/* * Copyright (c) 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "sna.h" #include "sna_reg.h" #include #include #include #include #include #include #include #ifdef HAVE_VALGRIND #include #include #endif #if HAVE_SYS_SYSINFO_H #include #endif static struct kgem_bo * search_linear_cache(struct kgem *kgem, unsigned int num_pages, unsigned flags); static struct kgem_bo * search_snoop_cache(struct kgem *kgem, unsigned int num_pages, unsigned flags); #define DBG_NO_HW 0 #define DBG_NO_TILING 0 #define DBG_NO_CACHE 0 #define DBG_NO_CACHE_LEVEL 0 #define DBG_NO_CPU 0 #define DBG_NO_USERPTR 0 #define DBG_NO_LLC 0 #define DBG_NO_SEMAPHORES 0 #define DBG_NO_MADV 0 #define DBG_NO_UPLOAD_CACHE 0 #define DBG_NO_UPLOAD_ACTIVE 0 #define DBG_NO_MAP_UPLOAD 0 #define DBG_NO_RELAXED_FENCING 0 #define DBG_DUMP 0 #define SHOW_BATCH 0 /* Worst case seems to be 965gm where we cannot write within a cacheline that * is being simultaneously being read by the GPU, or within the sampler * prefetch. In general, the chipsets seem to have a requirement that sampler * offsets be aligned to a cacheline (64 bytes). */ #define UPLOAD_ALIGNMENT 128 #define PAGE_ALIGN(x) ALIGN(x, PAGE_SIZE) #define NUM_PAGES(x) (((x) + PAGE_SIZE-1) / PAGE_SIZE) #define MAX_GTT_VMA_CACHE 512 #define MAX_CPU_VMA_CACHE INT16_MAX #define MAP_PRESERVE_TIME 10 #define MAP(ptr) ((void*)((uintptr_t)(ptr) & ~3)) #define MAKE_CPU_MAP(ptr) ((void*)((uintptr_t)(ptr) | 1)) #define MAKE_USER_MAP(ptr) ((void*)((uintptr_t)(ptr) | 3)) #define IS_USER_MAP(ptr) ((uintptr_t)(ptr) & 2) #define __MAP_TYPE(ptr) ((uintptr_t)(ptr) & 3) #define LOCAL_I915_PARAM_HAS_SEMAPHORES 20 #define LOCAL_I915_GEM_USERPTR 0x32 #define LOCAL_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + LOCAL_I915_GEM_USERPTR, struct local_i915_gem_userptr) struct local_i915_gem_userptr { uint64_t user_ptr; uint32_t user_size; uint32_t flags; #define I915_USERPTR_READ_ONLY 0x1 uint32_t handle; }; #define UNCACHED 0 #define SNOOPED 1 struct local_i915_gem_cacheing { uint32_t handle; uint32_t cacheing; }; #define LOCAL_I915_GEM_SET_CACHEING 0x2f #define LOCAL_IOCTL_I915_GEM_SET_CACHEING DRM_IOW(DRM_COMMAND_BASE + LOCAL_I915_GEM_SET_CACHEING, struct local_i915_gem_cacheing) struct kgem_buffer { struct kgem_bo base; void *mem; uint32_t used; uint32_t need_io : 1; uint32_t write : 2; uint32_t mmapped : 1; }; static struct kgem_bo *__kgem_freed_bo; static struct kgem_request *__kgem_freed_request; static struct drm_i915_gem_exec_object2 _kgem_dummy_exec; static inline int bytes(struct kgem_bo *bo) { return __kgem_bo_size(bo); } #define bucket(B) (B)->size.pages.bucket #define num_pages(B) (B)->size.pages.count #ifdef DEBUG_MEMORY static void debug_alloc(struct kgem *kgem, size_t size) { kgem->debug_memory.bo_allocs++; kgem->debug_memory.bo_bytes += size; } static void debug_alloc__bo(struct kgem *kgem, struct kgem_bo *bo) { debug_alloc(kgem, bytes(bo)); } #else #define debug_alloc(k, b) #define debug_alloc__bo(k, b) #endif static void kgem_sna_reset(struct kgem *kgem) { struct sna *sna = container_of(kgem, struct sna, kgem); sna->render.reset(sna); sna->blt_state.fill_bo = 0; } static void kgem_sna_flush(struct kgem *kgem) { struct sna *sna = container_of(kgem, struct sna, kgem); sna->render.flush(sna); if (sna->render.solid_cache.dirty) sna_render_flush_solid(sna); } static int gem_set_tiling(int fd, uint32_t handle, int tiling, int stride) { struct drm_i915_gem_set_tiling set_tiling; int ret; if (DBG_NO_TILING) return I915_TILING_NONE; VG_CLEAR(set_tiling); do { set_tiling.handle = handle; set_tiling.tiling_mode = tiling; set_tiling.stride = stride; ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); return set_tiling.tiling_mode; } static bool gem_set_cacheing(int fd, uint32_t handle, int cacheing) { struct local_i915_gem_cacheing arg; VG_CLEAR(arg); arg.handle = handle; arg.cacheing = cacheing; return drmIoctl(fd, LOCAL_IOCTL_I915_GEM_SET_CACHEING, &arg) == 0; } static uint32_t gem_userptr(int fd, void *ptr, int size, int read_only) { struct local_i915_gem_userptr arg; VG_CLEAR(arg); arg.user_ptr = (uintptr_t)ptr; arg.user_size = size; arg.flags = 0; if (read_only) arg.flags |= I915_USERPTR_READ_ONLY; if (drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &arg)) { DBG(("%s: failed to map %p + %d bytes: %d\n", __FUNCTION__, ptr, size, errno)); return 0; } return arg.handle; } static bool __kgem_throttle_retire(struct kgem *kgem, unsigned flags) { if (flags & CREATE_NO_RETIRE) { DBG(("%s: not retiring per-request\n", __FUNCTION__)); return false; } if (!kgem->need_retire) { DBG(("%s: nothing to retire\n", __FUNCTION__)); return false; } if (kgem_retire(kgem)) return true; if (flags & CREATE_NO_THROTTLE || !kgem->need_throttle) { DBG(("%s: not throttling\n", __FUNCTION__)); return false; } kgem_throttle(kgem); return kgem_retire(kgem); } static void *__kgem_bo_map__gtt(struct kgem *kgem, struct kgem_bo *bo) { struct drm_i915_gem_mmap_gtt mmap_arg; void *ptr; DBG(("%s(handle=%d, size=%d)\n", __FUNCTION__, bo->handle, bytes(bo))); assert(bo->proxy == NULL); retry_gtt: VG_CLEAR(mmap_arg); mmap_arg.handle = bo->handle; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg)) { ErrorF("%s: failed to retrieve GTT offset for handle=%d: %d\n", __FUNCTION__, bo->handle, errno); (void)__kgem_throttle_retire(kgem, 0); if (kgem_expire_cache(kgem)) goto retry_gtt; return NULL; } retry_mmap: ptr = mmap(0, bytes(bo), PROT_READ | PROT_WRITE, MAP_SHARED, kgem->fd, mmap_arg.offset); if (ptr == MAP_FAILED) { ErrorF("%s: failed to mmap %d, %d bytes, into GTT domain: %d\n", __FUNCTION__, bo->handle, bytes(bo), errno); if (__kgem_throttle_retire(kgem, 0)) goto retry_mmap; ptr = NULL; } return ptr; } static int __gem_write(int fd, uint32_t handle, int offset, int length, const void *src) { struct drm_i915_gem_pwrite pwrite; DBG(("%s(handle=%d, offset=%d, len=%d)\n", __FUNCTION__, handle, offset, length)); VG_CLEAR(pwrite); pwrite.handle = handle; pwrite.offset = offset; pwrite.size = length; pwrite.data_ptr = (uintptr_t)src; return drmIoctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite); } static int gem_write(int fd, uint32_t handle, int offset, int length, const void *src) { struct drm_i915_gem_pwrite pwrite; DBG(("%s(handle=%d, offset=%d, len=%d)\n", __FUNCTION__, handle, offset, length)); VG_CLEAR(pwrite); pwrite.handle = handle; /* align the transfer to cachelines; fortuitously this is safe! */ if ((offset | length) & 63) { pwrite.offset = offset & ~63; pwrite.size = ALIGN(offset+length, 64) - pwrite.offset; pwrite.data_ptr = (uintptr_t)src + pwrite.offset - offset; } else { pwrite.offset = offset; pwrite.size = length; pwrite.data_ptr = (uintptr_t)src; } return drmIoctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite); } static int gem_read(int fd, uint32_t handle, const void *dst, int offset, int length) { struct drm_i915_gem_pread pread; int ret; DBG(("%s(handle=%d, len=%d)\n", __FUNCTION__, handle, length)); VG_CLEAR(pread); pread.handle = handle; pread.offset = offset; pread.size = length; pread.data_ptr = (uintptr_t)dst; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_PREAD, &pread); if (ret) { DBG(("%s: failed, errno=%d\n", __FUNCTION__, errno)); return ret; } VG(VALGRIND_MAKE_MEM_DEFINED(dst, length)); return 0; } static bool kgem_busy(struct kgem *kgem, int handle) { struct drm_i915_gem_busy busy; VG_CLEAR(busy); busy.handle = handle; busy.busy = !kgem->wedged; (void)drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); DBG(("%s: handle=%d, busy=%d, wedged=%d\n", __FUNCTION__, handle, busy.busy, kgem->wedged)); return busy.busy; } void kgem_bo_retire(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: handle=%d, domain=%d\n", __FUNCTION__, bo->handle, bo->domain)); assert(bo->flush || !kgem_busy(kgem, bo->handle)); if (bo->rq) kgem_retire(kgem); if (bo->exec == NULL) { DBG(("%s: retiring bo handle=%d (needed flush? %d), rq? %d\n", __FUNCTION__, bo->handle, bo->needs_flush, bo->rq != NULL)); assert(list_is_empty(&bo->vma)); bo->rq = NULL; list_del(&bo->request); bo->needs_flush = false; } bo->domain = DOMAIN_NONE; } bool kgem_bo_write(struct kgem *kgem, struct kgem_bo *bo, const void *data, int length) { assert(bo->refcnt); assert(!bo->purged); assert(bo->flush || !kgem_busy(kgem, bo->handle)); assert(bo->proxy == NULL); assert(length <= bytes(bo)); if (gem_write(kgem->fd, bo->handle, 0, length, data)) return false; DBG(("%s: flush=%d, domain=%d\n", __FUNCTION__, bo->flush, bo->domain)); kgem_bo_retire(kgem, bo); return true; } static uint32_t gem_create(int fd, int num_pages) { struct drm_i915_gem_create create; VG_CLEAR(create); create.handle = 0; create.size = PAGE_SIZE * num_pages; (void)drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); return create.handle; } static bool kgem_bo_set_purgeable(struct kgem *kgem, struct kgem_bo *bo) { #if DBG_NO_MADV return true; #else struct drm_i915_gem_madvise madv; assert(bo->exec == NULL); assert(!bo->purged); VG_CLEAR(madv); madv.handle = bo->handle; madv.madv = I915_MADV_DONTNEED; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv) == 0) { bo->purged = 1; kgem->need_purge |= !madv.retained && bo->domain == DOMAIN_GPU; return madv.retained; } return true; #endif } static bool kgem_bo_is_retained(struct kgem *kgem, struct kgem_bo *bo) { #if DBG_NO_MADV return true; #else struct drm_i915_gem_madvise madv; if (!bo->purged) return true; VG_CLEAR(madv); madv.handle = bo->handle; madv.madv = I915_MADV_DONTNEED; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv) == 0) return madv.retained; return false; #endif } static bool kgem_bo_clear_purgeable(struct kgem *kgem, struct kgem_bo *bo) { #if DBG_NO_MADV return true; #else struct drm_i915_gem_madvise madv; assert(bo->purged); VG_CLEAR(madv); madv.handle = bo->handle; madv.madv = I915_MADV_WILLNEED; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv) == 0) { bo->purged = !madv.retained; kgem->need_purge |= !madv.retained && bo->domain == DOMAIN_GPU; return madv.retained; } return false; #endif } static void gem_close(int fd, uint32_t handle) { struct drm_gem_close close; VG_CLEAR(close); close.handle = handle; (void)drmIoctl(fd, DRM_IOCTL_GEM_CLOSE, &close); } constant inline static unsigned long __fls(unsigned long word) { asm("bsr %1,%0" : "=r" (word) : "rm" (word)); return word; } constant inline static int cache_bucket(int num_pages) { return __fls(num_pages); } static struct kgem_bo *__kgem_bo_init(struct kgem_bo *bo, int handle, int num_pages) { assert(num_pages); memset(bo, 0, sizeof(*bo)); bo->refcnt = 1; bo->handle = handle; num_pages(bo) = num_pages; bucket(bo) = cache_bucket(num_pages); bo->reusable = true; bo->domain = DOMAIN_CPU; list_init(&bo->request); list_init(&bo->list); list_init(&bo->vma); return bo; } static struct kgem_bo *__kgem_bo_alloc(int handle, int num_pages) { struct kgem_bo *bo; if (__kgem_freed_bo) { bo = __kgem_freed_bo; __kgem_freed_bo = *(struct kgem_bo **)bo; } else { bo = malloc(sizeof(*bo)); if (bo == NULL) return NULL; } return __kgem_bo_init(bo, handle, num_pages); } static struct kgem_request _kgem_static_request; static struct kgem_request *__kgem_request_alloc(void) { struct kgem_request *rq; rq = __kgem_freed_request; if (rq) { __kgem_freed_request = *(struct kgem_request **)rq; } else { rq = malloc(sizeof(*rq)); if (rq == NULL) rq = &_kgem_static_request; } list_init(&rq->buffers); rq->bo = NULL; rq->ring = 0; return rq; } static void __kgem_request_free(struct kgem_request *rq) { _list_del(&rq->list); *(struct kgem_request **)rq = __kgem_freed_request; __kgem_freed_request = rq; } static struct list *inactive(struct kgem *kgem, int num_pages) { return &kgem->inactive[cache_bucket(num_pages)]; } static struct list *active(struct kgem *kgem, int num_pages, int tiling) { return &kgem->active[cache_bucket(num_pages)][tiling]; } static size_t agp_aperture_size(struct pci_device *dev, unsigned gen) { /* XXX assume that only future chipsets are unknown and follow * the post gen2 PCI layout. */ return dev->regions[gen < 30 ? 0 : 2].size; } static size_t total_ram_size(void) { #if HAVE_SYS_SYSINFO_H struct sysinfo info; if (sysinfo(&info) == 0) return info.totalram * info.mem_unit; #endif return 0; } static size_t cpu_cache_size(void) { FILE *file = fopen("/proc/cpuinfo", "r"); size_t size = -1; if (file) { size_t len = 0; char *line = NULL; while (getline(&line, &len, file) != -1) { int mb; if (sscanf(line, "cache size : %d KB", &mb) == 1) { /* Paranoid check against gargantuan caches */ if (mb <= 1<<20) size = mb * 1024; break; } } free(line); fclose(file); } if (size == -1) ErrorF("Unknown CPU cache size\n"); return size; } static int gem_param(struct kgem *kgem, int name) { drm_i915_getparam_t gp; int v = -1; /* No param uses the sign bit, reserve it for errors */ VG_CLEAR(gp); gp.param = name; gp.value = &v; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GETPARAM, &gp)) return -1; VG(VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v))); return v; } static bool test_has_semaphores_enabled(struct kgem *kgem) { FILE *file; bool detected = false; int ret; if (DBG_NO_SEMAPHORES) return false; ret = gem_param(kgem, LOCAL_I915_PARAM_HAS_SEMAPHORES); if (ret != -1) return ret > 0; file = fopen("/sys/module/i915/parameters/semaphores", "r"); if (file) { int value; if (fscanf(file, "%d", &value) == 1) detected = value != 0; fclose(file); } return detected; } static bool __kgem_throttle(struct kgem *kgem) { if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_THROTTLE, NULL) == 0) return false; return errno == EIO; } static bool is_hw_supported(struct kgem *kgem, struct pci_device *dev) { if (DBG_NO_HW) return false; if (kgem->gen == (unsigned)-1) /* unknown chipset, assume future gen */ return kgem->has_blt; /* Although pre-855gm the GMCH is fubar, it works mostly. So * let the user decide through "NoAccel" whether or not to risk * hw acceleration. */ if (kgem->gen == 60 && dev->revision < 8) { /* pre-production SNB with dysfunctional BLT */ return false; } if (kgem->gen >= 60) /* Only if the kernel supports the BLT ring */ return kgem->has_blt; return true; } static bool test_has_relaxed_fencing(struct kgem *kgem) { if (kgem->gen < 40) { if (DBG_NO_RELAXED_FENCING) return false; return gem_param(kgem, I915_PARAM_HAS_RELAXED_FENCING) > 0; } else return true; } static bool test_has_llc(struct kgem *kgem) { int has_llc = -1; if (DBG_NO_LLC) return false; #if defined(I915_PARAM_HAS_LLC) /* Expected in libdrm-2.4.31 */ has_llc = gem_param(kgem, I915_PARAM_HAS_LLC); #endif if (has_llc == -1) { DBG(("%s: no kernel/drm support for HAS_LLC, assuming support for LLC based on GPU generation\n", __FUNCTION__)); has_llc = kgem->gen >= 60; } return has_llc; } static bool test_has_cacheing(struct kgem *kgem) { uint32_t handle; bool ret; if (DBG_NO_CACHE_LEVEL) return false; /* Incoherent blt and sampler hangs the GPU */ if (kgem->gen == 40) return false; handle = gem_create(kgem->fd, 1); if (handle == 0) return false; ret = gem_set_cacheing(kgem->fd, handle, UNCACHED); gem_close(kgem->fd, handle); return ret; } static bool test_has_userptr(struct kgem *kgem) { #if defined(USE_USERPTR) uint32_t handle; void *ptr; if (DBG_NO_USERPTR) return false; /* Incoherent blt and sampler hangs the GPU */ if (kgem->gen == 40) return false; ptr = malloc(PAGE_SIZE); handle = gem_userptr(kgem->fd, ptr, PAGE_SIZE, false); gem_close(kgem->fd, handle); free(ptr); return handle != 0; #else return false; #endif } static int kgem_get_screen_index(struct kgem *kgem) { struct sna *sna = container_of(kgem, struct sna, kgem); return sna->scrn->scrnIndex; } void kgem_init(struct kgem *kgem, int fd, struct pci_device *dev, int gen) { struct drm_i915_gem_get_aperture aperture; size_t totalram; unsigned half_gpu_max; unsigned int i, j; DBG(("%s: fd=%d, gen=%d\n", __FUNCTION__, fd, gen)); memset(kgem, 0, sizeof(*kgem)); kgem->fd = fd; kgem->gen = gen; kgem->has_blt = gem_param(kgem, I915_PARAM_HAS_BLT) > 0; DBG(("%s: has BLT ring? %d\n", __FUNCTION__, kgem->has_blt)); kgem->has_relaxed_delta = gem_param(kgem, I915_PARAM_HAS_RELAXED_DELTA) > 0; DBG(("%s: has relaxed delta? %d\n", __FUNCTION__, kgem->has_relaxed_delta)); kgem->has_relaxed_fencing = test_has_relaxed_fencing(kgem); DBG(("%s: has relaxed fencing? %d\n", __FUNCTION__, kgem->has_relaxed_fencing)); kgem->has_llc = test_has_llc(kgem); DBG(("%s: has shared last-level-cache? %d\n", __FUNCTION__, kgem->has_llc)); kgem->has_cacheing = test_has_cacheing(kgem); DBG(("%s: has set-cache-level? %d\n", __FUNCTION__, kgem->has_cacheing)); kgem->has_userptr = test_has_userptr(kgem); DBG(("%s: has userptr? %d\n", __FUNCTION__, kgem->has_userptr)); kgem->has_semaphores = false; if (kgem->has_blt && test_has_semaphores_enabled(kgem)) kgem->has_semaphores = true; DBG(("%s: semaphores enabled? %d\n", __FUNCTION__, kgem->has_semaphores)); kgem->can_blt_cpu = gen >= 30; DBG(("%s: can blt to cpu? %d\n", __FUNCTION__, kgem->can_blt_cpu)); if (!is_hw_supported(kgem, dev)) { xf86DrvMsg(kgem_get_screen_index(kgem), X_WARNING, "Detected unsupported/dysfunctional hardware, disabling acceleration.\n"); kgem->wedged = 1; } else if (__kgem_throttle(kgem)) { xf86DrvMsg(kgem_get_screen_index(kgem), X_WARNING, "Detected a hung GPU, disabling acceleration.\n"); kgem->wedged = 1; } kgem->batch_size = ARRAY_SIZE(kgem->batch); if (gen == 22) /* 865g cannot handle a batch spanning multiple pages */ kgem->batch_size = PAGE_SIZE / sizeof(uint32_t); if (gen >= 70 && gen < 80) kgem->batch_size = 16*1024; if (!kgem->has_relaxed_delta) kgem->batch_size = 4*1024; DBG(("%s: maximum batch size? %d\n", __FUNCTION__, kgem->batch_size)); kgem->min_alignment = 4; if (gen < 40) kgem->min_alignment = 64; kgem->half_cpu_cache_pages = cpu_cache_size() >> 13; DBG(("%s: half cpu cache %d pages\n", __FUNCTION__, kgem->half_cpu_cache_pages)); list_init(&kgem->requests[0]); list_init(&kgem->requests[1]); list_init(&kgem->batch_buffers); list_init(&kgem->active_buffers); list_init(&kgem->flushing); list_init(&kgem->large); list_init(&kgem->large_inactive); list_init(&kgem->snoop); for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) list_init(&kgem->inactive[i]); for (i = 0; i < ARRAY_SIZE(kgem->active); i++) { for (j = 0; j < ARRAY_SIZE(kgem->active[i]); j++) list_init(&kgem->active[i][j]); } for (i = 0; i < ARRAY_SIZE(kgem->vma); i++) { for (j = 0; j < ARRAY_SIZE(kgem->vma[i].inactive); j++) list_init(&kgem->vma[i].inactive[j]); } kgem->vma[MAP_GTT].count = -MAX_GTT_VMA_CACHE; kgem->vma[MAP_CPU].count = -MAX_CPU_VMA_CACHE; kgem->next_request = __kgem_request_alloc(); DBG(("%s: cpu bo enabled %d: llc? %d, set-cache-level? %d, userptr? %d\n", __FUNCTION__, !DBG_NO_CPU && (kgem->has_llc | kgem->has_userptr | kgem->has_cacheing), kgem->has_llc, kgem->has_cacheing, kgem->has_userptr)); VG_CLEAR(aperture); aperture.aper_size = 0; (void)drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); if (aperture.aper_size == 0) aperture.aper_size = 64*1024*1024; kgem->aperture_total = aperture.aper_size; kgem->aperture_high = aperture.aper_size * 3/4; kgem->aperture_low = aperture.aper_size * 1/3; DBG(("%s: aperture low=%d [%d], high=%d [%d]\n", __FUNCTION__, kgem->aperture_low, kgem->aperture_low / (1024*1024), kgem->aperture_high, kgem->aperture_high / (1024*1024))); kgem->aperture_mappable = agp_aperture_size(dev, gen); if (kgem->aperture_mappable == 0 || kgem->aperture_mappable > aperture.aper_size) kgem->aperture_mappable = aperture.aper_size; DBG(("%s: aperture mappable=%d [%d MiB]\n", __FUNCTION__, kgem->aperture_mappable, kgem->aperture_mappable / (1024*1024))); kgem->buffer_size = 64 * 1024; while (kgem->buffer_size < kgem->aperture_mappable >> 10) kgem->buffer_size *= 2; DBG(("%s: buffer size=%d [%d KiB]\n", __FUNCTION__, kgem->buffer_size, kgem->buffer_size / 1024)); kgem->max_object_size = 2 * aperture.aper_size / 3; kgem->max_gpu_size = kgem->max_object_size; if (!kgem->has_llc) kgem->max_gpu_size = MAX_CACHE_SIZE; if (gen < 40) { /* If we have to use fences for blitting, we have to make * sure we can fit them into the aperture. */ kgem->max_gpu_size = kgem->aperture_mappable / 2; if (kgem->max_gpu_size > kgem->aperture_low) kgem->max_gpu_size = kgem->aperture_low; } totalram = total_ram_size(); if (totalram == 0) { DBG(("%s: total ram size unknown, assuming maximum of total aperture\n", __FUNCTION__)); totalram = kgem->aperture_total; } DBG(("%s: total ram=%ld\n", __FUNCTION__, (long)totalram)); if (kgem->max_object_size > totalram / 2) kgem->max_object_size = totalram / 2; if (kgem->max_gpu_size > totalram / 4) kgem->max_gpu_size = totalram / 4; half_gpu_max = kgem->max_gpu_size / 2; if (kgem->gen >= 40) kgem->max_cpu_size = half_gpu_max; else kgem->max_cpu_size = kgem->max_object_size; kgem->max_copy_tile_size = (MAX_CACHE_SIZE + 1)/2; if (kgem->max_copy_tile_size > half_gpu_max) kgem->max_copy_tile_size = half_gpu_max; if (kgem->has_llc) kgem->max_upload_tile_size = kgem->max_copy_tile_size; else kgem->max_upload_tile_size = kgem->aperture_mappable / 4; if (kgem->max_upload_tile_size > half_gpu_max) kgem->max_upload_tile_size = half_gpu_max; kgem->large_object_size = MAX_CACHE_SIZE; if (kgem->large_object_size > kgem->max_gpu_size) kgem->large_object_size = kgem->max_gpu_size; if (kgem->has_llc | kgem->has_cacheing | kgem->has_userptr) { if (kgem->large_object_size > kgem->max_cpu_size) kgem->large_object_size = kgem->max_cpu_size; } else kgem->max_cpu_size = 0; if (DBG_NO_CPU) kgem->max_cpu_size = 0; DBG(("%s: maximum object size=%d\n", __FUNCTION__, kgem->max_object_size)); DBG(("%s: large object thresold=%d\n", __FUNCTION__, kgem->large_object_size)); DBG(("%s: max object sizes (gpu=%d, cpu=%d, tile upload=%d, copy=%d)\n", __FUNCTION__, kgem->max_gpu_size, kgem->max_cpu_size, kgem->max_upload_tile_size, kgem->max_copy_tile_size)); /* Convert the aperture thresholds to pages */ kgem->aperture_low /= PAGE_SIZE; kgem->aperture_high /= PAGE_SIZE; kgem->fence_max = gem_param(kgem, I915_PARAM_NUM_FENCES_AVAIL) - 2; if ((int)kgem->fence_max < 0) kgem->fence_max = 5; /* minimum safe value for all hw */ DBG(("%s: max fences=%d\n", __FUNCTION__, kgem->fence_max)); } /* XXX hopefully a good approximation */ static uint32_t kgem_get_unique_id(struct kgem *kgem) { uint32_t id; id = ++kgem->unique_id; if (id == 0) id = ++kgem->unique_id; return id; } inline static uint32_t kgem_pitch_alignment(struct kgem *kgem, unsigned flags) { if (flags & CREATE_PRIME) return 256; if (flags & CREATE_SCANOUT) return 64; return kgem->min_alignment; } static uint32_t kgem_untiled_pitch(struct kgem *kgem, uint32_t width, uint32_t bpp, unsigned flags) { width = ALIGN(width, 2) * bpp >> 3; return ALIGN(width, kgem_pitch_alignment(kgem, flags)); } void kgem_get_tile_size(struct kgem *kgem, int tiling, int *tile_width, int *tile_height, int *tile_size) { if (kgem->gen <= 30) { if (tiling) { if (kgem->gen < 30) { *tile_width = 128; *tile_height = 16; *tile_size = 2048; } else { *tile_width = 512; *tile_height = 8; *tile_size = 4096; } } else { *tile_width = 1; *tile_height = 1; *tile_size = 1; } } else switch (tiling) { default: case I915_TILING_NONE: *tile_width = 1; *tile_height = 1; *tile_size = 1; break; case I915_TILING_X: *tile_width = 512; *tile_height = 8; *tile_size = 4096; break; case I915_TILING_Y: *tile_width = 128; *tile_height = 32; *tile_size = 4096; break; } } static uint32_t kgem_surface_size(struct kgem *kgem, bool relaxed_fencing, unsigned flags, uint32_t width, uint32_t height, uint32_t bpp, uint32_t tiling, uint32_t *pitch) { uint32_t tile_width, tile_height; uint32_t size; assert(width <= MAXSHORT); assert(height <= MAXSHORT); if (kgem->gen <= 30) { if (tiling) { if (kgem->gen < 30) { tile_width = 128; tile_height = 16; } else { tile_width = 512; tile_height = 8; } } else { tile_width = 2 * bpp >> 3; tile_width = ALIGN(tile_width, kgem_pitch_alignment(kgem, flags)); tile_height = 2; } } else switch (tiling) { default: case I915_TILING_NONE: tile_width = 2 * bpp >> 3; tile_width = ALIGN(tile_width, kgem_pitch_alignment(kgem, flags)); tile_height = 2; break; case I915_TILING_X: tile_width = 512; tile_height = 8; break; case I915_TILING_Y: tile_width = 128; tile_height = 32; break; } *pitch = ALIGN(width * bpp / 8, tile_width); height = ALIGN(height, tile_height); if (kgem->gen >= 40) return PAGE_ALIGN(*pitch * height); /* If it is too wide for the blitter, don't even bother. */ if (tiling != I915_TILING_NONE) { if (*pitch > 8192) return 0; for (size = tile_width; size < *pitch; size <<= 1) ; *pitch = size; } else { if (*pitch >= 32768) return 0; } size = *pitch * height; if (relaxed_fencing || tiling == I915_TILING_NONE) return PAGE_ALIGN(size); /* We need to allocate a pot fence region for a tiled buffer. */ if (kgem->gen < 30) tile_width = 512 * 1024; else tile_width = 1024 * 1024; while (tile_width < size) tile_width *= 2; return tile_width; } static uint32_t kgem_aligned_height(struct kgem *kgem, uint32_t height, uint32_t tiling) { uint32_t tile_height; if (kgem->gen <= 30) { tile_height = tiling ? kgem->gen < 30 ? 16 : 8 : 1; } else switch (tiling) { default: case I915_TILING_NONE: tile_height = 2; break; case I915_TILING_X: tile_height = 8; break; case I915_TILING_Y: tile_height = 32; break; } return ALIGN(height, tile_height); } static struct drm_i915_gem_exec_object2 * kgem_add_handle(struct kgem *kgem, struct kgem_bo *bo) { struct drm_i915_gem_exec_object2 *exec; DBG(("%s: handle=%d, index=%d\n", __FUNCTION__, bo->handle, kgem->nexec)); assert(kgem->nexec < ARRAY_SIZE(kgem->exec)); exec = memset(&kgem->exec[kgem->nexec++], 0, sizeof(*exec)); exec->handle = bo->handle; exec->offset = bo->presumed_offset; kgem->aperture += num_pages(bo); return exec; } void _kgem_add_bo(struct kgem *kgem, struct kgem_bo *bo) { bo->exec = kgem_add_handle(kgem, bo); bo->rq = kgem->next_request; list_move_tail(&bo->request, &kgem->next_request->buffers); /* XXX is it worth working around gcc here? */ kgem->flush |= bo->flush; } static uint32_t kgem_end_batch(struct kgem *kgem) { kgem->batch[kgem->nbatch++] = MI_BATCH_BUFFER_END; if (kgem->nbatch & 1) kgem->batch[kgem->nbatch++] = MI_NOOP; return kgem->nbatch; } static void kgem_fixup_self_relocs(struct kgem *kgem, struct kgem_bo *bo) { int n; for (n = 0; n < kgem->nreloc; n++) { if (kgem->reloc[n].target_handle == 0) { kgem->reloc[n].target_handle = bo->handle; kgem->reloc[n].presumed_offset = bo->presumed_offset; kgem->batch[kgem->reloc[n].offset/sizeof(kgem->batch[0])] = kgem->reloc[n].delta + bo->presumed_offset; } } } static void kgem_bo_binding_free(struct kgem *kgem, struct kgem_bo *bo) { struct kgem_bo_binding *b; b = bo->binding.next; while (b) { struct kgem_bo_binding *next = b->next; free (b); b = next; } } static void kgem_bo_release_map(struct kgem *kgem, struct kgem_bo *bo) { int type = IS_CPU_MAP(bo->map); assert(!IS_USER_MAP(bo->map)); DBG(("%s: releasing %s vma for handle=%d, count=%d\n", __FUNCTION__, type ? "CPU" : "GTT", bo->handle, kgem->vma[type].count)); VG(if (type) VALGRIND_MAKE_MEM_NOACCESS(MAP(bo->map), bytes(bo))); munmap(MAP(bo->map), bytes(bo)); bo->map = NULL; if (!list_is_empty(&bo->vma)) { list_del(&bo->vma); kgem->vma[type].count--; } } static void kgem_bo_free(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: handle=%d\n", __FUNCTION__, bo->handle)); assert(bo->refcnt == 0); assert(bo->exec == NULL); assert(!bo->snoop || bo->rq == NULL); #ifdef DEBUG_MEMORY kgem->debug_memory.bo_allocs--; kgem->debug_memory.bo_bytes -= bytes(bo); #endif kgem_bo_binding_free(kgem, bo); if (IS_USER_MAP(bo->map)) { assert(bo->rq == NULL); assert(MAP(bo->map) != bo || bo->io); if (bo != MAP(bo->map)) { DBG(("%s: freeing snooped base\n", __FUNCTION__)); free(MAP(bo->map)); } bo->map = NULL; } if (bo->map) kgem_bo_release_map(kgem, bo); assert(list_is_empty(&bo->vma)); _list_del(&bo->list); _list_del(&bo->request); gem_close(kgem->fd, bo->handle); if (!bo->io) { *(struct kgem_bo **)bo = __kgem_freed_bo; __kgem_freed_bo = bo; } else free(bo); } inline static void kgem_bo_move_to_inactive(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: moving handle=%d to inactive\n", __FUNCTION__, bo->handle)); assert(bo->refcnt == 0); assert(bo->reusable); assert(bo->rq == NULL); assert(bo->exec == NULL); assert(bo->domain != DOMAIN_GPU); assert(!kgem_busy(kgem, bo->handle)); assert(!bo->proxy); assert(!bo->io); assert(!bo->needs_flush); assert(list_is_empty(&bo->vma)); kgem->need_expire = true; if (bucket(bo) >= NUM_CACHE_BUCKETS) { list_move(&bo->list, &kgem->large_inactive); return; } assert(bo->flush == false); list_move(&bo->list, &kgem->inactive[bucket(bo)]); if (bo->map) { int type = IS_CPU_MAP(bo->map); if (bucket(bo) >= NUM_CACHE_BUCKETS || (!type && !kgem_bo_is_mappable(kgem, bo))) { munmap(MAP(bo->map), bytes(bo)); bo->map = NULL; } if (bo->map) { list_add(&bo->vma, &kgem->vma[type].inactive[bucket(bo)]); kgem->vma[type].count++; } } } inline static void kgem_bo_remove_from_inactive(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: removing handle=%d from inactive\n", __FUNCTION__, bo->handle)); list_del(&bo->list); assert(bo->rq == NULL); assert(bo->exec == NULL); if (bo->map) { assert(!list_is_empty(&bo->vma)); list_del(&bo->vma); kgem->vma[IS_CPU_MAP(bo->map)].count--; } } inline static void kgem_bo_remove_from_active(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: removing handle=%d from active\n", __FUNCTION__, bo->handle)); list_del(&bo->list); assert(bo->rq != NULL); if (bo->rq == &_kgem_static_request) list_del(&bo->request); assert(list_is_empty(&bo->vma)); } static void kgem_bo_clear_scanout(struct kgem *kgem, struct kgem_bo *bo) { if (!bo->scanout) return; assert(bo->proxy == NULL); DBG(("%s: handle=%d, fb=%d (reusable=%d)\n", __FUNCTION__, bo->handle, bo->delta, bo->reusable)); if (bo->delta) { /* XXX will leak if we are not DRM_MASTER. *shrug* */ drmModeRmFB(kgem->fd, bo->delta); bo->delta = 0; } bo->scanout = false; bo->needs_flush = true; bo->flush = false; bo->reusable = true; } static void _kgem_bo_delete_buffer(struct kgem *kgem, struct kgem_bo *bo) { struct kgem_buffer *io = (struct kgem_buffer *)bo->proxy; DBG(("%s: size=%d, offset=%d, parent used=%d\n", __FUNCTION__, bo->size.bytes, bo->delta, io->used)); if (ALIGN(bo->delta + bo->size.bytes, UPLOAD_ALIGNMENT) == io->used) io->used = bo->delta; } static void kgem_bo_move_to_snoop(struct kgem *kgem, struct kgem_bo *bo) { assert(bo->refcnt == 0); assert(bo->exec == NULL); if (num_pages(bo) > kgem->max_cpu_size >> 13) { DBG(("%s handle=%d discarding large CPU buffer (%d >%d pages)\n", __FUNCTION__, bo->handle, num_pages(bo), kgem->max_cpu_size >> 13)); kgem_bo_free(kgem, bo); return; } assert(bo->tiling == I915_TILING_NONE); assert(bo->rq == NULL); DBG(("%s: moving %d to snoop cachee\n", __FUNCTION__, bo->handle)); list_add(&bo->list, &kgem->snoop); } static struct kgem_bo * search_snoop_cache(struct kgem *kgem, unsigned int num_pages, unsigned flags) { struct kgem_bo *bo, *first = NULL; DBG(("%s: num_pages=%d, flags=%x\n", __FUNCTION__, num_pages, flags)); if ((kgem->has_cacheing | kgem->has_userptr) == 0) return NULL; if (list_is_empty(&kgem->snoop)) { DBG(("%s: inactive and cache empty\n", __FUNCTION__)); if (!__kgem_throttle_retire(kgem, flags)) { DBG(("%s: nothing retired\n", __FUNCTION__)); return NULL; } } list_for_each_entry(bo, &kgem->snoop, list) { assert(bo->refcnt == 0); assert(bo->snoop); assert(bo->proxy == NULL); assert(bo->tiling == I915_TILING_NONE); assert(bo->rq == NULL); assert(bo->exec == NULL); if (num_pages > num_pages(bo)) continue; if (num_pages(bo) > 2*num_pages) { if (first == NULL) first = bo; continue; } list_del(&bo->list); bo->pitch = 0; bo->delta = 0; DBG((" %s: found handle=%d (num_pages=%d) in snoop cache\n", __FUNCTION__, bo->handle, num_pages(bo))); return bo; } if (first) { list_del(&first->list); first->pitch = 0; first->delta = 0; DBG((" %s: found handle=%d (num_pages=%d) in snoop cache\n", __FUNCTION__, first->handle, num_pages(first))); return first; } return NULL; } static void __kgem_bo_destroy(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: handle=%d\n", __FUNCTION__, bo->handle)); assert(list_is_empty(&bo->list)); assert(bo->refcnt == 0); assert(!bo->purged); assert(bo->proxy == NULL); bo->binding.offset = 0; kgem_bo_clear_scanout(kgem, bo); if (DBG_NO_CACHE) goto destroy; if (bo->snoop && !bo->flush) { DBG(("%s: handle=%d is snooped\n", __FUNCTION__, bo->handle)); assert(!bo->flush); assert(list_is_empty(&bo->list)); if (bo->rq == NULL) { if (bo->needs_flush && kgem_busy(kgem, bo->handle)) { DBG(("%s: handle=%d is snooped, tracking until free\n", __FUNCTION__, bo->handle)); list_add(&bo->request, &kgem->flushing); bo->rq = &_kgem_static_request; } } if (bo->rq == NULL) kgem_bo_move_to_snoop(kgem, bo); return; } if (bo->io) { struct kgem_bo *base; assert(!bo->snoop); base = malloc(sizeof(*base)); if (base) { DBG(("%s: transferring io handle=%d to bo\n", __FUNCTION__, bo->handle)); /* transfer the handle to a minimum bo */ memcpy(base, bo, sizeof(*base)); base->io = false; list_init(&base->list); list_replace(&bo->request, &base->request); list_replace(&bo->vma, &base->vma); free(bo); bo = base; } else bo->reusable = false; } if (!bo->reusable) { DBG(("%s: handle=%d, not reusable\n", __FUNCTION__, bo->handle)); goto destroy; } if (!kgem->has_llc && IS_CPU_MAP(bo->map) && bo->domain != DOMAIN_CPU) kgem_bo_release_map(kgem, bo); assert(list_is_empty(&bo->vma)); assert(list_is_empty(&bo->list)); assert(bo->snoop == false); assert(bo->io == false); assert(bo->scanout == false); if (bo->rq) { struct list *cache; DBG(("%s: handle=%d -> active\n", __FUNCTION__, bo->handle)); if (bucket(bo) < NUM_CACHE_BUCKETS) cache = &kgem->active[bucket(bo)][bo->tiling]; else cache = &kgem->large; list_add(&bo->list, cache); return; } assert(bo->exec == NULL); assert(list_is_empty(&bo->request)); if (bo->needs_flush) { if ((bo->needs_flush = kgem_busy(kgem, bo->handle))) { struct list *cache; DBG(("%s: handle=%d -> flushing\n", __FUNCTION__, bo->handle)); list_add(&bo->request, &kgem->flushing); if (bucket(bo) < NUM_CACHE_BUCKETS) cache = &kgem->active[bucket(bo)][bo->tiling]; else cache = &kgem->large; list_add(&bo->list, cache); bo->rq = &_kgem_static_request; return; } bo->domain = DOMAIN_NONE; } if (!IS_CPU_MAP(bo->map)) { if (!kgem_bo_set_purgeable(kgem, bo)) goto destroy; if (!kgem->has_llc && bo->domain == DOMAIN_CPU) goto destroy; DBG(("%s: handle=%d, purged\n", __FUNCTION__, bo->handle)); } kgem_bo_move_to_inactive(kgem, bo); return; destroy: if (!bo->exec) kgem_bo_free(kgem, bo); } static void kgem_bo_unref(struct kgem *kgem, struct kgem_bo *bo) { assert(bo->refcnt); if (--bo->refcnt == 0) __kgem_bo_destroy(kgem, bo); } static void kgem_buffer_release(struct kgem *kgem, struct kgem_buffer *bo) { while (!list_is_empty(&bo->base.vma)) { struct kgem_bo *cached; cached = list_first_entry(&bo->base.vma, struct kgem_bo, vma); assert(cached->proxy == &bo->base); list_del(&cached->vma); assert(*(struct kgem_bo **)cached->map == cached); *(struct kgem_bo **)cached->map = NULL; cached->map = NULL; kgem_bo_destroy(kgem, cached); } } static bool kgem_retire__buffers(struct kgem *kgem) { bool retired = false; while (!list_is_empty(&kgem->active_buffers)) { struct kgem_buffer *bo = list_last_entry(&kgem->active_buffers, struct kgem_buffer, base.list); if (bo->base.rq) break; DBG(("%s: releasing upload cache for handle=%d? %d\n", __FUNCTION__, bo->base.handle, !list_is_empty(&bo->base.vma))); list_del(&bo->base.list); kgem_buffer_release(kgem, bo); kgem_bo_unref(kgem, &bo->base); retired = true; } return retired; } static bool kgem_retire__flushing(struct kgem *kgem) { struct kgem_bo *bo, *next; bool retired = false; list_for_each_entry_safe(bo, next, &kgem->flushing, request) { assert(bo->rq == &_kgem_static_request); assert(bo->exec == NULL); if (kgem_busy(kgem, bo->handle)) break; bo->needs_flush = false; bo->domain = DOMAIN_NONE; bo->rq = NULL; list_del(&bo->request); if (!bo->refcnt) { if (bo->snoop) { kgem_bo_move_to_snoop(kgem, bo); } else if (kgem_bo_set_purgeable(kgem, bo)) { assert(bo->reusable); kgem_bo_move_to_inactive(kgem, bo); retired = true; } else kgem_bo_free(kgem, bo); } } #if HAS_DEBUG_FULL { int count = 0; list_for_each_entry(bo, &kgem->flushing, request) count++; ErrorF("%s: %d bo on flushing list\n", __FUNCTION__, count); } #endif return retired; } static bool kgem_retire__requests(struct kgem *kgem) { struct kgem_bo *bo; bool retired = false; int n; for (n = 0; n < ARRAY_SIZE(kgem->requests); n++) { while (!list_is_empty(&kgem->requests[n])) { struct kgem_request *rq; rq = list_first_entry(&kgem->requests[n], struct kgem_request, list); if (kgem_busy(kgem, rq->bo->handle)) break; DBG(("%s: request %d complete\n", __FUNCTION__, rq->bo->handle)); while (!list_is_empty(&rq->buffers)) { bo = list_first_entry(&rq->buffers, struct kgem_bo, request); assert(bo->rq == rq); assert(bo->exec == NULL); assert(bo->domain == DOMAIN_GPU); list_del(&bo->request); if (bo->needs_flush) bo->needs_flush = kgem_busy(kgem, bo->handle); if (bo->needs_flush) { DBG(("%s: moving %d to flushing\n", __FUNCTION__, bo->handle)); list_add(&bo->request, &kgem->flushing); bo->rq = &_kgem_static_request; } else { bo->domain = DOMAIN_NONE; bo->rq = NULL; } if (bo->refcnt) continue; if (bo->snoop) { if (bo->needs_flush) { list_add(&bo->request, &kgem->flushing); bo->rq = &_kgem_static_request; } else { kgem_bo_move_to_snoop(kgem, bo); } continue; } if (!bo->reusable) { DBG(("%s: closing %d\n", __FUNCTION__, bo->handle)); kgem_bo_free(kgem, bo); continue; } if (!bo->needs_flush) { if (kgem_bo_set_purgeable(kgem, bo)) { kgem_bo_move_to_inactive(kgem, bo); retired = true; } else { DBG(("%s: closing %d\n", __FUNCTION__, bo->handle)); kgem_bo_free(kgem, bo); } } } assert(rq->bo->rq == NULL); assert(list_is_empty(&rq->bo->request)); if (--rq->bo->refcnt == 0) { if (kgem_bo_set_purgeable(kgem, rq->bo)) { kgem_bo_move_to_inactive(kgem, rq->bo); retired = true; } else { DBG(("%s: closing %d\n", __FUNCTION__, rq->bo->handle)); kgem_bo_free(kgem, rq->bo); } } __kgem_request_free(rq); kgem->num_requests--; } #if HAS_DEBUG_FULL { int count = 0; list_for_each_entry(bo, &kgem->requests[n], request) count++; bo = NULL; if (!list_is_empty(&kgem->requests[n])) bo = list_first_entry(&kgem->requests[n], struct kgem_request, list)->bo; ErrorF("%s: ring=%d, %d outstanding requests, oldest=%d\n", __FUNCTION__, n, count, bo ? bo->handle : 0); } #endif } #if HAS_DEBUG_FULL { int count = 0; for (n = 0; n < ARRAY_SIZE(kgem->requests); n++) list_for_each_entry(bo, &kgem->requests[n], request) count++; assert(count == kgem->num_requests); } #endif return retired; } bool kgem_retire(struct kgem *kgem) { bool retired = false; DBG(("%s\n", __FUNCTION__)); retired |= kgem_retire__flushing(kgem); if (kgem->num_requests) retired |= kgem_retire__requests(kgem); retired |= kgem_retire__buffers(kgem); kgem->need_retire = kgem->num_requests || !list_is_empty(&kgem->flushing); DBG(("%s -- retired=%d, need_retire=%d\n", __FUNCTION__, retired, kgem->need_retire)); kgem->retire(kgem); return retired; } bool __kgem_is_idle(struct kgem *kgem) { int n; assert(kgem->num_requests); for (n = 0; n < ARRAY_SIZE(kgem->requests); n++) { struct kgem_request *rq; if (list_is_empty(&kgem->requests[n])) continue; rq = list_last_entry(&kgem->requests[n], struct kgem_request, list); if (kgem_busy(kgem, rq->bo->handle)) { DBG(("%s: last requests handle=%d still busy\n", __FUNCTION__, rq->bo->handle)); return false; } DBG(("%s: ring=%d idle (handle=%d)\n", __FUNCTION__, n, rq->bo->handle)); } kgem_retire__requests(kgem); assert(kgem->num_requests == 0); return true; } static void kgem_commit(struct kgem *kgem) { struct kgem_request *rq = kgem->next_request; struct kgem_bo *bo, *next; list_for_each_entry_safe(bo, next, &rq->buffers, request) { assert(next->request.prev == &bo->request); DBG(("%s: release handle=%d (proxy? %d), dirty? %d flush? %d, snoop? %d -> offset=%x\n", __FUNCTION__, bo->handle, bo->proxy != NULL, bo->dirty, bo->needs_flush, bo->snoop, (unsigned)bo->exec->offset)); assert(!bo->purged); assert(bo->exec); assert(bo->proxy == NULL || bo->exec == &_kgem_dummy_exec); assert(bo->rq == rq || (bo->proxy->rq == rq)); bo->presumed_offset = bo->exec->offset; bo->exec = NULL; if (!bo->refcnt && !bo->reusable) { assert(!bo->snoop); kgem_bo_free(kgem, bo); continue; } bo->binding.offset = 0; bo->domain = DOMAIN_GPU; bo->dirty = false; if (bo->proxy) { /* proxies are not used for domain tracking */ list_del(&bo->request); bo->rq = NULL; bo->exec = NULL; } } if (rq == &_kgem_static_request) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: syncing due to allocation failure\n", __FUNCTION__)); VG_CLEAR(set_domain); set_domain.handle = rq->bo->handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain)) { DBG(("%s: sync: GPU hang detected\n", __FUNCTION__)); kgem_throttle(kgem); } kgem_retire(kgem); assert(list_is_empty(&rq->buffers)); gem_close(kgem->fd, rq->bo->handle); } else { list_add_tail(&rq->list, &kgem->requests[rq->ring]); kgem->need_throttle = kgem->need_retire = 1; kgem->num_requests++; } kgem->next_request = NULL; } static void kgem_close_list(struct kgem *kgem, struct list *head) { while (!list_is_empty(head)) kgem_bo_free(kgem, list_first_entry(head, struct kgem_bo, list)); } static void kgem_close_inactive(struct kgem *kgem) { unsigned int i; for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) kgem_close_list(kgem, &kgem->inactive[i]); } static void kgem_finish_buffers(struct kgem *kgem) { struct kgem_buffer *bo, *next; list_for_each_entry_safe(bo, next, &kgem->batch_buffers, base.list) { DBG(("%s: buffer handle=%d, used=%d, exec?=%d, write=%d, mmapped=%d\n", __FUNCTION__, bo->base.handle, bo->used, bo->base.exec!=NULL, bo->write, bo->mmapped)); assert(next->base.list.prev == &bo->base.list); assert(bo->base.io); assert(bo->base.refcnt >= 1); if (!bo->base.exec) { DBG(("%s: skipping unattached handle=%d, used=%d\n", __FUNCTION__, bo->base.handle, bo->used)); continue; } if (!bo->write) { assert(bo->base.exec || bo->base.refcnt > 1); goto decouple; } if (bo->mmapped) { int used; assert(!bo->need_io); used = ALIGN(bo->used + PAGE_SIZE-1, PAGE_SIZE); if (!DBG_NO_UPLOAD_ACTIVE && used + PAGE_SIZE <= bytes(&bo->base) && (kgem->has_llc || !IS_CPU_MAP(bo->base.map))) { DBG(("%s: retaining upload buffer (%d/%d)\n", __FUNCTION__, bo->used, bytes(&bo->base))); assert(!bo->base.snoop); bo->used = used; list_move(&bo->base.list, &kgem->active_buffers); continue; } DBG(("%s: discarding mmapped buffer, used=%d, map type=%d\n", __FUNCTION__, bo->used, (int)__MAP_TYPE(bo->base.map))); goto decouple; } if (!bo->used) { /* Unless we replace the handle in the execbuffer, * then this bo will become active. So decouple it * from the buffer list and track it in the normal * manner. */ goto decouple; } assert(bo->need_io); assert(bo->base.rq == kgem->next_request); assert(bo->base.domain != DOMAIN_GPU); if (bo->base.refcnt == 1 && bo->base.size.pages.count > 1 && bo->used < bytes(&bo->base) / 2) { struct kgem_bo *shrink; shrink = search_linear_cache(kgem, PAGE_ALIGN(bo->used), CREATE_INACTIVE | CREATE_NO_RETIRE); if (shrink) { int n; DBG(("%s: used=%d, shrinking %d to %d, handle %d to %d\n", __FUNCTION__, bo->used, bytes(&bo->base), bytes(shrink), bo->base.handle, shrink->handle)); assert(bo->used <= bytes(shrink)); gem_write(kgem->fd, shrink->handle, 0, bo->used, bo->mem); for (n = 0; n < kgem->nreloc; n++) { if (kgem->reloc[n].target_handle == bo->base.handle) { kgem->reloc[n].target_handle = shrink->handle; kgem->reloc[n].presumed_offset = shrink->presumed_offset; kgem->batch[kgem->reloc[n].offset/sizeof(kgem->batch[0])] = kgem->reloc[n].delta + shrink->presumed_offset; } } bo->base.exec->handle = shrink->handle; bo->base.exec->offset = shrink->presumed_offset; shrink->exec = bo->base.exec; shrink->rq = bo->base.rq; list_replace(&bo->base.request, &shrink->request); list_init(&bo->base.request); shrink->needs_flush = bo->base.dirty; bo->base.exec = NULL; bo->base.rq = NULL; bo->base.dirty = false; bo->base.needs_flush = false; bo->used = 0; goto decouple; } } DBG(("%s: handle=%d, uploading %d/%d\n", __FUNCTION__, bo->base.handle, bo->used, bytes(&bo->base))); assert(!kgem_busy(kgem, bo->base.handle)); assert(bo->used <= bytes(&bo->base)); gem_write(kgem->fd, bo->base.handle, 0, bo->used, bo->mem); bo->need_io = 0; decouple: DBG(("%s: releasing handle=%d\n", __FUNCTION__, bo->base.handle)); list_del(&bo->base.list); kgem_bo_unref(kgem, &bo->base); } } static void kgem_cleanup(struct kgem *kgem) { int n; for (n = 0; n < ARRAY_SIZE(kgem->requests); n++) { while (!list_is_empty(&kgem->requests[n])) { struct kgem_request *rq; rq = list_first_entry(&kgem->requests[n], struct kgem_request, list); while (!list_is_empty(&rq->buffers)) { struct kgem_bo *bo; bo = list_first_entry(&rq->buffers, struct kgem_bo, request); list_del(&bo->request); bo->rq = NULL; bo->exec = NULL; bo->domain = DOMAIN_NONE; bo->dirty = false; if (bo->refcnt == 0) kgem_bo_free(kgem, bo); } __kgem_request_free(rq); } } kgem->num_requests = 0; kgem_close_inactive(kgem); } static int kgem_batch_write(struct kgem *kgem, uint32_t handle, uint32_t size) { int ret; assert(!kgem_busy(kgem, handle)); /* If there is no surface data, just upload the batch */ if (kgem->surface == kgem->batch_size) return gem_write(kgem->fd, handle, 0, sizeof(uint32_t)*kgem->nbatch, kgem->batch); /* Are the batch pages conjoint with the surface pages? */ if (kgem->surface < kgem->nbatch + PAGE_SIZE/sizeof(uint32_t)) { assert(size == PAGE_ALIGN(kgem->batch_size*sizeof(uint32_t))); return gem_write(kgem->fd, handle, 0, kgem->batch_size*sizeof(uint32_t), kgem->batch); } /* Disjoint surface/batch, upload separately */ ret = gem_write(kgem->fd, handle, 0, sizeof(uint32_t)*kgem->nbatch, kgem->batch); if (ret) return ret; ret = PAGE_ALIGN(sizeof(uint32_t) * kgem->batch_size); ret -= sizeof(uint32_t) * kgem->surface; assert(size-ret >= kgem->nbatch*sizeof(uint32_t)); return __gem_write(kgem->fd, handle, size - ret, (kgem->batch_size - kgem->surface)*sizeof(uint32_t), kgem->batch + kgem->surface); } void kgem_reset(struct kgem *kgem) { if (kgem->next_request) { struct kgem_request *rq = kgem->next_request; while (!list_is_empty(&rq->buffers)) { struct kgem_bo *bo = list_first_entry(&rq->buffers, struct kgem_bo, request); list_del(&bo->request); bo->binding.offset = 0; bo->exec = NULL; bo->dirty = false; bo->rq = NULL; bo->domain = DOMAIN_NONE; if (!bo->refcnt) { DBG(("%s: discarding handle=%d\n", __FUNCTION__, bo->handle)); kgem_bo_free(kgem, bo); } } if (kgem->next_request != &_kgem_static_request) free(kgem->next_request); } kgem->nfence = 0; kgem->nexec = 0; kgem->nreloc = 0; kgem->aperture = 0; kgem->aperture_fenced = 0; kgem->nbatch = 0; kgem->surface = kgem->batch_size; kgem->mode = KGEM_NONE; kgem->flush = 0; kgem->next_request = __kgem_request_alloc(); kgem_sna_reset(kgem); } static int compact_batch_surface(struct kgem *kgem) { int size, shrink, n; if (!kgem->has_relaxed_delta) return kgem->batch_size; /* See if we can pack the contents into one or two pages */ n = ALIGN(kgem->batch_size, 1024); size = n - kgem->surface + kgem->nbatch; size = ALIGN(size, 1024); shrink = n - size; if (shrink) { DBG(("shrinking from %d to %d\n", kgem->batch_size, size)); shrink *= sizeof(uint32_t); for (n = 0; n < kgem->nreloc; n++) { if (kgem->reloc[n].read_domains == I915_GEM_DOMAIN_INSTRUCTION && kgem->reloc[n].target_handle == 0) kgem->reloc[n].delta -= shrink; if (kgem->reloc[n].offset >= sizeof(uint32_t)*kgem->nbatch) kgem->reloc[n].offset -= shrink; } } return size * sizeof(uint32_t); } void _kgem_submit(struct kgem *kgem) { struct kgem_request *rq; uint32_t batch_end; int size; assert(!DBG_NO_HW); assert(!kgem->wedged); assert(kgem->nbatch); assert(kgem->nbatch <= KGEM_BATCH_SIZE(kgem)); assert(kgem->nbatch <= kgem->surface); batch_end = kgem_end_batch(kgem); kgem_sna_flush(kgem); DBG(("batch[%d/%d]: %d %d %d %d, nreloc=%d, nexec=%d, nfence=%d, aperture=%d\n", kgem->mode, kgem->ring, batch_end, kgem->nbatch, kgem->surface, kgem->batch_size, kgem->nreloc, kgem->nexec, kgem->nfence, kgem->aperture)); assert(kgem->nbatch <= kgem->batch_size); assert(kgem->nbatch <= kgem->surface); assert(kgem->nreloc <= ARRAY_SIZE(kgem->reloc)); assert(kgem->nexec < ARRAY_SIZE(kgem->exec)); assert(kgem->nfence <= kgem->fence_max); kgem_finish_buffers(kgem); #if HAS_DEBUG_FULL && SHOW_BATCH __kgem_batch_debug(kgem, batch_end); #endif rq = kgem->next_request; if (kgem->surface != kgem->batch_size) size = compact_batch_surface(kgem); else size = kgem->nbatch * sizeof(kgem->batch[0]); rq->bo = kgem_create_linear(kgem, size, CREATE_NO_THROTTLE); if (rq->bo) { uint32_t handle = rq->bo->handle; int i; assert(!rq->bo->needs_flush); i = kgem->nexec++; kgem->exec[i].handle = handle; kgem->exec[i].relocation_count = kgem->nreloc; kgem->exec[i].relocs_ptr = (uintptr_t)kgem->reloc; kgem->exec[i].alignment = 0; kgem->exec[i].offset = 0; kgem->exec[i].flags = 0; kgem->exec[i].rsvd1 = 0; kgem->exec[i].rsvd2 = 0; rq->bo->exec = &kgem->exec[i]; rq->bo->rq = rq; /* useful sanity check */ list_add(&rq->bo->request, &rq->buffers); rq->ring = kgem->ring == KGEM_BLT; kgem_fixup_self_relocs(kgem, rq->bo); if (kgem_batch_write(kgem, handle, size) == 0) { struct drm_i915_gem_execbuffer2 execbuf; int ret, retry = 3; VG_CLEAR(execbuf); execbuf.buffers_ptr = (uintptr_t)kgem->exec; execbuf.buffer_count = kgem->nexec; execbuf.batch_start_offset = 0; execbuf.batch_len = batch_end*sizeof(uint32_t); execbuf.cliprects_ptr = 0; execbuf.num_cliprects = 0; execbuf.DR1 = 0; execbuf.DR4 = 0; execbuf.flags = kgem->ring; execbuf.rsvd1 = 0; execbuf.rsvd2 = 0; if (DBG_DUMP) { int fd = open("/tmp/i915-batchbuffers.dump", O_WRONLY | O_CREAT | O_APPEND, 0666); if (fd != -1) { ret = write(fd, kgem->batch, batch_end*sizeof(uint32_t)); fd = close(fd); } } ret = drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); while (ret == -1 && errno == EBUSY && retry--) { __kgem_throttle(kgem); ret = drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); } if (ret == -1 && (errno == EIO || errno == EBUSY)) { DBG(("%s: GPU hang detected\n", __FUNCTION__)); kgem_throttle(kgem); ret = 0; } #if !NDEBUG if (ret < 0) { ret = errno; ErrorF("batch[%d/%d]: %d %d %d, nreloc=%d, nexec=%d, nfence=%d, aperture=%d: errno=%d\n", kgem->mode, kgem->ring, batch_end, kgem->nbatch, kgem->surface, kgem->nreloc, kgem->nexec, kgem->nfence, kgem->aperture, errno); for (i = 0; i < kgem->nexec; i++) { struct kgem_bo *bo, *found = NULL; list_for_each_entry(bo, &kgem->next_request->buffers, request) { if (bo->handle == kgem->exec[i].handle) { found = bo; break; } } ErrorF("exec[%d] = handle:%d, presumed offset: %x, size: %d, tiling %d, fenced %d, snooped %d, deleted %d\n", i, kgem->exec[i].handle, (int)kgem->exec[i].offset, found ? kgem_bo_size(found) : -1, found ? found->tiling : -1, (int)(kgem->exec[i].flags & EXEC_OBJECT_NEEDS_FENCE), found ? found->snoop : -1, found ? found->purged : -1); } for (i = 0; i < kgem->nreloc; i++) { ErrorF("reloc[%d] = pos:%d, target:%d, delta:%d, read:%x, write:%x, offset:%x\n", i, (int)kgem->reloc[i].offset, kgem->reloc[i].target_handle, kgem->reloc[i].delta, kgem->reloc[i].read_domains, kgem->reloc[i].write_domain, (int)kgem->reloc[i].presumed_offset); } i = open("/tmp/batchbuffer", O_WRONLY | O_CREAT | O_APPEND, 0666); if (i != -1) { i = write(i, kgem->batch, batch_end*sizeof(uint32_t)); (void)i; } FatalError("SNA: failed to submit batchbuffer, errno=%d\n", ret); } #endif if (DEBUG_FLUSH_SYNC) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: debug sync, starting\n", __FUNCTION__)); VG_CLEAR(set_domain); set_domain.handle = handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; ret = drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); if (ret == -1) { DBG(("%s: sync: GPU hang detected\n", __FUNCTION__)); kgem_throttle(kgem); } DBG(("%s: debug sync, completed\n", __FUNCTION__)); } } kgem_commit(kgem); } if (kgem->wedged) kgem_cleanup(kgem); kgem_reset(kgem); assert(kgem->next_request != NULL); } void kgem_throttle(struct kgem *kgem) { kgem->need_throttle = 0; if (kgem->wedged) return; kgem->wedged = __kgem_throttle(kgem); if (kgem->wedged) { xf86DrvMsg(kgem_get_screen_index(kgem), X_ERROR, "Detected a hung GPU, disabling acceleration.\n"); xf86DrvMsg(kgem_get_screen_index(kgem), X_ERROR, "When reporting this, please include i915_error_state from debugfs and the full dmesg.\n"); } } void kgem_purge_cache(struct kgem *kgem) { struct kgem_bo *bo, *next; int i; for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) { list_for_each_entry_safe(bo, next, &kgem->inactive[i], list) { if (!kgem_bo_is_retained(kgem, bo)) { DBG(("%s: purging %d\n", __FUNCTION__, bo->handle)); kgem_bo_free(kgem, bo); } } } kgem->need_purge = false; } bool kgem_expire_cache(struct kgem *kgem) { time_t now, expire; struct kgem_bo *bo; unsigned int size = 0, count = 0; bool idle; unsigned int i; time(&now); while (__kgem_freed_bo) { bo = __kgem_freed_bo; __kgem_freed_bo = *(struct kgem_bo **)bo; free(bo); } while (__kgem_freed_request) { struct kgem_request *rq = __kgem_freed_request; __kgem_freed_request = *(struct kgem_request **)rq; free(rq); } while (!list_is_empty(&kgem->large_inactive)) { kgem_bo_free(kgem, list_first_entry(&kgem->large_inactive, struct kgem_bo, list)); } expire = 0; list_for_each_entry(bo, &kgem->snoop, list) { if (bo->delta) { expire = now - MAX_INACTIVE_TIME/2; break; } bo->delta = now; } if (expire) { while (!list_is_empty(&kgem->snoop)) { bo = list_last_entry(&kgem->snoop, struct kgem_bo, list); if (bo->delta > expire) break; kgem_bo_free(kgem, bo); } } #ifdef DEBUG_MEMORY { long snoop_size = 0; int snoop_count = 0; list_for_each_entry(bo, &kgem->snoop, list) snoop_count++, snoop_size += bytes(bo); ErrorF("%s: still allocated %d bo, %ld bytes, in snoop cache\n", __FUNCTION__, snoop_count, snoop_size); } #endif kgem_retire(kgem); if (kgem->wedged) kgem_cleanup(kgem); kgem->expire(kgem); if (kgem->need_purge) kgem_purge_cache(kgem); expire = 0; idle = !kgem->need_retire; for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) { idle &= list_is_empty(&kgem->inactive[i]); list_for_each_entry(bo, &kgem->inactive[i], list) { if (bo->delta) { expire = now - MAX_INACTIVE_TIME; break; } bo->delta = now; } } if (idle) { DBG(("%s: idle\n", __FUNCTION__)); kgem->need_expire = false; return false; } if (expire == 0) return true; idle = !kgem->need_retire; for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) { struct list preserve; list_init(&preserve); while (!list_is_empty(&kgem->inactive[i])) { bo = list_last_entry(&kgem->inactive[i], struct kgem_bo, list); if (bo->delta > expire) { idle = false; break; } if (bo->map && bo->delta + MAP_PRESERVE_TIME > expire) { idle = false; list_move_tail(&bo->list, &preserve); } else { count++; size += bytes(bo); kgem_bo_free(kgem, bo); DBG(("%s: expiring %d\n", __FUNCTION__, bo->handle)); } } if (!list_is_empty(&preserve)) { preserve.prev->next = kgem->inactive[i].next; kgem->inactive[i].next->prev = preserve.prev; kgem->inactive[i].next = preserve.next; preserve.next->prev = &kgem->inactive[i]; } } #ifdef DEBUG_MEMORY { long inactive_size = 0; int inactive_count = 0; for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) list_for_each_entry(bo, &kgem->inactive[i], list) inactive_count++, inactive_size += bytes(bo); ErrorF("%s: still allocated %d bo, %ld bytes, in inactive cache\n", __FUNCTION__, inactive_count, inactive_size); } #endif DBG(("%s: expired %d objects, %d bytes, idle? %d\n", __FUNCTION__, count, size, idle)); kgem->need_expire = !idle; return !idle; (void)count; (void)size; } void kgem_cleanup_cache(struct kgem *kgem) { unsigned int i; int n; /* sync to the most recent request */ for (n = 0; n < ARRAY_SIZE(kgem->requests); n++) { if (!list_is_empty(&kgem->requests[n])) { struct kgem_request *rq; struct drm_i915_gem_set_domain set_domain; rq = list_first_entry(&kgem->requests[n], struct kgem_request, list); DBG(("%s: sync on cleanup\n", __FUNCTION__)); VG_CLEAR(set_domain); set_domain.handle = rq->bo->handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; (void)drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } } kgem_retire(kgem); kgem_cleanup(kgem); for (i = 0; i < ARRAY_SIZE(kgem->inactive); i++) { while (!list_is_empty(&kgem->inactive[i])) kgem_bo_free(kgem, list_last_entry(&kgem->inactive[i], struct kgem_bo, list)); } while (!list_is_empty(&kgem->snoop)) kgem_bo_free(kgem, list_last_entry(&kgem->snoop, struct kgem_bo, list)); while (__kgem_freed_bo) { struct kgem_bo *bo = __kgem_freed_bo; __kgem_freed_bo = *(struct kgem_bo **)bo; free(bo); } kgem->need_purge = false; kgem->need_expire = false; } static struct kgem_bo * search_linear_cache(struct kgem *kgem, unsigned int num_pages, unsigned flags) { struct kgem_bo *bo, *first = NULL; bool use_active = (flags & CREATE_INACTIVE) == 0; struct list *cache; DBG(("%s: num_pages=%d, flags=%x, use_active? %d\n", __FUNCTION__, num_pages, flags, use_active)); if (num_pages >= MAX_CACHE_SIZE / PAGE_SIZE) return NULL; if (!use_active && list_is_empty(inactive(kgem, num_pages))) { DBG(("%s: inactive and cache bucket empty\n", __FUNCTION__)); if (flags & CREATE_NO_RETIRE) { DBG(("%s: can not retire\n", __FUNCTION__)); return NULL; } if (list_is_empty(active(kgem, num_pages, I915_TILING_NONE))) { DBG(("%s: active cache bucket empty\n", __FUNCTION__)); return NULL; } if (!__kgem_throttle_retire(kgem, 0)) { DBG(("%s: nothing retired\n", __FUNCTION__)); return NULL; } if (list_is_empty(inactive(kgem, num_pages))) { DBG(("%s: active cache bucket still empty after retire\n", __FUNCTION__)); return NULL; } } if (!use_active && flags & (CREATE_CPU_MAP | CREATE_GTT_MAP)) { int for_cpu = !!(flags & CREATE_CPU_MAP); DBG(("%s: searching for inactive %s map\n", __FUNCTION__, for_cpu ? "cpu" : "gtt")); cache = &kgem->vma[for_cpu].inactive[cache_bucket(num_pages)]; list_for_each_entry(bo, cache, vma) { assert(IS_CPU_MAP(bo->map) == for_cpu); assert(bucket(bo) == cache_bucket(num_pages)); assert(bo->proxy == NULL); assert(bo->rq == NULL); assert(bo->exec == NULL); if (num_pages > num_pages(bo)) { DBG(("inactive too small: %d < %d\n", num_pages(bo), num_pages)); continue; } if (bo->purged && !kgem_bo_clear_purgeable(kgem, bo)) { kgem_bo_free(kgem, bo); break; } if (I915_TILING_NONE != bo->tiling && gem_set_tiling(kgem->fd, bo->handle, I915_TILING_NONE, 0) != I915_TILING_NONE) continue; kgem_bo_remove_from_inactive(kgem, bo); bo->tiling = I915_TILING_NONE; bo->pitch = 0; bo->delta = 0; DBG((" %s: found handle=%d (num_pages=%d) in linear vma cache\n", __FUNCTION__, bo->handle, num_pages(bo))); assert(use_active || bo->domain != DOMAIN_GPU); assert(!bo->needs_flush); //assert(!kgem_busy(kgem, bo->handle)); return bo; } if (flags & CREATE_EXACT) return NULL; } cache = use_active ? active(kgem, num_pages, I915_TILING_NONE) : inactive(kgem, num_pages); list_for_each_entry(bo, cache, list) { assert(bo->refcnt == 0); assert(bo->reusable); assert(!!bo->rq == !!use_active); assert(bo->proxy == NULL); if (num_pages > num_pages(bo)) continue; if (use_active && kgem->gen <= 40 && bo->tiling != I915_TILING_NONE) continue; if (bo->purged && !kgem_bo_clear_purgeable(kgem, bo)) { kgem_bo_free(kgem, bo); break; } if (I915_TILING_NONE != bo->tiling) { if (flags & (CREATE_CPU_MAP | CREATE_GTT_MAP)) continue; if (first) continue; if (gem_set_tiling(kgem->fd, bo->handle, I915_TILING_NONE, 0) != I915_TILING_NONE) continue; bo->tiling = I915_TILING_NONE; } if (bo->map) { if (flags & (CREATE_CPU_MAP | CREATE_GTT_MAP)) { int for_cpu = !!(flags & CREATE_CPU_MAP); if (IS_CPU_MAP(bo->map) != for_cpu) { if (first != NULL) break; first = bo; continue; } } else { if (first != NULL) break; first = bo; continue; } } else { if (flags & (CREATE_CPU_MAP | CREATE_GTT_MAP)) { if (first != NULL) break; first = bo; continue; } } if (use_active) kgem_bo_remove_from_active(kgem, bo); else kgem_bo_remove_from_inactive(kgem, bo); assert(bo->tiling == I915_TILING_NONE); bo->pitch = 0; bo->delta = 0; DBG((" %s: found handle=%d (num_pages=%d) in linear %s cache\n", __FUNCTION__, bo->handle, num_pages(bo), use_active ? "active" : "inactive")); assert(list_is_empty(&bo->list)); assert(use_active || bo->domain != DOMAIN_GPU); assert(!bo->needs_flush || use_active); //assert(use_active || !kgem_busy(kgem, bo->handle)); return bo; } if (first) { assert(first->tiling == I915_TILING_NONE); if (use_active) kgem_bo_remove_from_active(kgem, first); else kgem_bo_remove_from_inactive(kgem, first); first->pitch = 0; first->delta = 0; DBG((" %s: found handle=%d (near-miss) (num_pages=%d) in linear %s cache\n", __FUNCTION__, first->handle, num_pages(first), use_active ? "active" : "inactive")); assert(list_is_empty(&first->list)); assert(use_active || first->domain != DOMAIN_GPU); assert(!first->needs_flush || use_active); //assert(use_active || !kgem_busy(kgem, first->handle)); return first; } return NULL; } struct kgem_bo *kgem_create_for_name(struct kgem *kgem, uint32_t name) { struct drm_gem_open open_arg; struct kgem_bo *bo; DBG(("%s(name=%d)\n", __FUNCTION__, name)); VG_CLEAR(open_arg); open_arg.name = name; if (drmIoctl(kgem->fd, DRM_IOCTL_GEM_OPEN, &open_arg)) return NULL; DBG(("%s: new handle=%d\n", __FUNCTION__, open_arg.handle)); bo = __kgem_bo_alloc(open_arg.handle, open_arg.size / PAGE_SIZE); if (bo == NULL) { gem_close(kgem->fd, open_arg.handle); return NULL; } bo->reusable = false; bo->flush = true; debug_alloc__bo(kgem, bo); return bo; } struct kgem_bo *kgem_create_for_prime(struct kgem *kgem, int name, uint32_t size) { #ifdef DRM_IOCTL_PRIME_FD_TO_HANDLE struct drm_prime_handle args; struct drm_i915_gem_get_tiling tiling; struct kgem_bo *bo; DBG(("%s(name=%d)\n", __FUNCTION__, name)); VG_CLEAR(args); args.fd = name; args.flags = 0; if (drmIoctl(kgem->fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args)) return NULL; VG_CLEAR(tiling); tiling.handle = args.handle; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_GET_TILING, &tiling)) { gem_close(kgem->fd, args.handle); return NULL; } DBG(("%s: new handle=%d, tiling=%d\n", __FUNCTION__, args.handle, tiling.tiling_mode)); bo = __kgem_bo_alloc(args.handle, NUM_PAGES(size)); if (bo == NULL) { gem_close(kgem->fd, args.handle); return NULL; } bo->tiling = tiling.tiling_mode; bo->reusable = false; debug_alloc__bo(kgem, bo); return bo; #else return NULL; #endif } int kgem_bo_export_to_prime(struct kgem *kgem, struct kgem_bo *bo) { #ifdef DRM_IOCTL_PRIME_HANDLE_TO_FD struct drm_prime_handle args; VG_CLEAR(args); args.handle = bo->handle; args.flags = DRM_CLOEXEC; if (drmIoctl(kgem->fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args)) return -1; bo->reusable = false; return args.fd; #else return -1; #endif } struct kgem_bo *kgem_create_linear(struct kgem *kgem, int size, unsigned flags) { struct kgem_bo *bo; uint32_t handle; DBG(("%s(%d)\n", __FUNCTION__, size)); if (flags & CREATE_GTT_MAP && kgem->has_llc) { flags &= ~CREATE_GTT_MAP; flags |= CREATE_CPU_MAP; } size = (size + PAGE_SIZE - 1) / PAGE_SIZE; bo = search_linear_cache(kgem, size, CREATE_INACTIVE | flags); if (bo) { bo->refcnt = 1; return bo; } handle = gem_create(kgem->fd, size); if (handle == 0) return NULL; DBG(("%s: new handle=%d, num_pages=%d\n", __FUNCTION__, handle, size)); bo = __kgem_bo_alloc(handle, size); if (bo == NULL) { gem_close(kgem->fd, handle); return NULL; } debug_alloc__bo(kgem, bo); return bo; } int kgem_choose_tiling(struct kgem *kgem, int tiling, int width, int height, int bpp) { if (DBG_NO_TILING) return tiling < 0 ? tiling : I915_TILING_NONE; if (kgem->gen < 40) { if (tiling && width * bpp > 8192 * 8) { DBG(("%s: pitch too large for tliing [%d]\n", __FUNCTION__, width*bpp/8)); tiling = I915_TILING_NONE; goto done; } } else { if (width*bpp > (MAXSHORT-512) * 8) { DBG(("%s: large pitch [%d], forcing TILING_X\n", __FUNCTION__, width*bpp/8)); if (tiling > 0) tiling = -tiling; else if (tiling == 0) tiling = -I915_TILING_X; } else if (tiling && (width|height) > 8192) { DBG(("%s: large tiled buffer [%dx%d], forcing TILING_X\n", __FUNCTION__, width, height)); tiling = -I915_TILING_X; } } if (tiling < 0) return tiling; if (tiling && height == 1) { DBG(("%s: disabling tiling [%d] for single row\n", __FUNCTION__,height)); tiling = I915_TILING_NONE; goto done; } if (tiling == I915_TILING_Y && height <= 16) { DBG(("%s: too short [%d] for TILING_Y\n", __FUNCTION__,height)); tiling = I915_TILING_X; } if (tiling && width * bpp > 8 * (4096 - 64)) { DBG(("%s: TLB miss between lines %dx%d (pitch=%d), forcing tiling %d\n", __FUNCTION__, width, height, width*bpp/8, tiling)); return -tiling; } if (tiling == I915_TILING_X && height < 4) { DBG(("%s: too short [%d] for TILING_X\n", __FUNCTION__, height)); tiling = I915_TILING_NONE; goto done; } if (tiling == I915_TILING_X && width * bpp <= 8*512/2) { DBG(("%s: too thin [width %d, %d bpp] for TILING_X\n", __FUNCTION__, width, bpp)); tiling = I915_TILING_NONE; goto done; } if (tiling == I915_TILING_Y && width * bpp <= 8*128/2) { DBG(("%s: too thin [%d] for TILING_Y\n", __FUNCTION__, width)); tiling = I915_TILING_NONE; goto done; } if (tiling && ALIGN(height, 2) * ALIGN(width*bpp, 8*64) <= 4096 * 8) { DBG(("%s: too small [%d bytes] for TILING_%c\n", __FUNCTION__, ALIGN(height, 2) * ALIGN(width*bpp, 8*64) / 8, tiling == I915_TILING_X ? 'X' : 'Y')); tiling = I915_TILING_NONE; goto done; } if (tiling && width * bpp >= 8 * 4096 / 2) { DBG(("%s: TLB near-miss between lines %dx%d (pitch=%d), forcing tiling %d\n", __FUNCTION__, width, height, width*bpp/8, tiling)); return -tiling; } done: DBG(("%s: %dx%d -> %d\n", __FUNCTION__, width, height, tiling)); return tiling; } static int bits_per_pixel(int depth) { switch (depth) { case 8: return 8; case 15: case 16: return 16; case 24: case 30: case 32: return 32; default: return 0; } } unsigned kgem_can_create_2d(struct kgem *kgem, int width, int height, int depth) { uint32_t pitch, size; unsigned flags = 0; int bpp; DBG(("%s: %dx%d @ %d\n", __FUNCTION__, width, height, depth)); bpp = bits_per_pixel(depth); if (bpp == 0) { DBG(("%s: unhandled depth %d\n", __FUNCTION__, depth)); return 0; } if (width > MAXSHORT || height > MAXSHORT) { DBG(("%s: unhandled size %dx%d\n", __FUNCTION__, width, height)); return 0; } size = kgem_surface_size(kgem, false, 0, width, height, bpp, I915_TILING_NONE, &pitch); if (size > 0 && size <= kgem->max_cpu_size) flags |= KGEM_CAN_CREATE_CPU | KGEM_CAN_CREATE_GPU; if (size > 0 && size <= kgem->aperture_mappable/4) flags |= KGEM_CAN_CREATE_GTT; if (size > kgem->large_object_size) flags |= KGEM_CAN_CREATE_LARGE; if (size > kgem->max_object_size) { DBG(("%s: too large (untiled) %d > %d\n", __FUNCTION__, size, kgem->max_object_size)); return 0; } size = kgem_surface_size(kgem, false, 0, width, height, bpp, kgem_choose_tiling(kgem, I915_TILING_X, width, height, bpp), &pitch); if (size > 0 && size <= kgem->max_gpu_size) flags |= KGEM_CAN_CREATE_GPU; if (size > 0 && size <= kgem->aperture_mappable/4) flags |= KGEM_CAN_CREATE_GTT; if (size > kgem->large_object_size) flags |= KGEM_CAN_CREATE_LARGE; if (size > kgem->max_object_size) { DBG(("%s: too large (tiled) %d > %d\n", __FUNCTION__, size, kgem->max_object_size)); return 0; } return flags; } inline int kgem_bo_fenced_size(struct kgem *kgem, struct kgem_bo *bo) { unsigned int size; assert(bo->tiling); assert(kgem->gen < 40); if (kgem->gen < 30) size = 512 * 1024; else size = 1024 * 1024; while (size < bytes(bo)) size *= 2; return size; } struct kgem_bo *kgem_create_2d(struct kgem *kgem, int width, int height, int bpp, int tiling, uint32_t flags) { struct list *cache; struct kgem_bo *bo; uint32_t pitch, untiled_pitch, tiled_height, size; uint32_t handle; int i, bucket, retry; if (tiling < 0) tiling = -tiling, flags |= CREATE_EXACT; DBG(("%s(%dx%d, bpp=%d, tiling=%d, exact=%d, inactive=%d, cpu-mapping=%d, gtt-mapping=%d, scanout?=%d, prime?=%d, temp?=%d)\n", __FUNCTION__, width, height, bpp, tiling, !!(flags & CREATE_EXACT), !!(flags & CREATE_INACTIVE), !!(flags & CREATE_CPU_MAP), !!(flags & CREATE_GTT_MAP), !!(flags & CREATE_SCANOUT), !!(flags & CREATE_PRIME), !!(flags & CREATE_TEMPORARY))); size = kgem_surface_size(kgem, kgem->has_relaxed_fencing, flags, width, height, bpp, tiling, &pitch); assert(size && size <= kgem->max_object_size); size /= PAGE_SIZE; bucket = cache_bucket(size); if (bucket >= NUM_CACHE_BUCKETS) { DBG(("%s: large bo num pages=%d, bucket=%d\n", __FUNCTION__, size, bucket)); if (flags & CREATE_INACTIVE) goto large_inactive; tiled_height = kgem_aligned_height(kgem, height, tiling); untiled_pitch = kgem_untiled_pitch(kgem, width, bpp, flags); list_for_each_entry(bo, &kgem->large, list) { assert(!bo->purged); assert(bo->refcnt == 0); assert(bo->reusable); if (kgem->gen < 40) { if (bo->pitch < pitch) { DBG(("tiled and pitch too small: tiling=%d, (want %d), pitch=%d, need %d\n", bo->tiling, tiling, bo->pitch, pitch)); continue; } if (bo->pitch * tiled_height > bytes(bo)) continue; } else { if (num_pages(bo) < size) continue; if (bo->pitch != pitch || bo->tiling != tiling) { if (gem_set_tiling(kgem->fd, bo->handle, tiling, pitch) != tiling) continue; bo->pitch = pitch; } } kgem_bo_remove_from_active(kgem, bo); bo->unique_id = kgem_get_unique_id(kgem); bo->delta = 0; DBG((" 1:from active: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } large_inactive: list_for_each_entry(bo, &kgem->large_inactive, list) { assert(bo->refcnt == 0); assert(bo->reusable); if (size > num_pages(bo)) continue; if (bo->tiling != tiling || (tiling != I915_TILING_NONE && bo->pitch != pitch)) { if (tiling != gem_set_tiling(kgem->fd, bo->handle, tiling, pitch)) continue; } if (bo->purged && !kgem_bo_clear_purgeable(kgem, bo)) { kgem_bo_free(kgem, bo); break; } list_del(&bo->list); bo->unique_id = kgem_get_unique_id(kgem); bo->pitch = pitch; bo->delta = 0; DBG((" 1:from large inactive: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } goto create; } if (flags & (CREATE_CPU_MAP | CREATE_GTT_MAP)) { int for_cpu = !!(flags & CREATE_CPU_MAP); if (kgem->has_llc && tiling == I915_TILING_NONE) for_cpu = 1; /* We presume that we will need to upload to this bo, * and so would prefer to have an active VMA. */ cache = &kgem->vma[for_cpu].inactive[bucket]; do { list_for_each_entry(bo, cache, vma) { assert(bucket(bo) == bucket); assert(bo->refcnt == 0); assert(bo->map); assert(IS_CPU_MAP(bo->map) == for_cpu); assert(bo->rq == NULL); assert(list_is_empty(&bo->request)); if (size > num_pages(bo)) { DBG(("inactive too small: %d < %d\n", num_pages(bo), size)); continue; } if (bo->tiling != tiling || (tiling != I915_TILING_NONE && bo->pitch != pitch)) { DBG(("inactive vma with wrong tiling: %d < %d\n", bo->tiling, tiling)); continue; } if (bo->purged && !kgem_bo_clear_purgeable(kgem, bo)) { kgem_bo_free(kgem, bo); break; } bo->pitch = pitch; bo->delta = 0; bo->unique_id = kgem_get_unique_id(kgem); kgem_bo_remove_from_inactive(kgem, bo); DBG((" from inactive vma: pitch=%d, tiling=%d: handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->reusable); assert(bo->domain != DOMAIN_GPU && !kgem_busy(kgem, bo->handle)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } } while (!list_is_empty(cache) && __kgem_throttle_retire(kgem, flags)); } if (flags & CREATE_INACTIVE) goto skip_active_search; /* Best active match */ retry = NUM_CACHE_BUCKETS - bucket; if (retry > 3 && (flags & CREATE_TEMPORARY) == 0) retry = 3; search_again: assert(bucket < NUM_CACHE_BUCKETS); cache = &kgem->active[bucket][tiling]; if (tiling) { tiled_height = kgem_aligned_height(kgem, height, tiling); list_for_each_entry(bo, cache, list) { assert(!bo->purged); assert(bo->refcnt == 0); assert(bucket(bo) == bucket); assert(bo->reusable); assert(bo->tiling == tiling); if (kgem->gen < 40) { if (bo->pitch < pitch) { DBG(("tiled and pitch too small: tiling=%d, (want %d), pitch=%d, need %d\n", bo->tiling, tiling, bo->pitch, pitch)); continue; } if (bo->pitch * tiled_height > bytes(bo)) continue; } else { if (num_pages(bo) < size) continue; if (bo->pitch != pitch) { gem_set_tiling(kgem->fd, bo->handle, tiling, pitch); bo->pitch = pitch; } } kgem_bo_remove_from_active(kgem, bo); bo->unique_id = kgem_get_unique_id(kgem); bo->delta = 0; DBG((" 1:from active: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } } else { list_for_each_entry(bo, cache, list) { assert(bucket(bo) == bucket); assert(!bo->purged); assert(bo->refcnt == 0); assert(bo->reusable); assert(bo->tiling == tiling); if (num_pages(bo) < size) continue; kgem_bo_remove_from_active(kgem, bo); bo->pitch = pitch; bo->unique_id = kgem_get_unique_id(kgem); bo->delta = 0; DBG((" 1:from active: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } } if (--retry && flags & CREATE_EXACT) { if (kgem->gen >= 40) { for (i = I915_TILING_NONE; i <= I915_TILING_Y; i++) { if (i == tiling) continue; cache = &kgem->active[bucket][i]; list_for_each_entry(bo, cache, list) { assert(!bo->purged); assert(bo->refcnt == 0); assert(bo->reusable); if (num_pages(bo) < size) continue; if (tiling != gem_set_tiling(kgem->fd, bo->handle, tiling, pitch)) continue; kgem_bo_remove_from_active(kgem, bo); bo->unique_id = kgem_get_unique_id(kgem); bo->pitch = pitch; bo->tiling = tiling; bo->delta = 0; DBG((" 1:from active: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } } } bucket++; goto search_again; } if ((flags & CREATE_EXACT) == 0) { /* allow an active near-miss? */ untiled_pitch = kgem_untiled_pitch(kgem, width, bpp, flags); i = tiling; while (--i >= 0) { tiled_height = kgem_surface_size(kgem, kgem->has_relaxed_fencing, flags, width, height, bpp, tiling, &pitch); cache = active(kgem, tiled_height / PAGE_SIZE, i); tiled_height = kgem_aligned_height(kgem, height, i); list_for_each_entry(bo, cache, list) { assert(!bo->purged); assert(bo->refcnt == 0); assert(bo->reusable); if (bo->tiling) { if (bo->pitch < pitch) { DBG(("tiled and pitch too small: tiling=%d, (want %d), pitch=%d, need %d\n", bo->tiling, tiling, bo->pitch, pitch)); continue; } } else bo->pitch = untiled_pitch; if (bo->pitch * tiled_height > bytes(bo)) continue; kgem_bo_remove_from_active(kgem, bo); bo->unique_id = kgem_get_unique_id(kgem); bo->delta = 0; DBG((" 1:from active: pitch=%d, tiling=%d, handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } } } skip_active_search: bucket = cache_bucket(size); retry = NUM_CACHE_BUCKETS - bucket; if (retry > 3) retry = 3; search_inactive: /* Now just look for a close match and prefer any currently active */ assert(bucket < NUM_CACHE_BUCKETS); cache = &kgem->inactive[bucket]; list_for_each_entry(bo, cache, list) { assert(bucket(bo) == bucket); assert(bo->reusable); if (size > num_pages(bo)) { DBG(("inactive too small: %d < %d\n", num_pages(bo), size)); continue; } if (bo->tiling != tiling || (tiling != I915_TILING_NONE && bo->pitch != pitch)) { if (tiling != gem_set_tiling(kgem->fd, bo->handle, tiling, pitch)) continue; if (bo->map) kgem_bo_release_map(kgem, bo); } if (bo->purged && !kgem_bo_clear_purgeable(kgem, bo)) { kgem_bo_free(kgem, bo); break; } kgem_bo_remove_from_inactive(kgem, bo); bo->pitch = pitch; bo->tiling = tiling; bo->delta = 0; bo->unique_id = kgem_get_unique_id(kgem); assert(bo->pitch); DBG((" from inactive: pitch=%d, tiling=%d: handle=%d, id=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id)); assert(bo->refcnt == 0); assert(bo->reusable); assert((flags & CREATE_INACTIVE) == 0 || bo->domain != DOMAIN_GPU); assert((flags & CREATE_INACTIVE) == 0 || !kgem_busy(kgem, bo->handle)); assert(bo->pitch*kgem_aligned_height(kgem, height, bo->tiling) <= kgem_bo_size(bo)); bo->refcnt = 1; return bo; } if (flags & CREATE_INACTIVE && !list_is_empty(&kgem->active[bucket][tiling]) && __kgem_throttle_retire(kgem, flags)) { flags &= ~CREATE_INACTIVE; goto search_inactive; } if (--retry) { bucket++; flags &= ~CREATE_INACTIVE; goto search_inactive; } create: if (bucket >= NUM_CACHE_BUCKETS) size = ALIGN(size, 1024); handle = gem_create(kgem->fd, size); if (handle == 0) return NULL; bo = __kgem_bo_alloc(handle, size); if (!bo) { gem_close(kgem->fd, handle); return NULL; } bo->domain = DOMAIN_CPU; bo->unique_id = kgem_get_unique_id(kgem); bo->pitch = pitch; if (tiling != I915_TILING_NONE) bo->tiling = gem_set_tiling(kgem->fd, handle, tiling, pitch); if (bucket >= NUM_CACHE_BUCKETS) { DBG(("%s: marking large bo for automatic flushing\n", __FUNCTION__)); bo->flush = true; } assert(bytes(bo) >= bo->pitch * kgem_aligned_height(kgem, height, bo->tiling)); debug_alloc__bo(kgem, bo); DBG((" new pitch=%d, tiling=%d, handle=%d, id=%d, num_pages=%d [%d], bucket=%d\n", bo->pitch, bo->tiling, bo->handle, bo->unique_id, size, num_pages(bo), bucket(bo))); return bo; } struct kgem_bo *kgem_create_cpu_2d(struct kgem *kgem, int width, int height, int bpp, uint32_t flags) { struct kgem_bo *bo; int stride, size; if (DBG_NO_CPU) return NULL; DBG(("%s(%dx%d, bpp=%d)\n", __FUNCTION__, width, height, bpp)); if (kgem->has_llc) { bo = kgem_create_2d(kgem, width, height, bpp, I915_TILING_NONE, flags); if (bo == NULL) return bo; assert(bo->tiling == I915_TILING_NONE); if (kgem_bo_map__cpu(kgem, bo) == NULL) { kgem_bo_destroy(kgem, bo); return NULL; } return bo; } assert(width > 0 && height > 0); stride = ALIGN(width, 2) * bpp >> 3; stride = ALIGN(stride, 4); size = stride * ALIGN(height, 2); assert(size >= PAGE_SIZE); DBG(("%s: %dx%d, %d bpp, stride=%d\n", __FUNCTION__, width, height, bpp, stride)); bo = search_snoop_cache(kgem, NUM_PAGES(size), 0); if (bo) { assert(bo->tiling == I915_TILING_NONE); assert(bo->snoop); bo->refcnt = 1; bo->pitch = stride; bo->unique_id = kgem_get_unique_id(kgem); return bo; } if (kgem->has_cacheing) { bo = kgem_create_linear(kgem, size, flags); if (bo == NULL) return NULL; assert(bo->tiling == I915_TILING_NONE); if (!gem_set_cacheing(kgem->fd, bo->handle, SNOOPED)) { kgem_bo_destroy(kgem, bo); return NULL; } bo->snoop = true; if (kgem_bo_map__cpu(kgem, bo) == NULL) { kgem_bo_destroy(kgem, bo); return NULL; } bo->pitch = stride; bo->unique_id = kgem_get_unique_id(kgem); return bo; } if (kgem->has_userptr) { void *ptr; /* XXX */ //if (posix_memalign(&ptr, 64, ALIGN(size, 64))) if (posix_memalign(&ptr, PAGE_SIZE, ALIGN(size, PAGE_SIZE))) return NULL; bo = kgem_create_map(kgem, ptr, size, false); if (bo == NULL) { free(ptr); return NULL; } bo->map = MAKE_USER_MAP(ptr); bo->pitch = stride; bo->unique_id = kgem_get_unique_id(kgem); return bo; } return NULL; } void _kgem_bo_destroy(struct kgem *kgem, struct kgem_bo *bo) { DBG(("%s: handle=%d, proxy? %d\n", __FUNCTION__, bo->handle, bo->proxy != NULL)); if (bo->proxy) { _list_del(&bo->vma); _list_del(&bo->request); if (bo->io && bo->exec == NULL) _kgem_bo_delete_buffer(kgem, bo); kgem_bo_unref(kgem, bo->proxy); kgem_bo_binding_free(kgem, bo); free(bo); return; } __kgem_bo_destroy(kgem, bo); } bool __kgem_flush(struct kgem *kgem, struct kgem_bo *bo) { /* The kernel will emit a flush *and* update its own flushing lists. */ if (!bo->needs_flush) return false; bo->needs_flush = kgem_busy(kgem, bo->handle); DBG(("%s: handle=%d, busy?=%d\n", __FUNCTION__, bo->handle, bo->needs_flush)); return bo->needs_flush; } bool kgem_check_bo(struct kgem *kgem, ...) { va_list ap; struct kgem_bo *bo; int num_exec = 0; int num_pages = 0; if (kgem_flush(kgem)) return false; va_start(ap, kgem); while ((bo = va_arg(ap, struct kgem_bo *))) { if (bo->exec) continue; while (bo->proxy) { bo = bo->proxy; if (bo->exec) continue; } num_pages += num_pages(bo); num_exec++; } va_end(ap); DBG(("%s: num_pages=+%d, num_exec=+%d\n", __FUNCTION__, num_pages, num_exec)); if (!num_pages) return true; if (kgem->aperture > kgem->aperture_low && kgem_is_idle(kgem)) { DBG(("%s: current aperture usage (%d) is greater than low water mark (%d)\n", __FUNCTION__, kgem->aperture, kgem->aperture_low)); return false; } if (num_pages + kgem->aperture > kgem->aperture_high) { DBG(("%s: final aperture usage (%d) is greater than high water mark (%d)\n", __FUNCTION__, num_pages + kgem->aperture, kgem->aperture_high)); return false; } if (kgem->nexec + num_exec >= KGEM_EXEC_SIZE(kgem)) { DBG(("%s: out of exec slots (%d + %d / %d)\n", __FUNCTION__, kgem->nexec, num_exec, KGEM_EXEC_SIZE(kgem))); return false; } return true; } bool kgem_check_bo_fenced(struct kgem *kgem, struct kgem_bo *bo) { uint32_t size; if (kgem_flush(kgem)) return false; while (bo->proxy) bo = bo->proxy; if (bo->exec) { if (kgem->gen < 40 && bo->tiling != I915_TILING_NONE && (bo->exec->flags & EXEC_OBJECT_NEEDS_FENCE) == 0) { if (kgem->nfence >= kgem->fence_max) return false; size = kgem->aperture_fenced; size += kgem_bo_fenced_size(kgem, bo); if (size > kgem->aperture_mappable) return false; } return true; } if (kgem->aperture > kgem->aperture_low) return false; if (kgem->nexec >= KGEM_EXEC_SIZE(kgem) - 1) return false; if (kgem->gen < 40 && bo->tiling != I915_TILING_NONE && kgem->nfence >= kgem->fence_max) return false; size = kgem->aperture; size += num_pages(bo); return size <= kgem->aperture_high; } bool kgem_check_many_bo_fenced(struct kgem *kgem, ...) { va_list ap; struct kgem_bo *bo; int num_fence = 0; int num_exec = 0; int num_pages = 0; int fenced_size = 0; if (kgem_flush(kgem)) return false; va_start(ap, kgem); while ((bo = va_arg(ap, struct kgem_bo *))) { while (bo->proxy) bo = bo->proxy; if (bo->exec) { if (kgem->gen >= 40 || bo->tiling == I915_TILING_NONE) continue; if ((bo->exec->flags & EXEC_OBJECT_NEEDS_FENCE) == 0) { fenced_size += kgem_bo_fenced_size(kgem, bo); num_fence++; } continue; } num_pages += num_pages(bo); num_exec++; if (kgem->gen < 40 && bo->tiling) { fenced_size += kgem_bo_fenced_size(kgem, bo); num_fence++; } } va_end(ap); if (fenced_size + kgem->aperture_fenced > kgem->aperture_mappable) return false; if (kgem->nfence + num_fence > kgem->fence_max) return false; if (!num_pages) return true; if (kgem->aperture > kgem->aperture_low) return false; if (num_pages + kgem->aperture > kgem->aperture_high) return false; if (kgem->nexec + num_exec >= KGEM_EXEC_SIZE(kgem)) return false; return true; } uint32_t kgem_add_reloc(struct kgem *kgem, uint32_t pos, struct kgem_bo *bo, uint32_t read_write_domain, uint32_t delta) { int index; DBG(("%s: handle=%d, pos=%d, delta=%d, domains=%08x\n", __FUNCTION__, bo ? bo->handle : 0, pos, delta, read_write_domain)); assert((read_write_domain & 0x7fff) == 0 || bo != NULL); index = kgem->nreloc++; assert(index < ARRAY_SIZE(kgem->reloc)); kgem->reloc[index].offset = pos * sizeof(kgem->batch[0]); if (bo) { assert(bo->refcnt); assert(!bo->purged); while (bo->proxy) { DBG(("%s: adding proxy [delta=%d] for handle=%d\n", __FUNCTION__, bo->delta, bo->handle)); delta += bo->delta; assert(bo->handle == bo->proxy->handle); /* need to release the cache upon batch submit */ if (bo->exec == NULL) { list_move_tail(&bo->request, &kgem->next_request->buffers); bo->rq = kgem->next_request; bo->exec = &_kgem_dummy_exec; } bo = bo->proxy; assert(bo->refcnt); assert(!bo->purged); } if (bo->exec == NULL) _kgem_add_bo(kgem, bo); assert(bo->rq == kgem->next_request); if (kgem->gen < 40 && read_write_domain & KGEM_RELOC_FENCED) { if (bo->tiling && (bo->exec->flags & EXEC_OBJECT_NEEDS_FENCE) == 0) { assert(kgem->nfence < kgem->fence_max); kgem->aperture_fenced += kgem_bo_fenced_size(kgem, bo); kgem->nfence++; } bo->exec->flags |= EXEC_OBJECT_NEEDS_FENCE; } kgem->reloc[index].delta = delta; kgem->reloc[index].target_handle = bo->handle; kgem->reloc[index].presumed_offset = bo->presumed_offset; if (read_write_domain & 0x7ff) kgem_bo_mark_dirty(bo); delta += bo->presumed_offset; } else { kgem->reloc[index].delta = delta; kgem->reloc[index].target_handle = 0; kgem->reloc[index].presumed_offset = 0; } kgem->reloc[index].read_domains = read_write_domain >> 16; kgem->reloc[index].write_domain = read_write_domain & 0x7fff; return delta; } static void kgem_trim_vma_cache(struct kgem *kgem, int type, int bucket) { int i, j; DBG(("%s: type=%d, count=%d (bucket: %d)\n", __FUNCTION__, type, kgem->vma[type].count, bucket)); if (kgem->vma[type].count <= 0) return; if (kgem->need_purge) kgem_purge_cache(kgem); /* vma are limited on a per-process basis to around 64k. * This includes all malloc arenas as well as other file * mappings. In order to be fair and not hog the cache, * and more importantly not to exhaust that limit and to * start failing mappings, we keep our own number of open * vma to within a conservative value. */ i = 0; while (kgem->vma[type].count > 0) { struct kgem_bo *bo = NULL; for (j = 0; bo == NULL && j < ARRAY_SIZE(kgem->vma[type].inactive); j++) { struct list *head = &kgem->vma[type].inactive[i++%ARRAY_SIZE(kgem->vma[type].inactive)]; if (!list_is_empty(head)) bo = list_last_entry(head, struct kgem_bo, vma); } if (bo == NULL) break; DBG(("%s: discarding inactive %s vma cache for %d\n", __FUNCTION__, IS_CPU_MAP(bo->map) ? "CPU" : "GTT", bo->handle)); assert(IS_CPU_MAP(bo->map) == type); assert(bo->map); assert(bo->rq == NULL); VG(if (type) VALGRIND_MAKE_MEM_NOACCESS(MAP(bo->map), bytes(bo))); munmap(MAP(bo->map), bytes(bo)); bo->map = NULL; list_del(&bo->vma); kgem->vma[type].count--; if (!bo->purged && !kgem_bo_set_purgeable(kgem, bo)) { DBG(("%s: freeing unpurgeable old mapping\n", __FUNCTION__)); kgem_bo_free(kgem, bo); } } } void *kgem_bo_map__async(struct kgem *kgem, struct kgem_bo *bo) { void *ptr; DBG(("%s: handle=%d, offset=%d, tiling=%d, map=%p, domain=%d\n", __FUNCTION__, bo->handle, bo->presumed_offset, bo->tiling, bo->map, bo->domain)); assert(!bo->purged); assert(bo->proxy == NULL); assert(list_is_empty(&bo->list)); if (bo->tiling == I915_TILING_NONE && !bo->scanout && kgem->has_llc) { DBG(("%s: converting request for GTT map into CPU map\n", __FUNCTION__)); return kgem_bo_map__cpu(kgem, bo); } if (IS_CPU_MAP(bo->map)) kgem_bo_release_map(kgem, bo); ptr = bo->map; if (ptr == NULL) { assert(kgem_bo_size(bo) <= kgem->aperture_mappable / 2); kgem_trim_vma_cache(kgem, MAP_GTT, bucket(bo)); ptr = __kgem_bo_map__gtt(kgem, bo); if (ptr == NULL) return NULL; /* Cache this mapping to avoid the overhead of an * excruciatingly slow GTT pagefault. This is more an * issue with compositing managers which need to frequently * flush CPU damage to their GPU bo. */ bo->map = ptr; DBG(("%s: caching GTT vma for %d\n", __FUNCTION__, bo->handle)); } return ptr; } void *kgem_bo_map(struct kgem *kgem, struct kgem_bo *bo) { void *ptr; DBG(("%s: handle=%d, offset=%d, tiling=%d, map=%p, domain=%d\n", __FUNCTION__, bo->handle, bo->presumed_offset, bo->tiling, bo->map, bo->domain)); assert(!bo->purged); assert(bo->proxy == NULL); assert(list_is_empty(&bo->list)); assert(bo->exec == NULL); if (bo->tiling == I915_TILING_NONE && !bo->scanout && (kgem->has_llc || bo->domain == DOMAIN_CPU)) { DBG(("%s: converting request for GTT map into CPU map\n", __FUNCTION__)); ptr = kgem_bo_map__cpu(kgem, bo); kgem_bo_sync__cpu(kgem, bo); return ptr; } if (IS_CPU_MAP(bo->map)) kgem_bo_release_map(kgem, bo); ptr = bo->map; if (ptr == NULL) { assert(kgem_bo_size(bo) <= kgem->aperture_mappable / 2); kgem_trim_vma_cache(kgem, MAP_GTT, bucket(bo)); ptr = __kgem_bo_map__gtt(kgem, bo); if (ptr == NULL) return NULL; /* Cache this mapping to avoid the overhead of an * excruciatingly slow GTT pagefault. This is more an * issue with compositing managers which need to frequently * flush CPU damage to their GPU bo. */ bo->map = ptr; DBG(("%s: caching GTT vma for %d\n", __FUNCTION__, bo->handle)); } if (bo->domain != DOMAIN_GTT) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: sync: needs_flush? %d, domain? %d, busy? %d\n", __FUNCTION__, bo->needs_flush, bo->domain, kgem_busy(kgem, bo->handle))); /* XXX use PROT_READ to avoid the write flush? */ VG_CLEAR(set_domain); set_domain.handle = bo->handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain) == 0) { kgem_bo_retire(kgem, bo); bo->domain = DOMAIN_GTT; } } return ptr; } void *kgem_bo_map__gtt(struct kgem *kgem, struct kgem_bo *bo) { void *ptr; DBG(("%s: handle=%d, offset=%d, tiling=%d, map=%p, domain=%d\n", __FUNCTION__, bo->handle, bo->presumed_offset, bo->tiling, bo->map, bo->domain)); assert(!bo->purged); assert(bo->exec == NULL); assert(list_is_empty(&bo->list)); if (IS_CPU_MAP(bo->map)) kgem_bo_release_map(kgem, bo); ptr = bo->map; if (ptr == NULL) { assert(bytes(bo) <= kgem->aperture_mappable / 4); kgem_trim_vma_cache(kgem, MAP_GTT, bucket(bo)); ptr = __kgem_bo_map__gtt(kgem, bo); if (ptr == NULL) return NULL; /* Cache this mapping to avoid the overhead of an * excruciatingly slow GTT pagefault. This is more an * issue with compositing managers which need to frequently * flush CPU damage to their GPU bo. */ bo->map = ptr; DBG(("%s: caching GTT vma for %d\n", __FUNCTION__, bo->handle)); } return ptr; } void *kgem_bo_map__debug(struct kgem *kgem, struct kgem_bo *bo) { if (bo->map) return MAP(bo->map); kgem_trim_vma_cache(kgem, MAP_GTT, bucket(bo)); return bo->map = __kgem_bo_map__gtt(kgem, bo); } void *kgem_bo_map__cpu(struct kgem *kgem, struct kgem_bo *bo) { struct drm_i915_gem_mmap mmap_arg; DBG(("%s(handle=%d, size=%d, mapped? %d)\n", __FUNCTION__, bo->handle, bytes(bo), (int)__MAP_TYPE(bo->map))); assert(!bo->purged); assert(list_is_empty(&bo->list)); assert(!bo->scanout); assert(bo->proxy == NULL); if (IS_CPU_MAP(bo->map)) return MAP(bo->map); if (bo->map) kgem_bo_release_map(kgem, bo); kgem_trim_vma_cache(kgem, MAP_CPU, bucket(bo)); retry: VG_CLEAR(mmap_arg); mmap_arg.handle = bo->handle; mmap_arg.offset = 0; mmap_arg.size = bytes(bo); if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg)) { ErrorF("%s: failed to mmap %d, %d bytes, into CPU domain: %d\n", __FUNCTION__, bo->handle, bytes(bo), errno); if (__kgem_throttle_retire(kgem, 0)) goto retry; return NULL; } VG(VALGRIND_MAKE_MEM_DEFINED(mmap_arg.addr_ptr, bytes(bo))); DBG(("%s: caching CPU vma for %d\n", __FUNCTION__, bo->handle)); bo->map = MAKE_CPU_MAP(mmap_arg.addr_ptr); return (void *)(uintptr_t)mmap_arg.addr_ptr; } uint32_t kgem_bo_flink(struct kgem *kgem, struct kgem_bo *bo) { struct drm_gem_flink flink; VG_CLEAR(flink); flink.handle = bo->handle; if (drmIoctl(kgem->fd, DRM_IOCTL_GEM_FLINK, &flink)) return 0; DBG(("%s: flinked handle=%d to name=%d, marking non-reusable\n", __FUNCTION__, flink.handle, flink.name)); /* Ordinarily giving the name aware makes the buffer non-reusable. * However, we track the lifetime of all clients and their hold * on the buffer, and *presuming* they do not pass it on to a third * party, we track the lifetime accurately. */ bo->reusable = false; /* The bo is outside of our control, so presume it is written to */ bo->needs_flush = true; if (bo->domain != DOMAIN_GPU) bo->domain = DOMAIN_NONE; /* Henceforth, we need to broadcast all updates to clients and * flush our rendering before doing so. */ bo->flush = true; if (bo->exec) kgem->flush = 1; return flink.name; } struct kgem_bo *kgem_create_map(struct kgem *kgem, void *ptr, uint32_t size, bool read_only) { struct kgem_bo *bo; uint32_t handle; if (!kgem->has_userptr) return NULL; handle = gem_userptr(kgem->fd, ptr, size, read_only); if (handle == 0) return NULL; bo = __kgem_bo_alloc(handle, NUM_PAGES(size)); if (bo == NULL) { gem_close(kgem->fd, handle); return NULL; } bo->snoop = !kgem->has_llc; debug_alloc__bo(kgem, bo); DBG(("%s(ptr=%p, size=%d, pages=%d, read_only=%d) => handle=%d\n", __FUNCTION__, ptr, size, NUM_PAGES(size), read_only, handle)); return bo; } void kgem_bo_sync__cpu(struct kgem *kgem, struct kgem_bo *bo) { assert(bo->proxy == NULL); kgem_bo_submit(kgem, bo); if (bo->domain != DOMAIN_CPU) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: sync: needs_flush? %d, domain? %d, busy? %d\n", __FUNCTION__, bo->needs_flush, bo->domain, kgem_busy(kgem, bo->handle))); VG_CLEAR(set_domain); set_domain.handle = bo->handle; set_domain.read_domains = I915_GEM_DOMAIN_CPU; set_domain.write_domain = I915_GEM_DOMAIN_CPU; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain) == 0) { kgem_bo_retire(kgem, bo); bo->domain = DOMAIN_CPU; } } } void kgem_bo_sync__gtt(struct kgem *kgem, struct kgem_bo *bo) { assert(bo->proxy == NULL); kgem_bo_submit(kgem, bo); if (bo->domain != DOMAIN_GTT) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: sync: needs_flush? %d, domain? %d, busy? %d\n", __FUNCTION__, bo->needs_flush, bo->domain, kgem_busy(kgem, bo->handle))); VG_CLEAR(set_domain); set_domain.handle = bo->handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain) == 0) { kgem_bo_retire(kgem, bo); bo->domain = DOMAIN_GTT; } } } void kgem_clear_dirty(struct kgem *kgem) { struct kgem_request *rq = kgem->next_request; struct kgem_bo *bo; list_for_each_entry(bo, &rq->buffers, request) { if (!bo->dirty) break; bo->dirty = false; } } struct kgem_bo *kgem_create_proxy(struct kgem *kgem, struct kgem_bo *target, int offset, int length) { struct kgem_bo *bo; DBG(("%s: target handle=%d [proxy? %d], offset=%d, length=%d, io=%d\n", __FUNCTION__, target->handle, target->proxy ? target->proxy->delta : -1, offset, length, target->io)); bo = __kgem_bo_alloc(target->handle, length); if (bo == NULL) return NULL; bo->unique_id = kgem_get_unique_id(kgem); bo->reusable = false; bo->size.bytes = length; bo->io = target->io && target->proxy == NULL; bo->dirty = target->dirty; bo->tiling = target->tiling; bo->pitch = target->pitch; bo->proxy = kgem_bo_reference(target); bo->delta = offset; if (target->exec) { list_move_tail(&bo->request, &kgem->next_request->buffers); bo->exec = &_kgem_dummy_exec; } bo->rq = target->rq; return bo; } static struct kgem_buffer * buffer_alloc(void) { struct kgem_buffer *bo; bo = malloc(sizeof(*bo)); if (bo == NULL) return NULL; bo->mem = NULL; bo->need_io = false; bo->mmapped = true; return bo; } static struct kgem_buffer * buffer_alloc_with_data(int num_pages) { struct kgem_buffer *bo; bo = malloc(sizeof(*bo) + 2*UPLOAD_ALIGNMENT + num_pages * PAGE_SIZE); if (bo == NULL) return NULL; bo->mem = (void *)ALIGN((uintptr_t)bo + sizeof(*bo), UPLOAD_ALIGNMENT); bo->mmapped = false; return bo; } static inline bool use_snoopable_buffer(struct kgem *kgem, uint32_t flags) { if ((flags & KGEM_BUFFER_WRITE) == 0) return kgem->gen >= 30; return true; } static void init_buffer_from_bo(struct kgem_buffer *bo, struct kgem_bo *old) { DBG(("%s: reusing handle=%d for buffer\n", __FUNCTION__, old->handle)); assert(old->proxy == NULL); memcpy(&bo->base, old, sizeof(*old)); if (old->rq) list_replace(&old->request, &bo->base.request); else list_init(&bo->base.request); list_replace(&old->vma, &bo->base.vma); list_init(&bo->base.list); free(old); assert(bo->base.tiling == I915_TILING_NONE); bo->base.refcnt = 1; } static struct kgem_buffer * search_snoopable_buffer(struct kgem *kgem, unsigned alloc) { struct kgem_buffer *bo; struct kgem_bo *old; old = search_snoop_cache(kgem, alloc, 0); if (old) { if (!old->io) { bo = buffer_alloc(); if (bo == NULL) return NULL; init_buffer_from_bo(bo, old); } else { bo = (struct kgem_buffer *)old; bo->base.refcnt = 1; } DBG(("%s: created CPU handle=%d for buffer, size %d\n", __FUNCTION__, bo->base.handle, num_pages(&bo->base))); assert(bo->base.snoop); assert(bo->base.tiling == I915_TILING_NONE); assert(num_pages(&bo->base) >= alloc); assert(bo->mmapped == true); assert(bo->need_io == false); bo->mem = kgem_bo_map__cpu(kgem, &bo->base); if (bo->mem == NULL) { bo->base.refcnt = 0; kgem_bo_free(kgem, &bo->base); bo = NULL; } return bo; } return NULL; } static struct kgem_buffer * create_snoopable_buffer(struct kgem *kgem, unsigned alloc) { struct kgem_buffer *bo; uint32_t handle; assert(!kgem->has_llc); if (kgem->has_cacheing) { struct kgem_bo *old; bo = buffer_alloc(); if (bo == NULL) return NULL; old = search_linear_cache(kgem, alloc, CREATE_INACTIVE | CREATE_CPU_MAP | CREATE_EXACT); if (old) { init_buffer_from_bo(bo, old); } else { handle = gem_create(kgem->fd, alloc); if (handle == 0) { free(bo); return NULL; } debug_alloc(kgem, alloc); __kgem_bo_init(&bo->base, handle, alloc); DBG(("%s: created CPU handle=%d for buffer, size %d\n", __FUNCTION__, bo->base.handle, alloc)); } assert(bo->base.refcnt == 1); assert(bo->mmapped == true); assert(bo->need_io == false); if (!gem_set_cacheing(kgem->fd, bo->base.handle, SNOOPED)) goto free_cacheing; bo->base.snoop = true; bo->mem = kgem_bo_map__cpu(kgem, &bo->base); if (bo->mem == NULL) goto free_cacheing; return bo; free_cacheing: bo->base.refcnt = 0; /* for valgrind */ kgem_bo_free(kgem, &bo->base); } if (kgem->has_userptr) { bo = buffer_alloc(); if (bo == NULL) return NULL; //if (posix_memalign(&ptr, 64, ALIGN(size, 64))) if (posix_memalign(&bo->mem, PAGE_SIZE, alloc *PAGE_SIZE)) { free(bo); return NULL; } handle = gem_userptr(kgem->fd, bo->mem, alloc * PAGE_SIZE, false); if (handle == 0) { free(bo->mem); free(bo); return NULL; } debug_alloc(kgem, alloc); __kgem_bo_init(&bo->base, handle, alloc); DBG(("%s: created snoop handle=%d for buffer\n", __FUNCTION__, bo->base.handle)); assert(bo->mmapped == true); assert(bo->need_io == false); bo->base.refcnt = 1; bo->base.snoop = true; bo->base.map = MAKE_USER_MAP(bo->mem); return bo; } return NULL; } struct kgem_bo *kgem_create_buffer(struct kgem *kgem, uint32_t size, uint32_t flags, void **ret) { struct kgem_buffer *bo; unsigned offset, alloc; struct kgem_bo *old; DBG(("%s: size=%d, flags=%x [write?=%d, inplace?=%d, last?=%d]\n", __FUNCTION__, size, flags, !!(flags & KGEM_BUFFER_WRITE), !!(flags & KGEM_BUFFER_INPLACE), !!(flags & KGEM_BUFFER_LAST))); assert(size); /* we should never be asked to create anything TOO large */ assert(size <= kgem->max_object_size); if (kgem->has_llc) flags &= ~KGEM_BUFFER_INPLACE; #if !DBG_NO_UPLOAD_CACHE list_for_each_entry(bo, &kgem->batch_buffers, base.list) { assert(bo->base.io); assert(bo->base.refcnt >= 1); /* We can reuse any write buffer which we can fit */ if (flags == KGEM_BUFFER_LAST && bo->write == KGEM_BUFFER_WRITE && bo->base.refcnt == 1 && !bo->mmapped && size <= bytes(&bo->base)) { DBG(("%s: reusing write buffer for read of %d bytes? used=%d, total=%d\n", __FUNCTION__, size, bo->used, bytes(&bo->base))); gem_write(kgem->fd, bo->base.handle, 0, bo->used, bo->mem); kgem_buffer_release(kgem, bo); bo->need_io = 0; bo->write = 0; offset = 0; bo->used = size; goto done; } if (flags & KGEM_BUFFER_WRITE) { if ((bo->write & KGEM_BUFFER_WRITE) == 0 || (((bo->write & ~flags) & KGEM_BUFFER_INPLACE) && !bo->base.snoop)) { DBG(("%s: skip write %x buffer, need %x\n", __FUNCTION__, bo->write, flags)); continue; } assert(bo->mmapped || bo->need_io); } else { if (bo->write & KGEM_BUFFER_WRITE) { DBG(("%s: skip write %x buffer, need %x\n", __FUNCTION__, bo->write, flags)); continue; } } if (bo->used + size <= bytes(&bo->base)) { DBG(("%s: reusing buffer? used=%d + size=%d, total=%d\n", __FUNCTION__, bo->used, size, bytes(&bo->base))); offset = bo->used; bo->used += size; goto done; } } if (flags & KGEM_BUFFER_WRITE) { list_for_each_entry(bo, &kgem->active_buffers, base.list) { assert(bo->base.io); assert(bo->base.refcnt >= 1); assert(bo->mmapped); assert(!bo->base.snoop); assert(!IS_CPU_MAP(bo->base.map) || kgem->has_llc); if ((bo->write & ~flags) & KGEM_BUFFER_INPLACE) { DBG(("%s: skip write %x buffer, need %x\n", __FUNCTION__, bo->write, flags)); continue; } if (bo->used + size <= bytes(&bo->base)) { DBG(("%s: reusing buffer? used=%d + size=%d, total=%d\n", __FUNCTION__, bo->used, size, bytes(&bo->base))); offset = bo->used; bo->used += size; list_move(&bo->base.list, &kgem->batch_buffers); goto done; } } } #endif #if !DBG_NO_MAP_UPLOAD /* Be a little more generous and hope to hold fewer mmappings */ alloc = ALIGN(2*size, kgem->buffer_size); if (alloc > MAX_CACHE_SIZE) alloc = ALIGN(size, kgem->buffer_size); if (alloc > MAX_CACHE_SIZE) alloc = PAGE_ALIGN(size); alloc /= PAGE_SIZE; if (kgem->has_llc) { bo = buffer_alloc(); if (bo == NULL) return NULL; old = NULL; if ((flags & KGEM_BUFFER_WRITE) == 0) old = search_linear_cache(kgem, alloc, CREATE_CPU_MAP); if (old == NULL) old = search_linear_cache(kgem, alloc, CREATE_INACTIVE | CREATE_CPU_MAP); if (old == NULL) old = search_linear_cache(kgem, NUM_PAGES(size), CREATE_INACTIVE | CREATE_CPU_MAP); if (old) { DBG(("%s: found LLC handle=%d for buffer\n", __FUNCTION__, old->handle)); init_buffer_from_bo(bo, old); } else { uint32_t handle = gem_create(kgem->fd, alloc); if (handle == 0) { free(bo); return NULL; } __kgem_bo_init(&bo->base, handle, alloc); DBG(("%s: created LLC handle=%d for buffer\n", __FUNCTION__, bo->base.handle)); debug_alloc(kgem, alloc); } assert(bo->mmapped); assert(!bo->need_io); bo->mem = kgem_bo_map__cpu(kgem, &bo->base); if (bo->mem) { if (flags & KGEM_BUFFER_WRITE) kgem_bo_sync__cpu(kgem, &bo->base); alloc = num_pages(&bo->base); goto init; } else { bo->base.refcnt = 0; /* for valgrind */ kgem_bo_free(kgem, &bo->base); } } if (PAGE_SIZE * alloc > kgem->aperture_mappable / 4) flags &= ~KGEM_BUFFER_INPLACE; if ((flags & KGEM_BUFFER_WRITE_INPLACE) == KGEM_BUFFER_WRITE_INPLACE) { /* The issue with using a GTT upload buffer is that we may * cause eviction-stalls in order to free up some GTT space. * An is-mappable? ioctl could help us detect when we are * about to block, or some per-page magic in the kernel. * * XXX This is especially noticeable on memory constrained * devices like gen2 or with relatively slow gpu like i3. */ DBG(("%s: searching for an inactive GTT map for upload\n", __FUNCTION__)); old = search_linear_cache(kgem, alloc, CREATE_EXACT | CREATE_INACTIVE | CREATE_GTT_MAP); #if HAVE_I915_GEM_BUFFER_INFO if (old) { struct drm_i915_gem_buffer_info info; /* An example of such a non-blocking ioctl might work */ VG_CLEAR(info); info.handle = handle; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_BUFFER_INFO, &fino) == 0) { old->presumed_offset = info.addr; if ((info.flags & I915_GEM_MAPPABLE) == 0) { kgem_bo_move_to_inactive(kgem, old); old = NULL; } } } #endif if (old == NULL) old = search_linear_cache(kgem, NUM_PAGES(size), CREATE_EXACT | CREATE_INACTIVE | CREATE_GTT_MAP); if (old == NULL) { old = search_linear_cache(kgem, alloc, CREATE_INACTIVE); if (old && !kgem_bo_is_mappable(kgem, old)) { _kgem_bo_destroy(kgem, old); old = NULL; } } if (old) { DBG(("%s: reusing handle=%d for buffer\n", __FUNCTION__, old->handle)); assert(kgem_bo_is_mappable(kgem, old)); assert(!old->snoop); assert(old->rq == NULL); bo = buffer_alloc(); if (bo == NULL) return NULL; init_buffer_from_bo(bo, old); assert(num_pages(&bo->base) >= NUM_PAGES(size)); assert(bo->mmapped); assert(bo->base.refcnt == 1); bo->mem = kgem_bo_map(kgem, &bo->base); if (bo->mem) { alloc = num_pages(&bo->base); if (IS_CPU_MAP(bo->base.map)) flags &= ~KGEM_BUFFER_INPLACE; goto init; } else { bo->base.refcnt = 0; kgem_bo_free(kgem, &bo->base); } } } #else flags &= ~KGEM_BUFFER_INPLACE; #endif /* Be more parsimonious with pwrite/pread/cacheable buffers */ if ((flags & KGEM_BUFFER_INPLACE) == 0) alloc = NUM_PAGES(size); if (use_snoopable_buffer(kgem, flags)) { bo = search_snoopable_buffer(kgem, alloc); if (bo) { if (flags & KGEM_BUFFER_WRITE) kgem_bo_sync__cpu(kgem, &bo->base); flags &= ~KGEM_BUFFER_INPLACE; alloc = num_pages(&bo->base); goto init; } if ((flags & KGEM_BUFFER_WRITE_INPLACE) != KGEM_BUFFER_WRITE_INPLACE) { bo = create_snoopable_buffer(kgem, alloc); if (bo) { flags &= ~KGEM_BUFFER_INPLACE; goto init; } } } flags &= ~KGEM_BUFFER_INPLACE; old = NULL; if ((flags & KGEM_BUFFER_WRITE) == 0) old = search_linear_cache(kgem, alloc, 0); if (old == NULL) old = search_linear_cache(kgem, alloc, CREATE_INACTIVE); if (old) { DBG(("%s: reusing ordinary handle %d for io\n", __FUNCTION__, old->handle)); alloc = num_pages(old); bo = buffer_alloc_with_data(alloc); if (bo == NULL) return NULL; init_buffer_from_bo(bo, old); bo->need_io = flags & KGEM_BUFFER_WRITE; } else { if (use_snoopable_buffer(kgem, flags)) { bo = create_snoopable_buffer(kgem, alloc); if (bo) goto init; } bo = buffer_alloc(); if (bo == NULL) return NULL; old = search_linear_cache(kgem, alloc, CREATE_INACTIVE | CREATE_CPU_MAP); if (old) { DBG(("%s: reusing cpu map handle=%d for buffer\n", __FUNCTION__, old->handle)); alloc = num_pages(old); init_buffer_from_bo(bo, old); } else { uint32_t handle = gem_create(kgem->fd, alloc); if (handle == 0) { free(bo); return NULL; } DBG(("%s: created handle=%d for buffer\n", __FUNCTION__, bo->base.handle)); __kgem_bo_init(&bo->base, handle, alloc); debug_alloc(kgem, alloc * PAGE_SIZE); } assert(bo->mmapped); assert(!bo->need_io); assert(bo->base.refcnt == 1); bo->mem = kgem_bo_map__cpu(kgem, &bo->base); if (bo->mem != NULL) { if (flags & KGEM_BUFFER_WRITE) kgem_bo_sync__cpu(kgem, &bo->base); goto init; } DBG(("%s: failing back to new pwrite buffer\n", __FUNCTION__)); old = &bo->base; bo = buffer_alloc_with_data(alloc); if (bo == NULL) { free(old); return NULL; } init_buffer_from_bo(bo, old); assert(bo->mem); assert(!bo->mmapped); assert(bo->base.refcnt == 1); bo->need_io = flags & KGEM_BUFFER_WRITE; } init: bo->base.io = true; assert(bo->base.refcnt == 1); assert(num_pages(&bo->base) == alloc); assert(!bo->need_io || !bo->base.needs_flush); assert(!bo->need_io || bo->base.domain != DOMAIN_GPU); assert(bo->mem); assert(!bo->mmapped || bo->base.map != NULL); bo->used = size; bo->write = flags & KGEM_BUFFER_WRITE_INPLACE; offset = 0; assert(list_is_empty(&bo->base.list)); list_add(&bo->base.list, &kgem->batch_buffers); DBG(("%s(pages=%d) new handle=%d, used=%d, write=%d\n", __FUNCTION__, alloc, bo->base.handle, bo->used, bo->write)); done: bo->used = ALIGN(bo->used, UPLOAD_ALIGNMENT); assert(bo->mem); *ret = (char *)bo->mem + offset; return kgem_create_proxy(kgem, &bo->base, offset, size); } bool kgem_buffer_is_inplace(struct kgem_bo *_bo) { struct kgem_buffer *bo = (struct kgem_buffer *)_bo->proxy; return bo->write & KGEM_BUFFER_WRITE_INPLACE; } struct kgem_bo *kgem_create_buffer_2d(struct kgem *kgem, int width, int height, int bpp, uint32_t flags, void **ret) { struct kgem_bo *bo; int stride; assert(width > 0 && height > 0); assert(ret != NULL); stride = ALIGN(width, 2) * bpp >> 3; stride = ALIGN(stride, 4); DBG(("%s: %dx%d, %d bpp, stride=%d\n", __FUNCTION__, width, height, bpp, stride)); bo = kgem_create_buffer(kgem, stride * ALIGN(height, 2), flags, ret); if (bo == NULL) { DBG(("%s: allocation failure for upload buffer\n", __FUNCTION__)); return NULL; } assert(*ret != NULL); if (height & 1) { struct kgem_buffer *io = (struct kgem_buffer *)bo->proxy; int min; assert(io->used); /* Having padded this surface to ensure that accesses to * the last pair of rows is valid, remove the padding so * that it can be allocated to other pixmaps. */ min = bo->delta + height * stride; min = ALIGN(min, UPLOAD_ALIGNMENT); if (io->used != min) { DBG(("%s: trimming buffer from %d to %d\n", __FUNCTION__, io->used, min)); io->used = min; } bo->size.bytes -= stride; } bo->pitch = stride; bo->unique_id = kgem_get_unique_id(kgem); return bo; } struct kgem_bo *kgem_upload_source_image(struct kgem *kgem, const void *data, BoxPtr box, int stride, int bpp) { int width = box->x2 - box->x1; int height = box->y2 - box->y1; struct kgem_bo *bo; void *dst; DBG(("%s : (%d, %d), (%d, %d), stride=%d, bpp=%d\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2, stride, bpp)); assert(data); assert(width > 0); assert(height > 0); assert(stride); assert(bpp); bo = kgem_create_buffer_2d(kgem, width, height, bpp, KGEM_BUFFER_WRITE_INPLACE, &dst); if (bo) memcpy_blt(data, dst, bpp, stride, bo->pitch, box->x1, box->y1, 0, 0, width, height); return bo; } void kgem_proxy_bo_attach(struct kgem_bo *bo, struct kgem_bo **ptr) { DBG(("%s: handle=%d\n", __FUNCTION__, bo->handle)); assert(bo->map == NULL); assert(bo->proxy); list_add(&bo->vma, &bo->proxy->vma); bo->map = ptr; *ptr = kgem_bo_reference(bo); } void kgem_buffer_read_sync(struct kgem *kgem, struct kgem_bo *_bo) { struct kgem_buffer *bo; uint32_t offset = _bo->delta, length = _bo->size.bytes; /* We expect the caller to have already submitted the batch */ assert(_bo->io); assert(_bo->exec == NULL); assert(_bo->rq == NULL); assert(_bo->proxy); _bo = _bo->proxy; assert(_bo->proxy == NULL); assert(_bo->exec == NULL); bo = (struct kgem_buffer *)_bo; DBG(("%s(offset=%d, length=%d, snooped=%d)\n", __FUNCTION__, offset, length, bo->base.snoop)); if (bo->mmapped) { struct drm_i915_gem_set_domain set_domain; DBG(("%s: sync: needs_flush? %d, domain? %d, busy? %d\n", __FUNCTION__, bo->base.needs_flush, bo->base.domain, kgem_busy(kgem, bo->base.handle))); VG_CLEAR(set_domain); set_domain.handle = bo->base.handle; set_domain.write_domain = 0; set_domain.read_domains = IS_CPU_MAP(bo->base.map) ? I915_GEM_DOMAIN_CPU : I915_GEM_DOMAIN_GTT; if (drmIoctl(kgem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain)) return; } else { if (gem_read(kgem->fd, bo->base.handle, (char *)bo->mem+offset, offset, length)) return; } kgem_bo_retire(kgem, &bo->base); } uint32_t kgem_bo_get_binding(struct kgem_bo *bo, uint32_t format) { struct kgem_bo_binding *b; for (b = &bo->binding; b && b->offset; b = b->next) if (format == b->format) return b->offset; return 0; } void kgem_bo_set_binding(struct kgem_bo *bo, uint32_t format, uint16_t offset) { struct kgem_bo_binding *b; for (b = &bo->binding; b; b = b->next) { if (b->offset) continue; b->offset = offset; b->format = format; if (b->next) b->next->offset = 0; return; } b = malloc(sizeof(*b)); if (b) { b->next = bo->binding.next; b->format = format; b->offset = offset; bo->binding.next = b; } } struct kgem_bo * kgem_replace_bo(struct kgem *kgem, struct kgem_bo *src, uint32_t width, uint32_t height, uint32_t pitch, uint32_t bpp) { struct kgem_bo *dst; uint32_t br00, br13; uint32_t handle; uint32_t size; uint32_t *b; DBG(("%s: replacing bo handle=%d, size=%dx%d pitch=%d, with pitch=%d\n", __FUNCTION__, src->handle, width, height, src->pitch, pitch)); /* We only expect to be called to fixup small buffers, hence why * we only attempt to allocate a linear bo. */ assert(src->tiling == I915_TILING_NONE); size = height * pitch; size = PAGE_ALIGN(size) / PAGE_SIZE; dst = search_linear_cache(kgem, size, 0); if (dst == NULL) dst = search_linear_cache(kgem, size, CREATE_INACTIVE); if (dst == NULL) { handle = gem_create(kgem->fd, size); if (handle == 0) return NULL; dst = __kgem_bo_alloc(handle, size); if (dst== NULL) { gem_close(kgem->fd, handle); return NULL; } debug_alloc__bo(kgem, dst); } dst->pitch = pitch; dst->unique_id = kgem_get_unique_id(kgem); dst->refcnt = 1; kgem_set_mode(kgem, KGEM_BLT); if (!kgem_check_batch(kgem, 8) || !kgem_check_reloc(kgem, 2) || !kgem_check_many_bo_fenced(kgem, src, dst, NULL)) { _kgem_submit(kgem); _kgem_set_mode(kgem, KGEM_BLT); } br00 = XY_SRC_COPY_BLT_CMD; br13 = pitch; pitch = src->pitch; if (kgem->gen >= 40 && src->tiling) { br00 |= BLT_SRC_TILED; pitch >>= 2; } br13 |= 0xcc << 16; switch (bpp) { default: case 32: br00 |= BLT_WRITE_ALPHA | BLT_WRITE_RGB; br13 |= 1 << 25; /* RGB8888 */ case 16: br13 |= 1 << 24; /* RGB565 */ case 8: break; } b = kgem->batch + kgem->nbatch; b[0] = br00; b[1] = br13; b[2] = 0; b[3] = height << 16 | width; b[4] = kgem_add_reloc(kgem, kgem->nbatch + 4, dst, I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER | KGEM_RELOC_FENCED, 0); b[5] = 0; b[6] = pitch; b[7] = kgem_add_reloc(kgem, kgem->nbatch + 7, src, I915_GEM_DOMAIN_RENDER << 16 | KGEM_RELOC_FENCED, 0); kgem->nbatch += 8; return dst; }