/* * Copyright © 2012,2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_reg.h" #include "sna_render.h" #include "sna_render_inline.h" #include "sna_video.h" #include "gen9_render.h" #include "gen8_eu.h" #include "gen4_common.h" #include "gen4_source.h" #include "gen4_vertex.h" #include "gen6_common.h" #include "gen8_vertex.h" #define SIM 1 #define ALWAYS_INVALIDATE 0 #define ALWAYS_FLUSH 0 #define ALWAYS_STALL 0 #define NO_COMPOSITE 0 #define NO_COMPOSITE_SPANS 0 #define NO_COPY 0 #define NO_COPY_BOXES 0 #define NO_FILL 0 #define NO_FILL_BOXES 0 #define NO_FILL_ONE 0 #define NO_FILL_CLEAR 0 #define NO_VIDEO 0 #define USE_8_PIXEL_DISPATCH 1 #define USE_16_PIXEL_DISPATCH 1 #define USE_32_PIXEL_DISPATCH 0 #if !USE_8_PIXEL_DISPATCH && !USE_16_PIXEL_DISPATCH && !USE_32_PIXEL_DISPATCH #error "Must select at least 8, 16 or 32 pixel dispatch" #endif #define GEN9_MAX_SIZE 16384 #define GEN9_GT_BIAS 1 /* Each GT is bigger than previous gen */ /* XXX Todo * * STR (software tiled rendering) mode. No, really. * 64x32 pixel blocks align with the rendering cache. Worth considering. */ #define is_aligned(x, y) (((x) & ((y) - 1)) == 0) /* Pipeline stages: * 1. Command Streamer (CS) * 2. Vertex Fetch (VF) * 3. Vertex Shader (VS) * 4. Hull Shader (HS) * 5. Tesselation Engine (TE) * 6. Domain Shader (DS) * 7. Geometry Shader (GS) * 8. Stream Output Logic (SOL) * 9. Clipper (CLIP) * 10. Strip/Fan (SF) * 11. Windower/Masker (WM) * 12. Color Calculator (CC) */ #if !NO_VIDEO static const uint32_t ps_kernel_packed_bt601[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_argb.g8b" #include "exa_wm_yuv_rgb_bt601.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_planar_bt601[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_planar.g8b" #include "exa_wm_yuv_rgb_bt601.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_nv12_bt601[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_nv12.g8b" #include "exa_wm_yuv_rgb_bt601.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_packed_bt709[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_argb.g8b" #include "exa_wm_yuv_rgb_bt709.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_planar_bt709[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_planar.g8b" #include "exa_wm_yuv_rgb_bt709.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_nv12_bt709[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_nv12.g8b" #include "exa_wm_yuv_rgb_bt709.g8b" #include "exa_wm_write.g8b" }; static const uint32_t ps_kernel_rgb[][4] = { #include "exa_wm_src_affine.g8b" #include "exa_wm_src_sample_argb.g8b" #include "exa_wm_write.g8b" }; #endif #define SURFACE_DW (64 / sizeof(uint32_t)); #define KERNEL(kernel_enum, kernel, num_surfaces) \ [GEN9_WM_KERNEL_##kernel_enum] = {#kernel_enum, kernel, sizeof(kernel), num_surfaces} #define NOKERNEL(kernel_enum, func, num_surfaces) \ [GEN9_WM_KERNEL_##kernel_enum] = {#kernel_enum, (void *)func, 0, num_surfaces} static const struct wm_kernel_info { const char *name; const void *data; unsigned int size; int num_surfaces; } wm_kernels[] = { NOKERNEL(NOMASK, gen8_wm_kernel__affine, 2), NOKERNEL(NOMASK_P, gen8_wm_kernel__projective, 2), NOKERNEL(MASK, gen8_wm_kernel__affine_mask, 3), NOKERNEL(MASK_P, gen8_wm_kernel__projective_mask, 3), NOKERNEL(MASKCA, gen8_wm_kernel__affine_mask_ca, 3), NOKERNEL(MASKCA_P, gen8_wm_kernel__projective_mask_ca, 3), NOKERNEL(MASKSA, gen8_wm_kernel__affine_mask_sa, 3), NOKERNEL(MASKSA_P, gen8_wm_kernel__projective_mask_sa, 3), NOKERNEL(OPACITY, gen8_wm_kernel__affine_opacity, 2), NOKERNEL(OPACITY_P, gen8_wm_kernel__projective_opacity, 2), #if !NO_VIDEO KERNEL(VIDEO_PLANAR_BT601, ps_kernel_planar_bt601, 7), KERNEL(VIDEO_NV12_BT601, ps_kernel_nv12_bt601, 7), KERNEL(VIDEO_PACKED_BT601, ps_kernel_packed_bt601, 2), KERNEL(VIDEO_PLANAR_BT709, ps_kernel_planar_bt709, 7), KERNEL(VIDEO_NV12_BT709, ps_kernel_nv12_bt709, 7), KERNEL(VIDEO_PACKED_BT709, ps_kernel_packed_bt709, 2), KERNEL(VIDEO_RGB, ps_kernel_rgb, 2), #endif }; #undef KERNEL static const struct blendinfo { uint8_t src_alpha; uint8_t src_blend; uint8_t dst_blend; } gen9_blend_op[] = { /* Clear */ {0, BLENDFACTOR_ZERO, BLENDFACTOR_ZERO}, /* Src */ {0, BLENDFACTOR_ONE, BLENDFACTOR_ZERO}, /* Dst */ {0, BLENDFACTOR_ZERO, BLENDFACTOR_ONE}, /* Over */ {1, BLENDFACTOR_ONE, BLENDFACTOR_INV_SRC_ALPHA}, /* OverReverse */ {0, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_ONE}, /* In */ {0, BLENDFACTOR_DST_ALPHA, BLENDFACTOR_ZERO}, /* InReverse */ {1, BLENDFACTOR_ZERO, BLENDFACTOR_SRC_ALPHA}, /* Out */ {0, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_ZERO}, /* OutReverse */ {1, BLENDFACTOR_ZERO, BLENDFACTOR_INV_SRC_ALPHA}, /* Atop */ {1, BLENDFACTOR_DST_ALPHA, BLENDFACTOR_INV_SRC_ALPHA}, /* AtopReverse */ {1, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_SRC_ALPHA}, /* Xor */ {1, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_INV_SRC_ALPHA}, /* Add */ {0, BLENDFACTOR_ONE, BLENDFACTOR_ONE}, }; /** * Highest-valued BLENDFACTOR used in gen9_blend_op. * * This leaves out GEN9_BLENDFACTOR_INV_DST_COLOR, * GEN9_BLENDFACTOR_INV_CONST_{COLOR,ALPHA}, * GEN9_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA} */ #define GEN9_BLENDFACTOR_COUNT (BLENDFACTOR_INV_DST_ALPHA + 1) #define GEN9_BLEND_STATE_PADDED_SIZE ALIGN(sizeof(struct gen9_blend_state), 64) #define BLEND_OFFSET(s, d) \ ((d != BLENDFACTOR_ZERO) << 15 | ((s) * GEN9_BLENDFACTOR_COUNT + (d)) << 4) #define NO_BLEND BLEND_OFFSET(BLENDFACTOR_ONE, BLENDFACTOR_ZERO) #define CLEAR BLEND_OFFSET(BLENDFACTOR_ZERO, BLENDFACTOR_ZERO) #define SAMPLER_OFFSET(sf, se, mf, me) \ (((((sf) * EXTEND_COUNT + (se)) * FILTER_COUNT + (mf)) * EXTEND_COUNT + (me)) + 2) #define VERTEX_2s2s 0 #define COPY_SAMPLER 0 #define COPY_VERTEX VERTEX_2s2s #define COPY_FLAGS(a) GEN9_SET_FLAGS(COPY_SAMPLER, (a) == GXcopy ? NO_BLEND : CLEAR, GEN9_WM_KERNEL_NOMASK, COPY_VERTEX) #define FILL_SAMPLER 1 #define FILL_VERTEX VERTEX_2s2s #define FILL_FLAGS(op, format) GEN9_SET_FLAGS(FILL_SAMPLER, gen9_get_blend((op), false, (format)), GEN9_WM_KERNEL_NOMASK, FILL_VERTEX) #define FILL_FLAGS_NOBLEND GEN9_SET_FLAGS(FILL_SAMPLER, NO_BLEND, GEN9_WM_KERNEL_NOMASK, FILL_VERTEX) #define GEN9_SAMPLER(f) (((f) >> 20) & 0xfff) #define GEN9_BLEND(f) (((f) >> 4) & 0x7ff) #define GEN9_READS_DST(f) (((f) >> 15) & 1) #define GEN9_KERNEL(f) (((f) >> 16) & 0xf) #define GEN9_VERTEX(f) (((f) >> 0) & 0xf) #define GEN9_SET_FLAGS(S, B, K, V) ((S) << 20 | (K) << 16 | (B) | (V)) #define OUT_BATCH(v) batch_emit(sna, v) #define OUT_BATCH64(v) batch_emit64(sna, v) #define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y) #define OUT_VERTEX_F(v) vertex_emit(sna, v) struct gt_info { const char *name; struct { int max_vs_entries; } urb; }; static const struct gt_info min_gt_info = { .name = "Skylake (gen9)", .urb = { .max_vs_entries = 240 }, }; static const struct gt_info skl_gt_info = { .name = "Skylake (gen9)", .urb = { .max_vs_entries = 960 }, }; static const struct gt_info bxt_gt_info = { .name = "Broxton (gen9)", .urb = { .max_vs_entries = 320 }, }; static const struct gt_info kbl_gt_info = { .name = "Kabylake (gen9)", .urb = { .max_vs_entries = 960 }, }; static const struct gt_info glk_gt_info = { .name = "Geminilake (gen9)", .urb = { .max_vs_entries = 320 }, }; static const struct gt_info cfl_gt_info = { .name = "Coffeelake (gen9)", .urb = { .max_vs_entries = 960 }, }; static bool is_skl(struct sna *sna) { return sna->kgem.gen == 0110; } static bool is_bxt(struct sna *sna) { return sna->kgem.gen == 0111; } static bool is_kbl(struct sna *sna) { return sna->kgem.gen == 0112; } static bool is_glk(struct sna *sna) { return sna->kgem.gen == 0113; } static bool is_cfl(struct sna *sna) { return sna->kgem.gen == 0114; } static inline bool too_large(int width, int height) { return width > GEN9_MAX_SIZE || height > GEN9_MAX_SIZE; } static inline bool unaligned(struct kgem_bo *bo, int bpp) { /* XXX What exactly do we need to meet H_ALIGN and V_ALIGN? */ #if 0 int x, y; if (bo->proxy == NULL) return false; /* Assume that all tiled proxies are constructed correctly. */ if (bo->tiling) return false; DBG(("%s: checking alignment of a linear proxy, offset=%d, pitch=%d, bpp=%d: => (%d, %d)\n", __FUNCTION__, bo->delta, bo->pitch, bpp, 8 * (bo->delta % bo->pitch) / bpp, bo->delta / bo->pitch)); /* This may be a random userptr map, check that it meets the * render alignment of SURFACE_VALIGN_4 | SURFACE_HALIGN_4. */ y = bo->delta / bo->pitch; if (y & 3) return true; x = 8 * (bo->delta - y * bo->pitch); if (x & (4*bpp - 1)) return true; return false; #else return false; #endif } static uint32_t gen9_get_blend(int op, bool has_component_alpha, uint32_t dst_format) { uint32_t src, dst; COMPILE_TIME_ASSERT(BLENDFACTOR_INV_DST_ALPHA*GEN9_BLENDFACTOR_COUNT + BLENDFACTOR_INV_DST_ALPHA <= 0x7ff); src = gen9_blend_op[op].src_blend; dst = gen9_blend_op[op].dst_blend; /* If there's no dst alpha channel, adjust the blend op so that * we'll treat it always as 1. */ if (PICT_FORMAT_A(dst_format) == 0) { if (src == BLENDFACTOR_DST_ALPHA) src = BLENDFACTOR_ONE; else if (src == BLENDFACTOR_INV_DST_ALPHA) src = BLENDFACTOR_ZERO; } /* If the source alpha is being used, then we should only be in a * case where the source blend factor is 0, and the source blend * value is the mask channels multiplied by the source picture's alpha. */ if (has_component_alpha && gen9_blend_op[op].src_alpha) { if (dst == BLENDFACTOR_SRC_ALPHA) dst = BLENDFACTOR_SRC_COLOR; else if (dst == BLENDFACTOR_INV_SRC_ALPHA) dst = BLENDFACTOR_INV_SRC_COLOR; } DBG(("blend op=%d, dst=%x [A=%d] => src=%d, dst=%d => offset=%x\n", op, dst_format, PICT_FORMAT_A(dst_format), src, dst, (int)(BLEND_OFFSET(src, dst)>>4))); assert(BLEND_OFFSET(src, dst) >> 4 <= 0xfff); return BLEND_OFFSET(src, dst); } static uint32_t gen9_get_card_format(PictFormat format) { switch (format) { default: return -1; case PICT_a8r8g8b8: return SURFACEFORMAT_B8G8R8A8_UNORM; case PICT_x8r8g8b8: return SURFACEFORMAT_B8G8R8X8_UNORM; case PICT_a8b8g8r8: return SURFACEFORMAT_R8G8B8A8_UNORM; case PICT_x8b8g8r8: return SURFACEFORMAT_R8G8B8X8_UNORM; #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,6,99,900,0) case PICT_a2r10g10b10: return SURFACEFORMAT_B10G10R10A2_UNORM; case PICT_x2r10g10b10: return SURFACEFORMAT_B10G10R10X2_UNORM; #endif case PICT_r8g8b8: return SURFACEFORMAT_R8G8B8_UNORM; case PICT_r5g6b5: return SURFACEFORMAT_B5G6R5_UNORM; case PICT_a1r5g5b5: return SURFACEFORMAT_B5G5R5A1_UNORM; case PICT_a8: return SURFACEFORMAT_A8_UNORM; case PICT_a4r4g4b4: return SURFACEFORMAT_B4G4R4A4_UNORM; } } static uint32_t gen9_get_dest_format(PictFormat format) { switch (format) { default: return -1; case PICT_a8r8g8b8: case PICT_x8r8g8b8: return SURFACEFORMAT_B8G8R8A8_UNORM; case PICT_a8b8g8r8: case PICT_x8b8g8r8: return SURFACEFORMAT_R8G8B8A8_UNORM; #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,6,99,900,0) case PICT_a2r10g10b10: case PICT_x2r10g10b10: return SURFACEFORMAT_B10G10R10A2_UNORM; #endif case PICT_r5g6b5: return SURFACEFORMAT_B5G6R5_UNORM; case PICT_x1r5g5b5: case PICT_a1r5g5b5: return SURFACEFORMAT_B5G5R5A1_UNORM; case PICT_a8: return SURFACEFORMAT_A8_UNORM; case PICT_a4r4g4b4: case PICT_x4r4g4b4: return SURFACEFORMAT_B4G4R4A4_UNORM; } } static bool gen9_check_dst_format(PictFormat format) { if (gen9_get_dest_format(format) != -1) return true; DBG(("%s: unhandled format: %x\n", __FUNCTION__, (int)format)); return false; } static bool gen9_check_format(uint32_t format) { if (gen9_get_card_format(format) != -1) return true; DBG(("%s: unhandled format: %x\n", __FUNCTION__, (int)format)); return false; } static uint32_t gen9_filter(uint32_t filter) { switch (filter) { default: assert(0); case PictFilterNearest: return SAMPLER_FILTER_NEAREST; case PictFilterBilinear: return SAMPLER_FILTER_BILINEAR; } } static uint32_t gen9_check_filter(PicturePtr picture) { switch (picture->filter) { case PictFilterNearest: case PictFilterBilinear: return true; default: return false; } } static uint32_t gen9_repeat(uint32_t repeat) { switch (repeat) { default: assert(0); case RepeatNone: return SAMPLER_EXTEND_NONE; case RepeatNormal: return SAMPLER_EXTEND_REPEAT; case RepeatPad: return SAMPLER_EXTEND_PAD; case RepeatReflect: return SAMPLER_EXTEND_REFLECT; } } static bool gen9_check_repeat(PicturePtr picture) { if (!picture->repeat) return true; switch (picture->repeatType) { case RepeatNone: case RepeatNormal: case RepeatPad: case RepeatReflect: return true; default: return false; } } static int gen9_choose_composite_kernel(int op, bool has_mask, bool is_ca, bool is_affine) { int base; if (has_mask) { if (is_ca) { if (gen9_blend_op[op].src_alpha) base = GEN9_WM_KERNEL_MASKSA; else base = GEN9_WM_KERNEL_MASKCA; } else base = GEN9_WM_KERNEL_MASK; } else base = GEN9_WM_KERNEL_NOMASK; return base + !is_affine; } static void gen9_emit_push_constants(struct sna *sna) { #if SIM OUT_BATCH(GEN9_3DSTATE_PUSH_CONSTANT_ALLOC_VS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_PUSH_CONSTANT_ALLOC_HS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_PUSH_CONSTANT_ALLOC_DS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_PUSH_CONSTANT_ALLOC_GS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_PUSH_CONSTANT_ALLOC_PS | (2 - 2)); OUT_BATCH(0); #endif } static void gen9_emit_urb(struct sna *sna) { /* num of VS entries must be divisible by 8 if size < 9 */ OUT_BATCH(GEN9_3DSTATE_URB_VS | (2 - 2)); OUT_BATCH(sna->render_state.gen9.info->urb.max_vs_entries << URB_ENTRY_NUMBER_SHIFT | (2 - 1) << URB_ENTRY_SIZE_SHIFT | 4 << URB_STARTING_ADDRESS_SHIFT); OUT_BATCH(GEN9_3DSTATE_URB_HS | (2 - 2)); OUT_BATCH(0 << URB_ENTRY_SIZE_SHIFT | 4 << URB_STARTING_ADDRESS_SHIFT); OUT_BATCH(GEN9_3DSTATE_URB_DS | (2 - 2)); OUT_BATCH(0 << URB_ENTRY_SIZE_SHIFT | 4 << URB_STARTING_ADDRESS_SHIFT); OUT_BATCH(GEN9_3DSTATE_URB_GS | (2 - 2)); OUT_BATCH(0 << URB_ENTRY_SIZE_SHIFT | 4 << URB_STARTING_ADDRESS_SHIFT); } static void gen9_emit_state_base_address(struct sna *sna) { uint32_t num_pages; assert(sna->kgem.surface - sna->kgem.nbatch <= 16384); /* WaBindlessSurfaceStateModifyEnable:skl,bxt */ OUT_BATCH(GEN9_STATE_BASE_ADDRESS | (19 - 1 - 2)); OUT_BATCH64(0); /* general */ OUT_BATCH(0); /* stateless dataport */ OUT_BATCH64(kgem_add_reloc64(&sna->kgem, /* surface */ sna->kgem.nbatch, NULL, I915_GEM_DOMAIN_INSTRUCTION << 16, BASE_ADDRESS_MODIFY)); OUT_BATCH64(kgem_add_reloc64(&sna->kgem, /* dynamic */ sna->kgem.nbatch, sna->render_state.gen9.general_bo, I915_GEM_DOMAIN_INSTRUCTION << 16, BASE_ADDRESS_MODIFY)); OUT_BATCH64(0); /* indirect */ OUT_BATCH64(kgem_add_reloc64(&sna->kgem, /* instruction */ sna->kgem.nbatch, sna->render_state.gen9.general_bo, I915_GEM_DOMAIN_INSTRUCTION << 16, BASE_ADDRESS_MODIFY)); /* upper bounds */ num_pages = sna->render_state.gen9.general_bo->size.pages.count; OUT_BATCH(0); /* general */ OUT_BATCH(num_pages << 12 | 1); /* dynamic */ OUT_BATCH(0); /* indirect */ OUT_BATCH(num_pages << 12 | 1); /* instruction */ /* Bindless */ OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); } static void gen9_emit_vs_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_VS | (9 - 2)); OUT_BATCH64(0); /* no VS kernel */ OUT_BATCH(0); OUT_BATCH64(0); /* scratch */ OUT_BATCH(0); OUT_BATCH(1 << 1); /* pass-through */ OUT_BATCH(1 << 16 | 1 << 21); /* urb write to SBE */ #if SIM OUT_BATCH(GEN9_3DSTATE_CONSTANT_VS | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH(GEN9_3DSTATE_BINDING_TABLE_POINTERS_VS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_SAMPLER_STATE_POINTERS_VS | (2 - 2)); OUT_BATCH(0); #endif } static void gen9_emit_hs_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_HS | (9 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); /* no HS kernel */ OUT_BATCH64(0); /* scratch */ OUT_BATCH(0); OUT_BATCH(0); /* pass-through */ #if SIM OUT_BATCH(GEN9_3DSTATE_CONSTANT_HS | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); #if 1 OUT_BATCH(GEN9_3DSTATE_BINDING_TABLE_POINTERS_HS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_SAMPLER_STATE_POINTERS_HS | (2 - 2)); OUT_BATCH(0); #endif #endif } static void gen9_emit_te_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_TE | (4 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); } static void gen9_emit_ds_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_DS | (11 - 2)); OUT_BATCH64(0); /* no kernel */ OUT_BATCH(0); OUT_BATCH64(0); /* scratch */ OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); #if SIM OUT_BATCH(GEN9_3DSTATE_CONSTANT_DS | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); #if 1 OUT_BATCH(GEN9_3DSTATE_BINDING_TABLE_POINTERS_DS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_SAMPLER_STATE_POINTERS_DS | (2 - 2)); OUT_BATCH(0); #endif #endif } static void gen9_emit_gs_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_GS | (10 - 2)); OUT_BATCH64(0); /* no GS kernel */ OUT_BATCH(0); OUT_BATCH64(0); /* scratch */ OUT_BATCH(0); OUT_BATCH(0); /* pass-through */ OUT_BATCH(0); OUT_BATCH(0); #if SIM OUT_BATCH(GEN9_3DSTATE_CONSTANT_GS | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); #if 1 OUT_BATCH(GEN9_3DSTATE_BINDING_TABLE_POINTERS_GS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_SAMPLER_STATE_POINTERS_GS | (2 - 2)); OUT_BATCH(0); #endif #endif } static void gen9_emit_sol_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_STREAMOUT | (5 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); } static void gen9_emit_sf_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_SF | (4 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); } static void gen9_emit_clip_invariant(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_CLIP | (4 - 2)); OUT_BATCH(0); OUT_BATCH(0); /* pass-through */ OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_VIEWPORT_STATE_POINTERS_CC | (2 - 2)); OUT_BATCH(0); } static void gen9_emit_null_depth_buffer(struct sna *sna) { OUT_BATCH(GEN9_3DSTATE_DEPTH_BUFFER | (8 - 2)); #if 1 OUT_BATCH(SURFACE_NULL << DEPTH_BUFFER_TYPE_SHIFT | DEPTHFORMAT_D32_FLOAT << DEPTH_BUFFER_FORMAT_SHIFT); #else OUT_BATCH(SURFACE_2D << DEPTH_BUFFER_TYPE_SHIFT | DEPTHFORMAT_D16_UNORM << DEPTH_BUFFER_FORMAT_SHIFT); #endif OUT_BATCH64(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); #if SIM OUT_BATCH(GEN9_3DSTATE_HIER_DEPTH_BUFFER | (5 - 2)); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH(0); #endif #if SIM OUT_BATCH(GEN9_3DSTATE_STENCIL_BUFFER | (5 - 2)); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH(0); #endif #if SIM OUT_BATCH(GEN9_3DSTATE_WM_DEPTH_STENCIL | (4 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); #endif #if SIM OUT_BATCH(GEN9_3DSTATE_CLEAR_PARAMS | (3 - 2)); OUT_BATCH(0); OUT_BATCH(0); #endif } static void gen9_emit_wm_invariant(struct sna *sna) { gen9_emit_null_depth_buffer(sna); #if SIM OUT_BATCH(GEN9_3DSTATE_SCISSOR_STATE_POINTERS | (2 - 2)); OUT_BATCH(0); #endif OUT_BATCH(GEN9_3DSTATE_WM | (2 - 2)); //OUT_BATCH(WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC); /* XXX */ OUT_BATCH(WM_PERSPECTIVE_PIXEL_BARYCENTRIC); #if SIM OUT_BATCH(GEN9_3DSTATE_WM_CHROMAKEY | (2 - 2)); OUT_BATCH(0); #endif #if 0 OUT_BATCH(GEN9_3DSTATE_WM_HZ_OP | (5 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); #endif OUT_BATCH(GEN9_3DSTATE_PS_EXTRA | (2 - 2)); OUT_BATCH(PSX_PIXEL_SHADER_VALID | PSX_ATTRIBUTE_ENABLE); OUT_BATCH(GEN9_3DSTATE_RASTER | (5 - 2)); OUT_BATCH(RASTER_FRONT_WINDING_CCW | RASTER_CULL_NONE); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_SBE_SWIZ | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); #if SIM OUT_BATCH(GEN9_3DSTATE_CONSTANT_PS | (11 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); OUT_BATCH64(0); #endif } static void gen9_emit_cc_invariant(struct sna *sna) { } static void gen9_emit_vf_invariant(struct sna *sna) { int n; #if 1 OUT_BATCH(GEN9_3DSTATE_VF | (2 - 2)); OUT_BATCH(0); #endif OUT_BATCH(GEN9_3DSTATE_VF_SGVS | (2 - 2)); OUT_BATCH(0); OUT_BATCH(GEN9_3DSTATE_VF_TOPOLOGY | (2 - 2)); OUT_BATCH(RECTLIST); OUT_BATCH(GEN9_3DSTATE_VF_STATISTICS | 0); for (n = 1; n <= 3; n++) { OUT_BATCH(GEN9_3DSTATE_VF_INSTANCING | (3 - 2)); OUT_BATCH(n); OUT_BATCH(0); } } static void gen9_emit_invariant(struct sna *sna) { OUT_BATCH(GEN9_PIPELINE_SELECT | PIPELINE_SELECTION_MASK | PIPELINE_SELECT_3D); #if SIM OUT_BATCH(GEN9_STATE_SIP | (3 - 2)); OUT_BATCH64(0); #endif OUT_BATCH(GEN9_3DSTATE_MULTISAMPLE | (2 - 2)); OUT_BATCH(MULTISAMPLE_PIXEL_LOCATION_CENTER | MULTISAMPLE_NUMSAMPLES_1); /* 1 sample/pixel */ OUT_BATCH(GEN9_3DSTATE_SAMPLE_MASK | (2 - 2)); OUT_BATCH(1); #if SIM OUT_BATCH(GEN9_3DSTATE_SAMPLE_PATTERN | (5 - 2)); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); //OUT_BATCH(8<<20 | 8<<16); OUT_BATCH(0); #endif gen9_emit_push_constants(sna); gen9_emit_urb(sna); gen9_emit_state_base_address(sna); gen9_emit_vf_invariant(sna); gen9_emit_vs_invariant(sna); gen9_emit_hs_invariant(sna); gen9_emit_te_invariant(sna); gen9_emit_ds_invariant(sna); gen9_emit_gs_invariant(sna); gen9_emit_sol_invariant(sna); gen9_emit_clip_invariant(sna); gen9_emit_sf_invariant(sna); gen9_emit_wm_invariant(sna); gen9_emit_cc_invariant(sna); sna->render_state.gen9.needs_invariant = false; } static void gen9_emit_cc(struct sna *sna, uint32_t blend) { struct gen9_render_state *render = &sna->render_state.gen9; if (render->blend == blend) return; DBG(("%s: blend=%x (current=%x), src=%d, dst=%d\n", __FUNCTION__, blend, render->blend, blend / GEN9_BLENDFACTOR_COUNT, blend % GEN9_BLENDFACTOR_COUNT)); assert(blend < GEN9_BLENDFACTOR_COUNT * GEN9_BLENDFACTOR_COUNT); assert(blend / GEN9_BLENDFACTOR_COUNT > 0); assert(blend % GEN9_BLENDFACTOR_COUNT > 0); /* XXX can have up to 8 blend states preload, selectable via * Render Target Index. What other side-effects of Render Target Index? */ OUT_BATCH(GEN9_3DSTATE_PS_BLEND | (2 - 2)); if (blend != GEN9_BLEND(NO_BLEND)) { uint32_t src = blend / GEN9_BLENDFACTOR_COUNT; uint32_t dst = blend % GEN9_BLENDFACTOR_COUNT; OUT_BATCH(PS_BLEND_HAS_WRITEABLE_RT | PS_BLEND_COLOR_BLEND_ENABLE | src << PS_BLEND_SRC_ALPHA_SHIFT | dst << PS_BLEND_DST_ALPHA_SHIFT | src << PS_BLEND_SRC_SHIFT | dst << PS_BLEND_DST_SHIFT); } else OUT_BATCH(PS_BLEND_HAS_WRITEABLE_RT); assert(is_aligned(render->cc_blend + blend * GEN9_BLEND_STATE_PADDED_SIZE, 64)); OUT_BATCH(GEN9_3DSTATE_BLEND_STATE_POINTERS | (2 - 2)); OUT_BATCH((render->cc_blend + blend * GEN9_BLEND_STATE_PADDED_SIZE) | 1); /* Force a CC_STATE pointer change to improve blend performance */ OUT_BATCH(GEN9_3DSTATE_CC_STATE_POINTERS | (2 - 2)); OUT_BATCH(0); render->blend = blend; } static void gen9_emit_sampler(struct sna *sna, uint32_t state) { if (sna->render_state.gen9.samplers == state) return; sna->render_state.gen9.samplers = state; DBG(("%s: sampler = %x\n", __FUNCTION__, state)); assert(2 * sizeof(struct gen9_sampler_state) == 32); OUT_BATCH(GEN9_3DSTATE_SAMPLER_STATE_POINTERS_PS | (2 - 2)); OUT_BATCH(sna->render_state.gen9.wm_state + state * 2 * sizeof(struct gen9_sampler_state)); } static void gen9_emit_sf(struct sna *sna, bool has_mask) { int num_sf_outputs = has_mask ? 2 : 1; if (sna->render_state.gen9.num_sf_outputs == num_sf_outputs) return; DBG(("%s: num_sf_outputs=%d\n", __FUNCTION__, num_sf_outputs)); sna->render_state.gen9.num_sf_outputs = num_sf_outputs; OUT_BATCH(GEN9_3DSTATE_SBE | (6 - 2)); OUT_BATCH(num_sf_outputs << SBE_NUM_OUTPUTS_SHIFT | SBE_FORCE_VERTEX_URB_READ_LENGTH | /* forced is faster */ SBE_FORCE_VERTEX_URB_READ_OFFSET | 1 << SBE_URB_ENTRY_READ_LENGTH_SHIFT | 1 << SBE_URB_ENTRY_READ_OFFSET_SHIFT); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(SBE_ACTIVE_COMPONENT_XYZW << 0 | SBE_ACTIVE_COMPONENT_XYZW << 1); OUT_BATCH(0); } static void gen9_emit_wm(struct sna *sna, int kernel) { const uint32_t *kernels; assert(kernel < ARRAY_SIZE(wm_kernels)); if (sna->render_state.gen9.kernel == kernel) return; sna->render_state.gen9.kernel = kernel; kernels = sna->render_state.gen9.wm_kernel[kernel]; DBG(("%s: switching to %s, num_surfaces=%d (8-wide? %d, 16-wide? %d, 32-wide? %d)\n", __FUNCTION__, wm_kernels[kernel].name, wm_kernels[kernel].num_surfaces, kernels[0], kernels[1], kernels[2])); assert(is_aligned(kernels[0], 64)); assert(is_aligned(kernels[1], 64)); assert(is_aligned(kernels[2], 64)); OUT_BATCH(GEN9_3DSTATE_PS | (12 - 2)); OUT_BATCH64(kernels[0] ?: kernels[1] ?: kernels[2]); OUT_BATCH(1 << PS_SAMPLER_COUNT_SHIFT | PS_VECTOR_MASK_ENABLE | wm_kernels[kernel].num_surfaces << PS_BINDING_TABLE_ENTRY_COUNT_SHIFT); OUT_BATCH64(0); /* scratch address */ OUT_BATCH(PS_MAX_THREADS | (kernels[0] ? PS_8_DISPATCH_ENABLE : 0) | (kernels[1] ? PS_16_DISPATCH_ENABLE : 0) | (kernels[2] ? PS_32_DISPATCH_ENABLE : 0)); OUT_BATCH((kernels[0] ? 4 : kernels[1] ? 6 : 8) << PS_DISPATCH_START_GRF_SHIFT_0 | 8 << PS_DISPATCH_START_GRF_SHIFT_1 | 6 << PS_DISPATCH_START_GRF_SHIFT_2); OUT_BATCH64(kernels[2]); OUT_BATCH64(kernels[1]); } static bool gen9_emit_binding_table(struct sna *sna, uint16_t offset) { if (sna->render_state.gen9.surface_table == offset) return false; /* Binding table pointers */ assert(is_aligned(4*offset, 32)); OUT_BATCH(GEN9_3DSTATE_BINDING_TABLE_POINTERS_PS | (2 - 2)); OUT_BATCH(offset*4); sna->render_state.gen9.surface_table = offset; return true; } static bool gen9_emit_drawing_rectangle(struct sna *sna, const struct sna_composite_op *op) { uint32_t limit = (op->dst.height - 1) << 16 | (op->dst.width - 1); uint32_t offset = (uint16_t)op->dst.y << 16 | (uint16_t)op->dst.x; assert(!too_large(abs(op->dst.x), abs(op->dst.y))); assert(!too_large(op->dst.width, op->dst.height)); if (sna->render_state.gen9.drawrect_limit == limit && sna->render_state.gen9.drawrect_offset == offset) return true; sna->render_state.gen9.drawrect_offset = offset; sna->render_state.gen9.drawrect_limit = limit; OUT_BATCH(GEN9_3DSTATE_DRAWING_RECTANGLE | (4 - 2)); OUT_BATCH(0); OUT_BATCH(limit); OUT_BATCH(offset); return false; } static void gen9_emit_vertex_elements(struct sna *sna, const struct sna_composite_op *op) { /* * vertex data in vertex buffer * position: (x, y) * texture coordinate 0: (u0, v0) if (is_affine is true) else (u0, v0, w0) * texture coordinate 1 if (has_mask is true): same as above */ struct gen9_render_state *render = &sna->render_state.gen9; uint32_t src_format, dw; int id = GEN9_VERTEX(op->u.gen9.flags); bool has_mask; DBG(("%s: setup id=%d\n", __FUNCTION__, id)); if (render->ve_id == id) return; render->ve_id = id; if (render->ve_dirty) { /* dummy primitive to flush vertex before change? */ OUT_BATCH(GEN9_3DPRIMITIVE | (7 - 2)); OUT_BATCH(0); /* ignored, see VF_TOPOLOGY */ OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ } /* The VUE layout * dword 0-3: pad (0.0, 0.0, 0.0. 0.0) * dword 4-7: position (x, y, 1.0, 1.0), * dword 8-11: texture coordinate 0 (u0, v0, w0, 1.0) * dword 12-15: texture coordinate 1 (u1, v1, w1, 1.0) * * dword 4-15 are fetched from vertex buffer */ has_mask = (id >> 2) != 0; OUT_BATCH(GEN9_3DSTATE_VERTEX_ELEMENTS | ((2 * (3 + has_mask)) + 1 - 2)); OUT_BATCH(id << VE_INDEX_SHIFT | VE_VALID | SURFACEFORMAT_R32G32B32A32_FLOAT << VE_FORMAT_SHIFT | 0 << VE_OFFSET_SHIFT); OUT_BATCH(COMPONENT_STORE_0 << VE_COMPONENT_0_SHIFT | COMPONENT_STORE_0 << VE_COMPONENT_1_SHIFT | COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT | COMPONENT_STORE_0 << VE_COMPONENT_3_SHIFT); /* x,y */ OUT_BATCH(id << VE_INDEX_SHIFT | VE_VALID | SURFACEFORMAT_R16G16_SSCALED << VE_FORMAT_SHIFT | 0 << VE_OFFSET_SHIFT); OUT_BATCH(COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT | COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT | COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT | COMPONENT_STORE_1_FLT << VE_COMPONENT_3_SHIFT); /* u0, v0, w0 */ DBG(("%s: first channel %d floats, offset=4\n", __FUNCTION__, id & 3)); dw = COMPONENT_STORE_1_FLT << VE_COMPONENT_3_SHIFT; switch (id & 3) { default: assert(0); case 0: src_format = SURFACEFORMAT_R16G16_SSCALED; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT; break; case 1: src_format = SURFACEFORMAT_R32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT; break; case 2: src_format = SURFACEFORMAT_R32G32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT; break; case 3: src_format = SURFACEFORMAT_R32G32B32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_2_SHIFT; break; } OUT_BATCH(id << VE_INDEX_SHIFT | VE_VALID | src_format << VE_FORMAT_SHIFT | 4 << VE_OFFSET_SHIFT); OUT_BATCH(dw); /* u1, v1, w1 */ if (has_mask) { unsigned offset = 4 + ((id & 3) ?: 1) * sizeof(float); DBG(("%s: second channel %d floats, offset=%d\n", __FUNCTION__, (id >> 2) & 3, offset)); dw = COMPONENT_STORE_1_FLT << VE_COMPONENT_3_SHIFT; switch (id >> 2) { case 1: src_format = SURFACEFORMAT_R32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT; break; default: assert(0); case 2: src_format = SURFACEFORMAT_R32G32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_0 << VE_COMPONENT_2_SHIFT; break; case 3: src_format = SURFACEFORMAT_R32G32B32_FLOAT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_0_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_1_SHIFT; dw |= COMPONENT_STORE_SRC << VE_COMPONENT_2_SHIFT; break; } OUT_BATCH(id << VE_INDEX_SHIFT | VE_VALID | src_format << VE_FORMAT_SHIFT | offset << VE_OFFSET_SHIFT); OUT_BATCH(dw); } render->ve_dirty = true; } inline static void gen9_emit_pipe_invalidate(struct sna *sna) { OUT_BATCH(GEN9_PIPE_CONTROL | (6 - 2)); OUT_BATCH(PIPE_CONTROL_WC_FLUSH | PIPE_CONTROL_TC_FLUSH | PIPE_CONTROL_CS_STALL); OUT_BATCH64(0); OUT_BATCH64(0); } inline static void gen9_emit_pipe_flush(struct sna *sna, bool need_stall) { unsigned stall; stall = 0; if (need_stall) stall = (PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); OUT_BATCH(GEN9_PIPE_CONTROL | (6 - 2)); OUT_BATCH(PIPE_CONTROL_WC_FLUSH | stall); OUT_BATCH64(0); OUT_BATCH64(0); } inline static void gen9_emit_pipe_stall(struct sna *sna) { OUT_BATCH(GEN9_PIPE_CONTROL | (6 - 2)); OUT_BATCH(PIPE_CONTROL_CS_STALL | PIPE_CONTROL_FLUSH | PIPE_CONTROL_STALL_AT_SCOREBOARD); OUT_BATCH64(0); OUT_BATCH64(0); } static void gen9_emit_state(struct sna *sna, const struct sna_composite_op *op, uint16_t wm_binding_table) { bool need_invalidate; bool need_flush; bool need_stall; assert(op->dst.bo->exec); need_flush = wm_binding_table & 1 || (sna->render_state.gen9.emit_flush && GEN9_READS_DST(op->u.gen9.flags)); if (ALWAYS_FLUSH) need_flush = true; wm_binding_table &= ~1; need_stall = sna->render_state.gen9.surface_table != wm_binding_table; need_invalidate = kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo); if (ALWAYS_INVALIDATE) need_invalidate = true; need_stall &= gen9_emit_drawing_rectangle(sna, op); if (ALWAYS_STALL) need_stall = true; if (need_invalidate) { gen9_emit_pipe_invalidate(sna); kgem_clear_dirty(&sna->kgem); assert(op->dst.bo->exec); kgem_bo_mark_dirty(op->dst.bo); need_flush = false; need_stall = false; } if (need_flush) { gen9_emit_pipe_flush(sna, need_stall); need_stall = false; } if (need_stall) gen9_emit_pipe_stall(sna); gen9_emit_cc(sna, GEN9_BLEND(op->u.gen9.flags)); gen9_emit_sampler(sna, GEN9_SAMPLER(op->u.gen9.flags)); gen9_emit_sf(sna, GEN9_VERTEX(op->u.gen9.flags) >> 2); gen9_emit_wm(sna, GEN9_KERNEL(op->u.gen9.flags)); gen9_emit_vertex_elements(sna, op); gen9_emit_binding_table(sna, wm_binding_table); sna->render_state.gen9.emit_flush = GEN9_READS_DST(op->u.gen9.flags); } static bool gen9_magic_ca_pass(struct sna *sna, const struct sna_composite_op *op) { struct gen9_render_state *state = &sna->render_state.gen9; if (!op->need_magic_ca_pass) return false; DBG(("%s: CA fixup (%d -> %d)\n", __FUNCTION__, sna->render.vertex_start, sna->render.vertex_index)); gen9_emit_pipe_stall(sna); gen9_emit_cc(sna, GEN9_BLEND(gen9_get_blend(PictOpAdd, true, op->dst.format))); gen9_emit_wm(sna, gen9_choose_composite_kernel(PictOpAdd, true, true, op->is_affine)); OUT_BATCH(GEN9_3DPRIMITIVE | (7 - 2)); OUT_BATCH(0); /* ignored, see VF_TOPOLOGY */ OUT_BATCH(sna->render.vertex_index - sna->render.vertex_start); OUT_BATCH(sna->render.vertex_start); OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ state->last_primitive = sna->kgem.nbatch; state->ve_dirty = false; return true; } static void null_create(struct sna_static_stream *stream) { /* A bunch of zeros useful for legacy border color and depth-stencil */ sna_static_stream_map(stream, 64, 64); } static void sampler_state_init(struct gen9_sampler_state *sampler_state, sampler_filter_t filter, sampler_extend_t extend) { COMPILE_TIME_ASSERT(sizeof(*sampler_state) == 4*sizeof(uint32_t)); sampler_state->ss0.lod_preclamp = 2; /* GL mode */ sampler_state->ss0.default_color_mode = 1; switch (filter) { default: case SAMPLER_FILTER_NEAREST: sampler_state->ss0.min_filter = MAPFILTER_NEAREST; sampler_state->ss0.mag_filter = MAPFILTER_NEAREST; break; case SAMPLER_FILTER_BILINEAR: sampler_state->ss0.min_filter = MAPFILTER_LINEAR; sampler_state->ss0.mag_filter = MAPFILTER_LINEAR; break; } /* XXX bicubic filter using MAPFILTER_FLEXIBLE */ switch (extend) { default: case SAMPLER_EXTEND_NONE: sampler_state->ss3.r_wrap_mode = TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss3.s_wrap_mode = TEXCOORDMODE_CLAMP_BORDER; sampler_state->ss3.t_wrap_mode = TEXCOORDMODE_CLAMP_BORDER; break; case SAMPLER_EXTEND_REPEAT: sampler_state->ss3.r_wrap_mode = TEXCOORDMODE_WRAP; sampler_state->ss3.s_wrap_mode = TEXCOORDMODE_WRAP; sampler_state->ss3.t_wrap_mode = TEXCOORDMODE_WRAP; break; case SAMPLER_EXTEND_PAD: sampler_state->ss3.r_wrap_mode = TEXCOORDMODE_CLAMP; sampler_state->ss3.s_wrap_mode = TEXCOORDMODE_CLAMP; sampler_state->ss3.t_wrap_mode = TEXCOORDMODE_CLAMP; break; case SAMPLER_EXTEND_REFLECT: sampler_state->ss3.r_wrap_mode = TEXCOORDMODE_MIRROR; sampler_state->ss3.s_wrap_mode = TEXCOORDMODE_MIRROR; sampler_state->ss3.t_wrap_mode = TEXCOORDMODE_MIRROR; break; } } static void sampler_copy_init(struct gen9_sampler_state *ss) { sampler_state_init(ss, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_NONE); ss->ss3.non_normalized_coord = 1; sampler_state_init(ss+1, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_NONE); } static void sampler_fill_init(struct gen9_sampler_state *ss) { sampler_state_init(ss, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_REPEAT); ss->ss3.non_normalized_coord = 1; sampler_state_init(ss+1, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_NONE); } static uint32_t gen9_tiling_bits(uint32_t tiling) { switch (tiling) { default: assert(0); case I915_TILING_NONE: return 0; case I915_TILING_X: return SURFACE_TILED; case I915_TILING_Y: return SURFACE_TILED | SURFACE_TILED_Y; } } #define MOCS_PTE (1 << 1) #define MOCS_WB (2 << 1) /** * Sets up the common fields for a surface state buffer for the given * picture in the given surface state buffer. */ static uint32_t gen9_bind_bo(struct sna *sna, struct kgem_bo *bo, uint32_t width, uint32_t height, uint32_t format, bool is_dst) { uint32_t *ss; uint32_t domains; int offset; uint32_t is_scanout = is_dst && bo->scanout; /* After the first bind, we manage the cache domains within the batch */ offset = kgem_bo_get_binding(bo, format | is_dst << 30 | is_scanout << 31); if (offset) { if (is_dst) kgem_bo_mark_dirty(bo); assert(offset >= sna->kgem.surface); return offset * sizeof(uint32_t); } offset = sna->kgem.surface -= SURFACE_DW; ss = sna->kgem.batch + offset; ss[0] = (SURFACE_2D << SURFACE_TYPE_SHIFT | gen9_tiling_bits(bo->tiling) | format << SURFACE_FORMAT_SHIFT | SURFACE_VALIGN_4 | SURFACE_HALIGN_4); if (is_dst) { ss[0] |= SURFACE_RC_READ_WRITE; domains = I915_GEM_DOMAIN_RENDER << 16 |I915_GEM_DOMAIN_RENDER; } else domains = I915_GEM_DOMAIN_SAMPLER << 16; ss[1] = (is_scanout || (is_dst && is_uncached(sna, bo))) ? MOCS_PTE << 24 : MOCS_WB << 24; ss[2] = ((width - 1) << SURFACE_WIDTH_SHIFT | (height - 1) << SURFACE_HEIGHT_SHIFT); ss[3] = (bo->pitch - 1) << SURFACE_PITCH_SHIFT; ss[4] = 0; ss[5] = 0; ss[6] = 0; ss[7] = SURFACE_SWIZZLE(RED, GREEN, BLUE, ALPHA); *(uint64_t *)(ss+8) = kgem_add_reloc64(&sna->kgem, offset + 8, bo, domains, 0); ss[10] = 0; ss[11] = 0; ss[12] = 0; ss[13] = 0; ss[14] = 0; ss[15] = 0; kgem_bo_set_binding(bo, format | is_dst << 30 | is_scanout << 31, offset); DBG(("[%x] bind bo(handle=%d, addr=%lx), format=%d, width=%d, height=%d, pitch=%d, tiling=%d -> %s\n", offset, bo->handle, *(uint64_t *)(ss+8), format, width, height, bo->pitch, bo->tiling, domains & 0xffff ? "render" : "sampler")); return offset * sizeof(uint32_t); } static void gen9_emit_vertex_buffer(struct sna *sna, const struct sna_composite_op *op) { int id = GEN9_VERTEX(op->u.gen9.flags); OUT_BATCH(GEN9_3DSTATE_VERTEX_BUFFERS | (5 - 2)); OUT_BATCH(id << VB_INDEX_SHIFT | VB_MODIFY_ENABLE | 4*op->floats_per_vertex); sna->render.vertex_reloc[sna->render.nvertex_reloc++] = sna->kgem.nbatch; OUT_BATCH64(0); OUT_BATCH(~0); /* buffer size: disabled */ sna->render.vb_id |= 1 << id; } static void gen9_emit_primitive(struct sna *sna) { if (sna->kgem.nbatch == sna->render_state.gen9.last_primitive) { sna->render.vertex_offset = sna->kgem.nbatch - 5; return; } OUT_BATCH(GEN9_3DPRIMITIVE | (7 - 2)); OUT_BATCH(0); /* ignored, see VF_TOPOLOGY */ sna->render.vertex_offset = sna->kgem.nbatch; OUT_BATCH(0); /* vertex count, to be filled in later */ OUT_BATCH(sna->render.vertex_index); OUT_BATCH(1); /* single instance */ OUT_BATCH(0); /* start instance location */ OUT_BATCH(0); /* index buffer offset, ignored */ sna->render.vertex_start = sna->render.vertex_index; sna->render_state.gen9.last_primitive = sna->kgem.nbatch; sna->render_state.gen9.ve_dirty = false; } static bool gen9_rectangle_begin(struct sna *sna, const struct sna_composite_op *op) { int id = 1 << GEN9_VERTEX(op->u.gen9.flags); int ndwords; if (sna_vertex_wait__locked(&sna->render) && sna->render.vertex_offset) return true; ndwords = op->need_magic_ca_pass ? 60 : 6; if ((sna->render.vb_id & id) == 0) ndwords += 5; if (!kgem_check_batch(&sna->kgem, ndwords)) return false; if ((sna->render.vb_id & id) == 0) gen9_emit_vertex_buffer(sna, op); gen9_emit_primitive(sna); return true; } static int gen9_get_rectangles__flush(struct sna *sna, const struct sna_composite_op *op) { /* Preventing discarding new vbo after lock contention */ if (sna_vertex_wait__locked(&sna->render)) { int rem = vertex_space(sna); if (rem > op->floats_per_rect) return rem; } if (!kgem_check_batch(&sna->kgem, op->need_magic_ca_pass ? 65 : 6)) return 0; if (!kgem_check_reloc_and_exec(&sna->kgem, 2)) return 0; if (sna->render.vertex_offset) { gen8_vertex_flush(sna); if (gen9_magic_ca_pass(sna, op)) { gen9_emit_pipe_invalidate(sna); gen9_emit_cc(sna, GEN9_BLEND(op->u.gen9.flags)); gen9_emit_wm(sna, GEN9_KERNEL(op->u.gen9.flags)); } } return gen8_vertex_finish(sna); } inline static int gen9_get_rectangles(struct sna *sna, const struct sna_composite_op *op, int want, void (*emit_state)(struct sna *sna, const struct sna_composite_op *op)) { int rem; assert(want); start: rem = vertex_space(sna); if (unlikely(rem < op->floats_per_rect)) { DBG(("flushing vbo for %s: %d < %d\n", __FUNCTION__, rem, op->floats_per_rect)); rem = gen9_get_rectangles__flush(sna, op); if (unlikely(rem == 0)) goto flush; } if (unlikely(sna->render.vertex_offset == 0)) { if (!gen9_rectangle_begin(sna, op)) goto flush; else goto start; } assert(rem <= vertex_space(sna)); assert(op->floats_per_rect <= rem); if (want > 1 && want * op->floats_per_rect > rem) want = rem / op->floats_per_rect; assert(want > 0); sna->render.vertex_index += 3*want; return want; flush: if (sna->render.vertex_offset) { gen8_vertex_flush(sna); gen9_magic_ca_pass(sna, op); } sna_vertex_wait__locked(&sna->render); _kgem_submit(&sna->kgem); emit_state(sna, op); goto start; } inline static uint32_t *gen9_composite_get_binding_table(struct sna *sna, uint16_t *offset) { uint32_t *table; assert(sna->kgem.surface <= 16384); sna->kgem.surface -= SURFACE_DW; /* Clear all surplus entries to zero in case of prefetch */ table = memset(sna->kgem.batch + sna->kgem.surface, 0, 64); DBG(("%s(%x)\n", __FUNCTION__, 4*sna->kgem.surface)); *offset = sna->kgem.surface; return table; } static void gen9_get_batch(struct sna *sna, const struct sna_composite_op *op) { kgem_set_mode(&sna->kgem, KGEM_RENDER, op->dst.bo); if (!kgem_check_batch_with_surfaces(&sna->kgem, 150, 2*(1+3))) { DBG(("%s: flushing batch: %d < %d+%d\n", __FUNCTION__, sna->kgem.surface - sna->kgem.nbatch, 150, 4*8*2)); _kgem_submit(&sna->kgem); _kgem_set_mode(&sna->kgem, KGEM_RENDER); } assert(sna->kgem.mode == KGEM_RENDER); assert(sna->kgem.ring == KGEM_RENDER); if (sna->render_state.gen9.needs_invariant) gen9_emit_invariant(sna); } static void gen9_emit_composite_state(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset, dirty; gen9_get_batch(sna, op); binding_table = gen9_composite_get_binding_table(sna, &offset); dirty = kgem_bo_is_dirty(op->dst.bo); binding_table[0] = gen9_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen9_get_dest_format(op->dst.format), true); binding_table[1] = gen9_bind_bo(sna, op->src.bo, op->src.width, op->src.height, op->src.card_format, false); if (op->mask.bo) { binding_table[2] = gen9_bind_bo(sna, op->mask.bo, op->mask.width, op->mask.height, op->mask.card_format, false); } if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen9.surface_table) == *(uint64_t*)binding_table && (op->mask.bo == NULL || sna->kgem.batch[sna->render_state.gen9.surface_table+2] == binding_table[2])) { sna->kgem.surface += SURFACE_DW; offset = sna->render_state.gen9.surface_table; } if (sna->kgem.batch[sna->render_state.gen9.surface_table] == binding_table[0]) dirty = 0; gen9_emit_state(sna, op, offset | dirty); } static void gen9_align_vertex(struct sna *sna, const struct sna_composite_op *op) { if (op->floats_per_vertex != sna->render_state.gen9.floats_per_vertex) { DBG(("aligning vertex: was %d, now %d floats per vertex\n", sna->render_state.gen9.floats_per_vertex, op->floats_per_vertex)); gen8_vertex_align(sna, op); sna->render_state.gen9.floats_per_vertex = op->floats_per_vertex; } } fastcall static void gen9_render_composite_blt(struct sna *sna, const struct sna_composite_op *op, const struct sna_composite_rectangles *r) { gen9_get_rectangles(sna, op, 1, gen9_emit_composite_state); op->prim_emit(sna, op, r); } fastcall static void gen9_render_composite_box(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box) { struct sna_composite_rectangles r; gen9_get_rectangles(sna, op, 1, gen9_emit_composite_state); DBG((" %s: (%d, %d), (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2)); r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.src = r.mask = r.dst; op->prim_emit(sna, op, &r); } static void gen9_render_composite_boxes__blt(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("composite_boxes(%d)\n", nbox)); do { int nbox_this_time; nbox_this_time = gen9_get_rectangles(sna, op, nbox, gen9_emit_composite_state); nbox -= nbox_this_time; do { struct sna_composite_rectangles r; DBG((" %s: (%d, %d), (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2)); r.dst.x = box->x1; r.dst.y = box->y1; r.width = box->x2 - box->x1; r.height = box->y2 - box->y1; r.src = r.mask = r.dst; op->prim_emit(sna, op, &r); box++; } while (--nbox_this_time); } while (nbox); } static void gen9_render_composite_boxes(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("%s: nbox=%d\n", __FUNCTION__, nbox)); do { int nbox_this_time; float *v; nbox_this_time = gen9_get_rectangles(sna, op, nbox, gen9_emit_composite_state); assert(nbox_this_time); nbox -= nbox_this_time; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += nbox_this_time * op->floats_per_rect; op->emit_boxes(op, box, nbox_this_time, v); box += nbox_this_time; } while (nbox); } static void gen9_render_composite_boxes__thread(struct sna *sna, const struct sna_composite_op *op, const BoxRec *box, int nbox) { DBG(("%s: nbox=%d\n", __FUNCTION__, nbox)); sna_vertex_lock(&sna->render); do { int nbox_this_time; float *v; nbox_this_time = gen9_get_rectangles(sna, op, nbox, gen9_emit_composite_state); assert(nbox_this_time); nbox -= nbox_this_time; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += nbox_this_time * op->floats_per_rect; sna_vertex_acquire__locked(&sna->render); sna_vertex_unlock(&sna->render); op->emit_boxes(op, box, nbox_this_time, v); box += nbox_this_time; sna_vertex_lock(&sna->render); sna_vertex_release__locked(&sna->render); } while (nbox); sna_vertex_unlock(&sna->render); } static uint32_t gen9_create_blend_state(struct sna_static_stream *stream) { char *base, *ptr; int src, dst; COMPILE_TIME_ASSERT(((GEN9_BLENDFACTOR_COUNT * GEN9_BLENDFACTOR_COUNT << 4) & (1 << 15)) == 0); base = sna_static_stream_map(stream, GEN9_BLENDFACTOR_COUNT * GEN9_BLENDFACTOR_COUNT * GEN9_BLEND_STATE_PADDED_SIZE, 64); ptr = base; for (src = 0; src < GEN9_BLENDFACTOR_COUNT; src++) { for (dst = 0; dst < GEN9_BLENDFACTOR_COUNT; dst++) { struct gen9_blend_state *blend = (struct gen9_blend_state *)ptr; assert(((ptr - base) & 63) == 0); COMPILE_TIME_ASSERT(sizeof(blend->common) == 4); COMPILE_TIME_ASSERT(sizeof(blend->rt) == 8); COMPILE_TIME_ASSERT((char *)&blend->rt - (char *)blend == 4); blend->rt.post_blend_clamp = 1; blend->rt.pre_blend_clamp = 1; blend->rt.color_blend = !(dst == BLENDFACTOR_ZERO && src == BLENDFACTOR_ONE); blend->rt.dest_blend_factor = dst; blend->rt.source_blend_factor = src; blend->rt.color_blend_function = BLENDFUNCTION_ADD; blend->rt.dest_alpha_blend_factor = dst; blend->rt.source_alpha_blend_factor = src; blend->rt.alpha_blend_function = BLENDFUNCTION_ADD; ptr += GEN9_BLEND_STATE_PADDED_SIZE; } } return sna_static_stream_offsetof(stream, base); } static int gen9_composite_picture(struct sna *sna, PicturePtr picture, struct sna_composite_channel *channel, int x, int y, int w, int h, int dst_x, int dst_y, bool precise) { PixmapPtr pixmap; uint32_t color; int16_t dx, dy; DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n", __FUNCTION__, x, y, w, h, dst_x, dst_y)); channel->is_solid = false; channel->card_format = -1; if (sna_picture_is_solid(picture, &color)) return gen4_channel_init_solid(sna, channel, color); if (picture->pDrawable == NULL) { int ret; if (picture->pSourcePict->type == SourcePictTypeLinear) return gen4_channel_init_linear(sna, picture, channel, x, y, w, h, dst_x, dst_y); DBG(("%s -- fixup, gradient\n", __FUNCTION__)); ret = -1; if (!precise) ret = sna_render_picture_approximate_gradient(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (ret == -1) ret = sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); return ret; } if (picture->alphaMap) { DBG(("%s -- fallback, alphamap\n", __FUNCTION__)); return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); } if (!gen9_check_repeat(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); if (!gen9_check_filter(picture)) return sna_render_picture_fixup(sna, picture, channel, x, y, w, h, dst_x, dst_y); channel->repeat = picture->repeat ? picture->repeatType : RepeatNone; channel->filter = picture->filter; pixmap = get_drawable_pixmap(picture->pDrawable); get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy); x += dx + picture->pDrawable->x; y += dy + picture->pDrawable->y; channel->is_affine = sna_transform_is_affine(picture->transform); if (sna_transform_is_imprecise_integer_translation(picture->transform, picture->filter, precise, &dx, &dy)) { DBG(("%s: integer translation (%d, %d), removing\n", __FUNCTION__, dx, dy)); x += dx; y += dy; channel->transform = NULL; channel->filter = PictFilterNearest; if (channel->repeat || (x >= 0 && y >= 0 && x + w <= pixmap->drawable.width && y + h <= pixmap->drawable.height)) { struct sna_pixmap *priv = sna_pixmap(pixmap); if (priv && priv->clear) { DBG(("%s: converting large pixmap source into solid [%08x]\n", __FUNCTION__, priv->clear_color)); return gen4_channel_init_solid(sna, channel, solid_color(picture->format, priv->clear_color)); } } } else channel->transform = picture->transform; channel->pict_format = picture->format; channel->card_format = gen9_get_card_format(picture->format); if (channel->card_format == (unsigned)-1) return sna_render_picture_convert(sna, picture, channel, pixmap, x, y, w, h, dst_x, dst_y, false); if (too_large(pixmap->drawable.width, pixmap->drawable.height)) { DBG(("%s: extracting from pixmap %dx%d\n", __FUNCTION__, pixmap->drawable.width, pixmap->drawable.height)); return sna_render_picture_extract(sna, picture, channel, x, y, w, h, dst_x, dst_y); } return sna_render_pixmap_bo(sna, channel, pixmap, x, y, w, h, dst_x, dst_y); } inline static bool gen9_composite_channel_convert(struct sna_composite_channel *channel) { if (unaligned(channel->bo, PICT_FORMAT_BPP(channel->pict_format))) return false; channel->repeat = gen9_repeat(channel->repeat); channel->filter = gen9_filter(channel->filter); if (channel->card_format == (unsigned)-1) channel->card_format = gen9_get_card_format(channel->pict_format); assert(channel->card_format != (unsigned)-1); return true; } static void gen9_render_composite_done(struct sna *sna, const struct sna_composite_op *op) { if (sna->render.vertex_offset) { gen8_vertex_flush(sna); gen9_magic_ca_pass(sna, op); } if (op->mask.bo) kgem_bo_destroy(&sna->kgem, op->mask.bo); if (op->src.bo) kgem_bo_destroy(&sna->kgem, op->src.bo); sna_render_composite_redirect_done(sna, op); } inline static bool gen9_composite_set_target(struct sna *sna, struct sna_composite_op *op, PicturePtr dst, int x, int y, int w, int h, bool partial) { BoxRec box; unsigned int hint; DBG(("%s: (%d, %d)x(%d, %d), partial?=%d\n", __FUNCTION__, x, y, w, h, partial)); op->dst.pixmap = get_drawable_pixmap(dst->pDrawable); op->dst.format = dst->format; op->dst.width = op->dst.pixmap->drawable.width; op->dst.height = op->dst.pixmap->drawable.height; if (w | h) { assert(w && h); box.x1 = x; box.y1 = y; box.x2 = x + w; box.y2 = y + h; } else sna_render_picture_extents(dst, &box); hint = PREFER_GPU | RENDER_GPU; if (!need_tiling(sna, op->dst.width, op->dst.height)) hint |= FORCE_GPU; if (!partial) { hint |= IGNORE_DAMAGE; if (w == op->dst.width && h == op->dst.height) hint |= REPLACES; } op->dst.bo = sna_drawable_use_bo(dst->pDrawable, hint, &box, &op->damage); if (op->dst.bo == NULL) return false; assert(!op->damage || !DAMAGE_IS_ALL(*op->damage)); if (unaligned(op->dst.bo, dst->pDrawable->bitsPerPixel)) return false; if (hint & REPLACES) { struct sna_pixmap *priv = sna_pixmap(op->dst.pixmap); kgem_bo_pair_undo(&sna->kgem, priv->gpu_bo, priv->cpu_bo); } get_drawable_deltas(dst->pDrawable, op->dst.pixmap, &op->dst.x, &op->dst.y); DBG(("%s: pixmap=%ld, format=%08x, size=%dx%d, pitch=%d, delta=(%d,%d),damage=%p\n", __FUNCTION__, op->dst.pixmap->drawable.serialNumber, (int)op->dst.format, op->dst.width, op->dst.height, op->dst.bo->pitch, op->dst.x, op->dst.y, op->damage ? *op->damage : (void *)-1)); assert(op->dst.bo->proxy == NULL); if (too_large(op->dst.width, op->dst.height) && !sna_render_composite_redirect(sna, op, x, y, w, h, partial)) return false; return true; } static bool try_blt(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t msk_x, int16_t msk_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, unsigned flags, struct sna_composite_op *tmp) { struct kgem_bo *bo; if (sna->kgem.mode == KGEM_BLT) { DBG(("%s: already performing BLT\n", __FUNCTION__)); goto execute; } if (too_large(width, height)) { DBG(("%s: operation too large for 3D pipe (%d, %d)\n", __FUNCTION__, width, height)); goto execute; } bo = __sna_drawable_peek_bo(dst->pDrawable); if (bo == NULL) goto execute; if (untiled_tlb_miss(bo)) goto execute; if (bo->rq) { if (RQ_IS_BLT(bo->rq)) goto execute; return false; } if (bo->tiling == I915_TILING_Y) goto upload; if (sna_picture_is_solid(src, NULL) && can_switch_to_blt(sna, bo, 0)) goto execute; if (src->pDrawable == dst->pDrawable && (sna->render_state.gt < 3 || width*height < 1024) && can_switch_to_blt(sna, bo, 0)) goto execute; if (src->pDrawable) { struct kgem_bo *s = __sna_drawable_peek_bo(src->pDrawable); if (s == NULL) goto upload; if (prefer_blt_bo(sna, s, bo)) goto execute; } if (sna->kgem.ring == KGEM_BLT) { DBG(("%s: already performing BLT\n", __FUNCTION__)); goto execute; } upload: flags |= COMPOSITE_UPLOAD; execute: return sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, flags, tmp); } static bool check_gradient(PicturePtr picture, bool precise) { if (picture->pDrawable) return false; switch (picture->pSourcePict->type) { case SourcePictTypeSolidFill: case SourcePictTypeLinear: return false; default: return precise; } } static bool has_alphamap(PicturePtr p) { return p->alphaMap != NULL; } static bool need_upload(PicturePtr p) { return p->pDrawable && unattached(p->pDrawable) && untransformed(p); } static bool source_is_busy(PixmapPtr pixmap) { struct sna_pixmap *priv = sna_pixmap(pixmap); if (priv == NULL || priv->clear) return false; if (priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo)) return true; if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo)) return true; return priv->gpu_damage && !priv->cpu_damage; } static bool source_fallback(PicturePtr p, PixmapPtr pixmap, bool precise) { if (sna_picture_is_solid(p, NULL)) return false; if (p->pSourcePict) return check_gradient(p, precise); if (!gen9_check_repeat(p) || !gen9_check_format(p->format)) return true; if (pixmap && source_is_busy(pixmap)) return false; return has_alphamap(p) || !gen9_check_filter(p) || need_upload(p); } static bool gen9_composite_fallback(struct sna *sna, PicturePtr src, PicturePtr mask, PicturePtr dst) { PixmapPtr src_pixmap; PixmapPtr mask_pixmap; PixmapPtr dst_pixmap; bool src_fallback, mask_fallback; if (!gen9_check_dst_format(dst->format)) { DBG(("%s: unknown destination format: %d\n", __FUNCTION__, dst->format)); return true; } dst_pixmap = get_drawable_pixmap(dst->pDrawable); src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL; src_fallback = source_fallback(src, src_pixmap, dst->polyMode == PolyModePrecise); if (mask) { mask_pixmap = mask->pDrawable ? get_drawable_pixmap(mask->pDrawable) : NULL; mask_fallback = source_fallback(mask, mask_pixmap, dst->polyMode == PolyModePrecise); } else { mask_pixmap = NULL; mask_fallback = false; } /* If we are using the destination as a source and need to * readback in order to upload the source, do it all * on the cpu. */ if (src_pixmap == dst_pixmap && src_fallback) { DBG(("%s: src is dst and will fallback\n",__FUNCTION__)); return true; } if (mask_pixmap == dst_pixmap && mask_fallback) { DBG(("%s: mask is dst and will fallback\n",__FUNCTION__)); return true; } /* If anything is on the GPU, push everything out to the GPU */ if (dst_use_gpu(dst_pixmap)) { DBG(("%s: dst is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } if (src_pixmap && !src_fallback) { DBG(("%s: src is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } if (mask_pixmap && !mask_fallback) { DBG(("%s: mask is already on the GPU, try to use GPU\n", __FUNCTION__)); return false; } /* However if the dst is not on the GPU and we need to * render one of the sources using the CPU, we may * as well do the entire operation in place onthe CPU. */ if (src_fallback) { DBG(("%s: dst is on the CPU and src will fallback\n", __FUNCTION__)); return true; } if (mask && mask_fallback) { DBG(("%s: dst is on the CPU and mask will fallback\n", __FUNCTION__)); return true; } if (too_large(dst_pixmap->drawable.width, dst_pixmap->drawable.height) && dst_is_cpu(dst_pixmap)) { DBG(("%s: dst is on the CPU and too large\n", __FUNCTION__)); return true; } DBG(("%s: dst is not on the GPU and the operation should not fallback\n", __FUNCTION__)); return dst_use_cpu(dst_pixmap); } static int reuse_source(struct sna *sna, PicturePtr src, struct sna_composite_channel *sc, int src_x, int src_y, PicturePtr mask, struct sna_composite_channel *mc, int msk_x, int msk_y) { uint32_t color; if (src_x != msk_x || src_y != msk_y) return false; if (src == mask) { DBG(("%s: mask is source\n", __FUNCTION__)); *mc = *sc; mc->bo = kgem_bo_reference(mc->bo); return true; } if (sna_picture_is_solid(mask, &color)) return gen4_channel_init_solid(sna, mc, color); if (sc->is_solid) return false; if (src->pDrawable == NULL || mask->pDrawable != src->pDrawable) return false; DBG(("%s: mask reuses source drawable\n", __FUNCTION__)); if (!sna_transform_equal(src->transform, mask->transform)) return false; if (!sna_picture_alphamap_equal(src, mask)) return false; if (!gen9_check_repeat(mask)) return false; if (!gen9_check_filter(mask)) return false; if (!gen9_check_format(mask->format)) return false; DBG(("%s: reusing source channel for mask with a twist\n", __FUNCTION__)); *mc = *sc; mc->repeat = gen9_repeat(mask->repeat ? mask->repeatType : RepeatNone); mc->filter = gen9_filter(mask->filter); mc->pict_format = mask->format; mc->card_format = gen9_get_card_format(mask->format); mc->bo = kgem_bo_reference(mc->bo); return true; } static bool gen9_render_composite(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr mask, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t msk_x, int16_t msk_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, unsigned flags, struct sna_composite_op *tmp) { if (op >= ARRAY_SIZE(gen9_blend_op)) return false; DBG(("%s: %dx%d, current mode=%d/%d\n", __FUNCTION__, width, height, sna->kgem.mode, sna->kgem.ring)); if (mask == NULL && try_blt(sna, op, src, mask, dst, src_x, src_y, msk_x, msk_y, dst_x, dst_y, width, height, flags, tmp)) return true; if (gen9_composite_fallback(sna, src, mask, dst)) goto fallback; if (need_tiling(sna, width, height)) return sna_tiling_composite(op, src, mask, dst, src_x, src_y, msk_x, msk_y, dst_x, dst_y, width, height, tmp); if (op == PictOpClear && src == sna->clear) op = PictOpSrc; tmp->op = op; if (!gen9_composite_set_target(sna, tmp, dst, dst_x, dst_y, width, height, flags & COMPOSITE_PARTIAL || op > PictOpSrc)) goto fallback; switch (gen9_composite_picture(sna, src, &tmp->src, src_x, src_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_dst; case 0: if (!gen4_channel_init_solid(sna, &tmp->src, 0)) goto cleanup_dst; /* fall through to fixup */ case 1: /* Did we just switch rings to prepare the source? */ if (mask == NULL && (prefer_blt_composite(sna, tmp) || unaligned(tmp->src.bo, PICT_FORMAT_BPP(tmp->src.pict_format))) && sna_blt_composite__convert(sna, dst_x, dst_y, width, height, tmp)) return true; if (!gen9_composite_channel_convert(&tmp->src)) goto cleanup_src; break; } tmp->is_affine = tmp->src.is_affine; tmp->has_component_alpha = false; tmp->need_magic_ca_pass = false; tmp->mask.bo = NULL; tmp->mask.filter = SAMPLER_FILTER_NEAREST; tmp->mask.repeat = SAMPLER_EXTEND_NONE; if (mask) { if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) { tmp->has_component_alpha = true; /* Check if it's component alpha that relies on a source alpha and on * the source value. We can only get one of those into the single * source value that we get to blend with. */ if (gen9_blend_op[op].src_alpha && (gen9_blend_op[op].src_blend != BLENDFACTOR_ZERO)) { if (op != PictOpOver) goto cleanup_src; tmp->need_magic_ca_pass = true; tmp->op = PictOpOutReverse; } } if (!reuse_source(sna, src, &tmp->src, src_x, src_y, mask, &tmp->mask, msk_x, msk_y)) { switch (gen9_composite_picture(sna, mask, &tmp->mask, msk_x, msk_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_src; case 0: if (!gen4_channel_init_solid(sna, &tmp->mask, 0)) goto cleanup_src; /* fall through to fixup */ case 1: if (!gen9_composite_channel_convert(&tmp->mask)) goto cleanup_mask; break; } } tmp->is_affine &= tmp->mask.is_affine; } tmp->u.gen9.flags = GEN9_SET_FLAGS(SAMPLER_OFFSET(tmp->src.filter, tmp->src.repeat, tmp->mask.filter, tmp->mask.repeat), gen9_get_blend(tmp->op, tmp->has_component_alpha, tmp->dst.format), gen9_choose_composite_kernel(tmp->op, tmp->mask.bo != NULL, tmp->has_component_alpha, tmp->is_affine), gen4_choose_composite_emitter(sna, tmp)); tmp->blt = gen9_render_composite_blt; tmp->box = gen9_render_composite_box; tmp->boxes = gen9_render_composite_boxes__blt; if (tmp->emit_boxes){ tmp->boxes = gen9_render_composite_boxes; tmp->thread_boxes = gen9_render_composite_boxes__thread; } tmp->done = gen9_render_composite_done; kgem_set_mode(&sna->kgem, KGEM_RENDER, tmp->dst.bo); if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) goto cleanup_mask; _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, tmp); gen9_emit_composite_state(sna, tmp); return true; cleanup_mask: if (tmp->mask.bo) { kgem_bo_destroy(&sna->kgem, tmp->mask.bo); tmp->mask.bo = NULL; } cleanup_src: if (tmp->src.bo) { kgem_bo_destroy(&sna->kgem, tmp->src.bo); tmp->src.bo = NULL; } cleanup_dst: if (tmp->redirect.real_bo) { kgem_bo_destroy(&sna->kgem, tmp->dst.bo); tmp->redirect.real_bo = NULL; } fallback: return (mask == NULL && sna_blt_composite(sna, op, src, dst, src_x, src_y, dst_x, dst_y, width, height, flags | COMPOSITE_FALLBACK, tmp)); } #if !NO_COMPOSITE_SPANS fastcall static void gen9_render_composite_spans_box(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, float opacity) { DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n", __FUNCTION__, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); gen9_get_rectangles(sna, &op->base, 1, gen9_emit_composite_state); op->prim_emit(sna, op, box, opacity); } static void gen9_render_composite_spans_boxes(struct sna *sna, const struct sna_composite_spans_op *op, const BoxRec *box, int nbox, float opacity) { DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n", __FUNCTION__, nbox, op->base.src.offset[0], op->base.src.offset[1], opacity, op->base.dst.x, op->base.dst.y)); do { int nbox_this_time; nbox_this_time = gen9_get_rectangles(sna, &op->base, nbox, gen9_emit_composite_state); nbox -= nbox_this_time; do { DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2 - box->x1, box->y2 - box->y1)); op->prim_emit(sna, op, box++, opacity); } while (--nbox_this_time); } while (nbox); } fastcall static void gen9_render_composite_spans_boxes__thread(struct sna *sna, const struct sna_composite_spans_op *op, const struct sna_opacity_box *box, int nbox) { DBG(("%s: nbox=%d, src=+(%d, %d), dst=+(%d, %d)\n", __FUNCTION__, nbox, op->base.src.offset[0], op->base.src.offset[1], op->base.dst.x, op->base.dst.y)); sna_vertex_lock(&sna->render); do { int nbox_this_time; float *v; nbox_this_time = gen9_get_rectangles(sna, &op->base, nbox, gen9_emit_composite_state); assert(nbox_this_time); nbox -= nbox_this_time; v = sna->render.vertices + sna->render.vertex_used; sna->render.vertex_used += nbox_this_time * op->base.floats_per_rect; sna_vertex_acquire__locked(&sna->render); sna_vertex_unlock(&sna->render); op->emit_boxes(op, box, nbox_this_time, v); box += nbox_this_time; sna_vertex_lock(&sna->render); sna_vertex_release__locked(&sna->render); } while (nbox); sna_vertex_unlock(&sna->render); } fastcall static void gen9_render_composite_spans_done(struct sna *sna, const struct sna_composite_spans_op *op) { if (sna->render.vertex_offset) gen8_vertex_flush(sna); DBG(("%s()\n", __FUNCTION__)); if (op->base.src.bo) kgem_bo_destroy(&sna->kgem, op->base.src.bo); sna_render_composite_redirect_done(sna, &op->base); } static bool gen9_check_composite_spans(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr dst, int16_t width, int16_t height, unsigned flags) { if (op >= ARRAY_SIZE(gen9_blend_op)) return false; if (gen9_composite_fallback(sna, src, NULL, dst)) return false; if (need_tiling(sna, width, height) && !is_gpu(sna, dst->pDrawable, PREFER_GPU_SPANS)) { DBG(("%s: fallback, tiled operation not on GPU\n", __FUNCTION__)); return false; } return true; } static bool gen9_render_composite_spans(struct sna *sna, uint8_t op, PicturePtr src, PicturePtr dst, int16_t src_x, int16_t src_y, int16_t dst_x, int16_t dst_y, int16_t width, int16_t height, unsigned flags, struct sna_composite_spans_op *tmp) { DBG(("%s: %dx%d with flags=%x, current mode=%d\n", __FUNCTION__, width, height, flags, sna->kgem.ring)); assert(gen9_check_composite_spans(sna, op, src, dst, width, height, flags)); if (need_tiling(sna, width, height)) { DBG(("%s: tiling, operation (%dx%d) too wide for pipeline\n", __FUNCTION__, width, height)); return sna_tiling_composite_spans(op, src, dst, src_x, src_y, dst_x, dst_y, width, height, flags, tmp); } tmp->base.op = op; if (!gen9_composite_set_target(sna, &tmp->base, dst, dst_x, dst_y, width, height, true)) return false; switch (gen9_composite_picture(sna, src, &tmp->base.src, src_x, src_y, width, height, dst_x, dst_y, dst->polyMode == PolyModePrecise)) { case -1: goto cleanup_dst; case 0: if (!gen4_channel_init_solid(sna, &tmp->base.src, 0)) goto cleanup_dst; /* fall through to fixup */ case 1: if (!gen9_composite_channel_convert(&tmp->base.src)) goto cleanup_src; break; } tmp->base.mask.bo = NULL; tmp->base.is_affine = tmp->base.src.is_affine; tmp->base.need_magic_ca_pass = false; tmp->base.u.gen9.flags = GEN9_SET_FLAGS(SAMPLER_OFFSET(tmp->base.src.filter, tmp->base.src.repeat, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_PAD), gen9_get_blend(tmp->base.op, false, tmp->base.dst.format), GEN9_WM_KERNEL_OPACITY | !tmp->base.is_affine, gen4_choose_spans_emitter(sna, tmp)); tmp->box = gen9_render_composite_spans_box; tmp->boxes = gen9_render_composite_spans_boxes; if (tmp->emit_boxes) tmp->thread_boxes = gen9_render_composite_spans_boxes__thread; tmp->done = gen9_render_composite_spans_done; kgem_set_mode(&sna->kgem, KGEM_RENDER, tmp->base.dst.bo); if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo, tmp->base.src.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo, tmp->base.src.bo, NULL)) goto cleanup_src; _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &tmp->base); gen9_emit_composite_state(sna, &tmp->base); return true; cleanup_src: if (tmp->base.src.bo) kgem_bo_destroy(&sna->kgem, tmp->base.src.bo); cleanup_dst: if (tmp->base.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo); return false; } #endif static void gen9_emit_copy_state(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset, dirty; gen9_get_batch(sna, op); binding_table = gen9_composite_get_binding_table(sna, &offset); dirty = kgem_bo_is_dirty(op->dst.bo); binding_table[0] = gen9_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen9_get_dest_format(op->dst.format), true); binding_table[1] = gen9_bind_bo(sna, op->src.bo, op->src.width, op->src.height, op->src.card_format, false); if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen9.surface_table) == *(uint64_t*)binding_table) { sna->kgem.surface += SURFACE_DW; offset = sna->render_state.gen9.surface_table; } if (sna->kgem.batch[sna->render_state.gen9.surface_table] == binding_table[0]) dirty = 0; assert(!GEN9_READS_DST(op->u.gen9.flags)); gen9_emit_state(sna, op, offset | dirty); } static inline bool prefer_blt_copy(struct sna *sna, struct kgem_bo *src_bo, struct kgem_bo *dst_bo, unsigned flags) { if (sna->kgem.mode == KGEM_BLT) return true; assert((flags & COPY_SYNC) == 0); if (untiled_tlb_miss(src_bo) || untiled_tlb_miss(dst_bo)) return true; if (flags & COPY_DRI && !sna->kgem.has_semaphores) return false; if (force_blt_ring(sna, dst_bo)) return true; if ((flags & COPY_SMALL || (sna->render_state.gt < 3 && src_bo == dst_bo)) && can_switch_to_blt(sna, dst_bo, flags)) return true; if (kgem_bo_is_render(dst_bo) || kgem_bo_is_render(src_bo)) return false; if (flags & COPY_LAST && sna->render_state.gt < 3 && can_switch_to_blt(sna, dst_bo, flags)) return true; if (prefer_render_ring(sna, dst_bo)) return false; if (!prefer_blt_ring(sna, dst_bo, flags)) return false; return prefer_blt_bo(sna, src_bo, dst_bo); } static bool gen9_render_copy_boxes(struct sna *sna, uint8_t alu, const DrawableRec *src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy, const DrawableRec *dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const BoxRec *box, int n, unsigned flags) { struct sna_composite_op tmp; BoxRec extents; DBG(("%s (%d, %d)->(%d, %d) x %d, alu=%x, flags=%x, self-copy=%d, overlaps? %d\n", __FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n, alu, flags, src_bo == dst_bo, overlaps(sna, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, box, n, flags, &extents))); if (prefer_blt_copy(sna, src_bo, dst_bo, flags) && sna_blt_compare_depth(src, dst) && sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->bitsPerPixel, box, n)) return true; if (!(alu == GXcopy || alu == GXclear) || unaligned(src_bo, src->bitsPerPixel) || unaligned(dst_bo, dst->bitsPerPixel)) { fallback_blt: DBG(("%s: fallback blt\n", __FUNCTION__)); if (!sna_blt_compare_depth(src, dst)) return false; return sna_blt_copy_boxes_fallback(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } if (overlaps(sna, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, box, n, flags, &extents)) { bool big = too_large(extents.x2-extents.x1, extents.y2-extents.y1); if ((big || !prefer_render_ring(sna, dst_bo)) && sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->bitsPerPixel, box, n)) return true; if (big) goto fallback_blt; assert(src_bo == dst_bo); assert(src->depth == dst->depth); assert(src->width == dst->width); assert(src->height == dst->height); return sna_render_copy_boxes__overlap(sna, alu, dst, dst_bo, src_dx, src_dy, dst_dx, dst_dy, box, n, &extents); } if (dst->depth == src->depth) { tmp.dst.format = sna_render_format_for_depth(dst->depth); tmp.src.pict_format = tmp.dst.format; } else { tmp.dst.format = sna_format_for_depth(dst->depth); tmp.src.pict_format = sna_format_for_depth(src->depth); } if (!gen9_check_format(tmp.src.pict_format)) goto fallback_blt; tmp.dst.pixmap = (PixmapPtr)dst; tmp.dst.width = dst->width; tmp.dst.height = dst->height; tmp.dst.bo = dst_bo; tmp.dst.x = tmp.dst.y = 0; tmp.damage = NULL; sna_render_composite_redirect_init(&tmp); if (too_large(tmp.dst.width, tmp.dst.height)) { int i; extents = box[0]; for (i = 1; i < n; i++) { if (box[i].x1 < extents.x1) extents.x1 = box[i].x1; if (box[i].y1 < extents.y1) extents.y1 = box[i].y1; if (box[i].x2 > extents.x2) extents.x2 = box[i].x2; if (box[i].y2 > extents.y2) extents.y2 = box[i].y2; } if (!sna_render_composite_redirect(sna, &tmp, extents.x1 + dst_dx, extents.y1 + dst_dy, extents.x2 - extents.x1, extents.y2 - extents.y1, n > 1)) goto fallback_tiled; } tmp.src.card_format = gen9_get_card_format(tmp.src.pict_format); if (too_large(src->width, src->height)) { int i; extents = box[0]; for (i = 1; i < n; i++) { if (box[i].x1 < extents.x1) extents.x1 = box[i].x1; if (box[i].y1 < extents.y1) extents.y1 = box[i].y1; if (box[i].x2 > extents.x2) extents.x2 = box[i].x2; if (box[i].y2 > extents.y2) extents.y2 = box[i].y2; } if (!sna_render_pixmap_partial(sna, src, src_bo, &tmp.src, extents.x1 + src_dx, extents.y1 + src_dy, extents.x2 - extents.x1, extents.y2 - extents.y1)) goto fallback_tiled_dst; } else { tmp.src.bo = src_bo; tmp.src.width = src->width; tmp.src.height = src->height; tmp.src.offset[0] = tmp.src.offset[1] = 0; } tmp.mask.bo = NULL; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.need_magic_ca_pass = 0; tmp.u.gen9.flags = COPY_FLAGS(alu); kgem_set_mode(&sna->kgem, KGEM_RENDER, tmp.dst.bo); if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, tmp.src.bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, tmp.src.bo, NULL)) { if (tmp.src.bo != src_bo) kgem_bo_destroy(&sna->kgem, tmp.src.bo); if (tmp.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp.dst.bo); goto fallback_blt; } _kgem_set_mode(&sna->kgem, KGEM_RENDER); } src_dx += tmp.src.offset[0]; src_dy += tmp.src.offset[1]; dst_dx += tmp.dst.x; dst_dy += tmp.dst.y; tmp.dst.x = tmp.dst.y = 0; gen9_align_vertex(sna, &tmp); gen9_emit_copy_state(sna, &tmp); do { int16_t *v; int n_this_time; n_this_time = gen9_get_rectangles(sna, &tmp, n, gen9_emit_copy_state); n -= n_this_time; v = (int16_t *)(sna->render.vertices + sna->render.vertex_used); sna->render.vertex_used += 6 * n_this_time; assert(sna->render.vertex_used <= sna->render.vertex_size); do { DBG((" (%d, %d) -> (%d, %d) + (%d, %d)\n", box->x1 + src_dx, box->y1 + src_dy, box->x1 + dst_dx, box->y1 + dst_dy, box->x2 - box->x1, box->y2 - box->y1)); v[0] = box->x2 + dst_dx; v[2] = box->x2 + src_dx; v[1] = v[5] = box->y2 + dst_dy; v[3] = v[7] = box->y2 + src_dy; v[8] = v[4] = box->x1 + dst_dx; v[10] = v[6] = box->x1 + src_dx; v[9] = box->y1 + dst_dy; v[11] = box->y1 + src_dy; v += 12; box++; } while (--n_this_time); } while (n); gen8_vertex_flush(sna); sna_render_composite_redirect_done(sna, &tmp); if (tmp.src.bo != src_bo) kgem_bo_destroy(&sna->kgem, tmp.src.bo); return true; fallback_tiled_dst: if (tmp.redirect.real_bo) kgem_bo_destroy(&sna->kgem, tmp.dst.bo); fallback_tiled: DBG(("%s: fallback tiled\n", __FUNCTION__)); if (sna_blt_compare_depth(src, dst) && sna_blt_copy_boxes(sna, alu, src_bo, src_dx, src_dy, dst_bo, dst_dx, dst_dy, dst->bitsPerPixel, box, n)) return true; return sna_tiling_copy_boxes(sna, alu, src, src_bo, src_dx, src_dy, dst, dst_bo, dst_dx, dst_dy, box, n); } static void gen9_render_copy_blt(struct sna *sna, const struct sna_copy_op *op, int16_t sx, int16_t sy, int16_t w, int16_t h, int16_t dx, int16_t dy) { int16_t *v; gen9_get_rectangles(sna, &op->base, 1, gen9_emit_copy_state); v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); v[0] = dx+w; v[1] = dy+h; v[2] = sx+w; v[3] = sy+h; v[4] = dx; v[5] = dy+h; v[6] = sx; v[7] = sy+h; v[8] = dx; v[9] = dy; v[10] = sx; v[11] = sy; } static void gen9_render_copy_done(struct sna *sna, const struct sna_copy_op *op) { if (sna->render.vertex_offset) gen8_vertex_flush(sna); } static bool gen9_render_copy(struct sna *sna, uint8_t alu, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr dst, struct kgem_bo *dst_bo, struct sna_copy_op *op) { DBG(("%s (alu=%d, src=(%dx%d), dst=(%dx%d))\n", __FUNCTION__, alu, src->drawable.width, src->drawable.height, dst->drawable.width, dst->drawable.height)); if (prefer_blt_copy(sna, src_bo, dst_bo, 0) && sna_blt_compare_depth(&src->drawable, &dst->drawable) && sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op)) return true; if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo || too_large(src->drawable.width, src->drawable.height) || too_large(dst->drawable.width, dst->drawable.height) || unaligned(src_bo, src->drawable.bitsPerPixel) || unaligned(dst_bo, dst->drawable.bitsPerPixel)) { fallback: if (!sna_blt_compare_depth(&src->drawable, &dst->drawable)) return false; return sna_blt_copy(sna, alu, src_bo, dst_bo, dst->drawable.bitsPerPixel, op); } if (dst->drawable.depth == src->drawable.depth) { op->base.dst.format = sna_render_format_for_depth(dst->drawable.depth); op->base.src.pict_format = op->base.dst.format; } else { op->base.dst.format = sna_format_for_depth(dst->drawable.depth); op->base.src.pict_format = sna_format_for_depth(src->drawable.depth); } if (!gen9_check_format(op->base.src.pict_format)) goto fallback; op->base.dst.pixmap = dst; op->base.dst.width = dst->drawable.width; op->base.dst.height = dst->drawable.height; op->base.dst.bo = dst_bo; op->base.src.bo = src_bo; op->base.src.card_format = gen9_get_card_format(op->base.src.pict_format); op->base.src.width = src->drawable.width; op->base.src.height = src->drawable.height; op->base.mask.bo = NULL; op->base.floats_per_vertex = 2; op->base.floats_per_rect = 6; op->base.u.gen9.flags = COPY_FLAGS(alu); kgem_set_mode(&sna->kgem, KGEM_RENDER, dst_bo); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) goto fallback; _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &op->base); gen9_emit_copy_state(sna, &op->base); op->blt = gen9_render_copy_blt; op->done = gen9_render_copy_done; return true; } static void gen9_emit_fill_state(struct sna *sna, const struct sna_composite_op *op) { uint32_t *binding_table; uint16_t offset, dirty; /* XXX Render Target Fast Clear * Set RTFC Enable in PS and render a rectangle. * Limited to a clearing the full MSC surface only with a * specific kernel. */ gen9_get_batch(sna, op); binding_table = gen9_composite_get_binding_table(sna, &offset); dirty = kgem_bo_is_dirty(op->dst.bo); binding_table[0] = gen9_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen9_get_dest_format(op->dst.format), true); binding_table[1] = gen9_bind_bo(sna, op->src.bo, 1, 1, SURFACEFORMAT_B8G8R8A8_UNORM, false); if (sna->kgem.surface == offset && *(uint64_t *)(sna->kgem.batch + sna->render_state.gen9.surface_table) == *(uint64_t*)binding_table) { sna->kgem.surface += SURFACE_DW; offset = sna->render_state.gen9.surface_table; } if (sna->kgem.batch[sna->render_state.gen9.surface_table] == binding_table[0]) dirty = 0; gen9_emit_state(sna, op, offset | dirty); } static bool gen9_render_fill_boxes(struct sna *sna, CARD8 op, PictFormat format, const xRenderColor *color, const DrawableRec *dst, struct kgem_bo *dst_bo, const BoxRec *box, int n) { struct sna_composite_op tmp; uint32_t pixel; DBG(("%s (op=%d, color=(%04x, %04x, %04x, %04x) [%08x])\n", __FUNCTION__, op, color->red, color->green, color->blue, color->alpha, (int)format)); if (op >= ARRAY_SIZE(gen9_blend_op)) { DBG(("%s: fallback due to unhandled blend op: %d\n", __FUNCTION__, op)); return false; } if (prefer_blt_fill(sna, dst_bo, FILL_BOXES) || !gen9_check_dst_format(format) || unaligned(dst_bo, PICT_FORMAT_BPP(format))) { uint8_t alu = GXinvalid; if (op <= PictOpSrc) { pixel = 0; if (op == PictOpClear) alu = GXclear; else if (sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, format)) alu = GXcopy; } if (alu != GXinvalid && sna_blt_fill_boxes(sna, alu, dst_bo, dst->bitsPerPixel, pixel, box, n)) return true; if (!gen9_check_dst_format(format)) return false; } if (op == PictOpClear) { pixel = 0; op = PictOpSrc; } else if (!sna_get_pixel_from_rgba(&pixel, color->red, color->green, color->blue, color->alpha, PICT_a8r8g8b8)) return false; DBG(("%s(%08x x %d [(%d, %d), (%d, %d) ...])\n", __FUNCTION__, pixel, n, box[0].x1, box[0].y1, box[0].x2, box[0].y2)); tmp.dst.pixmap = (PixmapPtr)dst; tmp.dst.width = dst->width; tmp.dst.height = dst->height; tmp.dst.format = format; tmp.dst.bo = dst_bo; tmp.dst.x = tmp.dst.y = 0; tmp.damage = NULL; sna_render_composite_redirect_init(&tmp); if (too_large(dst->width, dst->height)) { BoxRec extents; boxes_extents(box, n, &extents); if (!sna_render_composite_redirect(sna, &tmp, extents.x1, extents.y1, extents.x2 - extents.x1, extents.y2 - extents.y1, n > 1)) return sna_tiling_fill_boxes(sna, op, format, color, dst, dst_bo, box, n); } tmp.src.bo = sna_render_get_solid(sna, pixel); tmp.mask.bo = NULL; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.need_magic_ca_pass = false; tmp.u.gen9.flags = FILL_FLAGS(op, format); kgem_set_mode(&sna->kgem, KGEM_RENDER, dst_bo); if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_bo_destroy(&sna->kgem, tmp.src.bo); tmp.src.bo = NULL; if (tmp.redirect.real_bo) { kgem_bo_destroy(&sna->kgem, tmp.dst.bo); tmp.redirect.real_bo = NULL; } return false; } _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &tmp); gen9_emit_fill_state(sna, &tmp); do { int n_this_time; int16_t *v; n_this_time = gen9_get_rectangles(sna, &tmp, n, gen9_emit_fill_state); n -= n_this_time; v = (int16_t *)(sna->render.vertices + sna->render.vertex_used); sna->render.vertex_used += 6 * n_this_time; assert(sna->render.vertex_used <= sna->render.vertex_size); do { DBG((" (%d, %d), (%d, %d)\n", box->x1, box->y1, box->x2, box->y2)); v[0] = box->x2; v[5] = v[1] = box->y2; v[8] = v[4] = box->x1; v[9] = box->y1; v[2] = v[3] = v[7] = 1; v[6] = v[10] = v[11] = 0; v += 12; box++; } while (--n_this_time); } while (n); gen8_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, tmp.src.bo); sna_render_composite_redirect_done(sna, &tmp); return true; } static void gen9_render_fill_op_blt(struct sna *sna, const struct sna_fill_op *op, int16_t x, int16_t y, int16_t w, int16_t h) { int16_t *v; DBG(("%s: (%d, %d)x(%d, %d)\n", __FUNCTION__, x, y, w, h)); gen9_get_rectangles(sna, &op->base, 1, gen9_emit_fill_state); v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); v[0] = x+w; v[4] = v[8] = x; v[1] = v[5] = y+h; v[9] = y; v[2] = v[3] = v[7] = 1; v[6] = v[10] = v[11] = 0; } fastcall static void gen9_render_fill_op_box(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box) { int16_t *v; DBG(("%s: (%d, %d),(%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2)); gen9_get_rectangles(sna, &op->base, 1, gen9_emit_fill_state); v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); v[0] = box->x2; v[8] = v[4] = box->x1; v[5] = v[1] = box->y2; v[9] = box->y1; v[7] = v[2] = v[3] = 1; v[6] = v[10] = v[11] = 0; } fastcall static void gen9_render_fill_op_boxes(struct sna *sna, const struct sna_fill_op *op, const BoxRec *box, int nbox) { DBG(("%s: (%d, %d),(%d, %d)... x %d\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2, nbox)); do { int nbox_this_time; int16_t *v; nbox_this_time = gen9_get_rectangles(sna, &op->base, nbox, gen9_emit_fill_state); nbox -= nbox_this_time; v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6 * nbox_this_time; assert(sna->render.vertex_used <= sna->render.vertex_size); do { v[0] = box->x2; v[8] = v[4] = box->x1; v[5] = v[1] = box->y2; v[9] = box->y1; v[7] = v[2] = v[3] = 1; v[6] = v[10] = v[11] = 0; box++; v += 12; } while (--nbox_this_time); } while (nbox); } static void gen9_render_fill_op_done(struct sna *sna, const struct sna_fill_op *op) { if (sna->render.vertex_offset) gen8_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, op->base.src.bo); } static bool gen9_render_fill(struct sna *sna, uint8_t alu, PixmapPtr dst, struct kgem_bo *dst_bo, uint32_t color, unsigned flags, struct sna_fill_op *op) { DBG(("%s: (alu=%d, color=%x)\n", __FUNCTION__, alu, color)); if (prefer_blt_fill(sna, dst_bo, flags) && sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op)) return true; if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height) || unaligned(dst_bo, dst->drawable.bitsPerPixel)) return sna_blt_fill(sna, alu, dst_bo, dst->drawable.bitsPerPixel, color, op); if (alu == GXclear) color = 0; op->base.dst.pixmap = dst; op->base.dst.width = dst->drawable.width; op->base.dst.height = dst->drawable.height; op->base.dst.format = sna_format_for_depth(dst->drawable.depth); op->base.dst.bo = dst_bo; op->base.dst.x = op->base.dst.y = 0; op->base.src.bo = sna_render_get_solid(sna, sna_rgba_for_color(color, dst->drawable.depth)); op->base.mask.bo = NULL; op->base.need_magic_ca_pass = false; op->base.floats_per_vertex = 2; op->base.floats_per_rect = 6; op->base.u.gen9.flags = FILL_FLAGS_NOBLEND; kgem_set_mode(&sna->kgem, KGEM_RENDER, dst_bo); if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) { kgem_bo_destroy(&sna->kgem, op->base.src.bo); return false; } _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &op->base); gen9_emit_fill_state(sna, &op->base); op->blt = gen9_render_fill_op_blt; op->box = gen9_render_fill_op_box; op->boxes = gen9_render_fill_op_boxes; op->points = NULL; op->done = gen9_render_fill_op_done; return true; } static bool gen9_render_fill_one_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { BoxRec box; box.x1 = x1; box.y1 = y1; box.x2 = x2; box.y2 = y2; return sna_blt_fill_boxes(sna, alu, bo, dst->drawable.bitsPerPixel, color, &box, 1); } static bool gen9_render_fill_one(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo, uint32_t color, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t alu) { struct sna_composite_op tmp; int16_t *v; /* Prefer to use the BLT if already engaged */ if (prefer_blt_fill(sna, bo, FILL_BOXES) && gen9_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu)) return true; /* Must use the BLT if we can't RENDER... */ if (!(alu == GXcopy || alu == GXclear) || too_large(dst->drawable.width, dst->drawable.height) || unaligned(bo, dst->drawable.bitsPerPixel)) return gen9_render_fill_one_try_blt(sna, dst, bo, color, x1, y1, x2, y2, alu); if (alu == GXclear) color = 0; tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = bo; tmp.dst.x = tmp.dst.y = 0; tmp.src.bo = sna_render_get_solid(sna, sna_rgba_for_color(color, dst->drawable.depth)); tmp.mask.bo = NULL; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.need_magic_ca_pass = false; tmp.u.gen9.flags = FILL_FLAGS_NOBLEND; kgem_set_mode(&sna->kgem, KGEM_RENDER, bo); if (!kgem_check_bo(&sna->kgem, bo, NULL)) { kgem_submit(&sna->kgem); if (kgem_check_bo(&sna->kgem, bo, NULL)) { kgem_bo_destroy(&sna->kgem, tmp.src.bo); return false; } _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &tmp); gen9_emit_fill_state(sna, &tmp); gen9_get_rectangles(sna, &tmp, 1, gen9_emit_fill_state); DBG((" (%d, %d), (%d, %d)\n", x1, y1, x2, y2)); v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); v[0] = x2; v[8] = v[4] = x1; v[5] = v[1] = y2; v[9] = y1; v[7] = v[2] = v[3] = 1; v[6] = v[10] = v[11] = 0; gen8_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, tmp.src.bo); return true; } static bool gen9_render_clear_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo) { BoxRec box; box.x1 = 0; box.y1 = 0; box.x2 = dst->drawable.width; box.y2 = dst->drawable.height; return sna_blt_fill_boxes(sna, GXclear, bo, dst->drawable.bitsPerPixel, 0, &box, 1); } static bool gen9_render_clear(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo) { struct sna_composite_op tmp; int16_t *v; DBG(("%s: %dx%d\n", __FUNCTION__, dst->drawable.width, dst->drawable.height)); /* Prefer to use the BLT if already engaged */ if (sna->kgem.mode == KGEM_BLT && gen9_render_clear_try_blt(sna, dst, bo)) return true; /* Must use the BLT if we can't RENDER... */ if (too_large(dst->drawable.width, dst->drawable.height) || unaligned(bo, dst->drawable.bitsPerPixel)) return gen9_render_clear_try_blt(sna, dst, bo); tmp.dst.pixmap = dst; tmp.dst.width = dst->drawable.width; tmp.dst.height = dst->drawable.height; tmp.dst.format = sna_format_for_depth(dst->drawable.depth); tmp.dst.bo = bo; tmp.dst.x = tmp.dst.y = 0; tmp.src.bo = sna_render_get_solid(sna, 0); tmp.mask.bo = NULL; tmp.floats_per_vertex = 2; tmp.floats_per_rect = 6; tmp.need_magic_ca_pass = false; tmp.u.gen9.flags = FILL_FLAGS_NOBLEND; kgem_set_mode(&sna->kgem, KGEM_RENDER, bo); if (!kgem_check_bo(&sna->kgem, bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, bo, NULL)) { kgem_bo_destroy(&sna->kgem, tmp.src.bo); return false; } _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &tmp); gen9_emit_fill_state(sna, &tmp); gen9_get_rectangles(sna, &tmp, 1, gen9_emit_fill_state); v = (int16_t *)&sna->render.vertices[sna->render.vertex_used]; sna->render.vertex_used += 6; assert(sna->render.vertex_used <= sna->render.vertex_size); v[0] = dst->drawable.width; v[5] = v[1] = dst->drawable.height; v[8] = v[4] = 0; v[9] = 0; v[7] = v[2] = v[3] = 1; v[6] = v[10] = v[11] = 0; gen8_vertex_flush(sna); kgem_bo_destroy(&sna->kgem, tmp.src.bo); return true; } #if !NO_VIDEO static uint32_t gen9_bind_video_source(struct sna *sna, struct kgem_bo *bo, uint32_t delta, int width, int height, int pitch, uint32_t format) { uint32_t *ss; int offset; offset = sna->kgem.surface -= SURFACE_DW; ss = sna->kgem.batch + offset; ss[0] = (SURFACE_2D << SURFACE_TYPE_SHIFT | gen9_tiling_bits(bo->tiling) | format << SURFACE_FORMAT_SHIFT | SURFACE_VALIGN_4 | SURFACE_HALIGN_4); ss[1] = 0; ss[2] = ((width - 1) << SURFACE_WIDTH_SHIFT | (height - 1) << SURFACE_HEIGHT_SHIFT); ss[3] = (pitch - 1) << SURFACE_PITCH_SHIFT; ss[4] = 0; ss[5] = 0; ss[6] = 0; ss[7] = SURFACE_SWIZZLE(RED, GREEN, BLUE, ALPHA); *(uint64_t *)(ss+8) = kgem_add_reloc64(&sna->kgem, offset + 8, bo, I915_GEM_DOMAIN_SAMPLER << 16, delta); ss[10] = 0; ss[11] = 0; ss[12] = 0; ss[13] = 0; ss[14] = 0; ss[15] = 0; DBG(("[%x] bind bo(handle=%d, addr=%d), format=%d, width=%d, height=%d, pitch=%d, tiling=%d -> sampler\n", offset, bo->handle, ss[1], format, width, height, bo->pitch, bo->tiling)); return offset * sizeof(uint32_t); } static void gen9_emit_video_state(struct sna *sna, const struct sna_composite_op *op) { struct sna_video_frame *frame = op->priv; uint32_t src_surf_format[6]; uint32_t src_surf_base[6]; int src_width[6]; int src_height[6]; int src_pitch[6]; uint32_t *binding_table; uint16_t offset; int n_src, n; /* XXX VeBox, bicubic */ gen9_get_batch(sna, op); src_surf_base[0] = 0; src_surf_base[1] = 0; src_surf_base[2] = frame->VBufOffset; src_surf_base[3] = frame->VBufOffset; src_surf_base[4] = frame->UBufOffset; src_surf_base[5] = frame->UBufOffset; if (is_planar_fourcc(frame->id)) { for (n = 0; n < 2; n++) { src_surf_format[n] = SURFACEFORMAT_R8_UNORM; src_width[n] = frame->width; src_height[n] = frame->height; src_pitch[n] = frame->pitch[1]; } for (; n < 6; n++) { if (is_nv12_fourcc(frame->id)) src_surf_format[n] = SURFACEFORMAT_R8G8_UNORM; else src_surf_format[n] = SURFACEFORMAT_R8_UNORM; src_width[n] = frame->width / 2; src_height[n] = frame->height / 2; src_pitch[n] = frame->pitch[0]; } n_src = 6; } else { if (frame->id == FOURCC_RGB888) src_surf_format[0] = SURFACEFORMAT_B8G8R8X8_UNORM; else if (frame->id == FOURCC_UYVY) src_surf_format[0] = SURFACEFORMAT_YCRCB_SWAPY; else src_surf_format[0] = SURFACEFORMAT_YCRCB_NORMAL; src_width[0] = frame->width; src_height[0] = frame->height; src_pitch[0] = frame->pitch[0]; n_src = 1; } binding_table = gen9_composite_get_binding_table(sna, &offset); binding_table[0] = gen9_bind_bo(sna, op->dst.bo, op->dst.width, op->dst.height, gen9_get_dest_format(op->dst.format), true); for (n = 0; n < n_src; n++) { binding_table[1+n] = gen9_bind_video_source(sna, frame->bo, src_surf_base[n], src_width[n], src_height[n], src_pitch[n], src_surf_format[n]); } gen9_emit_state(sna, op, offset); } static unsigned select_video_kernel(const struct sna_video *video, const struct sna_video_frame *frame) { switch (frame->id) { case FOURCC_YV12: case FOURCC_I420: case FOURCC_XVMC: return video->colorspace ? GEN9_WM_KERNEL_VIDEO_PLANAR_BT709 : GEN9_WM_KERNEL_VIDEO_PLANAR_BT601; case FOURCC_NV12: return video->colorspace ? GEN9_WM_KERNEL_VIDEO_NV12_BT709 : GEN9_WM_KERNEL_VIDEO_NV12_BT601; case FOURCC_RGB888: case FOURCC_RGB565: return GEN9_WM_KERNEL_VIDEO_RGB; default: return video->colorspace ? GEN9_WM_KERNEL_VIDEO_PACKED_BT709 : GEN9_WM_KERNEL_VIDEO_PACKED_BT601; } } static bool gen9_render_video(struct sna *sna, struct sna_video *video, struct sna_video_frame *frame, RegionPtr dstRegion, PixmapPtr pixmap) { struct sna_composite_op tmp; struct sna_pixmap *priv = sna_pixmap(pixmap); int dst_width = dstRegion->extents.x2 - dstRegion->extents.x1; int dst_height = dstRegion->extents.y2 - dstRegion->extents.y1; int src_width = frame->src.x2 - frame->src.x1; int src_height = frame->src.y2 - frame->src.y1; float src_offset_x, src_offset_y; float src_scale_x, src_scale_y; unsigned filter; const BoxRec *box; int nbox; DBG(("%s: src=(%d, %d), dst=(%d, %d), %dx[(%d, %d), (%d, %d)...]\n", __FUNCTION__, src_width, src_height, dst_width, dst_height, region_num_rects(dstRegion), REGION_EXTENTS(NULL, dstRegion)->x1, REGION_EXTENTS(NULL, dstRegion)->y1, REGION_EXTENTS(NULL, dstRegion)->x2, REGION_EXTENTS(NULL, dstRegion)->y2)); assert(priv->gpu_bo); assert(!too_large(pixmap->drawable.width, pixmap->drawable.height)); assert(!unaligned(priv->gpu_bo, pixmap->drawable.bitsPerPixel)); memset(&tmp, 0, sizeof(tmp)); tmp.dst.pixmap = pixmap; tmp.dst.width = pixmap->drawable.width; tmp.dst.height = pixmap->drawable.height; tmp.dst.format = sna_render_format_for_depth(pixmap->drawable.depth); tmp.dst.bo = priv->gpu_bo; tmp.src.bo = frame->bo; tmp.mask.bo = NULL; tmp.floats_per_vertex = 3; tmp.floats_per_rect = 9; DBG(("%s: scaling?=%d, planar?=%d [%x]\n", __FUNCTION__, src_width != dst_width || src_height != dst_height, is_planar_fourcc(frame->id), frame->id)); if (src_width == dst_width && src_height == dst_height) filter = SAMPLER_FILTER_NEAREST; else filter = SAMPLER_FILTER_BILINEAR; tmp.u.gen9.flags = GEN9_SET_FLAGS(SAMPLER_OFFSET(filter, SAMPLER_EXTEND_PAD, SAMPLER_FILTER_NEAREST, SAMPLER_EXTEND_NONE), NO_BLEND, select_video_kernel(video, frame), 2); tmp.priv = frame; kgem_set_mode(&sna->kgem, KGEM_RENDER, tmp.dst.bo); if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL)) { kgem_submit(&sna->kgem); if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL)) return false; _kgem_set_mode(&sna->kgem, KGEM_RENDER); } gen9_align_vertex(sna, &tmp); gen9_emit_video_state(sna, &tmp); DBG(("%s: src=(%d, %d)x(%d, %d); frame=(%dx%d), dst=(%dx%d)\n", __FUNCTION__, frame->src.x1, frame->src.y1, src_width, src_height, dst_width, dst_height, frame->width, frame->height)); src_scale_x = (float)src_width / dst_width / frame->width; src_offset_x = (float)frame->src.x1 / frame->width - dstRegion->extents.x1 * src_scale_x; src_scale_y = (float)src_height / dst_height / frame->height; src_offset_y = (float)frame->src.y1 / frame->height - dstRegion->extents.y1 * src_scale_y; DBG(("%s: scale=(%f, %f), offset=(%f, %f)\n", __FUNCTION__, src_scale_x, src_scale_y, src_offset_x, src_offset_y)); box = region_rects(dstRegion); nbox = region_num_rects(dstRegion); while (nbox--) { DBG(("%s: dst=(%d, %d), (%d, %d) + (%d, %d); src=(%f, %f), (%f, %f)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2, box->x1 * src_scale_x + src_offset_x, box->y1 * src_scale_y + src_offset_y, box->x2 * src_scale_x + src_offset_x, box->y2 * src_scale_y + src_offset_y)); gen9_get_rectangles(sna, &tmp, 1, gen9_emit_video_state); OUT_VERTEX(box->x2, box->y2); OUT_VERTEX_F(box->x2 * src_scale_x + src_offset_x); OUT_VERTEX_F(box->y2 * src_scale_y + src_offset_y); OUT_VERTEX(box->x1, box->y2); OUT_VERTEX_F(box->x1 * src_scale_x + src_offset_x); OUT_VERTEX_F(box->y2 * src_scale_y + src_offset_y); OUT_VERTEX(box->x1, box->y1); OUT_VERTEX_F(box->x1 * src_scale_x + src_offset_x); OUT_VERTEX_F(box->y1 * src_scale_y + src_offset_y); box++; } gen8_vertex_flush(sna); if (!DAMAGE_IS_ALL(priv->gpu_damage)) sna_damage_add(&priv->gpu_damage, dstRegion); return true; } #endif static void gen9_render_flush(struct sna *sna) { gen8_vertex_close(sna); assert(sna->render.vb_id == 0); assert(sna->render.vertex_offset == 0); } static void gen9_render_reset(struct sna *sna) { sna->render_state.gen9.emit_flush = false; sna->render_state.gen9.needs_invariant = true; sna->render_state.gen9.ve_id = 3 << 2; sna->render_state.gen9.ve_dirty = false; sna->render_state.gen9.last_primitive = -1; sna->render_state.gen9.num_sf_outputs = 0; sna->render_state.gen9.samplers = -1; sna->render_state.gen9.blend = -1; sna->render_state.gen9.kernel = -1; sna->render_state.gen9.drawrect_offset = -1; sna->render_state.gen9.drawrect_limit = -1; sna->render_state.gen9.surface_table = 0; if (sna->render.vbo && !kgem_bo_can_map(&sna->kgem, sna->render.vbo)) { DBG(("%s: discarding unmappable vbo\n", __FUNCTION__)); discard_vbo(sna); } sna->render.vertex_offset = 0; sna->render.nvertex_reloc = 0; sna->render.vb_id = 0; } static void gen9_render_fini(struct sna *sna) { kgem_bo_destroy(&sna->kgem, sna->render_state.gen9.general_bo); } static bool gen9_render_setup(struct sna *sna) { struct gen9_render_state *state = &sna->render_state.gen9; struct sna_static_stream general; struct gen9_sampler_state *ss; int i, j, k, l, m; uint32_t devid; devid = intel_get_device_id(sna->dev); if (devid & 0xf) state->gt = GEN9_GT_BIAS + ((devid >> 4) & 0xf) + 1; DBG(("%s: gt=%d\n", __FUNCTION__, state->gt)); state->info = &min_gt_info; if (is_skl(sna)) state->info = &skl_gt_info; if (is_bxt(sna)) state->info = &bxt_gt_info; if (is_kbl(sna)) state->info = &kbl_gt_info; if (is_glk(sna)) state->info = &glk_gt_info; if (is_cfl(sna)) state->info = &cfl_gt_info; sna_static_stream_init(&general); /* Zero pad the start. If you see an offset of 0x0 in the batchbuffer * dumps, you know it points to zero. */ null_create(&general); for (m = 0; m < ARRAY_SIZE(wm_kernels); m++) { if (wm_kernels[m].size) { state->wm_kernel[m][1] = sna_static_stream_add(&general, wm_kernels[m].data, wm_kernels[m].size, 64); } else { if (USE_8_PIXEL_DISPATCH) { state->wm_kernel[m][0] = sna_static_stream_compile_wm(sna, &general, wm_kernels[m].data, 8); } if (USE_16_PIXEL_DISPATCH) { state->wm_kernel[m][1] = sna_static_stream_compile_wm(sna, &general, wm_kernels[m].data, 16); } if (USE_32_PIXEL_DISPATCH) { state->wm_kernel[m][2] = sna_static_stream_compile_wm(sna, &general, wm_kernels[m].data, 32); } } assert(state->wm_kernel[m][0]|state->wm_kernel[m][1]|state->wm_kernel[m][2]); } COMPILE_TIME_ASSERT(SAMPLER_OFFSET(FILTER_COUNT, EXTEND_COUNT, FILTER_COUNT, EXTEND_COUNT) <= 0x7ff); ss = sna_static_stream_map(&general, 2 * sizeof(*ss) * (2 + FILTER_COUNT * EXTEND_COUNT * FILTER_COUNT * EXTEND_COUNT), 32); state->wm_state = sna_static_stream_offsetof(&general, ss); sampler_copy_init(ss); ss += 2; sampler_fill_init(ss); ss += 2; for (i = 0; i < FILTER_COUNT; i++) { for (j = 0; j < EXTEND_COUNT; j++) { for (k = 0; k < FILTER_COUNT; k++) { for (l = 0; l < EXTEND_COUNT; l++) { sampler_state_init(ss++, i, j); sampler_state_init(ss++, k, l); } } } } state->cc_blend = gen9_create_blend_state(&general); state->general_bo = sna_static_stream_fini(sna, &general); return state->general_bo != NULL; } const char *gen9_render_init(struct sna *sna, const char *backend) { if (!gen9_render_setup(sna)) return backend; sna->kgem.context_switch = gen6_render_context_switch; sna->kgem.retire = gen6_render_retire; sna->kgem.expire = gen4_render_expire; #if !NO_COMPOSITE sna->render.composite = gen9_render_composite; sna->render.prefer_gpu |= PREFER_GPU_RENDER; #endif #if !NO_COMPOSITE_SPANS sna->render.check_composite_spans = gen9_check_composite_spans; sna->render.composite_spans = gen9_render_composite_spans; sna->render.prefer_gpu |= PREFER_GPU_SPANS; #endif #if !NO_VIDEO sna->render.video = gen9_render_video; #endif #if !NO_COPY_BOXES sna->render.copy_boxes = gen9_render_copy_boxes; #endif #if !NO_COPY sna->render.copy = gen9_render_copy; #endif #if !NO_FILL_BOXES sna->render.fill_boxes = gen9_render_fill_boxes; #endif #if !NO_FILL sna->render.fill = gen9_render_fill; #endif #if !NO_FILL_ONE sna->render.fill_one = gen9_render_fill_one; #endif #if !NO_FILL_CLEAR sna->render.clear = gen9_render_clear; #endif sna->render.flush = gen9_render_flush; sna->render.reset = gen9_render_reset; sna->render.fini = gen9_render_fini; sna->render.max_3d_size = GEN9_MAX_SIZE; sna->render.max_3d_pitch = 1 << 18; return sna->render_state.gen9.info->name; }