/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_render.h" #include "sna_render_inline.h" #include "gen4_vertex.h" void gen4_vertex_flush(struct sna *sna) { DBG(("%s[%x] = %d\n", __FUNCTION__, 4*sna->render.vertex_offset, sna->render.vertex_index - sna->render.vertex_start)); assert(sna->render.vertex_offset); assert(sna->render.vertex_index > sna->render.vertex_start); sna->kgem.batch[sna->render.vertex_offset] = sna->render.vertex_index - sna->render.vertex_start; sna->render.vertex_offset = 0; } int gen4_vertex_finish(struct sna *sna) { struct kgem_bo *bo; unsigned int i; unsigned hint, size; DBG(("%s: used=%d / %d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vertex_size)); assert(sna->render.vertex_offset == 0); assert(sna->render.vertex_used); sna_vertex_wait__locked(&sna->render); /* Note: we only need dword alignment (currently) */ bo = sna->render.vbo; if (bo) { for (i = 0; i < sna->render.nvertex_reloc; i++) { DBG(("%s: reloc[%d] = %d\n", __FUNCTION__, i, sna->render.vertex_reloc[i])); sna->kgem.batch[sna->render.vertex_reloc[i]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[i], bo, I915_GEM_DOMAIN_VERTEX << 16, 0); } assert(!sna->render.active); sna->render.nvertex_reloc = 0; sna->render.vertex_used = 0; sna->render.vertex_index = 0; sna->render.vbo = NULL; sna->render.vb_id = 0; kgem_bo_destroy(&sna->kgem, bo); } hint = CREATE_GTT_MAP; if (bo) hint |= CREATE_CACHED | CREATE_NO_THROTTLE; size = 256*1024; assert(!sna->render.active); sna->render.vertices = NULL; sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint); while (sna->render.vbo == NULL && size > 16*1024) { size /= 2; sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint); } if (sna->render.vbo == NULL) sna->render.vbo = kgem_create_linear(&sna->kgem, 256*1024, CREATE_GTT_MAP); if (sna->render.vbo) sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo); if (sna->render.vertices == NULL) { if (sna->render.vbo) { kgem_bo_destroy(&sna->kgem, sna->render.vbo); sna->render.vbo = NULL; } sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); return 0; } if (sna->render.vertex_used) { DBG(("%s: copying initial buffer x %d to handle=%d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vbo->handle)); assert(sizeof(float)*sna->render.vertex_used <= __kgem_bo_size(sna->render.vbo)); memcpy(sna->render.vertices, sna->render.vertex_data, sizeof(float)*sna->render.vertex_used); } size = __kgem_bo_size(sna->render.vbo)/4; if (size >= UINT16_MAX) size = UINT16_MAX - 1; DBG(("%s: create vbo handle=%d, size=%d\n", __FUNCTION__, sna->render.vbo->handle, size)); sna->render.vertex_size = size; return sna->render.vertex_size - sna->render.vertex_used; } void gen4_vertex_close(struct sna *sna) { struct kgem_bo *bo, *free_bo = NULL; unsigned int i, delta = 0; assert(sna->render.vertex_offset == 0); if (!sna->render.vb_id) return; DBG(("%s: used=%d, vbo active? %d, vb=%x, nreloc=%d\n", __FUNCTION__, sna->render.vertex_used, sna->render.vbo ? sna->render.vbo->handle : 0, sna->render.vb_id, sna->render.nvertex_reloc)); assert(!sna->render.active); bo = sna->render.vbo; if (bo) { if (sna->render.vertex_size - sna->render.vertex_used < 64) { DBG(("%s: discarding vbo (full), handle=%d\n", __FUNCTION__, sna->render.vbo->handle)); sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } else if (IS_CPU_MAP(bo->map) && !sna->kgem.has_llc) { DBG(("%s: converting CPU map to GTT\n", __FUNCTION__)); sna->render.vertices = kgem_bo_map__gtt(&sna->kgem, sna->render.vbo); if (sna->render.vertices == NULL) { sna->render.vbo = NULL; sna->render.vertices = sna->render.vertex_data; sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data); free_bo = bo; } } } else { if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) { DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__, sna->render.vertex_used, sna->kgem.nbatch)); memcpy(sna->kgem.batch + sna->kgem.nbatch, sna->render.vertex_data, sna->render.vertex_used * 4); delta = sna->kgem.nbatch * 4; bo = NULL; sna->kgem.nbatch += sna->render.vertex_used; } else { bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used, CREATE_NO_THROTTLE); if (bo && !kgem_bo_write(&sna->kgem, bo, sna->render.vertex_data, 4*sna->render.vertex_used)) { kgem_bo_destroy(&sna->kgem, bo); bo = NULL; } DBG(("%s: new vbo: %d\n", __FUNCTION__, sna->render.vertex_used)); free_bo = bo; } } assert(sna->render.nvertex_reloc); for (i = 0; i < sna->render.nvertex_reloc; i++) { DBG(("%s: reloc[%d] = %d\n", __FUNCTION__, i, sna->render.vertex_reloc[i])); sna->kgem.batch[sna->render.vertex_reloc[i]] = kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[i], bo, I915_GEM_DOMAIN_VERTEX << 16, delta); } sna->render.nvertex_reloc = 0; sna->render.vb_id = 0; if (sna->render.vbo == NULL) { assert(!sna->render.active); sna->render.vertex_used = 0; sna->render.vertex_index = 0; assert(sna->render.vertices == sna->render.vertex_data); assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data)); } if (free_bo) kgem_bo_destroy(&sna->kgem, free_bo); } /* specialised vertex emission routines */ #define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y) /* XXX assert(!too_large(x, y)); */ #define OUT_VERTEX_F(v) vertex_emit(sna, v) inline static float compute_linear(const struct sna_composite_channel *channel, int16_t x, int16_t y) { return ((x+channel->offset[0]) * channel->u.linear.dx + (y+channel->offset[1]) * channel->u.linear.dy + channel->u.linear.offset); } inline static void emit_texcoord(struct sna *sna, const struct sna_composite_channel *channel, int16_t x, int16_t y) { if (channel->is_solid) { OUT_VERTEX_F(x); return; } x += channel->offset[0]; y += channel->offset[1]; if (channel->is_affine) { float s, t; sna_get_transformed_coordinates(x, y, channel->transform, &s, &t); OUT_VERTEX_F(s * channel->scale[0]); OUT_VERTEX_F(t * channel->scale[1]); } else { float s, t, w; sna_get_transformed_coordinates_3d(x, y, channel->transform, &s, &t, &w); OUT_VERTEX_F(s * channel->scale[0]); OUT_VERTEX_F(t * channel->scale[1]); OUT_VERTEX_F(w); } } inline static void emit_vertex(struct sna *sna, const struct sna_composite_op *op, int16_t srcX, int16_t srcY, int16_t mskX, int16_t mskY, int16_t dstX, int16_t dstY) { OUT_VERTEX(dstX, dstY); emit_texcoord(sna, &op->src, srcX, srcY); } fastcall static void emit_primitive(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { emit_vertex(sna, op, r->src.x + r->width, r->src.y + r->height, r->mask.x + r->width, r->mask.y + r->height, r->dst.x + r->width, r->dst.y + r->height); emit_vertex(sna, op, r->src.x, r->src.y + r->height, r->mask.x, r->mask.y + r->height, r->dst.x, r->dst.y + r->height); emit_vertex(sna, op, r->src.x, r->src.y, r->mask.x, r->mask.y, r->dst.x, r->dst.y); } inline static void emit_vertex_mask(struct sna *sna, const struct sna_composite_op *op, int16_t srcX, int16_t srcY, int16_t mskX, int16_t mskY, int16_t dstX, int16_t dstY) { OUT_VERTEX(dstX, dstY); emit_texcoord(sna, &op->src, srcX, srcY); emit_texcoord(sna, &op->mask, mskX, mskY); } fastcall static void emit_primitive_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { emit_vertex_mask(sna, op, r->src.x + r->width, r->src.y + r->height, r->mask.x + r->width, r->mask.y + r->height, r->dst.x + r->width, r->dst.y + r->height); emit_vertex_mask(sna, op, r->src.x, r->src.y + r->height, r->mask.x, r->mask.y + r->height, r->dst.x, r->dst.y + r->height); emit_vertex_mask(sna, op, r->src.x, r->src.y, r->mask.x, r->mask.y, r->dst.x, r->dst.y); } fastcall static void emit_primitive_solid(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; assert(op->floats_per_rect == 6); assert((sna->render.vertex_used % 2) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; dst.p.x = r->dst.x; v[2] = dst.f; dst.p.y = r->dst.y; v[4] = dst.f; v[5] = v[3] = v[1] = .5; } fastcall static void emit_boxes_solid(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; dst.p.x = box->x1; v[2] = dst.f; dst.p.y = box->y1; v[4] = dst.f; v[5] = v[3] = v[1] = .5; box++; v += 6; } while (--nbox); } fastcall static void emit_primitive_linear(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; assert(op->floats_per_rect == 6); assert((sna->render.vertex_used % 2) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; dst.p.x = r->dst.x; v[2] = dst.f; dst.p.y = r->dst.y; v[4] = dst.f; v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height); v[3] = compute_linear(&op->src, r->src.x, r->src.y+r->height); v[5] = compute_linear(&op->src, r->src.x, r->src.y); } fastcall static void emit_boxes_linear(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { union { struct sna_coordinate p; float f; } dst; do { dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; dst.p.x = box->x1; v[2] = dst.f; dst.p.y = box->y1; v[4] = dst.f; v[1] = compute_linear(&op->src, box->x2, box->y2); v[3] = compute_linear(&op->src, box->x1, box->y2); v[5] = compute_linear(&op->src, box->x1, box->y1); v += 6; box++; } while (--nbox); } fastcall static void emit_primitive_identity_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float *v; assert(op->floats_per_rect == 9); assert((sna->render.vertex_used % 3) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; dst.p.x = r->dst.x; v[3] = dst.f; dst.p.y = r->dst.y; v[6] = dst.f; v[7] = v[4] = (r->src.x + op->src.offset[0]) * op->src.scale[0]; v[1] = v[4] + r->width * op->src.scale[0]; v[8] = (r->src.y + op->src.offset[1]) * op->src.scale[1]; v[5] = v[2] = v[8] + r->height * op->src.scale[1]; } fastcall static void emit_boxes_identity_source(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; dst.p.x = box->x1; v[3] = dst.f; dst.p.y = box->y1; v[6] = dst.f; v[7] = v[4] = (box->x1 + op->src.offset[0]) * op->src.scale[0]; v[1] = (box->x2 + op->src.offset[0]) * op->src.scale[0]; v[8] = (box->y1 + op->src.offset[1]) * op->src.scale[1]; v[2] = v[5] = (box->y2 + op->src.offset[1]) * op->src.scale[1]; v += 9; box++; } while (--nbox); } fastcall static void emit_primitive_simple_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; float xx = op->src.transform->matrix[0][0]; float x0 = op->src.transform->matrix[0][2]; float yy = op->src.transform->matrix[1][1]; float y0 = op->src.transform->matrix[1][2]; float sx = op->src.scale[0]; float sy = op->src.scale[1]; int16_t tx = op->src.offset[0]; int16_t ty = op->src.offset[1]; assert(op->floats_per_rect == 9); assert((sna->render.vertex_used % 3) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*3; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx; v[5] = v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy; dst.p.x = r->dst.x; v[3] = dst.f; v[7] = v[4] = ((r->src.x + tx) * xx + x0) * sx; dst.p.y = r->dst.y; v[6] = dst.f; v[8] = ((r->src.y + ty) * yy + y0) * sy; } fastcall static void emit_boxes_simple_source(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { float xx = op->src.transform->matrix[0][0]; float x0 = op->src.transform->matrix[0][2]; float yy = op->src.transform->matrix[1][1]; float y0 = op->src.transform->matrix[1][2]; float sx = op->src.scale[0]; float sy = op->src.scale[1]; int16_t tx = op->src.offset[0]; int16_t ty = op->src.offset[1]; do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; v[1] = ((box->x2 + tx) * xx + x0) * sx; v[5] = v[2] = ((box->y2 + ty) * yy + y0) * sy; dst.p.x = box->x1; v[3] = dst.f; v[7] = v[4] = ((box->x1 + tx) * xx + x0) * sx; dst.p.y = box->y1; v[6] = dst.f; v[8] = ((box->y1 + ty) * yy + y0) * sy; v += 9; box++; } while (--nbox); } fastcall static void emit_primitive_affine_source(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float *v; assert(op->floats_per_rect == 9); assert((sna->render.vertex_used % 3) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x + r->width, op->src.offset[1] + r->src.y + r->height, op->src.transform, op->src.scale, &v[1], &v[2]); dst.p.x = r->dst.x; v[3] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y + r->height, op->src.transform, op->src.scale, &v[4], &v[5]); dst.p.y = r->dst.y; v[6] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y, op->src.transform, op->src.scale, &v[7], &v[8]); } fastcall static void emit_boxes_affine_source(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + box->x2, op->src.offset[1] + box->y2, op->src.transform, op->src.scale, &v[1], &v[2]); dst.p.x = box->x1; v[3] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + box->x1, op->src.offset[1] + box->y2, op->src.transform, op->src.scale, &v[4], &v[5]); dst.p.y = box->y1; v[6] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + box->x1, op->src.offset[1] + box->y1, op->src.transform, op->src.scale, &v[7], &v[8]); box++; v += 9; } while (--nbox); } fastcall static void emit_primitive_identity_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float msk_x, msk_y; float w, h; float *v; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n", __FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h)); assert(op->floats_per_rect == 12); assert((sna->render.vertex_used % 4) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[2] = (msk_x + w) * op->mask.scale[0]; v[7] = v[3] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[4] = dst.f; v[10] = v[6] = msk_x * op->mask.scale[0]; dst.p.y = r->dst.y; v[8] = dst.f; v[11] = msk_y * op->mask.scale[1]; v[9] = v[5] = v[1] = .5; } fastcall static void emit_boxes_identity_mask(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { float msk_x = op->mask.offset[0]; float msk_y = op->mask.offset[1]; do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; v[2] = (msk_x + box->x2) * op->mask.scale[0]; v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1]; dst.p.x = box->x1; v[4] = dst.f; v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0]; dst.p.y = box->y1; v[8] = dst.f; v[11] = (msk_y + box->y1) * op->mask.scale[1]; v[9] = v[5] = v[1] = .5; v += 12; box++; } while (--nbox); } fastcall static void emit_primitive_linear_identity_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float msk_x, msk_y; float w, h; float *v; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n", __FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h)); assert(op->floats_per_rect == 12); assert((sna->render.vertex_used % 4) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[2] = (msk_x + w) * op->mask.scale[0]; v[7] = v[3] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[4] = dst.f; v[10] = v[6] = msk_x * op->mask.scale[0]; dst.p.y = r->dst.y; v[8] = dst.f; v[11] = msk_y * op->mask.scale[1]; v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height); v[5] = compute_linear(&op->src, r->src.x, r->src.y+r->height); v[9] = compute_linear(&op->src, r->src.x, r->src.y); } fastcall static void emit_boxes_linear_identity_mask(const struct sna_composite_op *op, const BoxRec *box, int nbox, float *v) { float msk_x = op->mask.offset[0]; float msk_y = op->mask.offset[1]; do { union { struct sna_coordinate p; float f; } dst; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; v[2] = (msk_x + box->x2) * op->mask.scale[0]; v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1]; dst.p.x = box->x1; v[4] = dst.f; v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0]; dst.p.y = box->y1; v[8] = dst.f; v[11] = (msk_y + box->y1) * op->mask.scale[1]; v[1] = compute_linear(&op->src, box->x2, box->y2); v[5] = compute_linear(&op->src, box->x1, box->y2); v[9] = compute_linear(&op->src, box->x1, box->y1); v += 12; box++; } while (--nbox); } fastcall static void emit_primitive_identity_source_mask(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { union { struct sna_coordinate p; float f; } dst; float src_x, src_y; float msk_x, msk_y; float w, h; float *v; src_x = r->src.x + op->src.offset[0]; src_y = r->src.y + op->src.offset[1]; msk_x = r->mask.x + op->mask.offset[0]; msk_y = r->mask.y + op->mask.offset[1]; w = r->width; h = r->height; assert(op->floats_per_rect == 15); assert((sna->render.vertex_used % 5) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 15; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = (src_x + w) * op->src.scale[0]; v[2] = (src_y + h) * op->src.scale[1]; v[3] = (msk_x + w) * op->mask.scale[0]; v[4] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[5] = dst.f; v[6] = src_x * op->src.scale[0]; v[7] = v[2]; v[8] = msk_x * op->mask.scale[0]; v[9] = v[4]; dst.p.y = r->dst.y; v[10] = dst.f; v[11] = v[6]; v[12] = src_y * op->src.scale[1]; v[13] = v[8]; v[14] = msk_y * op->mask.scale[1]; } fastcall static void emit_primitive_simple_source_identity(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; float xx = op->src.transform->matrix[0][0]; float x0 = op->src.transform->matrix[0][2]; float yy = op->src.transform->matrix[1][1]; float y0 = op->src.transform->matrix[1][2]; float sx = op->src.scale[0]; float sy = op->src.scale[1]; int16_t tx = op->src.offset[0]; int16_t ty = op->src.offset[1]; float msk_x = r->mask.x + op->mask.offset[0]; float msk_y = r->mask.y + op->mask.offset[1]; float w = r->width, h = r->height; assert(op->floats_per_rect == 15); assert((sna->render.vertex_used % 5) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*5; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx; v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy; v[3] = (msk_x + w) * op->mask.scale[0]; v[4] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[5] = dst.f; v[6] = ((r->src.x + tx) * xx + x0) * sx; v[7] = v[2]; v[8] = msk_x * op->mask.scale[0]; v[9] = v[4]; dst.p.y = r->dst.y; v[10] = dst.f; v[11] = v[6]; v[12] = ((r->src.y + ty) * yy + y0) * sy; v[13] = v[8]; v[14] = msk_y * op->mask.scale[1]; } fastcall static void emit_primitive_affine_source_identity(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { float *v; union { struct sna_coordinate p; float f; } dst; float msk_x = r->mask.x + op->mask.offset[0]; float msk_y = r->mask.y + op->mask.offset[1]; float w = r->width, h = r->height; assert(op->floats_per_rect == 15); assert((sna->render.vertex_used % 5) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*5; dst.p.x = r->dst.x + r->width; dst.p.y = r->dst.y + r->height; v[0] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x + r->width, op->src.offset[1] + r->src.y + r->height, op->src.transform, op->src.scale, &v[1], &v[2]); v[3] = (msk_x + w) * op->mask.scale[0]; v[4] = (msk_y + h) * op->mask.scale[1]; dst.p.x = r->dst.x; v[5] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y + r->height, op->src.transform, op->src.scale, &v[6], &v[7]); v[8] = msk_x * op->mask.scale[0]; v[9] = v[4]; dst.p.y = r->dst.y; v[10] = dst.f; _sna_get_transformed_scaled(op->src.offset[0] + r->src.x, op->src.offset[1] + r->src.y, op->src.transform, op->src.scale, &v[11], &v[12]); v[13] = v[8]; v[14] = msk_y * op->mask.scale[1]; } inline static void emit_composite_texcoord_affine(struct sna *sna, const struct sna_composite_channel *channel, int16_t x, int16_t y) { float t[2]; sna_get_transformed_coordinates(x + channel->offset[0], y + channel->offset[1], channel->transform, &t[0], &t[1]); OUT_VERTEX_F(t[0] * channel->scale[0]); OUT_VERTEX_F(t[1] * channel->scale[1]); } unsigned gen4_choose_composite_emitter(struct sna_composite_op *tmp) { unsigned vb; if (tmp->mask.bo) { if (tmp->mask.transform == NULL) { if (tmp->src.is_solid) { DBG(("%s: solid, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_identity_mask; tmp->emit_boxes = emit_boxes_identity_mask; tmp->floats_per_vertex = 4; vb = 1 | 2 << 2; } else if (tmp->src.is_linear) { DBG(("%s: linear, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_linear_identity_mask; tmp->emit_boxes = emit_boxes_linear_identity_mask; tmp->floats_per_vertex = 4; vb = 1 | 2 << 2; } else if (tmp->src.transform == NULL) { DBG(("%s: identity source, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_identity_source_mask; tmp->floats_per_vertex = 5; vb = 2 << 2 | 2; } else if (tmp->src.is_affine) { tmp->src.scale[0] /= tmp->src.transform->matrix[2][2]; tmp->src.scale[1] /= tmp->src.transform->matrix[2][2]; if (!sna_affine_transform_is_rotation(tmp->src.transform)) { DBG(("%s: simple src, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_simple_source_identity; } else { DBG(("%s: affine src, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_affine_source_identity; } tmp->floats_per_vertex = 5; vb = 2 << 2 | 2; } else { DBG(("%s: projective source, identity mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_mask; tmp->floats_per_vertex = 6; vb = 2 << 2 | 3; } } else { tmp->prim_emit = emit_primitive_mask; tmp->floats_per_vertex = 1; vb = 0; if (tmp->mask.is_solid) { tmp->floats_per_vertex += 1; vb |= 1 << 2; } else if (tmp->mask.is_affine) { tmp->floats_per_vertex += 2; vb |= 2 << 2; }else { tmp->floats_per_vertex += 3; vb |= 3 << 2; } if (tmp->src.is_solid) { tmp->floats_per_vertex += 1; vb |= 1; } else if (tmp->src.is_affine) { tmp->floats_per_vertex += 2; vb |= 2 ; }else { tmp->floats_per_vertex += 3; vb |= 3; } DBG(("%s: general mask: floats-per-vertex=%d, vb=%x\n", __FUNCTION__,tmp->floats_per_vertex, vb)); } } else { if (tmp->src.is_solid) { DBG(("%s: solid, no mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_solid; tmp->emit_boxes = emit_boxes_solid; if (tmp->src.is_opaque && tmp->op == PictOpOver) tmp->op = PictOpSrc; tmp->floats_per_vertex = 2; vb = 1; } else if (tmp->src.is_linear) { DBG(("%s: linear, no mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_linear; tmp->emit_boxes = emit_boxes_linear; tmp->floats_per_vertex = 2; vb = 1; } else if (tmp->src.transform == NULL) { DBG(("%s: identity src, no mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_identity_source; tmp->emit_boxes = emit_boxes_identity_source; tmp->floats_per_vertex = 3; vb = 2; } else if (tmp->src.is_affine) { tmp->src.scale[0] /= tmp->src.transform->matrix[2][2]; tmp->src.scale[1] /= tmp->src.transform->matrix[2][2]; if (!sna_affine_transform_is_rotation(tmp->src.transform)) { DBG(("%s: simple src, no mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_simple_source; tmp->emit_boxes = emit_boxes_simple_source; } else { DBG(("%s: affine src, no mask\n", __FUNCTION__)); tmp->prim_emit = emit_primitive_affine_source; tmp->emit_boxes = emit_boxes_affine_source; } tmp->floats_per_vertex = 3; vb = 2; } else { DBG(("%s: projective src, no mask\n", __FUNCTION__)); assert(!tmp->src.is_solid); tmp->prim_emit = emit_primitive; tmp->floats_per_vertex = 4; vb = 3; } } tmp->floats_per_rect = 3 * tmp->floats_per_vertex; return vb; } inline static void emit_span_vertex(struct sna *sna, const struct sna_composite_spans_op *op, int16_t x, int16_t y) { OUT_VERTEX(x, y); emit_texcoord(sna, &op->base.src, x, y); } fastcall static void emit_composite_spans_primitive(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { emit_span_vertex(sna, op, box->x2, box->y2); OUT_VERTEX_F(opacity); emit_span_vertex(sna, op, box->x1, box->y2); OUT_VERTEX_F(opacity); emit_span_vertex(sna, op, box->x1, box->y1); OUT_VERTEX_F(opacity); } fastcall static void emit_span_solid(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v; union { struct sna_coordinate p; float f; } dst; assert(op->base.floats_per_rect == 9); assert((sna->render.vertex_used % 3) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*3; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; dst.p.x = box->x1; v[3] = dst.f; dst.p.y = box->y1; v[6] = dst.f; v[7] = v[4] = v[1] = .5; v[8] = v[5] = v[2] = opacity; } fastcall static void emit_span_boxes_solid(const struct sna_composite_spans_op *op, const struct sna_opacity_box *b, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = b->box.x2; dst.p.y = b->box.y2; v[0] = dst.f; dst.p.x = b->box.x1; v[3] = dst.f; dst.p.y = b->box.y1; v[6] = dst.f; v[7] = v[4] = v[1] = .5; v[8] = v[5] = v[2] = b->alpha; v += 9; b++; } while (--nbox); } fastcall static void emit_span_identity(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v; union { struct sna_coordinate p; float f; } dst; float sx = op->base.src.scale[0]; float sy = op->base.src.scale[1]; int16_t tx = op->base.src.offset[0]; int16_t ty = op->base.src.offset[1]; assert(op->base.floats_per_rect == 12); assert((sna->render.vertex_used % 4) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*4; assert(sna->render.vertex_used <= sna->render.vertex_size); dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; v[1] = (box->x2 + tx) * sx; v[6] = v[2] = (box->y2 + ty) * sy; dst.p.x = box->x1; v[4] = dst.f; v[9] = v[5] = (box->x1 + tx) * sx; dst.p.y = box->y1; v[8] = dst.f; v[10] = (box->y1 + ty) * sy; v[11] = v[7] = v[3] = opacity; } fastcall static void emit_span_boxes_identity(const struct sna_composite_spans_op *op, const struct sna_opacity_box *b, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; float sx = op->base.src.scale[0]; float sy = op->base.src.scale[1]; int16_t tx = op->base.src.offset[0]; int16_t ty = op->base.src.offset[1]; dst.p.x = b->box.x2; dst.p.y = b->box.y2; v[0] = dst.f; v[1] = (b->box.x2 + tx) * sx; v[6] = v[2] = (b->box.y2 + ty) * sy; dst.p.x = b->box.x1; v[4] = dst.f; v[9] = v[5] = (b->box.x1 + tx) * sx; dst.p.y = b->box.y1; v[8] = dst.f; v[10] = (b->box.y1 + ty) * sy; v[11] = v[7] = v[3] = b->alpha; v += 12; b++; } while (--nbox); } fastcall static void emit_span_simple(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { float *v; union { struct sna_coordinate p; float f; } dst; float xx = op->base.src.transform->matrix[0][0]; float x0 = op->base.src.transform->matrix[0][2]; float yy = op->base.src.transform->matrix[1][1]; float y0 = op->base.src.transform->matrix[1][2]; float sx = op->base.src.scale[0]; float sy = op->base.src.scale[1]; int16_t tx = op->base.src.offset[0]; int16_t ty = op->base.src.offset[1]; assert(op->base.floats_per_rect == 12); assert((sna->render.vertex_used % 4) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 3*4; assert(sna->render.vertex_used <= sna->render.vertex_size); dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; v[1] = ((box->x2 + tx) * xx + x0) * sx; v[6] = v[2] = ((box->y2 + ty) * yy + y0) * sy; dst.p.x = box->x1; v[4] = dst.f; v[9] = v[5] = ((box->x1 + tx) * xx + x0) * sx; dst.p.y = box->y1; v[8] = dst.f; v[10] = ((box->y1 + ty) * yy + y0) * sy; v[11] = v[7] = v[3] = opacity; } fastcall static void emit_span_boxes_simple(const struct sna_composite_spans_op *op, const struct sna_opacity_box *b, int nbox, float *v) { float xx = op->base.src.transform->matrix[0][0]; float x0 = op->base.src.transform->matrix[0][2]; float yy = op->base.src.transform->matrix[1][1]; float y0 = op->base.src.transform->matrix[1][2]; float sx = op->base.src.scale[0]; float sy = op->base.src.scale[1]; int16_t tx = op->base.src.offset[0]; int16_t ty = op->base.src.offset[1]; do { union { struct sna_coordinate p; float f; } dst; dst.p.x = b->box.x2; dst.p.y = b->box.y2; v[0] = dst.f; v[1] = ((b->box.x2 + tx) * xx + x0) * sx; v[6] = v[2] = ((b->box.y2 + ty) * yy + y0) * sy; dst.p.x = b->box.x1; v[4] = dst.f; v[9] = v[5] = ((b->box.x1 + tx) * xx + x0) * sx; dst.p.y = b->box.y1; v[8] = dst.f; v[10] = ((b->box.y1 + ty) * yy + y0) * sy; v[11] = v[7] = v[3] = b->alpha; v += 12; b++; } while (--nbox); } fastcall static void emit_span_affine(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { union { struct sna_coordinate p; float f; } dst; float *v; assert(op->base.floats_per_rect == 12); assert((sna->render.vertex_used % 4) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 12; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + box->x2, op->base.src.offset[1] + box->y2, op->base.src.transform, op->base.src.scale, &v[1], &v[2]); dst.p.x = box->x1; v[4] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + box->x1, op->base.src.offset[1] + box->y2, op->base.src.transform, op->base.src.scale, &v[5], &v[6]); dst.p.y = box->y1; v[8] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + box->x1, op->base.src.offset[1] + box->y1, op->base.src.transform, op->base.src.scale, &v[9], &v[10]); v[11] = v[7] = v[3] = opacity; } fastcall static void emit_span_boxes_affine(const struct sna_composite_spans_op *op, const struct sna_opacity_box *b, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = b->box.x2; dst.p.y = b->box.y2; v[0] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + b->box.x2, op->base.src.offset[1] + b->box.y2, op->base.src.transform, op->base.src.scale, &v[1], &v[2]); dst.p.x = b->box.x1; v[4] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + b->box.x1, op->base.src.offset[1] + b->box.y2, op->base.src.transform, op->base.src.scale, &v[5], &v[6]); dst.p.y = b->box.y1; v[8] = dst.f; _sna_get_transformed_scaled(op->base.src.offset[0] + b->box.x1, op->base.src.offset[1] + b->box.y1, op->base.src.transform, op->base.src.scale, &v[9], &v[10]); v[11] = v[7] = v[3] = b->alpha; v += 12; b++; } while (--nbox); } fastcall static void emit_span_linear(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { union { struct sna_coordinate p; float f; } dst; float *v; assert(op->base.floats_per_rect == 9); assert((sna->render.vertex_used % 3) == 0); v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += 9; dst.p.x = box->x2; dst.p.y = box->y2; v[0] = dst.f; dst.p.x = box->x1; v[3] = dst.f; dst.p.y = box->y1; v[6] = dst.f; v[1] = compute_linear(&op->base.src, box->x2, box->y2); v[4] = compute_linear(&op->base.src, box->x1, box->y2); v[7] = compute_linear(&op->base.src, box->x1, box->y1); v[8] = v[5] = v[2] = opacity; } fastcall static void emit_span_boxes_linear(const struct sna_composite_spans_op *op, const struct sna_opacity_box *b, int nbox, float *v) { do { union { struct sna_coordinate p; float f; } dst; dst.p.x = b->box.x2; dst.p.y = b->box.y2; v[0] = dst.f; dst.p.x = b->box.x1; v[3] = dst.f; dst.p.y = b->box.y1; v[6] = dst.f; v[1] = compute_linear(&op->base.src, b->box.x2, b->box.y2); v[4] = compute_linear(&op->base.src, b->box.x1, b->box.y2); v[7] = compute_linear(&op->base.src, b->box.x1, b->box.y1); v[8] = v[5] = v[2] = b->alpha; v += 9; b++; } while (--nbox); } inline inline static uint32_t gen4_choose_spans_vertex_buffer(const struct sna_composite_op *op) { int id = op->src.is_solid ? 1 : 2 + !op->src.is_affine; DBG(("%s: id=%x (%d, 1)\n", __FUNCTION__, 1 << 2 | id, id)); return 1 << 2 | id; } unsigned gen4_choose_spans_emitter(struct sna_composite_spans_op *tmp) { unsigned vb; if (tmp->base.src.is_solid) { tmp->prim_emit = emit_span_solid; tmp->emit_boxes = emit_span_boxes_solid; tmp->base.floats_per_vertex = 3; vb = 1 << 2 | 1; } else if (tmp->base.src.is_linear) { tmp->prim_emit = emit_span_linear; tmp->emit_boxes = emit_span_boxes_linear; tmp->base.floats_per_vertex = 3; vb = 1 << 2 | 1; } else if (tmp->base.src.transform == NULL) { tmp->prim_emit = emit_span_identity; tmp->emit_boxes = emit_span_boxes_identity; tmp->base.floats_per_vertex = 4; vb = 1 << 2 | 2; } else if (tmp->base.is_affine) { tmp->base.src.scale[0] /= tmp->base.src.transform->matrix[2][2]; tmp->base.src.scale[1] /= tmp->base.src.transform->matrix[2][2]; if (!sna_affine_transform_is_rotation(tmp->base.src.transform)) { tmp->prim_emit = emit_span_simple; tmp->emit_boxes = emit_span_boxes_simple; } else { tmp->prim_emit = emit_span_affine; tmp->emit_boxes = emit_span_boxes_affine; } tmp->base.floats_per_vertex = 4; vb = 1 << 2 | 2; } else { tmp->prim_emit = emit_composite_spans_primitive; tmp->base.floats_per_vertex = 5; vb = 1 << 2 | 3; } tmp->base.floats_per_rect = 3 * tmp->base.floats_per_vertex; return vb; }