/* * Copyright © 2006,2008,2011 Intel Corporation * Copyright © 2007 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Wang Zhenyu * Eric Anholt * Carl Worth * Keith Packard * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "sna.h" #include "sna_reg.h" #include "sna_render.h" #include "sna_render_inline.h" #include "sna_video.h" #include "gen4_render.h" #if DEBUG_RENDER #undef DBG #define DBG(x) ErrorF x #endif /* gen4 has a serious issue with its shaders that we need to flush * after every rectangle... So until that is resolved, prefer * the BLT engine. */ #define PREFER_BLT 1 #define FLUSH_EVERY_VERTEX 1 #define NO_COMPOSITE 0 #define NO_COPY 0 #define NO_COPY_BOXES 0 #define NO_FILL 0 #define NO_FILL_BOXES 0 #if FLUSH_EVERY_VERTEX #define FLUSH(OP) do { \ gen4_vertex_flush(sna); \ gen4_magic_ca_pass(sna, OP); \ OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH); \ } while (0) #else #define FLUSH(OP) #endif #define GEN4_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1) /* Set up a default static partitioning of the URB, which is supposed to * allow anything we would want to do, at potentially lower performance. */ #define URB_CS_ENTRY_SIZE 1 #define URB_CS_ENTRIES 0 #define URB_VS_ENTRY_SIZE 1 // each 512-bit row #define URB_VS_ENTRIES 8 // we needs at least 8 entries #define URB_GS_ENTRY_SIZE 0 #define URB_GS_ENTRIES 0 #define URB_CLIP_ENTRY_SIZE 0 #define URB_CLIP_ENTRIES 0 #define URB_SF_ENTRY_SIZE 2 #define URB_SF_ENTRIES 1 /* * this program computes dA/dx and dA/dy for the texture coordinates along * with the base texture coordinate. It was extracted from the Mesa driver */ #define SF_KERNEL_NUM_GRF 16 #define SF_MAX_THREADS 2 #define PS_KERNEL_NUM_GRF 32 #define PS_MAX_THREADS 48 static const uint32_t sf_kernel[][4] = { #include "exa_sf.g4b" }; static const uint32_t sf_kernel_mask[][4] = { #include "exa_sf_mask.g4b" }; static const uint32_t ps_kernel_nomask_affine[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_nomask_projective[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_affine[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_projective[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_srcalpha_affine[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_a.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca_srcalpha.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_maskca_srcalpha_projective[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_a.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_argb.g4b" #include "exa_wm_ca_srcalpha.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_masknoca_affine[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_affine.g4b" #include "exa_wm_mask_sample_a.g4b" #include "exa_wm_noca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_masknoca_projective[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_projective.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_mask_projective.g4b" #include "exa_wm_mask_sample_a.g4b" #include "exa_wm_noca.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_packed_static[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_argb.g4b" #include "exa_wm_yuv_rgb.g4b" #include "exa_wm_write.g4b" }; static const uint32_t ps_kernel_planar_static[][4] = { #include "exa_wm_xy.g4b" #include "exa_wm_src_affine.g4b" #include "exa_wm_src_sample_planar.g4b" #include "exa_wm_yuv_rgb.g4b" #include "exa_wm_write.g4b" }; #define KERNEL(kernel_enum, kernel, masked) \ [kernel_enum] = {&kernel, sizeof(kernel), masked} static const struct wm_kernel_info { const void *data; unsigned int size; Bool has_mask; } wm_kernels[] = { KERNEL(WM_KERNEL, ps_kernel_nomask_affine, FALSE), KERNEL(WM_KERNEL_PROJECTIVE, ps_kernel_nomask_projective, FALSE), KERNEL(WM_KERNEL_MASK, ps_kernel_masknoca_affine, TRUE), KERNEL(WM_KERNEL_MASK_PROJECTIVE, ps_kernel_masknoca_projective, TRUE), KERNEL(WM_KERNEL_MASKCA, ps_kernel_maskca_affine, TRUE), KERNEL(WM_KERNEL_MASKCA_PROJECTIVE, ps_kernel_maskca_projective, TRUE), KERNEL(WM_KERNEL_MASKCA_SRCALPHA, ps_kernel_maskca_srcalpha_affine, TRUE), KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE, ps_kernel_maskca_srcalpha_projective, TRUE), KERNEL(WM_KERNEL_VIDEO_PLANAR, ps_kernel_planar_static, FALSE), KERNEL(WM_KERNEL_VIDEO_PACKED, ps_kernel_packed_static, FALSE), }; #undef KERNEL static const struct blendinfo { Bool src_alpha; uint32_t src_blend; uint32_t dst_blend; } gen4_blend_op[] = { /* Clear */ {0, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_ZERO}, /* Src */ {0, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_ZERO}, /* Dst */ {0, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_ONE}, /* Over */ {1, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_INV_SRC_ALPHA}, /* OverReverse */ {0, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_ONE}, /* In */ {0, GEN4_BLENDFACTOR_DST_ALPHA, GEN4_BLENDFACTOR_ZERO}, /* InReverse */ {1, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_SRC_ALPHA}, /* Out */ {0, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_ZERO}, /* OutReverse */ {1, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_INV_SRC_ALPHA}, /* Atop */ {1, GEN4_BLENDFACTOR_DST_ALPHA, GEN4_BLENDFACTOR_INV_SRC_ALPHA}, /* AtopReverse */ {1, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_SRC_ALPHA}, /* Xor */ {1, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_INV_SRC_ALPHA}, /* Add */ {0, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_ONE}, }; /** * Highest-valued BLENDFACTOR used in gen4_blend_op. * * This leaves out GEN4_BLENDFACTOR_INV_DST_COLOR, * GEN4_BLENDFACTOR_INV_CONST_{COLOR,ALPHA}, * GEN4_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA} */ #define GEN4_BLENDFACTOR_COUNT (GEN4_BLENDFACTOR_INV_DST_ALPHA + 1) static const struct formatinfo { CARD32 pict_fmt; uint32_t card_fmt; } gen4_tex_formats[] = { {PICT_a8, GEN4_SURFACEFORMAT_A8_UNORM}, {PICT_a8r8g8b8, GEN4_SURFACEFORMAT_B8G8R8A8_UNORM}, {PICT_x8r8g8b8, GEN4_SURFACEFORMAT_B8G8R8X8_UNORM}, {PICT_a8b8g8r8, GEN4_SURFACEFORMAT_R8G8B8A8_UNORM}, {PICT_x8b8g8r8, GEN4_SURFACEFORMAT_R8G8B8X8_UNORM}, {PICT_r8g8b8, GEN4_SURFACEFORMAT_R8G8B8_UNORM}, {PICT_r5g6b5, GEN4_SURFACEFORMAT_B5G6R5_UNORM}, {PICT_a1r5g5b5, GEN4_SURFACEFORMAT_B5G5R5A1_UNORM}, {PICT_a2r10g10b10, GEN4_SURFACEFORMAT_B10G10R10A2_UNORM}, {PICT_x2r10g10b10, GEN4_SURFACEFORMAT_B10G10R10X2_UNORM}, {PICT_a2b10g10r10, GEN4_SURFACEFORMAT_R10G10B10A2_UNORM}, {PICT_x2r10g10b10, GEN4_SURFACEFORMAT_B10G10R10X2_UNORM}, {PICT_a4r4g4b4, GEN4_SURFACEFORMAT_B4G4R4A4_UNORM}, }; #define BLEND_OFFSET(s, d) \ (((s) * GEN4_BLENDFACTOR_COUNT + (d)) * 64) #define SAMPLER_OFFSET(sf, se, mf, me, k) \ ((((((sf) * EXTEND_COUNT + (se)) * FILTER_COUNT + (mf)) * EXTEND_COUNT + (me)) * KERNEL_COUNT + (k)) * 64) static void gen4_emit_pipelined_pointers(struct sna *sna, const struct sna_composite_op *op, int blend, int kernel); #define OUT_BATCH(v) batch_emit(sna, v) #define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y) #define OUT_VERTEX_F(v) vertex_emit(sna, v) #define GEN4_MAX_3D_SIZE 8192 static inline bool too_large(int width, int height) { return width > GEN4_MAX_3D_SIZE || height > GEN4_MAX_3D_SIZE; } static int gen4_choose_composite_kernel(int op, Bool has_mask, Bool is_ca, Bool is_affine) { int base; if (has_mask) { if (is_ca) { if (gen4_blend_op[op].src_alpha) base = WM_KERNEL_MASKCA_SRCALPHA; else base = WM_KERNEL_MASKCA; } else base = WM_KERNEL_MASK; } else base = WM_KERNEL; return base + !is_affine; } static void gen4_magic_ca_pass(struct sna *sna, const struct sna_composite_op *op) { struct gen4_render_state *state = &sna->render_state.gen4; if (!op->need_magic_ca_pass) return; DBG(("%s: CA fixup\n", __FUNCTION__)); assert(op->mask.bo != NULL); assert(op->has_component_alpha); if (FLUSH_EVERY_VERTEX) OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH); gen4_emit_pipelined_pointers(sna, op, PictOpAdd, gen4_choose_composite_kernel(PictOpAdd, TRUE, TRUE, op->is_affine)); OUT_BATCH(GEN4_3DPRIMITIVE | GEN4_3DPRIMITIVE_VERTEX_SEQUENTIAL | (_3DPRIM_RECTLIST << GEN4_3DPRIMITIVE_TOPOLOGY_SHIFT) | (0 << 9) | 4); OUT_BATCH(sna->render.vertex_index - sna->render.vertex_start); OUT_BATCH(sna->render.vertex_start); OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ state->last_primitive = sna->kgem.nbatch; } static void gen4_vertex_flush(struct sna *sna) { assert(sna->render_state.gen4.vertex_offset); DBG(("%s[%x] = %d\n", __FUNCTION__, 4*sna->render_state.gen4.vertex_offset, sna->render.vertex_index - sna->render.vertex_start)); sna->kgem.batch[sna->render_state.gen4.vertex_offset] = sna->render.vertex_index - sna->render.vertex_start; sna->render_state.gen4.vertex_offset = 0; } static int gen4_vertex_finish(struct sna *sna) { struct kgem_bo *bo; unsigned int i; assert(sna->render.vertex_used); /* Note: we only need dword alignment (currently) */ bo = sna->render.vbo; if (bo) { if (sna->render_state.gen4.vertex_offset) gen4_vertex_flush(sna); for (i = 0; i < ARRAY_SIZE(sna->render.vertex_reloc); i++) { if (sna->render.vertex_reloc[i]) { DBG(("%s: reloc[%d] = %d\n", __FUNCTION__, i, sna->render.vertex_reloc[i])); sna->kgem.batch[sna->render.vertex_reloc[i]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[i], bo, I915_GEM_DOMAIN_VERTEX << 16, 0); sna->render.vertex_reloc[i] = 0; } } sna->render.vertex_used = 0; sna->render.vertex_index = 0; sna->render_state.gen4.vb_id = 0; kgem_bo_destroy(&sna->kgem, bo); } sna->render.vertices = NULL; sna->render.vbo = kgem_create_linear(&sna->kgem, 256*1024, CREATE_GTT_MAP); if (sna->render.vbo) sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo); if (sna->render.vertices == NULL) { kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; return 0; } if (sna->render.vertex_used) { memcpy(sna->render.vertices, sna->render.vertex_data, sizeof(float)*sna->render.vertex_used); } sna->render.vertex_size = 64 * 1024 - 1; return sna->render.vertex_size - sna->render.vertex_used; } static void gen4_vertex_close(struct sna *sna) { struct kgem_bo *bo; unsigned int i, delta = 0; if (!sna->render.vertex_used) { assert(sna->render.vbo == NULL); assert(sna->render.vertices == sna->render.vertex_data); assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data)); return; } DBG(("%s: used=%d\n", __FUNCTION__, sna->render.vertex_used)); bo = sna->render.vbo; if (bo == NULL) { if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) { DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__, sna->render.vertex_used, sna->kgem.nbatch)); memcpy(sna->kgem.batch + sna->kgem.nbatch, sna->render.vertex_data, sna->render.vertex_used * 4); delta = sna->kgem.nbatch * 4; bo = NULL; sna->kgem.nbatch += sna->render.vertex_used; } else { bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used, 0); if (bo && !kgem_bo_write(&sna->kgem, bo, sna->render.vertex_data, 4*sna->render.vertex_used)) { kgem_bo_destroy(&sna->kgem, bo); goto reset; } DBG(("%s: new vbo: %d\n", __FUNCTION__, sna->render.vertex_used)); } } for (i = 0; i < ARRAY_SIZE(sna->render.vertex_reloc); i++) { if (sna->render.vertex_reloc[i]) { DBG(("%s: reloc[%d] = %d\n", __FUNCTION__, i, sna->render.vertex_reloc[i])); sna->kgem.batch[sna->render.vertex_reloc[i]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[i], bo, I915_GEM_DOMAIN_VERTEX << 16, delta); sna->render.vertex_reloc[i] = 0; } } if (bo) kgem_bo_destroy(&sna->kgem, bo); reset: sna->render.vertex_used = 0; sna->render.vertex_index = 0; sna->render_state.gen4.vb_id = 0; sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); } static uint32_t gen4_get_blend(int op, Bool has_component_alpha, uint32_t dst_format) { uint32_t src, dst; src = gen4_blend_op[op].src_blend; dst = gen4_blend_op[op].dst_blend; /* If there's no dst alpha channel, adjust the blend op so that we'll treat * it as always 1. */ if (PICT_FORMAT_A(dst_format) == 0) { if (src == GEN4_BLENDFACTOR_DST_ALPHA) src = GEN4_BLENDFACTOR_ONE; else if (src == GEN4_BLENDFACTOR_INV_DST_ALPHA) src = GEN4_BLENDFACTOR_ZERO; } /* If the source alpha is being used, then we should only be in a * case where the source blend factor is 0, and the source blend * value is the mask channels multiplied by the source picture's alpha. */ if (has_component_alpha && gen4_blend_op[op].src_alpha) { if (dst == GEN4_BLENDFACTOR_SRC_ALPHA) dst = GEN4_BLENDFACTOR_SRC_COLOR; else if (dst == GEN4_BLENDFACTOR_INV_SRC_ALPHA) dst = GEN4_BLENDFACTOR_INV_SRC_COLOR; } DBG(("blend op=%d, dst=%x [A=%d] => src=%d, dst=%d => offset=%x\n", op, dst_format, PICT_FORMAT_A(dst_format), src, dst, BLEND_OFFSET(src, dst))); return BLEND_OFFSET(src, dst); } static uint32_t gen4_get_dest_format(PictFormat format) { switch (format) { default: assert(0); case PICT_a8r8g8b8: case PICT_x8r8g8b8: return GEN4_SURFACEFORMAT_B8G8R8A8_UNORM; case PICT_a8b8g8r8: case PICT_x8b8g8r8: return GEN4_SURFACEFORMAT_R8G8B8A8_UNORM; case PICT_a2r10g10b10: case PICT_x2r10g10b10: return GEN4_SURFACEFORMAT_B10G10R10A2_UNORM; case PICT_r5g6b5: return GEN4_SURFACEFORMAT_B5G6R5_UNORM; case PICT_x1r5g5b5: case PICT_a1r5g5b5: return GEN4_SURFACEFORMAT_B5G5R5A1_UNORM; case PICT_a8: return GEN4_SURFACEFORMAT_A8_UNORM; case PICT_a4r4g4b4: case PICT_x4r4g4b4: return GEN4_SURFACEFORMAT_B4G4R4A4_UNORM; } } static Bool gen4_check_dst_format(PictFormat format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_r5g6b5: case PICT_x1r5g5b5: case PICT_a1r5g5b5: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: return TRUE; default: DBG(("%s: unhandled format: %x\n", __FUNCTION__, (int)format)); return FALSE; } } static bool gen4_check_format(uint32_t format) { switch (format) { case PICT_a8r8g8b8: case PICT_x8r8g8b8: case PICT_a8b8g8r8: case PICT_x8b8g8r8: case PICT_a2r10g10b10: case PICT_x2r10g10b10: case PICT_r8g8b8: case PICT_r5g6b5: case PICT_a1r5g5b5: case PICT_a8: case PICT_a4r4g4b4: case PICT_x4r4g4b4: return true; default: DBG(("%s: unhandled format: %x\n", __FUNCTION__, format)); return false; } } typedef struct gen4_surface_state_padded { struct gen4_surface_state state; char pad[32 - sizeof(struct gen4_surface_state)]; } gen4_surface_state_padded; static void null_create(struct sna_static_stream *stream) { /* A bunch of zeros useful for legacy border color and depth-stencil */ sna_static_stream_map(stream, 64, 64); } static void sampler_state_init(struct gen4_sampler_state *sampler_state, sampler_filter_t filter, sampler_extend_t extend) { sampler_state->ss0.lod_preclamp = 1; /* GL mode */ /* We use the legacy mode to get the semantics specified by * the Render extension. */ sampler_state->ss0.border_color_mode = GEN4_BORDER_COLOR_MODE_LEGACY; switch (filter) { default: case SAMPLER_FILTER_NEAREST: sampler_state->ss0.min_filter = GEN4_MAPFILTER_NEAREST; sampler_state->ss0.mag_filter = GEN4_MAPFILTER_NEAREST; break; case SAMPLER_FILTER_BILINEAR: sampler_state->ss0.min_filter = GEN4_MAPFILTER_LINEAR; sampler_state->ss0.mag_filter = GEN4_MAPFILTER_LINEAR; break; } switch (extend) { default: case SAMPLER_EXTEND_NONE: sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER; break; case SAMPLER_EXTEND_REPEAT: sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_WRAP; sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_WRAP; sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_WRAP; break; case SAMPLER_EXTEND_PAD: sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_CLAMP; sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_CLAMP; sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_CLAMP; break; case SAMPLER_EXTEND_REFLECT: sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_MIRROR; sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_MIRROR; sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_MIRROR; break; } } static uint32_t gen4_get_card_format(PictFormat format) { unsigned int i; for (i = 0; i < ARRAY_SIZE(gen4_tex_formats); i++) { if (gen4_tex_formats[i].pict_fmt == format) return gen4_tex_formats[i].card_fmt; } return -1; } static uint32_t gen4_filter(uint32_t filter) { switch (filter) { default: assert(0); case PictFilterNearest: return SAMPLER_FILTER_NEAREST; case PictFilterBilinear: return SAMPLER_FILTER_BILINEAR; } } static uint32_t gen4_check_filter(PicturePtr picture) { switch (picture->filter) { case PictFilterNearest: case PictFilterBilinear: return TRUE; default: DBG(("%s: unknown filter: %s [%d]\n", __FUNCTION__, PictureGetFilterName(picture->filter), picture->filter)); return FALSE; } } static uint32_t gen4_repeat(uint32_t repeat) { switch (repeat) { default: assert(0); case RepeatNone: return SAMPLER_EXTEND_NONE; case RepeatNormal: return SAMPLER_EXTEND_REPEAT; case RepeatPad: return SAMPLER_EXTEND_PAD; case RepeatReflect: return SAMPLER_EXTEND_REFLECT; } } static bool gen4_check_repeat(PicturePtr picture) { if (!picture->repeat) return TRUE; switch (picture->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: return TRUE; default: DBG(("%s: unknown repeat: %d\n", __FUNCTION__, picture->repeatType)); return FALSE; } } /** * Sets up the common fields for a surface state buffer for the given * picture in the given surface state buffer. */ static int gen4_bind_bo(struct sna *sna, struct kgem_bo *bo, uint32_t width, uint32_t height, uint32_t format, Bool is_dst) { struct gen4_surface_state *ss; uint32_t domains; uint16_t offset; /* After the first bind, we manage the cache domains within the batch */ if (is_dst) { domains = I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER; kgem_bo_mark_dirty(bo); } else domains = I915_GEM_DOMAIN_SAMPLER << 16; offset = kgem_bo_get_binding(bo, format); if (offset) return offset; offset = sna->kgem.surface - sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); offset *= sizeof(uint32_t); sna->kgem.surface -= sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); ss = memset(sna->kgem.batch + sna->kgem.surface, 0, sizeof(*ss)); ss->ss0.surface_type = GEN4_SURFACE_2D; ss->ss0.surface_format = format; ss->ss0.data_return_format = GEN4_SURFACERETURNFORMAT_FLOAT32; ss->ss0.color_blend = 1; ss->ss1.base_addr = kgem_add_reloc(&sna->kgem, sna->kgem.surface + 1, bo, domains, 0); ss->ss2.height = height - 1; ss->ss2.width = width - 1; ss->ss3.pitch = bo->pitch - 1; ss->ss3.tiled_surface = bo->tiling != I915_TILING_NONE; ss->ss3.tile_walk = bo->tiling == I915_TILING_Y; kgem_bo_set_binding(bo, format, offset); DBG(("[%x] bind bo(handle=%d, addr=%d), format=%d, width=%d, height=%d, pitch=%d, tiling=%d -> %s\n", offset, bo->handle, ss->ss1.base_addr, ss->ss0.surface_format, width, height, bo->pitch, bo->tiling, domains & 0xffff ? "render" : "sampler")); return offset; } fastcall static void gen4_emit_composite_primitive_solid(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = 1.; v[2] = 1.; dst.p.x = r->dst.x; v[3] = dst.f; v[4] = 0.; v[5] = 1.; dst.p.y = r->dst.y; v[6] = dst.f; v[7] = 0.; v[8] = 0.; } fastcall static void gen4_emit_composite_primitive_identity_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { const float *sf = op->src.scale; float sx, sy, *v; union { struct sna_coordinate p; float f; } dst; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; sx = r->src.x + op->src.offset[0]; sy = r->src.y + op->src.offset[1]; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = (sx + r->width) * sf[0]; v[2] = (sy + r->height) * sf[1]; dst.p.x = r->dst.x; v[3] = dst.f; v[4] = sx * sf[0]; v[5] = v[2]; dst.p.y = r->dst.y; v[6] = dst.f; v[7] = v[4]; v[8] = sy * sf[1]; } fastcall static void gen4_emit_composite_primitive_affine_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float *v; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; _sna_get_transformed_coordinates(op->src.offset[0] + r->src.x + r->width, op->src.offset[1] + r->src.y + r->height, op->src.transform, &v[1], &v[2]); v[1] *= op->src.scale[0]; v[2] *= op->src.scale[1]; dst.p.x = r->dst.x; v[3] = dst.f; _sna_get_transformed_coordinates(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y + r->height, op->src.transform, &v[4], &v[5]); v[4] *= op->src.scale[0]; v[5] *= op->src.scale[1]; dst.p.y = r->dst.y; v[6] = dst.f; _sna_get_transformed_coordinates(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y, op->src.transform, &v[7], &v[8]); v[7] *= op->src.scale[0]; v[8] *= op->src.scale[1]; } fastcall static void gen4_emit_composite_primitive_identity_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float src_x, src_y; float msk_x, msk_y; float w, h; float *v; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = (src_x + w) * op->src.scale[0]; v[2] = (src_y + h) * op->src.scale[1]; v[3] = (msk_x + w) * op->mask.scale[0]; v[4] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[5] = dst.f; v[6] = src_x * op->src.scale[0]; v[7] = v[2]; v[8] = msk_x * op->mask.scale[0]; v[9] = v[4]; dst.p.y = r->dst.y; v[10] = dst.f; v[11] = v[6]; v[12] = src_y * op->src.scale[1]; v[13] = v[8]; v[14] = msk_y * op->mask.scale[1]; } fastcall static void gen4_emit_composite_primitive(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float src_x[3], src_y[3], src_w[3], mask_x[3], mask_y[3], mask_w[3]; Bool is_affine = op->is_affine; const float *src_sf = op->src.scale; const float *mask_sf = op->mask.scale; if (is_affine) { sna_get_transformed_coordinates(r->src.x + op->src.offset[0], r->src.y + op->src.offset[1], op->src.transform, &src_x[0], &src_y[0]); sna_get_transformed_coordinates(r->src.x + op->src.offset[0], r->src.y + op->src.offset[1] + r->height, op->src.transform, &src_x[1], &src_y[1]); sna_get_transformed_coordinates(r->src.x + op->src.offset[0] + r->width, r->src.y + op->src.offset[1] + r->height, op->src.transform, &src_x[2], &src_y[2]); } else { if (!sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0], r->src.y + op->src.offset[1], op->src.transform, &src_x[0], &src_y[0], &src_w[0])) return; if (!sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0], r->src.y + op->src.offset[1] + r->height, op->src.transform, &src_x[1], &src_y[1], &src_w[1])) return; if (!sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0] + r->width, r->src.y + op->src.offset[1] + r->height, op->src.transform, &src_x[2], &src_y[2], &src_w[2])) return; } if (op->mask.bo) { if (is_affine) { sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0], r->mask.y + op->mask.offset[1], op->mask.transform, &mask_x[0], &mask_y[0]); sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0], r->mask.y + op->mask.offset[1] + r->height, op->mask.transform, &mask_x[1], &mask_y[1]); sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0] + r->width, r->mask.y + op->mask.offset[1] + r->height, op->mask.transform, &mask_x[2], &mask_y[2]); } else { if (!sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0], r->mask.y + op->mask.offset[1], op->mask.transform, &mask_x[0], &mask_y[0], &mask_w[0])) return; if (!sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0], r->mask.y + op->mask.offset[1] + r->height, op->mask.transform, &mask_x[1], &mask_y[1], &mask_w[1])) return; if (!sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0] + r->width, r->mask.y + op->mask.offset[1] + r->height, op->mask.transform, &mask_x[2], &mask_y[2], &mask_w[2])) return; } } OUT_VERTEX(r->dst.x + r->width, r->dst.y + r->height); OUT_VERTEX_F(src_x[2] * src_sf[0]); OUT_VERTEX_F(src_y[2] * src_sf[1]); if (!is_affine) OUT_VERTEX_F(src_w[2]); if (op->mask.bo) { OUT_VERTEX_F(mask_x[2] * mask_sf[0]); OUT_VERTEX_F(mask_y[2] * mask_sf[1]); if (!is_affine) OUT_VERTEX_F(mask_w[2]); } OUT_VERTEX(r->dst.x, r->dst.y + r->height); OUT_VERTEX_F(src_x[1] * src_sf[0]); OUT_VERTEX_F(src_y[1] * src_sf[1]); if (!is_affine) OUT_VERTEX_F(src_w[1]); if (op->mask.bo) { OUT_VERTEX_F(mask_x[1] * mask_sf[0]); OUT_VERTEX_F(mask_y[1] * mask_sf[1]); if (!is_affine) OUT_VERTEX_F(mask_w[1]); } OUT_VERTEX(r->dst.x, r->dst.y); OUT_VERTEX_F(src_x[0] * src_sf[0]); OUT_VERTEX_F(src_y[0] * src_sf[1]); if (!is_affine) OUT_VERTEX_F(src_w[0]); if (op->mask.bo) { OUT_VERTEX_F(mask_x[0] * mask_sf[0]); OUT_VERTEX_F(mask_y[0] * mask_sf[1]); if (!is_affine) OUT_VERTEX_F(mask_w[0]); } } static void gen4_emit_vertex_buffer(struct sna *sna, const struct sna_composite_op *op) { int id = op->u.gen4.ve_id; OUT_BATCH(GEN4_3DSTATE_VERTEX_BUFFERS | 3); OUT_BATCH((id << VB0_BUFFER_INDEX_SHIFT) | VB0_VERTEXDATA | (4*op->floats_per_vertex << VB0_BUFFER_PITCH_SHIFT)); sna->render.vertex_reloc[id] = sna->kgem.nbatch; OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); sna->render_state.gen4.vb_id |= 1 << id; } static void gen4_emit_primitive(struct sna *sna) { if (sna->kgem.nbatch == sna->render_state.gen4.last_primitive) { sna->render_state.gen4.vertex_offset = sna->kgem.nbatch - 5; return; } OUT_BATCH(GEN4_3DPRIMITIVE | GEN4_3DPRIMITIVE_VERTEX_SEQUENTIAL | (_3DPRIM_RECTLIST << GEN4_3DPRIMITIVE_TOPOLOGY_SHIFT) | (0 << 9) | 4); sna->render_state.gen4.vertex_offset = sna->kgem.nbatch; OUT_BATCH(0); /* vertex count, to be filled in later */ OUT_BATCH(sna->render.vertex_index); OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ sna->render.vertex_start = sna->render.vertex_index; sna->render_state.gen4.last_primitive = sna->kgem.nbatch; } static bool gen4_rectangle_begin(struct sna *sna, const struct sna_composite_op *op) { int id = op->u.gen4.ve_id; int ndwords; /* 7xpipelined pointers + 6xprimitive + 1xflush */ ndwords = op->need_magic_ca_pass? 20 : 6; if (FLUSH_EVERY_VERTEX) ndwords += 1; if ((sna->render_state.gen4.vb_id & (1 << id)) == 0) ndwords += 5; if (!kgem_check_batch(&sna->kgem, ndwords)) return false; if ((sna->render_state.gen4.vb_id & (1 << id)) == 0) gen4_emit_vertex_buffer(sna, op); if (sna->render_state.gen4.vertex_offset == 0) gen4_emit_primitive(sna); return true; } static int gen4_get_rectangles__flush(struct sna *sna, const struct sna_composite_op *op) { if (!kgem_check_batch(&sna->kgem, 25)) return 0; if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - 1) return 0; if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - 1) return 0; if (op->need_magic_ca_pass && sna->render.vbo) return 0; return gen4_vertex_finish(sna); } inline static int gen4_get_rectangles(struct sna *sna, const struct sna_composite_op *op, int want, void (*emit_state)(struct sna *sna, const struct sna_composite_op *op)) { int rem; start: rem = vertex_space(sna); if (rem < 3*op->floats_per_vertex) { DBG(("flushing vbo for %s: %d < %d\n", __FUNCTION__, rem, 3*op->floats_per_vertex)); rem = gen4_get_rectangles__flush(sna, op); if (unlikely(rem == 0)) goto flush; } if (unlikely(sna->render_state.gen4.vertex_offset == 0 && !gen4_rectangle_begin(sna, op))) goto flush; if (want > 1 && want * op->floats_per_vertex*3 > rem) want = rem / (3*op->floats_per_vertex); sna->render.vertex_index += 3*want; return want; flush: if (sna->render_state.gen4.vertex_offset) { gen4_vertex_flush(sna); gen4_magic_ca_pass(sna, op); } _kgem_submit(&sna->kgem); emit_state(sna, op); goto start; } static uint32_t *gen4_composite_get_binding_table(struct sna *sna, uint16_t *offset) { sna->kgem.surface -= sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); DBG(("%s(%x)\n", __FUNCTION__, 4*sna->kgem.surface)); /* Clear all surplus entries to zero in case of prefetch */ *offset = sna->kgem.surface; return memset(sna->kgem.batch + sna->kgem.surface, 0, sizeof(struct gen4_surface_state_padded)); } static void gen4_emit_urb(struct sna *sna) { int urb_vs_start, urb_vs_size; int urb_gs_start, urb_gs_size; int urb_clip_start, urb_clip_size; int urb_sf_start, urb_sf_size; int urb_cs_start, urb_cs_size; if (!sna->render_state.gen4.needs_urb) return; urb_vs_start = 0; urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE; urb_gs_start = urb_vs_start + urb_vs_size; urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE; urb_clip_start = urb_gs_start + urb_gs_size; urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE; urb_sf_start = urb_clip_start + urb_clip_size; urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE; urb_cs_start = urb_sf_start + urb_sf_size; urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE; OUT_BATCH(GEN4_URB_FENCE | UF0_CS_REALLOC | UF0_SF_REALLOC | UF0_CLIP_REALLOC | UF0_GS_REALLOC | UF0_VS_REALLOC | 1); OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) | ((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) | ((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT)); OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) | ((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT)); /* Constant buffer state */ OUT_BATCH(GEN4_CS_URB_STATE | 0); OUT_BATCH((URB_CS_ENTRY_SIZE - 1) << 4 | URB_CS_ENTRIES << 0); sna->render_state.gen4.needs_urb = false; } static void gen4_emit_state_base_address(struct sna *sna) { assert(sna->render_state.gen4.general_bo->proxy == NULL); OUT_BATCH(GEN4_STATE_BASE_ADDRESS | 4); OUT_BATCH(kgem_add_reloc(&sna->kgem, /* general */ sna->kgem.nbatch, sna->render_state.gen4.general_bo, I915_GEM_DOMAIN_INSTRUCTION << 16, BASE_ADDRESS_MODIFY)); OUT_BATCH(kgem_add_reloc(&sna->kgem, /* surface */ sna->kgem.nbatch, NULL, I915_GEM_DOMAIN_INSTRUCTION << 16, BASE_ADDRESS_MODIFY)); OUT_BATCH(0); /* media */ /* upper bounds, all disabled */ OUT_BATCH(BASE_ADDRESS_MODIFY); OUT_BATCH(0); } static void gen4_emit_invariant(struct sna *sna) { if (sna->kgem.gen >= 45) OUT_BATCH(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D); else OUT_BATCH(GEN4_PIPELINE_SELECT | PIPELINE_SELECT_3D); gen4_emit_state_base_address(sna); sna->render_state.gen4.needs_invariant = FALSE; } static void gen4_get_batch(struct sna *sna) { kgem_set_mode(&sna->kgem, KGEM_RENDER); if (!kgem_check_batch_with_surfaces(&sna->kgem, 150, 4)) { DBG(("%s: flushing batch: %d < %d+%d\n", __FUNCTION__, sna->kgem.surface - sna->kgem.nbatch, 150, 4*8)); kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } if (sna->render_state.gen4.needs_invariant) gen4_emit_invariant(sna); } static void gen4_align_vertex(struct sna *sna, const struct sna_composite_op *op) { if (op->floats_per_vertex != sna->render_state.gen4.floats_per_vertex) { if (sna->render.vertex_size - sna->render.vertex_used < 6*op->floats_per_vertex) gen4_vertex_finish(sna); DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n", sna->render_state.gen4.floats_per_vertex, op->floats_per_vertex, sna->render.vertex_index, (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex)); sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex; sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex; sna->render_state.gen4.floats_per_vertex = op->floats_per_vertex; } } static void gen4_emit_binding_table(struct sna *sna, uint16_t offset) { if (sna->render_state.gen4.surface_table == offset) return; sna->render_state.gen4.surface_table = offset; /* Binding table pointers */ OUT_BATCH(GEN4_3DSTATE_BINDING_TABLE_POINTERS | 4); OUT_BATCH(0); /* vs */ OUT_BATCH(0); /* gs */ OUT_BATCH(0); /* clip */ OUT_BATCH(0); /* sf */ /* Only the PS uses the binding table */ OUT_BATCH(offset*4); } static void gen4_emit_pipelined_pointers(struct sna *sna, const struct sna_composite_op *op, int blend, int kernel) { uint16_t offset = sna->kgem.nbatch, last; DBG(("%s: has_mask=%d, src=(%d, %d), mask=(%d, %d),kernel=%d, blend=%d, ca=%d, format=%x\n", __FUNCTION__, op->mask.bo != NULL, op->src.filter, op->src.repeat, op->mask.filter, op->mask.repeat, kernel, blend, op->has_component_alpha, (int)op->dst.format)); OUT_BATCH(GEN4_3DSTATE_PIPELINED_POINTERS | 5); OUT_BATCH(sna->render_state.gen4.vs); OUT_BATCH(GEN4_GS_DISABLE); /* passthrough */ OUT_BATCH(GEN4_CLIP_DISABLE); /* passthrough */ OUT_BATCH(sna->render_state.gen4.sf[op->mask.bo != NULL]); OUT_BATCH(sna->render_state.gen4.wm + SAMPLER_OFFSET(op->src.filter, op->src.repeat, op->mask.filter, op->mask.repeat, kernel)); OUT_BATCH(sna->render_state.gen4.cc + gen4_get_blend(blend, op->has_component_alpha, op->dst.format)); last = sna->render_state.gen4.last_pipelined_pointers; if (last && sna->kgem.batch[offset + 4] == sna->kgem.batch[last + 4] && sna->kgem.batch[offset + 5] == sna->kgem.batch[last + 5] && sna->kgem.batch[offset + 6] == sna->kgem.batch[last + 6]) { sna->kgem.nbatch = offset; } else { sna->render_state.gen4.last_pipelined_pointers = offset; gen4_emit_urb(sna); } } static void gen4_emit_drawing_rectangle(struct sna *sna, const struct sna_composite_op *op) { uint32_t limit = (op->dst.height - 1) << 16 | (op->dst.width - 1); uint32_t offset = (uint16_t)op->dst.y << 16 | (uint16_t)op->dst.x; if (sna->render_state.gen4.drawrect_limit == limit && sna->render_state.gen4.drawrect_offset == offset) return; sna->render_state.gen4.drawrect_offset = offset; sna->render_state.gen4.drawrect_limit = limit; OUT_BATCH(GEN4_3DSTATE_DRAWING_RECTANGLE | (4 - 2)); OUT_BATCH(0x00000000); OUT_BATCH(limit); OUT_BATCH(offset); } static void gen4_emit_vertex_elements(struct sna *sna, const struct sna_composite_op *op) { /* * vertex data in vertex buffer * position: (x, y) * texture coordinate 0: (u0, v0) if (is_affine is TRUE) else (u0, v0, w0) * texture coordinate 1 if (has_mask is TRUE): same as above */ struct gen4_render_state *render = &sna->render_state.gen4; Bool has_mask = op->mask.bo != NULL; int nelem = has_mask ? 2 : 1; int selem; uint32_t w_component; uint32_t src_format; int id = op->u.gen4.ve_id; if (render->ve_id == id) return; render->ve_id = id; if (op->is_affine) { src_format = GEN4_SURFACEFORMAT_R32G32_FLOAT; w_component = GEN4_VFCOMPONENT_STORE_1_FLT; selem = 2; } else { src_format = GEN4_SURFACEFORMAT_R32G32B32_FLOAT; w_component = GEN4_VFCOMPONENT_STORE_SRC; selem = 3; } /* The VUE layout * dword 0-3: position (x, y, 1.0, 1.0), * dword 4-7: texture coordinate 0 (u0, v0, w0, 1.0) * [optional] dword 8-11: texture coordinate 1 (u1, v1, w1, 1.0) */ OUT_BATCH(GEN4_3DSTATE_VERTEX_ELEMENTS | (2 * (1 + nelem) - 1)); /* x,y */ OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID | GEN4_SURFACEFORMAT_R16G16_SSCALED << VE0_FORMAT_SHIFT | 0 << VE0_OFFSET_SHIFT); /* offsets vb in bytes */ OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT | GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT | GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT | GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT | (1*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */ /* u0, v0, w0 */ OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID | src_format << VE0_FORMAT_SHIFT | 4 << VE0_OFFSET_SHIFT); /* offset vb in bytes */ OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT | GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT | w_component << VE1_VFCOMPONENT_2_SHIFT | GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT | (2*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */ /* u1, v1, w1 */ if (has_mask) { OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID | src_format << VE0_FORMAT_SHIFT | ((1 + selem) * 4) << VE0_OFFSET_SHIFT); /* vb offset in bytes */ OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT | GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT | w_component << VE1_VFCOMPONENT_2_SHIFT | GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT | (3*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */ } } static void gen4_emit_state(struct sna *sna, const struct sna_composite_op *op, uint16_t wm_binding_table) { gen4_emit_binding_table(sna, wm_binding_table); gen4_emit_pipelined_pointers(sna, op, op->op, op->u.gen4.wm_kernel); gen4_emit_vertex_elements(sna, op); gen4_emit_drawing_rectangle(sna, op); if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) { OUT_BATCH(MI_FLUSH); kgem_clear_dirty(&sna->kgem); kgem_bo_mark_dirty(op->dst.bo); } } static void gen4_bind_surfaces(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset; gen4_get_batch(sna); binding_table = gen4_composite_get_binding_table(sna, &offset); binding_table[0] = gen4_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen4_get_dest_format(op->dst.format), TRUE); binding_table[1] = gen4_bind_bo(sna, op->src.bo, op->src.width, op->src.height, op->src.card_format, FALSE); if (op->mask.bo) binding_table[2] = gen4_bind_bo(sna, op->mask.bo, op->mask.width, op->mask.height, op->mask.card_format, FALSE); if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table && (op->mask.bo == NULL || sna->kgem.batch[sna->render_state.gen4.surface_table+2] == binding_table[2])) { sna->kgem.surface += sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); offset = sna->render_state.gen4.surface_table; } gen4_emit_state(sna, op, offset); } fastcall static void gen4_render_composite_blt(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__, r->src.x, r->src.y, op->src.offset[0], op->src.offset[1], r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1], r->dst.x, r->dst.y, op->dst.x, op->dst.y, r->width, r->height)); if (FLUSH_EVERY_VERTEX && op->need_magic_ca_pass) { /* We have to reset the state after every FLUSH */ if (kgem_check_batch(&sna->kgem, 20)) { gen4_emit_pipelined_pointers(sna, op, op->op, op->u.gen4.wm_kernel); } else gen4_bind_surfaces(sna, op); } gen4_get_rectangles(sna, op, 1, gen4_bind_surfaces); op->prim_emit(sna, op, r); /* XXX are the shaders fubar? */ FLUSH(op); } fastcall static void gen4_render_composite_box(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box) { struct sna_composite_rectangles r; r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.mask = r.src = r.dst; gen4_render_composite_blt(sna, op, &r); } static void gen4_render_composite_boxes(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("%s(%d) delta=(%d, %d), src=(%d, %d)/(%d, %d), mask=(%d, %d)/(%d, %d)\n", __FUNCTION__, nbox, op->dst.x, op->dst.y, op->src.offset[0], op->src.offset[1], op->src.width, op->src.height, op->mask.offset[0], op->mask.offset[1], op->mask.width, op->mask.height)); do { struct sna_composite_rectangles r; r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.mask = r.src = r.dst; gen4_render_composite_blt(sna, op, &r); box++; } while (--nbox); } #ifndef MAX #define MAX(a,b) ((a) > (b) ? (a) : (b)) #endif static uint32_t gen4_bind_video_source(struct sna *sna, struct kgem_bo *src_bo, uint32_t src_offset, int src_width, int src_height, int src_pitch, uint32_t src_surf_format) { struct gen4_surface_state *ss; sna->kgem.surface -= sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); ss = memset(sna->kgem.batch + sna->kgem.surface, 0, sizeof(*ss)); ss->ss0.surface_type = GEN4_SURFACE_2D; ss->ss0.surface_format = src_surf_format; ss->ss0.color_blend = 1; ss->ss1.base_addr = kgem_add_reloc(&sna->kgem, sna->kgem.surface + 1, src_bo, I915_GEM_DOMAIN_SAMPLER << 16, src_offset); ss->ss2.width = src_width - 1; ss->ss2.height = src_height - 1; ss->ss3.pitch = src_pitch - 1; return sna->kgem.surface * sizeof(uint32_t); } static void gen4_video_bind_surfaces(struct sna *sna, const struct sna_composite_op *op) { struct sna_video_frame *frame = op->priv; uint32_t src_surf_format; uint32_t src_surf_base[6]; int src_width[6]; int src_height[6]; int src_pitch[6]; uint32_t *binding_table; uint16_t offset; int n_src, n; src_surf_base[0] = 0; src_surf_base[1] = 0; src_surf_base[2] = frame->VBufOffset; src_surf_base[3] = frame->VBufOffset; src_surf_base[4] = frame->UBufOffset; src_surf_base[5] = frame->UBufOffset; if (is_planar_fourcc(frame->id)) { src_surf_format = GEN4_SURFACEFORMAT_R8_UNORM; src_width[1] = src_width[0] = frame->width; src_height[1] = src_height[0] = frame->height; src_pitch[1] = src_pitch[0] = frame->pitch[1]; src_width[4] = src_width[5] = src_width[2] = src_width[3] = frame->width / 2; src_height[4] = src_height[5] = src_height[2] = src_height[3] = frame->height / 2; src_pitch[4] = src_pitch[5] = src_pitch[2] = src_pitch[3] = frame->pitch[0]; n_src = 6; } else { if (frame->id == FOURCC_UYVY) src_surf_format = GEN4_SURFACEFORMAT_YCRCB_SWAPY; else src_surf_format = GEN4_SURFACEFORMAT_YCRCB_NORMAL; src_width[0] = frame->width; src_height[0] = frame->height; src_pitch[0] = frame->pitch[0]; n_src = 1; } gen4_get_batch(sna); binding_table = gen4_composite_get_binding_table(sna, &offset); binding_table[0] = gen4_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen4_get_dest_format(op->dst.format), TRUE); for (n = 0; n < n_src; n++) { binding_table[1+n] = gen4_bind_video_source(sna, frame->bo, src_surf_base[n], src_width[n], src_height[n], src_pitch[n], src_surf_format); } gen4_emit_state(sna, op, offset); } static Bool gen4_render_video(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, RegionPtr dstRegion, short src_w, short src_h, short drw_w, short drw_h, PixmapPtr pixmap) { struct sna_composite_op tmp; int nbox, dxo, dyo, pix_xoff, pix_yoff; float src_scale_x, src_scale_y; struct sna_pixmap *priv; BoxPtr box; DBG(("%s: %dx%d -> %dx%d\n", __FUNCTION__, src_w, src_h, drw_w, drw_h)); priv = sna_pixmap_force_to_gpu(pixmap, MOVE_READ | MOVE_WRITE); if (priv == NULL) return FALSE; memset(&tmp, 0, sizeof(tmp)); tmp.op = PictOpSrc; tmp.dst.pixmap = pixmap; tmp.dst.width = pixmap->drawable.width; tmp.dst.height = pixmap->drawable.height; tmp.dst.format = sna_format_for_depth(pixmap->drawable.depth); tmp.dst.bo = priv->gpu_bo; tmp.src.filter = SAMPLER_FILTER_BILINEAR; tmp.src.repeat = SAMPLER_EXTEND_PAD; tmp.u.gen4.wm_kernel = is_planar_fourcc(frame->id) ? WM_KERNEL_VIDEO_PLANAR : WM_KERNEL_VIDEO_PACKED; tmp.is_affine = TRUE; tmp.floats_per_vertex = 3; tmp.u.gen4.ve_id = 1; tmp.priv = frame; if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL)) { kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL)); } gen4_video_bind_surfaces(sna, &tmp); gen4_align_vertex(sna, &tmp); /* Set up the offset for translating from the given region (in screen * coordinates) to the backing pixmap. */ #ifdef COMPOSITE pix_xoff = -pixmap->screen_x + pixmap->drawable.x; pix_yoff = -pixmap->screen_y + pixmap->drawable.y; #else pix_xoff = 0; pix_yoff = 0; #endif dxo = dstRegion->extents.x1; dyo = dstRegion->extents.y1; /* Use normalized texture coordinates */ src_scale_x = ((float)src_w / frame->width) / (float)drw_w; src_scale_y = ((float)src_h / frame->height) / (float)drw_h; box = REGION_RECTS(dstRegion); nbox = REGION_NUM_RECTS(dstRegion); while (nbox--) { BoxRec r; r.x1 = box->x1 + pix_xoff; r.x2 = box->x2 + pix_xoff; r.y1 = box->y1 + pix_yoff; r.y2 = box->y2 + pix_yoff; gen4_get_rectangles(sna, &tmp, 1, gen4_video_bind_surfaces); OUT_VERTEX(r.x2, r.y2); OUT_VERTEX_F((box->x2 - dxo) * src_scale_x); OUT_VERTEX_F((box->y2 - dyo) * src_scale_y); OUT_VERTEX(r.x1, r.y2); OUT_VERTEX_F((box->x1 - dxo) * src_scale_x); OUT_VERTEX_F((box->y2 - dyo) * src_scale_y); OUT_VERTEX(r.x1, r.y1); OUT_VERTEX_F((box->x1 - dxo) * src_scale_x); OUT_VERTEX_F((box->y1 - dyo) * src_scale_y); FLUSH(&tmp); if (!DAMAGE_IS_ALL(priv->gpu_damage)) { sna_damage_add_box(&priv->gpu_damage, &r); sna_damage_subtract_box(&priv->cpu_damage, &r); } box++; } priv->clear = false; if (sna->render_state.gen4.vertex_offset) gen4_vertex_flush(sna); return TRUE; } static Bool gen4_composite_solid_init(struct sna *sna, struct sna_composite_channel *channel, uint32_t color) { channel->filter = PictFilterNearest; channel->repeat = RepeatNormal; channel->is_affine = TRUE; channel->is_solid = TRUE; channel->transform = NULL; channel->width = 1; channel->height = 1; channel->card_format = GEN4_SURFACEFORMAT_B8G8R8A8_UNORM; channel->bo = sna_render_get_solid(sna, color); channel->scale[0] = channel->scale[1] = 1; channel->offset[0] = channel->offset[1] = 0; return channel->bo != NULL; } static Bool gen4_composite_linear_init(struct sna *sna, PicturePtr picture, struct sna_composite_channel *channel, int x, int y, int w, int h, int dst_x, int dst_y) { PictLinearGradient *linear = (PictLinearGradient *)picture->pSourcePict; pixman_fixed_t tx, ty; float x0, y0, sf; float dx, dy; DBG(("%s: p1=(%f, %f), p2=(%f, %f), src=(%d, %d), dst=(%d, %d), size=(%d, %d)\n", __FUNCTION__, pixman_fixed_to_double(linear->p1.x), pixman_fixed_to_double(linear->p1.y), pixman_fixed_to_double(linear->p2.x), pixman_fixed_to_double(linear->p2.y), x, y, dst_x, dst_y, w, h)); if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y) return 0; if (!sna_transform_is_affine(picture->transform)) { DBG(("%s: fallback due to projective transform\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } channel->bo = sna_render_get_gradient(sna, (PictGradient *)linear); if (!channel->bo) return 0; channel->filter = PictFilterBilinear; channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->width = channel->bo->pitch / 4; channel->height = 1; channel->pict_format = PICT_a8r8g8b8; channel->scale[0] = channel->scale[1] = 1; channel->offset[0] = channel->offset[1] = 0; if (sna_transform_is_translation(picture->transform, &tx, &ty)) { dx = pixman_fixed_to_double(linear->p2.x - linear->p1.x); dy = pixman_fixed_to_double(linear->p2.y - linear->p1.y); x0 = pixman_fixed_to_double(linear->p1.x); y0 = pixman_fixed_to_double(linear->p1.y); if (tx | ty) { x0 -= pixman_fixed_to_double(tx); y0 -= pixman_fixed_to_double(ty); } } else { struct pixman_f_vector p1, p2; struct pixman_f_transform m, inv; pixman_f_transform_from_pixman_transform(&m, picture->transform); DBG(("%s: transform = [%f %f %f, %f %f %f, %f %f %f]\n", __FUNCTION__, m.m[0][0], m.m[0][1], m.m[0][2], m.m[1][0], m.m[1][1], m.m[1][2], m.m[2][0], m.m[2][1], m.m[2][2])); if (!pixman_f_transform_invert(&inv, &m)) return 0; p1.v[0] = pixman_fixed_to_double(linear->p1.x); p1.v[1] = pixman_fixed_to_double(linear->p1.y); p1.v[2] = 1.; pixman_f_transform_point(&inv, &p1); p2.v[0] = pixman_fixed_to_double(linear->p2.x); p2.v[1] = pixman_fixed_to_double(linear->p2.y); p2.v[2] = 1.; pixman_f_transform_point(&inv, &p2); DBG(("%s: untransformed: p1=(%f, %f, %f), p2=(%f, %f, %f)\n", __FUNCTION__, p1.v[0], p1.v[1], p1.v[2], p2.v[0], p2.v[1], p2.v[2])); dx = p2.v[0] - p1.v[0]; dy = p2.v[1] - p1.v[1]; x0 = p1.v[0]; y0 = p1.v[1]; } sf = dx*dx + dy*dy; dx /= sf; dy /= sf; channel->embedded_transform.matrix[0][0] = pixman_double_to_fixed(dx); channel->embedded_transform.matrix[0][1] = pixman_double_to_fixed(dy); channel->embedded_transform.matrix[0][2] = -pixman_double_to_fixed(dx*(x0+dst_x-x) + dy*(y0+dst_y-y)); channel->embedded_transform.matrix[1][0] = 0; channel->embedded_transform.matrix[1][1] = 0; channel->embedded_transform.matrix[1][2] = pixman_double_to_fixed(.5); channel->embedded_transform.matrix[2][0] = 0; channel->embedded_transform.matrix[2][1] = 0; channel->embedded_transform.matrix[2][2] = pixman_fixed_1; channel->transform = &channel->embedded_transform; channel->is_affine = 1; DBG(("%s: dx=%f, dy=%f, offset=%f\n", __FUNCTION__, dx, dy, -dx*(x0-x+dst_x) + -dy*(y0-y+dst_y))); return channel->bo != NULL; } static int gen4_composite_picture(struct sna *sna, PicturePtr picture, struct sna_composite_channel *channel, int x, int y, int w, int h, int dst_x, int dst_y) { PixmapPtr pixmap; uint32_t color; int16_t dx, dy; DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n", __FUNCTION__, x, y, w, h, dst_x, dst_y)); channel->is_solid = FALSE; channel->card_format = -1; if (sna_picture_is_solid(picture, &color)) return gen4_composite_solid_init(sna, channel, color); if (picture->pDrawable == NULL) { if (picture->pSourcePict->type == SourcePictTypeLinear) return gen4_composite_linear_init(sna, picture, channel, x, y, w, h, dst_x, dst_y); DBG(("%s -- fixup, gradient\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (picture->alphaMap) { DBG(("%s -- fallback, alphamap\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (!gen4_check_repeat(picture)) { DBG(("%s: unknown repeat mode fixup\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (!gen4_check_filter(picture)) { DBG(("%s: unhandled filter fixup\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->filter = picture->filter; pixmap = get_drawable_pixmap(picture->pDrawable); get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy); x += dx + picture->pDrawable->x; y += dy + picture->pDrawable->y; channel->is_affine = sna_transform_is_affine(picture->transform); if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); x += dx; y += dy; channel->transform = NULL; channel->filter = PictFilterNearest; } else channel->transform = picture->transform; channel->card_format = gen4_get_card_format(picture->format); if (channel->card_format == -1) return sna_render_picture_convert(sna, picture, channel, pixmap, x, y, w, h, dst_x, dst_y); if (too_large(pixmap->drawable.width, pixmap->drawable.height)) return sna_render_picture_extract(sna, picture, channel, x, y, w, h, dst_x, dst_y); return sna_render_pixmap_bo(sna, channel, pixmap, x, y, w, h, dst_x, dst_y); } static void gen4_composite_channel_convert(struct sna_composite_channel *channel) { channel->repeat = gen4_repeat(channel->repeat); channel->filter = gen4_filter(channel->filter); if (channel->card_format == (unsigned)-1) channel->card_format = gen4_get_card_format(channel->pict_format); } static void gen4_render_composite_done(struct sna *sna, const struct sna_composite_op *op) { DBG(("%s()\n", __FUNCTION__)); if (sna->render_state.gen4.vertex_offset) { gen4_vertex_flush(sna); gen4_magic_ca_pass(sna, op); } if (op->mask.bo) kgem_bo_destroy(&sna->kgem, op->mask.bo); if (op->src.bo) kgem_bo_destroy(&sna->kgem, op->src.bo); sna_render_composite_redirect_done(sna, op); } static Bool gen4_composite_set_target(PicturePtr dst, struct sna_composite_op *op) { struct sna_pixmap *priv; if (!gen4_check_dst_format(dst->format)) { DBG(("%s: incompatible render target format %08x\n", __FUNCTION__, dst->format)); return FALSE; } op->dst.pixmap = get_drawable_pixmap(dst->pDrawable); op->dst.width = op->dst.pixmap->drawable.width; op->dst.height = op->dst.pixmap->drawable.height; op->dst.format = dst->format; priv = sna_pixmap_force_to_gpu(op->dst.pixmap, MOVE_READ | MOVE_WRITE); if (priv == NULL) return FALSE; op->dst.bo = priv->gpu_bo; op->damage = &priv->gpu_damage; if (sna_damage_is_all(&priv->gpu_damage, op->dst.width, op->dst.height)) op->damage = NULL; DBG(("%s: all-damaged=%d, damage=%p\n", __FUNCTION__, sna_damage_is_all(&priv->gpu_damage, op->dst.width, op->dst.height), op->damage)); get_drawable_deltas(dst->pDrawable, op->dst.pixmap, &op->dst.x, &op->dst.y); return TRUE; } static inline Bool picture_is_cpu(PicturePtr picture) { if (!picture->pDrawable) return FALSE; /* If it is a solid, try to use the render paths */ if (picture->pDrawable->width == 1 && picture->pDrawable->height == 1 && picture->repeat) return FALSE; return is_cpu(picture->pDrawable); } static inline bool prefer_blt(struct sna *sna) { #if PREFER_BLT return true; (void)sna; #else return sna->kgem.mode != KGEM_RENDER; #endif } static Bool try_blt(struct sna *sna, PicturePtr source, int width, int height) { if (prefer_blt(sna)) { DBG(("%s: already performing BLT\n", __FUNCTION__)); return TRUE; } if (too_large(width, height)) { DBG(("%s: operation too large for 3D pipe (%d, %d)\n", __FUNCTION__, width, height)); return TRUE; } /* is the source picture only in cpu memory e.g. a shm pixmap? */ return picture_is_cpu(source); } static bool is_gradient(PicturePtr picture) { if (picture->pDrawable) return FALSE; switch (picture->pSourcePict->type) { case SourcePictTypeSolidFill: case SourcePictTypeLinear: return FALSE; default: return TRUE; } } static bool has_alphamap(PicturePtr p) { return p->alphaMap != NULL; } static bool untransformed(PicturePtr p) { return !p->transform || pixman_transform_is_int_translate(p->transform); } static bool need_upload(PicturePtr p) { return p->pDrawable && unattached(p->pDrawable) && untransformed(p); } static bool source_fallback(PicturePtr p) { if (sna_picture_is_solid(p, NULL)) return false; return (has_alphamap(p) || is_gradient(p) || !gen4_check_filter(p) || !gen4_check_repeat(p) || !gen4_check_format(p->format) || need_upload(p)); } static bool gen4_composite_fallback(struct sna *sna, PicturePtr src, PicturePtr mask, PicturePtr dst) { struct sna_pixmap *priv; PixmapPtr src_pixmap; PixmapPtr mask_pixmap; PixmapPtr dst_pixmap; if (!gen4_check_dst_format(dst->format)) { DBG(("%s: unknown destination format: %d\n", __FUNCTION__, dst->format)); return TRUE; } dst_pixmap = get_drawable_pixmap(dst->pDrawable); src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL; mask_pixmap = (mask && mask->pDrawable) ? get_drawable_pixmap(mask->pDrawable) : NULL; /* If we are using the destination as a source and need to * readback in order to upload the source, do it all * on the cpu. */ if (src_pixmap == dst_pixmap && source_fallback(src)) { DBG(("%s: src is dst and will fallback\n",__FUNCTION__)); return TRUE; } if (mask_pixmap == dst_pixmap && source_fallback(mask)) { DBG(("%s: mask is dst and will fallback\n",__FUNCTION__)); return TRUE; } /* If anything is on the GPU, push everything out to the GPU */ priv = sna_pixmap(dst_pixmap); if (priv && priv->gpu_damage && !priv->clear) { DBG(("%s: dst is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } if (src_pixmap && !source_fallback(src)) { priv = sna_pixmap(src_pixmap); if (priv && priv->gpu_damage && !priv->cpu_damage) { DBG(("%s: src is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } } if (mask_pixmap && !source_fallback(mask)) { priv = sna_pixmap(mask_pixmap); if (priv && priv->gpu_damage && !priv->cpu_damage) { DBG(("%s: mask is already on the GPU, try to use GPU\n", __FUNCTION__)); return FALSE; } } /* However if the dst is not on the GPU and we need to * render one of the sources using the CPU, we may * as well do the entire operation in place onthe CPU. */ if (source_fallback(src)) { DBG(("%s: dst is on the CPU and src will fallback\n", __FUNCTION__)); return TRUE; } if (mask && source_fallback(mask)) { DBG(("%s: dst is on the CPU and mask will fallback\n", __FUNCTION__)); return TRUE; } DBG(("%s: dst is not on the GPU and the operation should not fallback\n", __FUNCTION__)); return FALSE; } static int reuse_source(struct sna *sna, PicturePtr src, struct sna_composite_channel *sc, int src_x, int src_y, PicturePtr mask, struct sna_composite_channel *mc, int msk_x, int msk_y) { uint32_t color; if (src_x != msk_x || src_y != msk_y) return FALSE; if (src == mask) { DBG(("%s: mask is source\n", __FUNCTION__)); *mc = *sc; mc->bo = kgem_bo_reference(mc->bo); return TRUE; } if (sna_picture_is_solid(mask, &color)) return gen4_composite_solid_init(sna, mc, color); if (sc->is_solid) return FALSE; if (src->pDrawable == NULL || mask->pDrawable != src->pDrawable) return FALSE; DBG(("%s: mask reuses source drawable\n", __FUNCTION__)); if (!sna_transform_equal(src->transform, mask->transform)) return FALSE; if (!sna_picture_alphamap_equal(src, mask)) return FALSE; if (!gen4_check_repeat(mask)) return FALSE; if (!gen4_check_filter(mask)) return FALSE; if (!gen4_check_format(mask->format)) return FALSE; DBG(("%s: reusing source channel for mask with a twist\n", __FUNCTION__)); *mc = *sc; mc->repeat = gen4_repeat(mask->repeat ? mask->repeatType : RepeatNone); mc->filter = gen4_filter(mask->filter); mc->pict_format = mask->format; mc->card_format = gen4_get_card_format(mask->format); mc->bo = kgem_bo_reference(mc->bo); return TRUE; } static Bool gen4_render_composite(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t msk_x, int16_t msk_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, struct sna_composite_op *tmp) { DBG(("%s: %dx%d, current mode=%d\n", __FUNCTION__, width, height, sna->kgem.mode)); if (op >= ARRAY_SIZE(gen4_blend_op)) return FALSE; #if NO_COMPOSITE if (mask) return FALSE; return sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp); #endif if (mask == NULL && try_blt(sna, src, width, height) && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, tmp)) return TRUE; if (gen4_composite_fallback(sna, src, mask, dst)) return FALSE; if (need_tiling(sna, width, height)) return sna_tiling_composite(op, src, mask, dst, src_x, src_y, msk_x, msk_y, dst_x, dst_y, width, height, tmp); if (!gen4_composite_set_target(dst, tmp)) return FALSE; sna_render_reduce_damage(tmp, dst_x, dst_y, width, height); if (too_large(tmp->dst.width, tmp->dst.height) && !sna_render_composite_redirect(sna, tmp, dst_x, dst_y, width, height)) return FALSE; switch (gen4_composite_picture(sna, src, &tmp->src, src_x, src_y, width, height, dst_x, dst_y)) { case -1: DBG(("%s: failed to prepare source\n", __FUNCTION__)); goto cleanup_dst; case 0: gen4_composite_solid_init(sna, &tmp->src, 0); case 1: gen4_composite_channel_convert(&tmp->src); break; } tmp->op = op; tmp->is_affine = tmp->src.is_affine; tmp->has_component_alpha = FALSE; tmp->need_magic_ca_pass = FALSE; tmp->prim_emit = gen4_emit_composite_primitive; if (mask) { if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) { tmp->has_component_alpha = TRUE; /* Check if it's component alpha that relies on a source alpha and on * the source value. We can only get one of those into the single * source value that we get to blend with. */ if (gen4_blend_op[op].src_alpha && (gen4_blend_op[op].src_blend != GEN4_BLENDFACTOR_ZERO)) { if (op != PictOpOver) { DBG(("%s -- fallback: unhandled component alpha blend\n", __FUNCTION__)); goto cleanup_src; } tmp->need_magic_ca_pass = TRUE; tmp->op = PictOpOutReverse; } } if (!reuse_source(sna, src, &tmp->src, src_x, src_y, mask, &tmp->mask, msk_x, msk_y)) { switch (gen4_composite_picture(sna, mask, &tmp->mask, msk_x, msk_y, width, height, dst_x, dst_y)) { case -1: DBG(("%s: failed to prepare mask\n", __FUNCTION__)); goto cleanup_src; case 0: gen4_composite_solid_init(sna, &tmp->mask, 0); case 1: gen4_composite_channel_convert(&tmp->mask); break; } } tmp->is_affine &= tmp->mask.is_affine; if (tmp->src.transform == NULL && tmp->mask.transform == NULL) tmp->prim_emit = gen4_emit_composite_primitive_identity_source_mask; tmp->floats_per_vertex = 5 + 2 * !tmp->is_affine; } else { if (tmp->src.is_solid) tmp->prim_emit = gen4_emit_composite_primitive_solid; else if (tmp->src.transform == NULL) tmp->prim_emit = gen4_emit_composite_primitive_identity_source; else if (tmp->src.is_affine) tmp->prim_emit = gen4_emit_composite_primitive_affine_source; tmp->mask.filter = SAMPLER_FILTER_NEAREST; tmp->mask.repeat = SAMPLER_EXTEND_NONE; tmp->floats_per_vertex = 3 + !tmp->is_affine; } tmp->u.gen4.wm_kernel = gen4_choose_composite_kernel(tmp->op, tmp->mask.bo != NULL, tmp->has_component_alpha, tmp->is_affine); tmp->u.gen4.ve_id = (tmp->mask.bo != NULL) << 1 | tmp->is_affine; tmp->blt = gen4_render_composite_blt; tmp->box = gen4_render_composite_box; tmp->boxes = gen4_render_composite_boxes; tmp->done = gen4_render_composite_done; if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) goto cleanup_mask; } gen4_bind_surfaces(sna, tmp); gen4_align_vertex(sna, tmp); return TRUE; cleanup_mask: if (tmp->mask.bo) kgem_bo_destroy(&sna->kgem, tmp->mask.bo); cleanup_src: if (tmp->src.bo) kgem_bo_destroy(&sna->kgem, tmp->src.bo); cleanup_dst: if (tmp->redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->dst.bo); return FALSE; } static void gen4_copy_bind_surfaces(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset; gen4_get_batch(sna); binding_table = gen4_composite_get_binding_table(sna, &offset); binding_table[0] = gen4_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen4_get_dest_format(op->dst.format), TRUE); binding_table[1] = gen4_bind_bo(sna, op->src.bo, op->src.width, op->src.height, op->src.card_format, FALSE); if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table) { sna->kgem.surface += sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t); offset = sna->render_state.gen4.surface_table; } gen4_emit_state(sna, op, offset); } static void gen4_render_copy_one(struct sna *sna, const struct sna_composite_op *op, int sx, int sy, int w, int h, int dx, int dy) { gen4_get_rectangles(sna, op, 1, gen4_copy_bind_surfaces); OUT_VERTEX(dx+w, dy+h); OUT_VERTEX_F((sx+w)*op->src.scale[0]); OUT_VERTEX_F((sy+h)*op->src.scale[1]); OUT_VERTEX(dx, dy+h); OUT_VERTEX_F(sx*op->src.scale[0]); OUT_VERTEX_F((sy+h)*op->src.scale[1]); OUT_VERTEX(dx, dy); OUT_VERTEX_F(sx*op->src.scale[0]); OUT_VERTEX_F(sy*op->src.scale[1]); FLUSH(op); } static Bool gen4_render_copy_boxes(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy, PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const BoxRec *box, int n) { struct sna_composite_op tmp; DBG(("%s x %d\n", __FUNCTION__, n)); #if NO_COPY_BOXES if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n); #endif if (prefer_blt(sna) && sna_blt_compare_depth(&src->drawable, &dst->drawable) && sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->drawable.bitsPerPixel, box, n)) return TRUE; if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo) { fallback_blt: if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy_boxes_fallback(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } memset(&tmp, 0, sizeof(tmp)); DBG(("%s (%d, %d)->(%d, %d) x %d\n", __FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n)); if (dst->drawable.depth == src->drawable.depth) { tmp.dst.format = sna_render_format_for_depth(dst->drawable.depth); tmp.src.pict_format = tmp.dst.format; } else { tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.src.pict_format = sna_format_for_depth(src->drawable.depth); } if (!gen4_check_format(tmp.src.pict_format)) goto fallback_blt; tmp.op = alu == GXcopy ? PictOpSrc : PictOpClear; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.x = tmp.dst.y = 0; tmp.dst.bo = dst_bo; tmp.damage = NULL; sna_render_composite_redirect_init(&tmp); if (too_large(tmp.dst.width, tmp.dst.height)) { BoxRec extents = box[0]; int i; for (i = 1; i < n; i++) { if (extents.x1 < box[i].x1) extents.x1 = box[i].x1; if (extents.y1 < box[i].y1) extents.y1 = box[i].y1; if (extents.x2 > box[i].x2) extents.x2 = box[i].x2; if (extents.y2 > box[i].y2) extents.y2 = box[i].y2; } if (!sna_render_composite_redirect(sna, &tmp, extents.x1 + dst_dx, extents.y1 + dst_dy, extents.x2 - extents.x1, extents.y2 - extents.y1)) goto fallback_tiled; } tmp.src.filter = SAMPLER_FILTER_NEAREST; tmp.src.repeat = SAMPLER_EXTEND_NONE; tmp.src.card_format = gen4_get_card_format(tmp.src.pict_format); if (too_large(src->drawable.width, src->drawable.height)) { BoxRec extents = box[0]; int i; for (i = 1; i < n; i++) { if (extents.x1 < box[i].x1) extents.x1 = box[i].x1; if (extents.y1 < box[i].y1) extents.y1 = box[i].y1; if (extents.x2 > box[i].x2) extents.x2 = box[i].x2; if (extents.y2 > box[i].y2) extents.y2 = box[i].y2; } if (!sna_render_pixmap_partial(sna, src, src_bo, &tmp.src, extents.x1 + src_dx, extents.y1 + src_dy, extents.x2 - extents.x1, extents.y2 - extents.y1)) { goto fallback_tiled_dst; } } else { tmp.src.bo = kgem_bo_reference(src_bo); tmp.src.width = src->drawable.width; tmp.src.height = src->drawable.height; tmp.src.offset[0] = tmp.src.offset[1] = 0; tmp.src.scale[0] = 1.f/src->drawable.width; tmp.src.scale[1] = 1.f/src->drawable.height; } tmp.mask.bo = NULL; tmp.is_affine = TRUE; tmp.floats_per_vertex = 3; tmp.u.gen4.wm_kernel = WM_KERNEL; tmp.u.gen4.ve_id = 1; if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) goto fallback_tiled_src; } dst_dx += tmp.dst.x; dst_dy += tmp.dst.y; tmp.dst.x = tmp.dst.y = 0; src_dx += tmp.src.offset[0]; src_dy += tmp.src.offset[1]; gen4_copy_bind_surfaces(sna, &tmp); gen4_align_vertex(sna, &tmp); do { gen4_render_copy_one(sna, &tmp, box->x1 + src_dx, box->y1 + src_dy, box->x2 - box->x1, box->y2 - box->y1, box->x1 + dst_dx, box->y1 + dst_dy); box++; } while (--n); sna_render_composite_redirect_done(sna, &tmp); kgem_bo_destroy(&sna->kgem, tmp.src.bo); return TRUE; fallback_tiled_src: kgem_bo_destroy(&sna->kgem, tmp.src.bo); fallback_tiled_dst: if (tmp.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp.dst.bo); fallback_tiled: return sna_tiling_copy_boxes(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } static void gen4_render_copy_blt(struct sna *sna, const struct sna_copy_op *op, int16_t sx, int16_t sy, int16_t w, int16_t h, int16_t dx, int16_t dy) { gen4_render_copy_one(sna, &op->base, sx, sy, w, h, dx, dy); } static void gen4_render_copy_done(struct sna *sna, const struct sna_copy_op *op) { if (sna->render_state.gen4.vertex_offset) gen4_vertex_flush(sna); } static Bool gen4_render_copy(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr dst, struct kgem_bo *dst_bo, struct sna_copy_op *op) { DBG(("%s: src=%ld, dst=%ld, alu=%d\n", __FUNCTION__, src->drawable.serialNumber, dst->drawable.serialNumber, alu)); #if NO_COPY if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op); #endif if (prefer_blt(sna) && sna_blt_compare_depth(&src->drawable, &dst->drawable) && sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op)) return TRUE; if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo || too_large(src->drawable.width, src->drawable.height) || too_large(dst->drawable.width, dst->drawable.height)) { fallback: if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return FALSE; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op); } if (dst->drawable.depth == src->drawable.depth) { op->base.dst.format = sna_render_format_for_depth(dst->drawable.depth); op->base.src.pict_format = op->base.dst.format; } else { op->base.dst.format = sna_format_for_depth(dst->drawable.depth); op->base.src.pict_format = sna_format_for_depth(src->drawable.depth); } if (!gen4_check_format(op->base.src.pict_format)) goto fallback; op->base.op = alu == GXcopy ? PictOpSrc : PictOpClear; op->base.dst.pixmap = dst; op->base.dst.width = dst->drawable.width; op->base.dst.height = dst->drawable.height; op->base.dst.bo = dst_bo; op->base.src.bo = src_bo; op->base.src.card_format = gen4_get_card_format(op->base.src.pict_format); op->base.src.width = src->drawable.width; op->base.src.height = src->drawable.height; op->base.src.scale[0] = 1.f/src->drawable.width; op->base.src.scale[1] = 1.f/src->drawable.height; op->base.src.filter = SAMPLER_FILTER_NEAREST; op->base.src.repeat = SAMPLER_EXTEND_NONE; op->base.mask.bo = NULL; op->base.is_affine = true; op->base.floats_per_vertex = 3; op->base.u.gen4.wm_kernel = WM_KERNEL; op->base.u.gen4.ve_id = 1; if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) goto fallback; } gen4_copy_bind_surfaces(sna, &op->base); gen4_align_vertex(sna, &op->base); op->blt = gen4_render_copy_blt; op->done = gen4_render_copy_done; return TRUE; } static void gen4_fill_bind_surfaces(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset; gen4_get_batch(sna); binding_table = gen4_composite_get_binding_table(sna, &offset); binding_table[0] = gen4_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen4_get_dest_format(op->dst.format), TRUE); binding_table[1] = gen4_bind_bo(sna, op->src.bo, 1, 1, GEN4_SURFACEFORMAT_B8G8R8A8_UNORM, FALSE); if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table) { sna->kgem.surface += sizeof(struct gen4_surface_state_padded)/sizeof(uint32_t); offset = sna->render_state.gen4.surface_table; } gen4_emit_state(sna, op, offset); } static void gen4_render_fill_rectangle(struct sna *sna, const struct sna_composite_op *op, int x, int y, int w, int h) { gen4_get_rectangles(sna, op, 1, gen4_fill_bind_surfaces); OUT_VERTEX(x+w, y+h); OUT_VERTEX_F(1); OUT_VERTEX_F(1); OUT_VERTEX(x, y+h); OUT_VERTEX_F(0); OUT_VERTEX_F(1); OUT_VERTEX(x, y); OUT_VERTEX_F(0); OUT_VERTEX_F(0); FLUSH(op); } static Bool gen4_render_fill_boxes(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, PixmapPtr dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { struct sna_composite_op tmp; uint32_t pixel; if (op >= ARRAY_SIZE(gen4_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return FALSE; } if (prefer_blt(sna) || too_large(dst->drawable.width, dst->drawable.height) || !gen4_check_dst_format(format)) { uint8_t alu = -1; if (op == PictOpClear || (op == PictOpOutReverse && color->alpha >= 0xff00)) alu = GXclear; if (op == PictOpSrc || (op == PictOpOver && color->alpha >= 0xff00)) { alu = GXcopy; if (color->alpha <= 0x00ff) alu = GXclear; } pixel = 0; if ((alu == GXclear || (alu == GXcopy && sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, format))) && sna_blt_fill_boxes(sna, alu, dst_bo, dst->drawable.bitsPerPixel, pixel, box, n)) return TRUE; if (!gen4_check_dst_format(format)) return FALSE; if (too_large(dst->drawable.width, dst->drawable.height)) return sna_tiling_fill_boxes(sna, op, format, color, dst, dst_bo, box, n); } #if NO_FILL_BOXES return FALSE; #endif if (op == PictOpClear) pixel = 0; else if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, PICT_a8r8g8b8)) return FALSE; DBG(("%s(%08x x %d)\n", __FUNCTION__, pixel, n)); memset(&tmp, 0, sizeof(tmp)); tmp.op = op; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = format; tmp.dst.bo = dst_bo; tmp.src.bo = sna_render_get_solid(sna, pixel); tmp.src.filter = SAMPLER_FILTER_NEAREST; tmp.src.repeat = SAMPLER_EXTEND_REPEAT; tmp.is_affine = TRUE; tmp.floats_per_vertex = 3; tmp.u.gen4.wm_kernel = WM_KERNEL; tmp.u.gen4.ve_id = 1; if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, dst_bo, NULL)); } gen4_fill_bind_surfaces(sna, &tmp); gen4_align_vertex(sna, &tmp); do { gen4_render_fill_rectangle(sna, &tmp, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1); box++; } while (--n); kgem_bo_destroy(&sna->kgem, tmp.src.bo); return TRUE; } static void gen4_render_fill_op_blt(struct sna *sna, const struct sna_fill_op *op, int16_t x, int16_t y, int16_t w, int16_t h) { gen4_render_fill_rectangle(sna, &op->base, x, y, w, h); } fastcall static void gen4_render_fill_op_box(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box) { gen4_render_fill_rectangle(sna, &op->base, box->x1, box->y1, box->x2-box->x1, box->y2-box->y1); } fastcall static void gen4_render_fill_op_boxes(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box, int nbox) { do { gen4_render_fill_rectangle(sna, &op->base, box->x1, box->y1, box->x2-box->x1, box->y2-box->y1); box++; } while (--nbox); } static void gen4_render_fill_op_done(struct sna *sna, const struct sna_fill_op *op) { if (sna->render_state.gen4.vertex_offset) gen4_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, op->base.src.bo); } static Bool gen4_render_fill(struct sna *sna, uint8_t alu, PixmapPtr dst, struct kgem_bo *dst_bo, uint32_t color, struct sna_fill_op *op) { #if NO_FILL return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op); #endif if (prefer_blt(sna) && sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op)) return TRUE; if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height)) return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op); if (alu == GXclear) color = 0; op->base.op = color == 0 ? PictOpClear : PictOpSrc; op->base.dst.pixmap = dst; op->base.dst.width = dst->drawable.width; op->base.dst.height = dst->drawable.height; op->base.dst.format = sna_format_for_depth(dst->drawable.depth); op->base.dst.bo = dst_bo; op->base.dst.x = op->base.dst.y = 0; op->base.src.bo = sna_render_get_solid(sna, sna_rgba_for_color(color, dst->drawable.depth)); op->base.src.filter = SAMPLER_FILTER_NEAREST; op->base.src.repeat = SAMPLER_EXTEND_REPEAT; op->base.mask.bo = NULL; op->base.mask.filter = SAMPLER_FILTER_NEAREST; op->base.mask.repeat = SAMPLER_EXTEND_NONE; op->base.is_affine = TRUE; op->base.floats_per_vertex = 3; op->base.need_magic_ca_pass = 0; op->base.has_component_alpha = 0; op->base.u.gen4.wm_kernel = WM_KERNEL; op->base.u.gen4.ve_id = 1; if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, dst_bo, NULL)); } gen4_fill_bind_surfaces(sna, &op->base); gen4_align_vertex(sna, &op->base); op->blt = gen4_render_fill_op_blt; op->box = gen4_render_fill_op_box; op->boxes = gen4_render_fill_op_boxes; op->done = gen4_render_fill_op_done; return TRUE; } static Bool gen4_render_fill_one_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { BoxRec box; box.x1 = x1; box.y1 = y1; box.x2 = x2; box.y2 = y2; return sna_blt_fill_boxes(sna, alu, bo, dst->drawable.bitsPerPixel, color, &box, 1); } static Bool gen4_render_fill_one(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { struct sna_composite_op tmp; DBG(("%s: color=%08x\n", __FUNCTION__, color)); #if NO_FILL_ONE return gen4_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu); #endif if (gen4_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu)) return TRUE; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height)) return FALSE; if (alu == GXclear) color = 0; tmp.op = color == 0 ? PictOpClear : PictOpSrc; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = bo; tmp.dst.x = tmp.dst.y = 0; tmp.src.bo = sna_render_get_solid(sna, sna_rgba_for_color(color, dst->drawable.depth)); tmp.src.filter = SAMPLER_FILTER_NEAREST; tmp.src.repeat = SAMPLER_EXTEND_REPEAT; tmp.mask.bo = NULL; tmp.mask.filter = SAMPLER_FILTER_NEAREST; tmp.mask.repeat = SAMPLER_EXTEND_NONE; tmp.is_affine = TRUE; tmp.floats_per_vertex = 3; tmp.has_component_alpha = 0; tmp.need_magic_ca_pass = FALSE; tmp.u.gen4.wm_kernel = WM_KERNEL; tmp.u.gen4.ve_id = 1; if (!kgem_check_bo(&sna->kgem, bo, NULL)) { _kgem_submit(&sna->kgem); assert(kgem_check_bo(&sna->kgem, bo, NULL)); } gen4_fill_bind_surfaces(sna, &tmp); gen4_align_vertex(sna, &tmp); gen4_render_fill_rectangle(sna, &tmp, x1, y1, x2 - x1, y2 - y1); if (sna->render_state.gen4.vertex_offset) gen4_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, tmp.src.bo); return TRUE; } static void gen4_render_flush(struct sna *sna) { gen4_vertex_close(sna); } static void gen4_render_reset(struct sna *sna) { sna->render_state.gen4.needs_invariant = TRUE; sna->render_state.gen4.needs_urb = TRUE; sna->render_state.gen4.vb_id = 0; sna->render_state.gen4.ve_id = -1; sna->render_state.gen4.last_primitive = -1; sna->render_state.gen4.last_pipelined_pointers = 0; sna->render_state.gen4.drawrect_offset = -1; sna->render_state.gen4.drawrect_limit = -1; sna->render_state.gen4.surface_table = -1; } static void gen4_render_fini(struct sna *sna) { kgem_bo_destroy(&sna->kgem, sna->render_state.gen4.general_bo); } static uint32_t gen4_create_vs_unit_state(struct sna_static_stream *stream) { struct gen4_vs_unit_state *vs = sna_static_stream_map(stream, sizeof(*vs), 32); /* Set up the vertex shader to be disabled (passthrough) */ vs->thread4.nr_urb_entries = URB_VS_ENTRIES; vs->thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1; vs->vs6.vs_enable = 0; vs->vs6.vert_cache_disable = 1; return sna_static_stream_offsetof(stream, vs); } static uint32_t gen4_create_sf_state(struct sna_static_stream *stream, uint32_t kernel) { struct gen4_sf_unit_state *sf_state; sf_state = sna_static_stream_map(stream, sizeof(*sf_state), 32); sf_state->thread0.grf_reg_count = GEN4_GRF_BLOCKS(SF_KERNEL_NUM_GRF); sf_state->thread0.kernel_start_pointer = kernel >> 6; sf_state->sf1.single_program_flow = 1; /* scratch space is not used in our kernel */ sf_state->thread2.scratch_space_base_pointer = 0; sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */ sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */ sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */ /* don't smash vertex header, read start from dw8 */ sf_state->thread3.urb_entry_read_offset = 1; sf_state->thread3.dispatch_grf_start_reg = 3; sf_state->thread4.max_threads = SF_MAX_THREADS - 1; sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1; sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES; sf_state->sf5.viewport_transform = FALSE; /* skip viewport */ sf_state->sf6.cull_mode = GEN4_CULLMODE_NONE; sf_state->sf6.scissor = 0; sf_state->sf7.trifan_pv = 2; sf_state->sf6.dest_org_vbias = 0x8; sf_state->sf6.dest_org_hbias = 0x8; return sna_static_stream_offsetof(stream, sf_state); } static uint32_t gen4_create_sampler_state(struct sna_static_stream *stream, sampler_filter_t src_filter, sampler_extend_t src_extend, sampler_filter_t mask_filter, sampler_extend_t mask_extend) { struct gen4_sampler_state *sampler_state; sampler_state = sna_static_stream_map(stream, sizeof(struct gen4_sampler_state) * 2, 32); sampler_state_init(&sampler_state[0], src_filter, src_extend); sampler_state_init(&sampler_state[1], mask_filter, mask_extend); return sna_static_stream_offsetof(stream, sampler_state); } static void gen4_init_wm_state(struct gen4_wm_unit_state *state, Bool has_mask, uint32_t kernel, uint32_t sampler) { state->thread0.grf_reg_count = GEN4_GRF_BLOCKS(PS_KERNEL_NUM_GRF); state->thread0.kernel_start_pointer = kernel >> 6; state->thread1.single_program_flow = 0; /* scratch space is not used in our kernel */ state->thread2.scratch_space_base_pointer = 0; state->thread2.per_thread_scratch_space = 0; state->thread3.const_urb_entry_read_length = 0; state->thread3.const_urb_entry_read_offset = 0; state->thread3.urb_entry_read_offset = 0; /* wm kernel use urb from 3, see wm_program in compiler module */ state->thread3.dispatch_grf_start_reg = 3; /* must match kernel */ state->wm4.sampler_count = 1; /* 1-4 samplers */ state->wm4.sampler_state_pointer = sampler >> 5; state->wm5.max_threads = PS_MAX_THREADS - 1; state->wm5.transposed_urb_read = 0; state->wm5.thread_dispatch_enable = 1; /* just use 16-pixel dispatch (4 subspans), don't need to change kernel * start point */ state->wm5.enable_16_pix = 1; state->wm5.enable_8_pix = 0; state->wm5.early_depth_test = 1; /* Each pair of attributes (src/mask coords) is two URB entries */ if (has_mask) { state->thread1.binding_table_entry_count = 3; /* 2 tex and fb */ state->thread3.urb_entry_read_length = 4; } else { state->thread1.binding_table_entry_count = 2; /* 1 tex and fb */ state->thread3.urb_entry_read_length = 2; } } static uint32_t gen4_create_cc_viewport(struct sna_static_stream *stream) { struct gen4_cc_viewport vp; vp.min_depth = -1.e35; vp.max_depth = 1.e35; return sna_static_stream_add(stream, &vp, sizeof(vp), 32); } static uint32_t gen4_create_cc_unit_state(struct sna_static_stream *stream) { uint8_t *ptr, *base; uint32_t vp; int i, j; vp = gen4_create_cc_viewport(stream); base = ptr = sna_static_stream_map(stream, GEN4_BLENDFACTOR_COUNT*GEN4_BLENDFACTOR_COUNT*64, 64); for (i = 0; i < GEN4_BLENDFACTOR_COUNT; i++) { for (j = 0; j < GEN4_BLENDFACTOR_COUNT; j++) { struct gen4_cc_unit_state *state = (struct gen4_cc_unit_state *)ptr; state->cc3.blend_enable = !(j == GEN4_BLENDFACTOR_ZERO && i == GEN4_BLENDFACTOR_ONE); state->cc4.cc_viewport_state_offset = vp >> 5; state->cc5.logicop_func = 0xc; /* COPY */ state->cc5.ia_blend_function = GEN4_BLENDFUNCTION_ADD; /* Fill in alpha blend factors same as color, for the future. */ state->cc5.ia_src_blend_factor = i; state->cc5.ia_dest_blend_factor = j; state->cc6.blend_function = GEN4_BLENDFUNCTION_ADD; state->cc6.clamp_post_alpha_blend = 1; state->cc6.clamp_pre_alpha_blend = 1; state->cc6.src_blend_factor = i; state->cc6.dest_blend_factor = j; ptr += 64; } } return sna_static_stream_offsetof(stream, base); } static Bool gen4_render_setup(struct sna *sna) { struct gen4_render_state *state = &sna->render_state.gen4; struct sna_static_stream general; struct gen4_wm_unit_state_padded *wm_state; uint32_t sf[2], wm[KERNEL_COUNT]; int i, j, k, l, m; sna_static_stream_init(&general); /* Zero pad the start. If you see an offset of 0x0 in the batchbuffer * dumps, you know it points to zero. */ null_create(&general); /* Set up the two SF states (one for blending with a mask, one without) */ sf[0] = sna_static_stream_add(&general, sf_kernel, sizeof(sf_kernel), 64); sf[1] = sna_static_stream_add(&general, sf_kernel_mask, sizeof(sf_kernel_mask), 64); for (m = 0; m < KERNEL_COUNT; m++) { wm[m] = sna_static_stream_add(&general, wm_kernels[m].data, wm_kernels[m].size, 64); } state->vs = gen4_create_vs_unit_state(&general); state->sf[0] = gen4_create_sf_state(&general, sf[0]); state->sf[1] = gen4_create_sf_state(&general, sf[1]); /* Set up the WM states: each filter/extend type for source and mask, per * kernel. */ wm_state = sna_static_stream_map(&general, sizeof(*wm_state) * KERNEL_COUNT * FILTER_COUNT * EXTEND_COUNT * FILTER_COUNT * EXTEND_COUNT, 64); state->wm = sna_static_stream_offsetof(&general, wm_state); for (i = 0; i < FILTER_COUNT; i++) { for (j = 0; j < EXTEND_COUNT; j++) { for (k = 0; k < FILTER_COUNT; k++) { for (l = 0; l < EXTEND_COUNT; l++) { uint32_t sampler_state; sampler_state = gen4_create_sampler_state(&general, i, j, k, l); for (m = 0; m < KERNEL_COUNT; m++) { gen4_init_wm_state(&wm_state->state, wm_kernels[m].has_mask, wm[m], sampler_state); wm_state++; } } } } } state->cc = gen4_create_cc_unit_state(&general); state->general_bo = sna_static_stream_fini(sna, &general); return state->general_bo != NULL; } Bool gen4_render_init(struct sna *sna) { if (!gen4_render_setup(sna)) return FALSE; sna->render.composite = gen4_render_composite; sna->render.video = gen4_render_video; sna->render.copy_boxes = gen4_render_copy_boxes; sna->render.copy = gen4_render_copy; sna->render.fill_boxes = gen4_render_fill_boxes; sna->render.fill = gen4_render_fill; sna->render.fill_one = gen4_render_fill_one; sna->render.flush = gen4_render_flush; sna->render.reset = gen4_render_reset; sna->render.fini = gen4_render_fini; sna->render.max_3d_size = GEN4_MAX_3D_SIZE; sna->render.max_3d_pitch = 1 << 18; return TRUE; }