TRUE; if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } if (!gen3_check_dst_format(dst->format)) { DBG(("%s: fallback due to unhandled dst format: %x\n", __FUNCTION__, dst->format)); return FALSE; } if (need_tiling(sna, width, height)) return sna_tiling_composite(sna, op, src, mask, dst, src_x, src_y, mask_x, mask_y, dst_x, dst_y, width, height, tmp); memset(&tmp->u.gen3, 0, sizeof(tmp->u.gen3)); if (!gen3_composite_set_target(sna, tmp, dst)) { DBG(("%s: unable to set render target\n", __FUNCTION__)); return FALSE; } tmp->op = op; tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format); if (tmp->dst.width > 2048 || tmp->dst.height > 2048 || !gen3_check_pitch_3d(tmp->dst.bo)) { if (!sna_render_composite_redirect(sna, tmp, dst_x, dst_y, width, height)) return FALSE; } tmp->src.gen3.type = SHADER_TEXTURE; tmp->src.is_affine = TRUE; DBG(("%s: preparing source\n", __FUNCTION__)); switch (gen3_composite_picture(sna, src, tmp, &tmp->src, src_x, src_y, width, height, dst_x, dst_y)) { case -1: goto cleanup_dst; case 0: tmp->src.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->src); break; } DBG(("%s: source type=%d\n", __FUNCTION__, tmp->src.gen3.type)); tmp->mask.gen3.type = SHADER_NONE; tmp->mask.is_affine = TRUE; tmp->need_magic_ca_pass = FALSE; tmp->has_component_alpha = FALSE; if (mask && tmp->src.gen3.type != SHADER_ZERO) { tmp->mask.gen3.type = SHADER_TEXTURE; DBG(("%s: preparing mask\n", __FUNCTION__)); switch (gen3_composite_picture(sna, mask, tmp, &tmp->mask, mask_x, mask_y, width, height, dst_x, dst_y)) { case -1: goto cleanup_src; case 0: tmp->mask.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->mask); break; } DBG(("%s: mask type=%d\n", __FUNCTION__, tmp->mask.gen3.type)); if (tmp->mask.gen3.type == SHADER_ZERO) { if (tmp->src.bo) { kgem_bo_destroy(&sna->kgem, tmp->src.bo); tmp->src.bo = NULL; } tmp->src.gen3.type = SHADER_ZERO; tmp->mask.gen3.type = SHADER_NONE; } if (tmp->mask.gen3.type != SHADER_NONE && mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) { /* Check if it's component alpha that relies on a source alpha * and on the source value. We can only get one of those * into the single source value that we get to blend with. */ tmp->has_component_alpha = TRUE; if (tmp->mask.gen3.type == SHADER_CONSTANT && tmp->mask.gen3.mode == 0xffffffff) { tmp->mask.gen3.type = SHADER_NONE; tmp->has_component_alpha = FALSE; } else if (tmp->src.gen3.type == SHADER_CONSTANT && tmp->src.gen3.mode == 0xffffffff) { tmp->src = tmp->mask; tmp->mask.gen3.type = SHADER_NONE; tmp->mask.bo = NULL; tmp->has_component_alpha = FALSE; } else if (tmp->src.gen3.type == SHADER_CONSTANT && tmp->mask.gen3.type == SHADER_CONSTANT) { uint32_t a,r,g,b; a = mult(tmp->src.gen3.mode, tmp->mask.gen3.mode, 24); r = mult(tmp->src.gen3.mode, tmp->mask.gen3.mode, 16); g = mult(tmp->src.gen3.mode, tmp->mask.gen3.mode, 8); b = mult(tmp->src.gen3.mode, tmp->mask.gen3.mode, 0); DBG(("%s: combining constant source/mask: %x x %x -> %x\n", __FUNCTION__, tmp->src.gen3.mode, tmp->mask.gen3.mode, a << 24 | r << 16 | g << 8 | b)); tmp->src.gen3.mode = a << 24 | r << 16 | g << 8 | b; tmp->mask.gen3.type = SHADER_NONE; tmp->has_component_alpha = FALSE; } else if (gen3_blend_op[op].src_alpha && (gen3_blend_op[op].src_blend != BLENDFACT_ZERO)) { if (op != PictOpOver) goto cleanup_mask; tmp->need_magic_ca_pass = TRUE; tmp->op = PictOpOutReverse; sna->render.vertex_start = sna->render.vertex_index; } } } DBG(("%s: final src/mask type=%d/%d, affine=%d/%d\n", __FUNCTION__, tmp->src.gen3.type, tmp->mask.gen3.type, tmp->src.is_affine, tmp->mask.is_affine)); tmp->prim_emit = gen3_emit_composite_primitive; if (tmp->mask.gen3.type == SHADER_NONE || tmp->mask.gen3.type == SHADER_CONSTANT) { switch (tmp->src.gen3.type) { case SHADER_NONE: case SHADER_CONSTANT: tmp->prim_emit = gen3_emit_composite_primitive_constant; break; case SHADER_LINEAR: case SHADER_RADIAL: if (tmp->src.transform == NULL) tmp->prim_emit = gen3_emit_composite_primitive_identity_gradient; else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_gradient; break; case SHADER_TEXTURE: if (tmp->src.transform == NULL) tmp->prim_emit = gen3_emit_composite_primitive_identity_source; else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_source; break; } } else if (tmp->mask.gen3.type == SHADER_TEXTURE) { if (tmp->mask.transform == NULL) { if (tmp->src.gen3.type == SHADER_CONSTANT) tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask; else if (tmp->src.transform == NULL) tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask; else if (tmp->src.is_affine) tmp->prim_emit = gen3_emit_composite_primitive_affine_source_mask; } } tmp->floats_per_vertex = 2; if (tmp->src.gen3.type != SHADER_CONSTANT && tmp->src.gen3.type != SHADER_ZERO) tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 3; if (tmp->mask.gen3.type != SHADER_NONE && tmp->mask.gen3.type != SHADER_CONSTANT) tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 3; DBG(("%s: floats_per_vertex = 2 + %d + %d = %d\n", __FUNCTION__, (tmp->src.gen3.type != SHADER_CONSTANT && tmp->src.gen3.type != SHADER_ZERO) ? tmp->src.is_affine ? 2 : 3 : 0, (tmp->mask.gen3.type != SHADER_NONE && tmp->mask.gen3.type != SHADER_CONSTANT) ? tmp->mask.is_affine ? 2 : 3 : 0, tmp->floats_per_vertex)); tmp->blt = gen3_render_composite_blt; tmp->boxes = gen3_render_composite_boxes; tmp->done = gen3_render_composite_done; if (!kgem_check_bo(&sna->kgem, tmp->dst.bo)) kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->src.bo)) kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->mask.bo)) kgem_submit(&sna->kgem); if (kgem_bo_is_dirty(tmp->src.bo) || kgem_bo_is_dirty(tmp->mask.bo)) { if (tmp->src.bo == tmp->dst.bo || tmp->mask.bo == tmp->dst.bo) { kgem_emit_flush(&sna->kgem); } else { OUT_BATCH(_3DSTATE_MODES_5_CMD | PIPELINE_FLUSH_RENDER_CACHE | PIPELINE_FLUSH_TEXTURE_CACHE); kgem_clear_dirty(&sna->kgem); } } gen3_emit_composite_state(sna, tmp); gen3_align_vertex(sna, tmp); sna->render.op = tmp; return TRUE; cleanup_mask: if (tmp->mask.bo) kgem_bo_destroy(&sna->kgem, tmp->mask.bo); cleanup_src: if (tmp->src.bo) kgem_bo_destroy(&sna->kgem, tmp->src.bo); cleanup_dst: if (tmp->redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->dst.bo); return FALSE; } static void gen3_emit_composite_spans_vertex(struct sna *sna, const struct sna_composite_spans_op *op, int16_t x, int16_t y, float opacity) { gen3_emit_composite_dstcoord(sna, x + op->base.dst.x, y + op->base.dst.y); gen3_emit_composite_texcoord(sna, &op->base.src, x, y); OUT_VERTEX(opacity); } static void gen3_emit_composite_spans_primitive_zero(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 6; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = op->base.dst.x + box->x1; v[3] = v[1]; v[4] = v[2]; v[5] = op->base.dst.x + box->y1; } static void gen3_emit_composite_spans_primitive_constant(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 9; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = opacity; v[3] = op->base.dst.x + box->x1; v[4] = v[1]; v[5] = opacity; v[6] = v[3]; v[7] = op->base.dst.y + box->y1; v[8] = opacity; } static void gen3_emit_composite_spans_primitive_identity_source(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = (op->base.src.offset[0] + box->x2) * op->base.src.scale[0]; v[3] = (op->base.src.offset[1] + box->y2) * op->base.src.scale[1]; v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; v[7] = (op->base.src.offset[0] + box->x1) * op->base.src.scale[0]; v[8] = v[3]; v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; v[12] = v[7]; v[13] = (op->base.src.offset[1] + box->y1) * op->base.src.scale[1]; v[14] = opacity; } static void gen3_emit_composite_spans_primitive_affine_source(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { PictTransform *transform = op->base.src.transform; float x, y, *v; v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[6] = v[1] = op->base.dst.y + box->y2; v[10] = v[5] = op->base.dst.x + box->x1; v[11] = op->base.dst.y + box->y1; v[4] = opacity; v[9] = opacity; v[14] = opacity; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2, (int)op->base.src.offset[1] + box->y2, transform, &x, &y); v[2] = x * op->base.src.scale[0]; v[3] = y * op->base.src.scale[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y2, transform, &x, &y); v[7] = x * op->base.src.scale[0]; v[8] = y * op->base.src.scale[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y1, transform, &x, &y); v[12] = x * op->base.src.scale[0]; v[13] = y * op->base.src.scale[1]; } static void gen3_emit_composite_spans_primitive_identity_gradient(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; v[2] = op->base.src.offset[0] + box->x2; v[3] = op->base.src.offset[1] + box->y2; v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; v[7] = op->base.src.offset[0] + box->x1; v[8] = v[3]; v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; v[12] = v[7]; v[13] = op->base.src.offset[1] + box->y1; v[14] = opacity; } static void gen3_emit_composite_spans_primitive_affine_gradient(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { PictTransform *transform = op->base.src.transform; float *v = sna->render.vertex_data + sna->render.vertex_used; sna->render.vertex_used += 15; v[0] = op->base.dst.x + box->x2; v[1] = op->base.dst.y + box->y2; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2, (int)op->base.src.offset[1] + box->y2, transform, &v[2], &v[3]); v[4] = opacity; v[5] = op->base.dst.x + box->x1; v[6] = v[1]; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y2, transform, &v[7], &v[8]); v[9] = opacity; v[10] = v[5]; v[11] = op->base.dst.y + box->y1; _sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1, (int)op->base.src.offset[1] + box->y1, transform, &v[12], &v[13]); v[14] = opacity; } static void gen3_emit_composite_spans_primitive(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { gen3_emit_composite_spans_vertex(sna, op, box->x2, box->y2, opacity); gen3_emit_composite_spans_vertex(sna, op, box->x1, box->y2, opacity); gen3_emit_composite_spans_vertex(sna, op, box->x1, box->y1, opacity); } static void gen3_render_composite_spans_boxes(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, int nbox, float opacity) { DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n", __FUNCTION__, nbox, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y)); do { int nbox_this_time; nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox); if (nbox_this_time == 0) { gen3_emit_composite_state(sna, &op->base); nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox); } nbox -= nbox_this_time; do { DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); op->prim_emit(sna, op, box++, opacity); } while (--nbox_this_time); } while (nbox); } static void gen3_render_composite_spans_done(struct sna *sna, const struct sna_composite_spans_op *op) { gen3_vertex_flush(sna); _kgem_set_mode(&sna->kgem, KGEM_RENDER); DBG(("%s()\n", __FUNCTION__)); sna_render_composite_redirect_done(sna, &op->base); if (op->base.src.bo) kgem_bo_destroy(&sna->kgem, op->base.src.bo); } static Bool gen3_render_composite_spans(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, struct sna_composite_spans_op *tmp) { DBG(("%s(src=(%d, %d), dst=(%d, %d), size=(%d, %d))\n", __FUNCTION__, src_x, src_y, dst_x, dst_y, width, height)); #if NO_COMPOSITE_SPANS return FALSE; #endif if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } if (!gen3_check_dst_format(dst->format)) { DBG(("%s: fallback due to unhandled dst format: %x\n", __FUNCTION__, dst->format)); return FALSE; } if (need_tiling(sna, width, height)) return FALSE; if (!gen3_composite_set_target(sna, &tmp->base, dst)) { DBG(("%s: unable to set render target\n", __FUNCTION__)); return FALSE; } tmp->base.op = op; tmp->base.rb_reversed = gen3_dst_rb_reversed(tmp->base.dst.format); if (tmp->base.dst.width > 2048 || tmp->base.dst.height > 2048 || !gen3_check_pitch_3d(tmp->base.dst.bo)) { if (!sna_render_composite_redirect(sna, &tmp->base, dst_x, dst_y, width, height)) return FALSE; } tmp->base.src.gen3.type = SHADER_TEXTURE; tmp->base.src.is_affine = TRUE; DBG(("%s: preparing source\n", __FUNCTION__)); switch (gen3_composite_picture(sna, src, &tmp->base, &tmp->base.src, src_x, src_y, width, height, dst_x, dst_y)) { case -1: goto cleanup_dst; case 0: tmp->base.src.gen3.type = SHADER_ZERO; break; case 1: gen3_composite_channel_convert(&tmp->base.src); break; } DBG(("%s: source type=%d\n", __FUNCTION__, tmp->base.src.gen3.type)); if (tmp->base.src.gen3.type != SHADER_ZERO) tmp->base.mask.gen3.type = SHADER_OPACITY; tmp->prim_emit = gen3_emit_composite_spans_primitive; switch (tmp->base.src.gen3.type) { case SHADER_NONE: assert(0); case SHADER_ZERO: tmp->prim_emit = gen3_emit_composite_spans_primitive_zero; break; case SHADER_CONSTANT: tmp->prim_emit = gen3_emit_composite_spans_primitive_constant; break; case SHADER_LINEAR: case SHADER_RADIAL: if (tmp->base.src.transform == NULL) tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_gradient; else if (tmp->base.src.is_affine) tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_gradient; break; case SHADER_TEXTURE: if (tmp->base.src.transform == NULL) tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_source; else if (tmp->base.src.is_affine) tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_source; break; } tmp->base.floats_per_vertex = 2; if (tmp->base.src.gen3.type != SHADER_CONSTANT && tmp->base.src.gen3.type != SHADER_ZERO) tmp->base.floats_per_vertex += tmp->base.src.is_affine ? 2 : 3; tmp->base.floats_per_vertex += tmp->base.mask.gen3.type == SHADER_OPACITY; tmp->boxes = gen3_render_composite_spans_boxes; tmp->done = gen3_render_composite_spans_done; if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo)) kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->base.src.bo)) kgem_submit(&sna->kgem); if (kgem_bo_is_dirty(tmp->base.src.bo)) { if (tmp->base.src.bo == tmp->base.dst.bo) { kgem_emit_flush(&sna->kgem); } else { OUT_BATCH(_3DSTATE_MODES_5_CMD | PIPELINE_FLUSH_RENDER_CACHE | PIPELINE_FLUSH_TEXTURE_CACHE); kgem_clear_dirty(&sna->kgem); } } gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; cleanup_dst: if (tmp->base.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo); return FALSE; } static void gen3_emit_video_state(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, PixmapPtr pixmap, struct kgem_bo *dst_bo, int width, int height) { uint32_t shader_offset; uint32_t ms3, s5; /* draw rect -- just clipping */ OUT_BATCH(_3DSTATE_DRAW_RECT_CMD); OUT_BATCH(DRAW_DITHER_OFS_X(pixmap->drawable.x & 3) | DRAW_DITHER_OFS_Y(pixmap->drawable.y & 3)); OUT_BATCH(0x00000000); /* ymin, xmin */ /* ymax, xmax */ OUT_BATCH((width - 1) | (height - 1) << 16); OUT_BATCH(0x00000000); /* yorigin, xorigin */ OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(1) | I1_LOAD_S(2) | I1_LOAD_S(5) | I1_LOAD_S(6) | 3); OUT_BATCH((4 << S1_VERTEX_WIDTH_SHIFT) | (4 << S1_VERTEX_PITCH_SHIFT)); OUT_BATCH(S2_TEXCOORD_FMT(0, TEXCOORDFMT_2D) | S2_TEXCOORD_FMT(1, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(2, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(3, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(4, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(5, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(6, TEXCOORDFMT_NOT_PRESENT) | S2_TEXCOORD_FMT(7, TEXCOORDFMT_NOT_PRESENT)); s5 = 0x0; if (pixmap->drawable.depth < 24) s5 |= S5_COLOR_DITHER_ENABLE; OUT_BATCH(s5); OUT_BATCH((2 << S6_DEPTH_TEST_FUNC_SHIFT) | (2 << S6_CBUF_SRC_BLEND_FACT_SHIFT) | (1 << S6_CBUF_DST_BLEND_FACT_SHIFT) | S6_COLOR_WRITE_ENABLE | (2 << S6_TRISTRIP_PV_SHIFT)); OUT_BATCH(_3DSTATE_CONST_BLEND_COLOR_CMD); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD); OUT_BATCH(gen3_get_dst_format(sna_format_for_depth(pixmap->drawable.depth))); /* front buffer, pitch, offset */ OUT_BATCH(_3DSTATE_BUF_INFO_CMD); OUT_BATCH(BUF_3D_ID_COLOR_BACK | gen3_buf_tiling(dst_bo->tiling) | dst_bo->pitch); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, dst_bo, I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER, 0)); if (!is_planar_fourcc(frame->id)) { OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | 4); OUT_BATCH(0x0000001); /* constant 0 */ /* constant 0: brightness/contrast */ OUT_BATCH_F(video->brightness / 128.0); OUT_BATCH_F(video->contrast / 255.0); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); OUT_BATCH(_3DSTATE_SAMPLER_STATE | 3); OUT_BATCH(0x00000001); OUT_BATCH(SS2_COLORSPACE_CONVERSION | (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (0 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_MAP_STATE | 3); OUT_BATCH(0x00000001); /* texture map #1 */ OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->YBufOffset)); ms3 = MAPSURF_422; switch (frame->id) { case FOURCC_YUY2: ms3 |= MT_422_YCRCB_NORMAL; break; case FOURCC_UYVY: ms3 |= MT_422_YCRCB_SWAPY; break; } ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); shader_offset = sna->kgem.nbatch++; gen3_fs_dcl(FS_S0); gen3_fs_dcl(FS_T0); gen3_fs_texld(FS_OC, FS_S0, FS_T0); if (video->brightness != 0) { gen3_fs_add(FS_OC, gen3_fs_operand_reg(FS_OC), gen3_fs_operand(FS_C0, X, X, X, ZERO)); } } else { /* For the planar formats, we set up three samplers -- * one for each plane, in a Y8 format. Because I * couldn't get the special PLANAR_TO_PACKED * shader setup to work, I did the manual pixel shader: * * y' = y - .0625 * u' = u - .5 * v' = v - .5; * * r = 1.1643 * y' + 0.0 * u' + 1.5958 * v' * g = 1.1643 * y' - 0.39173 * u' - 0.81290 * v' * b = 1.1643 * y' + 2.017 * u' + 0.0 * v' * * register assignment: * r0 = (y',u',v',0) * r1 = (y,y,y,y) * r2 = (u,u,u,u) * r3 = (v,v,v,v) * OC = (r,g,b,1) */ OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | (22 - 2)); OUT_BATCH(0x000001f); /* constants 0-4 */ /* constant 0: normalization offsets */ OUT_BATCH_F(-0.0625); OUT_BATCH_F(-0.5); OUT_BATCH_F(-0.5); OUT_BATCH_F(0.0); /* constant 1: r coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(0.0); OUT_BATCH_F(1.5958); OUT_BATCH_F(0.0); /* constant 2: g coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(-0.39173); OUT_BATCH_F(-0.81290); OUT_BATCH_F(0.0); /* constant 3: b coefficients */ OUT_BATCH_F(1.1643); OUT_BATCH_F(2.017); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); /* constant 4: brightness/contrast */ OUT_BATCH_F(video->brightness / 128.0); OUT_BATCH_F(video->contrast / 255.0); OUT_BATCH_F(0.0); OUT_BATCH_F(0.0); OUT_BATCH(_3DSTATE_SAMPLER_STATE | 9); OUT_BATCH(0x00000007); /* sampler 0 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (0 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); /* sampler 1 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (1 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); /* sampler 2 */ OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) | (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT)); OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) | (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT) | (2 << SS3_TEXTUREMAP_INDEX_SHIFT) | SS3_NORMALIZED_COORDS); OUT_BATCH(0x00000000); OUT_BATCH(_3DSTATE_MAP_STATE | 9); OUT_BATCH(0x00000007); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->YBufOffset)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); /* check to see if Y has special pitch than normal * double u/v pitch, e.g i915 XvMC hw requires at * least 1K alignment, so Y pitch might * be same as U/V's.*/ if (frame->pitch[1]) OUT_BATCH(((frame->pitch[1] / 4) - 1) << MS4_PITCH_SHIFT); else OUT_BATCH(((frame->pitch[0] * 2 / 4) - 1) << MS4_PITCH_SHIFT); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->UBufOffset)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch, frame->bo, I915_GEM_DOMAIN_SAMPLER << 16, frame->VBufOffset)); ms3 = MAPSURF_8BIT | MT_8BIT_I8; ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT; ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT; OUT_BATCH(ms3); OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT); shader_offset = sna->kgem.nbatch++; /* Declare samplers */ gen3_fs_dcl(FS_S0); /* Y */ gen3_fs_dcl(FS_S1); /* U */ gen3_fs_dcl(FS_S2); /* V */ gen3_fs_dcl(FS_T0); /* normalized coords */ /* Load samplers to temporaries. */ gen3_fs_texld(FS_R1, FS_S0, FS_T0); gen3_fs_texld(FS_R2, FS_S1, FS_T0); gen3_fs_texld(FS_R3, FS_S2, FS_T0); /* Move the sampled YUV data in R[123] to the first * 3 channels of R0. */ gen3_fs_mov_masked(FS_R0, MASK_X, gen3_fs_operand_reg(FS_R1)); gen3_fs_mov_masked(FS_R0, MASK_Y, gen3_fs_operand_reg(FS_R2)); gen3_fs_mov_masked(FS_R0, MASK_Z, gen3_fs_operand_reg(FS_R3)); /* Normalize the YUV data */ gen3_fs_add(FS_R0, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C0)); /* dot-product the YUV data in R0 by the vectors of * coefficients for calculating R, G, and B, storing * the results in the R, G, or B channels of the output * color. The OC results are implicitly clamped * at the end of the program. */ gen3_fs_dp3(FS_OC, MASK_X, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C1)); gen3_fs_dp3(FS_OC, MASK_Y, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C2)); gen3_fs_dp3(FS_OC, MASK_Z, gen3_fs_operand_reg(FS_R0), gen3_fs_operand_reg(FS_C3)); /* Set alpha of the output to 1.0, by wiring W to 1 * and not actually using the source. */ gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one()); if (video->brightness != 0) { gen3_fs_add(FS_OC, gen3_fs_operand_reg(FS_OC), gen3_fs_operand(FS_C4, X, X, X, ZERO)); } } sna->kgem.batch[shader_offset] = _3DSTATE_PIXEL_SHADER_PROGRAM | (sna->kgem.nbatch - shader_offset - 2); /* video is the last operation in the batch, so state gets reset * afterwards automatically * gen3_reset(); */ } static void gen3_video_get_batch(struct sna *sna) { if (!kgem_check_batch(&sna->kgem, 120)) { DBG(("%s: flushing batch: nbatch %d < %d\n", __FUNCTION__, batch_space(sna), 120)); kgem_submit(&sna->kgem); } if (sna->kgem.nreloc + 4 > KGEM_RELOC_SIZE(&sna->kgem)) { DBG(("%s: flushing batch: reloc %d >= %d\n", __FUNCTION__, sna->kgem.nreloc + 4, (int)KGEM_RELOC_SIZE(&sna->kgem))); kgem_submit(&sna->kgem); } if (sna->kgem.nexec + 2 > KGEM_EXEC_SIZE(&sna->kgem)) { DBG(("%s: flushing batch: exec %d >= %d\n", __FUNCTION__, sna->kgem.nexec + 2, (int)KGEM_EXEC_SIZE(&sna->kgem))); kgem_submit(&sna->kgem); } if (sna->render_state.gen3.need_invariant) gen3_emit_invariant(sna); } static int gen3_get_inline_rectangles(struct sna *sna, int want, int floats_per_vertex) { int size = floats_per_vertex * 3; int rem = batch_space(sna) - 1; if (size * want > rem) want = rem / size; return want; } static Bool gen3_render_video(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, RegionPtr dstRegion, short src_w, short src_h, short drw_w, short drw_h, PixmapPtr pixmap) { BoxPtr pbox = REGION_RECTS(dstRegion); int nbox = REGION_NUM_RECTS(dstRegion); int dxo = dstRegion->extents.x1; int dyo = dstRegion->extents.y1; int width = dstRegion->extents.x2 - dxo; int height = dstRegion->extents.y2 - dyo; float src_scale_x, src_scale_y; int pix_xoff, pix_yoff; struct kgem_bo *dst_bo; int copy = 0; DBG(("%s: %dx%d -> %dx%d\n", __FUNCTION__, src_w, src_h, drw_w, drw_h)); if (pixmap->drawable.width > 2048 || pixmap->drawable.height > 2048 || !gen3_check_pitch_3d(sna_pixmap_get_bo(pixmap))) { int bpp = pixmap->drawable.bitsPerPixel; dst_bo = kgem_create_2d(&sna->kgem, width, height, bpp, kgem_choose_tiling(&sna->kgem, I915_TILING_X, width, height, bpp), 0); if (!dst_bo) return FALSE; pix_xoff = -dxo; pix_yoff = -dyo; copy = 1; } else { dst_bo = sna_pixmap_get_bo(pixmap); width = pixmap->drawable.width; height = pixmap->drawable.height; /* Set up the offset for translating from the given region * (in screen coordinates) to the backing pixmap. */ #ifdef COMPOSITE pix_xoff = -pixmap->screen_x + pixmap->drawable.x; pix_yoff = -pixmap->screen_y + pixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif } src_scale_x = ((float)src_w / frame->width) / drw_w; src_scale_y = ((float)src_h / frame->height) / drw_h; DBG(("%s: src offset=(%d, %d), scale=(%f, %f), dst offset=(%d, %d)\n", __FUNCTION__, dxo, dyo, src_scale_x, src_scale_y, pix_xoff, pix_yoff)); gen3_video_get_batch(sna); gen3_emit_video_state(sna, video, frame, pixmap, dst_bo, width, height); do { int nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4); if (nbox_this_time == 0) { gen3_video_get_batch(sna); gen3_emit_video_state(sna, video, frame, pixmap, dst_bo, width, height); nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4); } nbox -= nbox_this_time; OUT_BATCH(PRIM3D_RECTLIST | (12 * nbox_this_time - 1)); while (nbox_this_time--) { int box_x1 = pbox->x1; int box_y1 = pbox->y1; int box_x2 = pbox->x2; int box_y2 = pbox->y2; pbox++; DBG(("%s: box (%d, %d), (%d, %d)\n", __FUNCTION__, box_x1, box_y1, box_x2, box_y2)); /* bottom right */ OUT_BATCH_F(box_x2 + pix_xoff); OUT_BATCH_F(box_y2 + pix_yoff); OUT_BATCH_F((box_x2 - dxo) * src_scale_x); OUT_BATCH_F((box_y2 - dyo) * src_scale_y); /* bottom left */ OUT_BATCH_F(box_x1 + pix_xoff); OUT_BATCH_F(box_y2 + pix_yoff); OUT_BATCH_F((box_x1 - dxo) * src_scale_x); OUT_BATCH_F((box_y2 - dyo) * src_scale_y); /* top left */ OUT_BATCH_F(box_x1 + pix_xoff); OUT_BATCH_F(box_y1 + pix_yoff); OUT_BATCH_F((box_x1 - dxo) * src_scale_x); OUT_BATCH_F((box_y1 - dyo) * src_scale_y); } } while (nbox); if (copy) { #ifdef COMPOSITE pix_xoff = -pixmap->screen_x + pixmap->drawable.x; pix_yoff = -pixmap->screen_y + pixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif sna_blt_copy_boxes(sna, GXcopy, dst_bo, -dxo, -dyo, sna_pixmap_get_bo(pixmap), pix_xoff, pix_yoff, pixmap->drawable.bitsPerPixel, REGION_RECTS(dstRegion), REGION_NUM_RECTS(dstRegion)); kgem_bo_destroy(&sna->kgem, dst_bo); } return TRUE; } static void gen3_render_copy_setup_source(struct sna *sna, struct sna_composite_channel *channel, PixmapPtr pixmap, struct kgem_bo *bo) { channel->gen3.type = SHADER_TEXTURE; channel->filter = gen3_filter(PictFilterNearest); channel->repeat = gen3_texture_repeat(RepeatNone); channel->width = pixmap->drawable.width; channel->height = pixmap->drawable.height; channel->scale[0] = 1./pixmap->drawable.width; channel->scale[1] = 1./pixmap->drawable.height; channel->offset[0] = 0; channel->offset[1] = 0; gen3_composite_channel_set_format(channel, sna_format_for_depth(pixmap->drawable.depth)); channel->bo = bo; channel->is_affine = 1; } static Bool gen3_render_copy_boxes(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy, PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const BoxRec *box, int n) { struct sna_composite_op tmp; #if NO_COPY_BOXES return sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n); #endif DBG(("%s (%d, %d)->(%d, %d) x %d\n", __FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n)); if (sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n)) return TRUE; if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo || /* XXX handle overlap using 3D ? */ src_bo->pitch > 8192 || src->drawable.width > 2048 || src->drawable.height > 2048 || dst_bo->pitch > 8192 || dst->drawable.width > 2048 || dst->drawable.height > 2048) return sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n); if (!kgem_check_bo(&sna->kgem, dst_bo)) kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, src_bo)) kgem_submit(&sna->kgem); if (kgem_bo_is_dirty(src_bo)) kgem_emit_flush(&sna->kgem); memset(&tmp, 0, sizeof(tmp)); tmp.op = alu == GXcopy ? PictOpSrc : PictOpClear; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = dst_bo; gen3_render_copy_setup_source(sna, &tmp.src, src, src_bo); tmp.floats_per_vertex = 4; tmp.mask.gen3.type = SHADER_NONE; gen3_emit_composite_state(sna, &tmp); gen3_align_vertex(sna, &tmp); do { int n_this_time; n_this_time = gen3_get_rectangles(sna, &tmp, n); if (n_this_time == 0) { gen3_emit_composite_state(sna, &tmp); n_this_time = gen3_get_rectangles(sna, &tmp, n); } n -= n_this_time; do { DBG((" (%d, %d) -> (%d, %d) + (%d, %d)\n", box->x1 + src_dx, box->y1 + src_dy, box->x1 + dst_dx, box->y1 + dst_dy, box->x2 - box->x1, box->y2 - box->y1)); OUT_VERTEX(box->x2 + dst_dx); OUT_VERTEX(box->y2 + dst_dy); OUT_VERTEX((box->x2 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]); OUT_VERTEX(box->x1 + dst_dx); OUT_VERTEX(box->y2 + dst_dy); OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]); OUT_VERTEX(box->x1 + dst_dx); OUT_VERTEX(box->y1 + dst_dy); OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]); OUT_VERTEX((box->y1 + src_dy) * tmp.src.scale[1]); box++; } while (--n_this_time); } while (n); gen3_vertex_flush(sna); _kgem_set_mode(&sna->kgem, KGEM_RENDER); return TRUE; } static void gen3_render_copy_blt(struct sna *sna, const struct sna_copy_op *op, int16_t sx, int16_t sy, int16_t w, int16_t h, int16_t dx, int16_t dy) { if (!gen3_get_rectangles(sna, &op->base, 1)) { gen3_emit_composite_state(sna, &op->base); gen3_get_rectangles(sna, &op->base, 1); } OUT_VERTEX(dx+w); OUT_VERTEX(dy+h); OUT_VERTEX((sx+w)*op->base.src.scale[0]); OUT_VERTEX((sy+h)*op->base.src.scale[1]); OUT_VERTEX(dx); OUT_VERTEX(dy+h); OUT_VERTEX(sx*op->base.src.scale[0]); OUT_VERTEX((sy+h)*op->base.src.scale[1]); OUT_VERTEX(dx); OUT_VERTEX(dy); OUT_VERTEX(sx*op->base.src.scale[0]); OUT_VERTEX(sy*op->base.src.scale[1]); } static void gen3_render_copy_done(struct sna *sna, const struct sna_copy_op *op) { gen3_vertex_flush(sna); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } static Bool gen3_render_copy(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr dst, struct kgem_bo *dst_bo, struct sna_copy_op *tmp) { #if NO_COPY return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op); #endif /* Prefer to use the BLT */ if (sna->kgem.mode == KGEM_BLT && src->drawable.bitsPerPixel == dst->drawable.bitsPerPixel && sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, tmp)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || src->drawable.width > 2048 || src->drawable.height > 2048 || dst->drawable.width > 2048 || dst->drawable.height > 2048 || src_bo->pitch > 8192 || dst_bo->pitch > 8192) { if (src->drawable.bitsPerPixel != dst->drawable.bitsPerPixel) return FALSE; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, tmp); } tmp->base.op = alu == GXcopy ? PictOpSrc : PictOpClear; tmp->base.dst.pixmap = dst; tmp->base.dst.width = dst->drawable.width; tmp->base.dst.height = dst->drawable.height; tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth); tmp->base.dst.bo = dst_bo; gen3_render_copy_setup_source(sna, &tmp->base.src, src, src_bo); tmp->base.floats_per_vertex = 4; tmp->base.mask.gen3.type = SHADER_NONE; if (!kgem_check_bo(&sna->kgem, dst_bo)) kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, src_bo)) kgem_submit(&sna->kgem); tmp->blt = gen3_render_copy_blt; tmp->done = gen3_render_copy_done; gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; } static Bool gen3_render_fill_boxes_try_blt(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, PixmapPtr dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { uint8_t alu = GXcopy; uint32_t pixel; if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, format)) return FALSE; if (op == PictOpClear) { alu = GXclear; pixel = 0; op = PictOpSrc; } if (op == PictOpOver) { if ((pixel & 0xff000000) == 0xff000000) op = PictOpSrc; } if (op != PictOpSrc) return FALSE; return sna_blt_fill_boxes(sna, alu, dst_bo, dst->drawable.bitsPerPixel, pixel, box, n); } static Bool gen3_render_fill_boxes(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, PixmapPtr dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { struct sna_composite_op tmp; uint32_t pixel; #if NO_FILL_BOXES return gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n); #endif DBG(("%s (op=%d, color=(%04x,%04x,%04x, %04x))\n", __FUNCTION__, op, color->red, color->green, color->blue, color->alpha)); if (op >= ARRAY_SIZE(gen3_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } if (dst->drawable.width > 2048 || dst->drawable.height > 2048 || dst_bo->pitch > 8192) return gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n); if (gen3_render_fill_boxes_try_blt(sna, op, format, color, dst, dst_bo, box, n)) return TRUE; if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, PICT_a8r8g8b8)) return FALSE; memset(&tmp, 0, sizeof(tmp)); tmp.op = op; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = format; tmp.dst.bo = dst_bo; tmp.floats_per_vertex = 2; tmp.src.gen3.type = SHADER_CONSTANT; tmp.src.gen3.mode = pixel; if (!kgem_check_bo(&sna->kgem, dst_bo)) kgem_submit(&sna->kgem); gen3_emit_composite_state(sna, &tmp); gen3_align_vertex(sna, &tmp); do { int n_this_time = gen3_get_rectangles(sna, &tmp, n); if (n_this_time == 0) { gen3_emit_composite_state(sna, &tmp); n_this_time = gen3_get_rectangles(sna, &tmp, n); } n -= n_this_time; do { DBG((" (%d, %d), (%d, %d)\n", box->x1, box->y1, box->x2, box->y2)); OUT_VERTEX(box->x2); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y2); OUT_VERTEX(box->x1); OUT_VERTEX(box->y1); box++; } while (--n_this_time); } while (n); gen3_vertex_flush(sna); _kgem_set_mode(&sna->kgem, KGEM_RENDER); return TRUE; } static void gen3_render_fill_blt(struct sna *sna, const struct sna_fill_op *op, int16_t x, int16_t y, int16_t w, int16_t h) { if (!gen3_get_rectangles(sna, &op->base, 1)) { gen3_emit_composite_state(sna, &op->base); gen3_get_rectangles(sna, &op->base, 1); } OUT_VERTEX(x+w); OUT_VERTEX(y+h); OUT_VERTEX(x); OUT_VERTEX(y+h); OUT_VERTEX(x); OUT_VERTEX(y); } static void gen3_render_fill_done(struct sna *sna, const struct sna_fill_op *op) { gen3_vertex_flush(sna); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } static Bool gen3_render_fill(struct sna *sna, uint8_t alu, PixmapPtr dst, struct kgem_bo *dst_bo, uint32_t color, struct sna_fill_op *tmp) { #if NO_FILL return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op); #endif /* Prefer to use the BLT if already engaged */ if (sna->kgem.mode == KGEM_BLT && sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, tmp)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || dst->drawable.width > 2048 || dst->drawable.height > 2048 || dst_bo->pitch > 8192) return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, tmp); if (alu == GXclear) color = 0; tmp->base.op = color == 0 ? PictOpClear : PictOpSrc; tmp->base.dst.pixmap = dst; tmp->base.dst.width = dst->drawable.width; tmp->base.dst.height = dst->drawable.height; tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth); tmp->base.dst.bo = dst_bo; tmp->base.floats_per_vertex = 2; tmp->base.src.gen3.type = SHADER_CONSTANT; tmp->base.src.gen3.mode = sna_rgba_for_color(color, dst->drawable.depth); if (!kgem_check_bo(&sna->kgem, dst_bo)) kgem_submit(&sna->kgem); tmp->blt = gen3_render_fill_blt; tmp->done = gen3_render_fill_done; gen3_emit_composite_state(sna, &tmp->base); gen3_align_vertex(sna, &tmp->base); return TRUE; } static void gen3_render_flush(struct sna *sna) { gen3_vertex_finish(sna, TRUE); } static void gen3_render_context_switch(struct sna *sna, int new_mode) { } static void gen3_render_fini(struct sna *sna) { } Bool gen3_render_init(struct sna *sna) { struct sna_render *render = &sna->render; gen3_render_reset(sna); render->composite = gen3_render_composite; render->composite_spans = gen3_render_composite_spans; render->video = gen3_render_video; render->copy_boxes = gen3_render_copy_boxes; render->copy = gen3_render_copy; render->fill_boxes = gen3_render_fill_boxes; render->fill = gen3_render_fill; render->reset = gen3_render_reset; render->flush = gen3_render_flush; render->context_switch = gen3_render_context_switch; render->fini = gen3_render_fini; render->max_3d_size = 2048; return TRUE; }