/* * Copyright © 2007-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "sna.h" #include "sna_reg.h" #include "gen6_render.h" #include "kgem_debug.h" static struct state { struct vertex_buffer { int handle; void *base; const char *ptr; int pitch; struct kgem_bo *current; } vb[33]; struct vertex_elements { int buffer; int offset; bool valid; uint32_t type; uint8_t swizzle[4]; } ve[33]; int num_ve; struct dynamic_state { struct kgem_bo *current; void *base, *ptr; } dynamic_state; } state; static void gen6_update_vertex_buffer(struct kgem *kgem, const uint32_t *data) { uint32_t reloc = sizeof(uint32_t) * (&data[1] - kgem->batch); struct kgem_bo *bo = NULL; void *base, *ptr; int i; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == reloc) break; assert(i < kgem->nreloc); reloc = kgem->reloc[i].target_handle; if (reloc == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == reloc) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); } ptr = (char *)base + kgem->reloc[i].delta; i = data[0] >> 26; if (state.vb[i].current) munmap(state.vb[i].base, state.vb[i].current->size); state.vb[i].current = bo; state.vb[i].base = base; state.vb[i].ptr = ptr; state.vb[i].pitch = data[0] & 0x7ff; } static void gen6_update_dynamic_buffer(struct kgem *kgem, const uint32_t offset) { uint32_t reloc = sizeof(uint32_t) * offset; struct kgem_bo *bo = NULL; void *base, *ptr; int i; if ((kgem->batch[offset] & 1) == 0) return; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == reloc) break; if(i < kgem->nreloc) { reloc = kgem->reloc[i].target_handle; if (reloc == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == reloc) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); } ptr = (char *)base + (kgem->reloc[i].delta & ~1); } else { bo = NULL; base = NULL; ptr = NULL; } if (state.dynamic_state.current) munmap(state.dynamic_state.base, state.dynamic_state.current->size); state.dynamic_state.current = bo; state.dynamic_state.base = base; state.dynamic_state.ptr = ptr; } static uint32_t get_ve_component(uint32_t data, int component) { return (data >> (16 + (3 - component) * 4)) & 0x7; } static void gen6_update_vertex_elements(struct kgem *kgem, int id, const uint32_t *data) { state.ve[id].buffer = data[0] >> 26; state.ve[id].valid = !!(data[0] & (1 << 25)); state.ve[id].type = (data[0] >> 16) & 0x1ff; state.ve[id].offset = data[0] & 0x7ff; state.ve[id].swizzle[0] = get_ve_component(data[1], 0); state.ve[id].swizzle[1] = get_ve_component(data[1], 1); state.ve[id].swizzle[2] = get_ve_component(data[1], 2); state.ve[id].swizzle[3] = get_ve_component(data[1], 3); } static void gen6_update_sf_state(struct kgem *kgem, uint32_t *data) { state.num_ve = 1 + ((data[1] >> 22) & 0x3f); } static void vertices_sint16_out(const struct vertex_elements *ve, const int16_t *v, int max) { int c; ErrorF("("); for (c = 0; c < max; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("%d", v[c]); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } for (; c < 4; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("1.0"); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } ErrorF(")"); } static void vertices_float_out(const struct vertex_elements *ve, const float *f, int max) { int c, o; ErrorF("("); for (c = o = 0; c < 4 && o < max; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("%f", f[o++]); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } for (; c < 4; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("1.0"); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } ErrorF(")"); } static void ve_out(const struct vertex_elements *ve, const void *ptr) { switch (ve->type) { case GEN6_SURFACEFORMAT_R32_FLOAT: vertices_float_out(ve, ptr, 1); break; case GEN6_SURFACEFORMAT_R32G32_FLOAT: vertices_float_out(ve, ptr, 2); break; case GEN6_SURFACEFORMAT_R32G32B32_FLOAT: vertices_float_out(ve, ptr, 3); break; case GEN6_SURFACEFORMAT_R32G32B32A32_FLOAT: vertices_float_out(ve, ptr, 4); break; case GEN6_SURFACEFORMAT_R16_SINT: vertices_sint16_out(ve, ptr, 1); break; case GEN6_SURFACEFORMAT_R16G16_SINT: vertices_sint16_out(ve, ptr, 2); break; case GEN6_SURFACEFORMAT_R16G16B16A16_SINT: vertices_sint16_out(ve, ptr, 4); break; case GEN6_SURFACEFORMAT_R16_SSCALED: vertices_sint16_out(ve, ptr, 1); break; case GEN6_SURFACEFORMAT_R16G16_SSCALED: vertices_sint16_out(ve, ptr, 2); break; case GEN6_SURFACEFORMAT_R16G16B16A16_SSCALED: vertices_sint16_out(ve, ptr, 4); break; } } static void indirect_vertex_out(struct kgem *kgem, uint32_t v) { int i = 1; do { const struct vertex_elements *ve = &state.ve[i]; const struct vertex_buffer *vb = &state.vb[ve->buffer]; const void *ptr = vb->ptr + v * vb->pitch + ve->offset; if (!ve->valid) continue; ve_out(ve, ptr); while (++i <= state.num_ve && !state.ve[i].valid) ; if (i <= state.num_ve) ErrorF(", "); } while (i <= state.num_ve); } static void primitive_out(struct kgem *kgem, uint32_t *data) { int n; assert((data[0] & (1<<15)) == 0); /* XXX index buffers */ for (n = 0; n < data[1]; n++) { int v = data[2] + n; ErrorF(" [%d:%d] = ", n, v); indirect_vertex_out(kgem, v); ErrorF("\n"); } } static void finish_vertex_buffers(struct kgem *kgem) { int i; for (i = 0; i < ARRAY_SIZE(state.vb); i++) if (state.vb[i].current) munmap(state.vb[i].base, state.vb[i].current->size); } static void finish_state(struct kgem *kgem) { finish_vertex_buffers(kgem); if (state.dynamic_state.current) munmap(state.dynamic_state.base, state.dynamic_state.current->size); memset(&state, 0, sizeof(state)); } static void state_base_out(uint32_t *data, uint32_t offset, unsigned int index, char *name) { if (data[index] & 1) kgem_debug_print(data, offset, index, "%s state base address 0x%08x\n", name, data[index] & ~1); else kgem_debug_print(data, offset, index, "%s state base not updated\n", name); } static void state_max_out(uint32_t *data, uint32_t offset, unsigned int index, char *name) { if (data[index] == 1) kgem_debug_print(data, offset, index, "%s state upper bound disabled\n", name); else if (data[index] & 1) kgem_debug_print(data, offset, index, "%s state upper bound 0x%08x\n", name, data[index] & ~1); else kgem_debug_print(data, offset, index, "%s state upper bound not updated\n", name); } static const char * get_965_surfacetype(unsigned int surfacetype) { switch (surfacetype) { case 0: return "1D"; case 1: return "2D"; case 2: return "3D"; case 3: return "CUBE"; case 4: return "BUFFER"; case 7: return "NULL"; default: return "unknown"; } } static const char * get_965_depthformat(unsigned int depthformat) { switch (depthformat) { case 0: return "s8_z24float"; case 1: return "z32float"; case 2: return "z24s8"; case 5: return "z16"; default: return "unknown"; } } static const char * get_965_element_component(uint32_t data, int component) { uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7; switch (component_control) { case 0: return "nostore"; case 1: switch (component) { case 0: return "X"; case 1: return "Y"; case 2: return "Z"; case 3: return "W"; default: return "fail"; } case 2: return "0.0"; case 3: return "1.0"; case 4: return "0x1"; case 5: return "VID"; default: return "fail"; } } static const char * get_965_prim_type(uint32_t data) { uint32_t primtype = (data >> 10) & 0x1f; switch (primtype) { case 0x01: return "point list"; case 0x02: return "line list"; case 0x03: return "line strip"; case 0x04: return "tri list"; case 0x05: return "tri strip"; case 0x06: return "tri fan"; case 0x07: return "quad list"; case 0x08: return "quad strip"; case 0x09: return "line list adj"; case 0x0a: return "line strip adj"; case 0x0b: return "tri list adj"; case 0x0c: return "tri strip adj"; case 0x0d: return "tri strip reverse"; case 0x0e: return "polygon"; case 0x0f: return "rect list"; case 0x10: return "line loop"; case 0x11: return "point list bf"; case 0x12: return "line strip cont"; case 0x13: return "line strip bf"; case 0x14: return "line strip cont bf"; case 0x15: return "tri fan no stipple"; default: return "fail"; } } struct reloc { struct kgem_bo *bo; void *base; }; static void * get_reloc(struct kgem *kgem, void *base, const uint32_t *reloc, struct reloc *r) { uint32_t delta = *reloc; memset(r, 0, sizeof(*r)); if (base == 0) { uint32_t handle = sizeof(uint32_t) * (reloc - kgem->batch); struct kgem_bo *bo = NULL; int i; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == handle) break; assert(i < kgem->nreloc); handle = kgem->reloc[i].target_handle; delta = kgem->reloc[i].delta; if (handle == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == handle) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); r->bo = bo; r->base = base; } } return (char *)base + (delta & ~3); } static void put_reloc(struct kgem *kgem, struct reloc *r) { if (r->bo != NULL) munmap(r->base, r->bo->size); } static const char * gen6_filter_to_string(uint32_t filter) { switch (filter) { default: case GEN6_MAPFILTER_NEAREST: return "nearest"; case GEN6_MAPFILTER_LINEAR: return "linear"; } } static const char * gen6_repeat_to_string(uint32_t repeat) { switch (repeat) { default: case GEN6_TEXCOORDMODE_CLAMP_BORDER: return "border"; case GEN6_TEXCOORDMODE_WRAP: return "wrap"; case GEN6_TEXCOORDMODE_CLAMP: return "clamp"; case GEN6_TEXCOORDMODE_MIRROR: return "mirror"; } } static void gen6_decode_sampler_state(struct kgem *kgem, const uint32_t *reloc) { const struct gen6_sampler_state *ss; struct reloc r; const char *min, *mag; const char *s_wrap, *t_wrap, *r_wrap; ss = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r); min = gen6_filter_to_string(ss->ss0.min_filter); mag = gen6_filter_to_string(ss->ss0.mag_filter); s_wrap = gen6_repeat_to_string(ss->ss1.s_wrap_mode); t_wrap = gen6_repeat_to_string(ss->ss1.t_wrap_mode); r_wrap = gen6_repeat_to_string(ss->ss1.r_wrap_mode); ErrorF(" Sampler 0:\n"); ErrorF(" filter: min=%s, mag=%s\n", min, mag); ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap); ss++; min = gen6_filter_to_string(ss->ss0.min_filter); mag = gen6_filter_to_string(ss->ss0.mag_filter); s_wrap = gen6_repeat_to_string(ss->ss1.s_wrap_mode); t_wrap = gen6_repeat_to_string(ss->ss1.t_wrap_mode); r_wrap = gen6_repeat_to_string(ss->ss1.r_wrap_mode); ErrorF(" Sampler 1:\n"); ErrorF(" filter: min=%s, mag=%s\n", min, mag); ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap); put_reloc(kgem, &r); } static const char * gen6_blend_factor_to_string(uint32_t v) { switch (v) { #define C(x) case GEN6_BLENDFACTOR_##x: return #x; C(ONE); C(SRC_COLOR); C(SRC_ALPHA); C(DST_ALPHA); C(DST_COLOR); C(SRC_ALPHA_SATURATE); C(CONST_COLOR); C(CONST_ALPHA); C(SRC1_COLOR); C(SRC1_ALPHA); C(ZERO); C(INV_SRC_COLOR); C(INV_SRC_ALPHA); C(INV_DST_ALPHA); C(INV_DST_COLOR); C(INV_CONST_COLOR); C(INV_CONST_ALPHA); C(INV_SRC1_COLOR); C(INV_SRC1_ALPHA); #undef C default: return "???"; } } static const char * gen6_blend_function_to_string(uint32_t v) { switch (v) { #define C(x) case GEN6_BLENDFUNCTION_##x: return #x; C(ADD); C(SUBTRACT); C(REVERSE_SUBTRACT); C(MIN); C(MAX); #undef C default: return "???"; } } static void gen6_decode_blend(struct kgem *kgem, const uint32_t *reloc) { const struct gen6_blend_state *blend; struct reloc r; const char *dst, *src; const char *func; blend = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r); dst = gen6_blend_factor_to_string(blend->blend0.dest_blend_factor); src = gen6_blend_factor_to_string(blend->blend0.source_blend_factor); func = gen6_blend_function_to_string(blend->blend0.blend_func); ErrorF(" Blend (%s): function %s, src=%s, dst=%s\n", blend->blend0.blend_enable ? "enabled" : "disabled", func, src, dst); put_reloc(kgem, &r); } int kgem_gen6_decode_3d(struct kgem *kgem, uint32_t offset) { static const struct { uint32_t opcode; int min_len; int max_len; const char *name; } opcodes[] = { { 0x6101, 6, 6, "STATE_BASE_ADDRESS" }, { 0x6102, 2, 2 , "STATE_SIP" }, { 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" }, { 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" }, { 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" }, { 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" }, { 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" }, { 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" }, { 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" }, { 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" }, { 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" }, { 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" }, { 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" }, { 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" }, { 0x7909, 2, 2, "3DSTATE_CLEAR_PARAMS" }, { 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" }, { 0x790b, 4, 4, "3DSTATE_GS_SVB_INDEX" }, { 0x790d, 3, 3, "3DSTATE_MULTISAMPLE" }, { 0x7910, 2, 2, "3DSTATE_CLEAR_PARAMS" }, { 0x7b00, 6, 6, "3DPRIMITIVE" }, { 0x7802, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" }, { 0x7805, 3, 3, "3DSTATE_URB" }, { 0x780d, 4, 4, "3DSTATE_VIEWPORT_STATE_POINTERS" }, { 0x780e, 4, 4, "3DSTATE_CC_STATE_POINTERS" }, { 0x780f, 2, 2, "3DSTATE_SCISSOR_STATE_POINTERS" }, { 0x7810, 6, 6, "3DSTATE_VS_STATE" }, { 0x7811, 7, 7, "3DSTATE_GS_STATE" }, { 0x7812, 4, 4, "3DSTATE_CLIP_STATE" }, { 0x7813, 20, 20, "3DSTATE_SF_STATE" }, { 0x7814, 9, 9, "3DSTATE_WM_STATE" }, { 0x7815, 5, 5, "3DSTATE_CONSTANT_VS_STATE" }, { 0x7816, 5, 5, "3DSTATE_CONSTANT_GS_STATE" }, { 0x7817, 5, 5, "3DSTATE_CONSTANT_WM_STATE" }, { 0x7818, 2, 2, "3DSTATE_SAMPLE_MASK" }, }; uint32_t *data = kgem->batch + offset; uint32_t op; unsigned int len; int i, j; char *desc1 = NULL; len = (data[0] & 0xff) + 2; op = (data[0] & 0xffff0000) >> 16; switch (op) { case 0x6101: i = 0; kgem_debug_print(data, offset, i++, "STATE_BASE_ADDRESS\n"); if (kgem->gen >= 60) { assert(len == 10); state_base_out(data, offset, i++, "general"); state_base_out(data, offset, i++, "surface"); state_base_out(data, offset, i++, "dynamic"); state_base_out(data, offset, i++, "indirect"); state_base_out(data, offset, i++, "instruction"); state_max_out(data, offset, i++, "general"); state_max_out(data, offset, i++, "dynamic"); state_max_out(data, offset, i++, "indirect"); state_max_out(data, offset, i++, "instruction"); gen6_update_dynamic_buffer(kgem, offset + 3); } else if (kgem->gen >= 50) { assert(len == 8); state_base_out(data, offset, i++, "general"); state_base_out(data, offset, i++, "surface"); state_base_out(data, offset, i++, "media"); state_base_out(data, offset, i++, "instruction"); state_max_out(data, offset, i++, "general"); state_max_out(data, offset, i++, "media"); state_max_out(data, offset, i++, "instruction"); } return len; case 0x7801: if (kgem->gen >= 60) { assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, " "GS mod %d, WM mod %d\n", (data[0] & (1 << 8)) != 0, (data[0] & (1 << 9)) != 0, (data[0] & (1 << 12)) != 0); kgem_debug_print(data, offset, 1, "VS binding table\n"); kgem_debug_print(data, offset, 2, "GS binding table\n"); kgem_debug_print(data, offset, 3, "WM binding table\n"); } else if (kgem->gen >= 40) { assert(len == 6); kgem_debug_print(data, offset, 0, "3DSTATE_BINDING_TABLE_POINTERS\n"); kgem_debug_print(data, offset, 1, "VS binding table\n"); kgem_debug_print(data, offset, 2, "GS binding table\n"); kgem_debug_print(data, offset, 3, "CLIP binding table\n"); kgem_debug_print(data, offset, 4, "SF binding table\n"); kgem_debug_print(data, offset, 5, "WM binding table\n"); } return len; case 0x7802: assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_SAMPLER_STATE_POINTERS: VS mod %d, " "GS mod %d, WM mod %d\n", (data[0] & (1 << 8)) != 0, (data[0] & (1 << 9)) != 0, (data[0] & (1 << 12)) != 0); kgem_debug_print(data, offset, 1, "VS sampler state\n"); kgem_debug_print(data, offset, 2, "GS sampler state\n"); kgem_debug_print(data, offset, 3, "WM sampler state\n"); gen6_decode_sampler_state(kgem, &data[3]); return len; case 0x7808: assert((len - 1) % 4 == 0); kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_BUFFERS\n"); for (i = 1; i < len;) { gen6_update_vertex_buffer(kgem, data + i); kgem_debug_print(data, offset, i, "buffer %d: %s, pitch %db\n", data[i] >> 26, data[i] & (1 << 20) ? "random" : "sequential", data[i] & 0x07ff); i++; kgem_debug_print(data, offset, i++, "buffer address\n"); kgem_debug_print(data, offset, i++, "max index\n"); kgem_debug_print(data, offset, i++, "mbz\n"); } return len; case 0x7809: assert((len + 1) % 2 == 0); kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_ELEMENTS\n"); for (i = 1; i < len;) { gen6_update_vertex_elements(kgem, (i - 1)/2, data + i); kgem_debug_print(data, offset, i, "buffer %d: %svalid, type 0x%04x, " "src offset 0x%04x bytes\n", data[i] >> 26, data[i] & (1 << 25) ? "" : "in", (data[i] >> 16) & 0x1ff, data[i] & 0x07ff); i++; kgem_debug_print(data, offset, i, "(%s, %s, %s, %s), " "dst offset 0x%02x bytes\n", get_965_element_component(data[i], 0), get_965_element_component(data[i], 1), get_965_element_component(data[i], 2), get_965_element_component(data[i], 3), (data[i] & 0xff) * 4); i++; } return len; case 0x780d: assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_VIEWPORT_STATE_POINTERS\n"); kgem_debug_print(data, offset, 1, "clip\n"); kgem_debug_print(data, offset, 2, "sf\n"); kgem_debug_print(data, offset, 3, "cc\n"); return len; case 0x780a: assert(len == 3); kgem_debug_print(data, offset, 0, "3DSTATE_INDEX_BUFFER\n"); kgem_debug_print(data, offset, 1, "beginning buffer address\n"); kgem_debug_print(data, offset, 2, "ending buffer address\n"); return len; case 0x780e: assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_CC_STATE_POINTERS\n"); kgem_debug_print(data, offset, 1, "blend%s\n", data[1] & 1 ? " update" : ""); if (data[1] & 1) gen6_decode_blend(kgem, data+1); kgem_debug_print(data, offset, 2, "depth+stencil%s\n", data[2] & 1 ? " update" : ""); kgem_debug_print(data, offset, 3, "cc%s\n", data[3] & 1 ? " update" : ""); return len; case 0x780f: assert(len == 2); kgem_debug_print(data, offset, 0, "3DSTATE_SCISSOR_POINTERS\n"); kgem_debug_print(data, offset, 1, "scissor rect offset\n"); return len; case 0x7810: assert(len == 6); kgem_debug_print(data, offset, 0, "3DSTATE_VS\n"); kgem_debug_print(data, offset, 1, "kernel pointer\n"); kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (data[2] >> 31) & 1, (data[2] >> 30) & 1, (data[2] >> 27) & 7, (data[2] >> 18) & 0xff); kgem_debug_print(data, offset, 3, "scratch offset\n"); kgem_debug_print(data, offset, 4, "Dispatch GRF start %d, VUE read length %d, " "VUE read offset %d\n", (data[4] >> 20) & 0x1f, (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f); kgem_debug_print(data, offset, 5, "Max Threads %d, Vertex Cache %sable, " "VS func %sable\n", ((data[5] >> 25) & 0x7f) + 1, (data[5] & (1 << 1)) != 0 ? "dis" : "en", (data[5] & 1) != 0 ? "en" : "dis"); return len; case 0x7811: assert(len == 7); kgem_debug_print(data, offset, 0, "3DSTATE_GS\n"); kgem_debug_print(data, offset, 1, "kernel pointer\n"); kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (data[2] >> 31) & 1, (data[2] >> 30) & 1, (data[2] >> 27) & 7, (data[2] >> 18) & 0xff); kgem_debug_print(data, offset, 3, "scratch offset\n"); kgem_debug_print(data, offset, 4, "Dispatch GRF start %d, VUE read length %d, " "VUE read offset %d\n", (data[4] & 0xf), (data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f); kgem_debug_print(data, offset, 5, "Max Threads %d, Rendering %sable\n", ((data[5] >> 25) & 0x7f) + 1, (data[5] & (1 << 8)) != 0 ? "en" : "dis"); kgem_debug_print(data, offset, 6, "Reorder %sable, Discard Adjaceny %sable, " "GS %sable\n", (data[6] & (1 << 30)) != 0 ? "en" : "dis", (data[6] & (1 << 29)) != 0 ? "en" : "dis", (data[6] & (1 << 15)) != 0 ? "en" : "dis"); return len; case 0x7812: assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_CLIP\n"); kgem_debug_print(data, offset, 1, "UserClip distance cull test mask 0x%x\n", data[1] & 0xff); kgem_debug_print(data, offset, 2, "Clip %sable, API mode %s, Viewport XY test %sable, " "Viewport Z test %sable, Guardband test %sable, Clip mode %d, " "Perspective Divide %sable, Non-Perspective Barycentric %sable, " "Tri Provoking %d, Line Provoking %d, Trifan Provoking %d\n", (data[2] & (1 << 31)) != 0 ? "en" : "dis", (data[2] & (1 << 30)) != 0 ? "D3D" : "OGL", (data[2] & (1 << 28)) != 0 ? "en" : "dis", (data[2] & (1 << 27)) != 0 ? "en" : "dis", (data[2] & (1 << 26)) != 0 ? "en" : "dis", (data[2] >> 13) & 7, (data[2] & (1 << 9)) != 0 ? "dis" : "en", (data[2] & (1 << 8)) != 0 ? "en" : "dis", (data[2] >> 4) & 3, (data[2] >> 2) & 3, (data[2] & 3)); kgem_debug_print(data, offset, 3, "Min PointWidth %d, Max PointWidth %d, " "Force Zero RTAIndex %sable, Max VPIndex %d\n", (data[3] >> 17) & 0x7ff, (data[3] >> 6) & 0x7ff, (data[3] & (1 << 5)) != 0 ? "en" : "dis", (data[3] & 0xf)); return len; case 0x7813: gen6_update_sf_state(kgem, data); assert(len == 20); kgem_debug_print(data, offset, 0, "3DSTATE_SF\n"); kgem_debug_print(data, offset, 1, "Attrib Out %d, Attrib Swizzle %sable, VUE read length %d, " "VUE read offset %d\n", (data[1] >> 22) & 0x3f, (data[1] & (1 << 21)) != 0 ? "en" : "dis", (data[1] >> 11) & 0x1f, (data[1] >> 4) & 0x3f); kgem_debug_print(data, offset, 2, "Legacy Global DepthBias %sable, FrontFace fill %d, BF fill %d, " "VP transform %sable, FrontWinding_%s\n", (data[2] & (1 << 11)) != 0 ? "en" : "dis", (data[2] >> 5) & 3, (data[2] >> 3) & 3, (data[2] & (1 << 1)) != 0 ? "en" : "dis", (data[2] & 1) != 0 ? "CCW" : "CW"); kgem_debug_print(data, offset, 3, "AA %sable, CullMode %d, Scissor %sable, Multisample m ode %d\n", (data[3] & (1 << 31)) != 0 ? "en" : "dis", (data[3] >> 29) & 3, (data[3] & (1 << 11)) != 0 ? "en" : "dis", (data[3] >> 8) & 3); kgem_debug_print(data, offset, 4, "Last Pixel %sable, SubPixel Precision %d, Use PixelWidth %d\n", (data[4] & (1 << 31)) != 0 ? "en" : "dis", (data[4] & (1 << 12)) != 0 ? 4 : 8, (data[4] & (1 << 11)) != 0); kgem_debug_print(data, offset, 5, "Global Depth Offset Constant %f\n", data[5]); kgem_debug_print(data, offset, 6, "Global Depth Offset Scale %f\n", data[6]); kgem_debug_print(data, offset, 7, "Global Depth Offset Clamp %f\n", data[7]); for (i = 0, j = 0; i < 8; i++, j+=2) kgem_debug_print(data, offset, i+8, "Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, " "Source %d); Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, Source %d)\n", j+1, (data[8+i] & (1 << 31)) != 0 ? "W":"", (data[8+i] & (1 << 30)) != 0 ? "Z":"", (data[8+i] & (1 << 29)) != 0 ? "Y":"", (data[8+i] & (1 << 28)) != 0 ? "X":"", (data[8+i] >> 25) & 3, (data[8+i] >> 22) & 3, (data[8+i] >> 16) & 0x1f, j, (data[8+i] & (1 << 15)) != 0 ? "W":"", (data[8+i] & (1 << 14)) != 0 ? "Z":"", (data[8+i] & (1 << 13)) != 0 ? "Y":"", (data[8+i] & (1 << 12)) != 0 ? "X":"", (data[8+i] >> 9) & 3, (data[8+i] >> 6) & 3, (data[8+i] & 0x1f)); kgem_debug_print(data, offset, 16, "Point Sprite TexCoord Enable\n"); kgem_debug_print(data, offset, 17, "Const Interp Enable\n"); kgem_debug_print(data, offset, 18, "Attrib 7-0 WrapShortest Enable\n"); kgem_debug_print(data, offset, 19, "Attrib 15-8 WrapShortest Enable\n"); return len; case 0x7814: assert(len == 9); kgem_debug_print(data, offset, 0, "3DSTATE_WM\n"); kgem_debug_print(data, offset, 1, "kernel start pointer 0\n"); kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, " "Binding table count %d\n", (data[2] >> 31) & 1, (data[2] >> 30) & 1, (data[2] >> 27) & 7, (data[2] >> 18) & 0xff); kgem_debug_print(data, offset, 3, "scratch offset\n"); kgem_debug_print(data, offset, 4, "Depth Clear %d, Depth Resolve %d, HiZ Resolve %d, " "Dispatch GRF start[0] %d, start[1] %d, start[2] %d\n", (data[4] & (1 << 30)) != 0, (data[4] & (1 << 28)) != 0, (data[4] & (1 << 27)) != 0, (data[4] >> 16) & 0x7f, (data[4] >> 8) & 0x7f, (data[4] & 0x7f)); kgem_debug_print(data, offset, 5, "MaxThreads %d, PS KillPixel %d, PS computed Z %d, " "PS use sourceZ %d, Thread Dispatch %d, PS use sourceW %d, Dispatch32 %d, " "Dispatch16 %d, Dispatch8 %d\n", ((data[5] >> 25) & 0x7f) + 1, (data[5] & (1 << 22)) != 0, (data[5] & (1 << 21)) != 0, (data[5] & (1 << 20)) != 0, (data[5] & (1 << 19)) != 0, (data[5] & (1 << 8)) != 0, (data[5] & (1 << 2)) != 0, (data[5] & (1 << 1)) != 0, (data[5] & (1 << 0)) != 0); kgem_debug_print(data, offset, 6, "Num SF output %d, Pos XY offset %d, ZW interp mode %d , " "Barycentric interp mode 0x%x, Point raster rule %d, Multisample mode %d, " "Multisample Dispatch mode %d\n", (data[6] >> 20) & 0x3f, (data[6] >> 18) & 3, (data[6] >> 16) & 3, (data[6] >> 10) & 0x3f, (data[6] & (1 << 9)) != 0, (data[6] >> 1) & 3, (data[6] & 1)); kgem_debug_print(data, offset, 7, "kernel start pointer 1\n"); kgem_debug_print(data, offset, 8, "kernel start pointer 2\n"); return len; case 0x7900: assert(len == 4); kgem_debug_print(data, offset, 0, "3DSTATE_DRAWING_RECTANGLE\n"); kgem_debug_print(data, offset, 1, "top left: %d, %d\n", (uint16_t)(data[1] & 0xffff), (uint16_t)(data[1] >> 16)); kgem_debug_print(data, offset, 2, "bottom right: %d, %d\n", (uint16_t)(data[2] & 0xffff), (uint16_t)(data[2] >> 16)); kgem_debug_print(data, offset, 3, "origin: %d, %d\n", (int16_t)(data[3] & 0xffff), (int16_t)(data[3] >> 16)); return len; case 0x7905: assert(len == 7); kgem_debug_print(data, offset, 0, "3DSTATE_DEPTH_BUFFER\n"); kgem_debug_print(data, offset, 1, "%s, %s, pitch = %d bytes, %stiled, HiZ %d, Seperate Stencil %d\n", get_965_surfacetype(data[1] >> 29), get_965_depthformat((data[1] >> 18) & 0x7), (data[1] & 0x0001ffff) + 1, data[1] & (1 << 27) ? "" : "not ", (data[1] & (1 << 22)) != 0, (data[1] & (1 << 21)) != 0); kgem_debug_print(data, offset, 2, "depth offset\n"); kgem_debug_print(data, offset, 3, "%dx%d\n", ((data[3] & 0x0007ffc0) >> 6) + 1, ((data[3] & 0xfff80000) >> 19) + 1); kgem_debug_print(data, offset, 4, "volume depth\n"); kgem_debug_print(data, offset, 5, "\n"); kgem_debug_print(data, offset, 6, "\n"); return len; case 0x7a00: assert(len == 4 || len == 5); switch ((data[1] >> 14) & 0x3) { case 0: desc1 = "no write"; break; case 1: desc1 = "qword write"; break; case 2: desc1 = "PS_DEPTH_COUNT write"; break; case 3: desc1 = "TIMESTAMP write"; break; } kgem_debug_print(data, offset, 0, "PIPE_CONTROL\n"); kgem_debug_print(data, offset, 1, "%s, %scs stall, %stlb invalidate, " "%ssync gfdt, %sdepth stall, %sRC write flush, " "%sinst flush, %sTC flush\n", desc1, data[1] & (1 << 20) ? "" : "no ", data[1] & (1 << 18) ? "" : "no ", data[1] & (1 << 17) ? "" : "no ", data[1] & (1 << 13) ? "" : "no ", data[1] & (1 << 12) ? "" : "no ", data[1] & (1 << 11) ? "" : "no ", data[1] & (1 << 10) ? "" : "no "); if (len == 5) { kgem_debug_print(data, offset, 2, "destination address\n"); kgem_debug_print(data, offset, 3, "immediate dword low\n"); kgem_debug_print(data, offset, 4, "immediate dword high\n"); } else { for (i = 2; i < len; i++) { kgem_debug_print(data, offset, i, "\n"); } } return len; case 0x7b00: assert(len == 6); kgem_debug_print(data, offset, 0, "3DPRIMITIVE: %s %s\n", get_965_prim_type(data[0]), (data[0] & (1 << 15)) ? "random" : "sequential"); kgem_debug_print(data, offset, 1, "vertex count\n"); kgem_debug_print(data, offset, 2, "start vertex\n"); kgem_debug_print(data, offset, 3, "instance count\n"); kgem_debug_print(data, offset, 4, "start instance\n"); kgem_debug_print(data, offset, 5, "index bias\n"); primitive_out(kgem, data); return len; } /* For the rest, just dump the bytes */ for (i = 0; i < ARRAY_SIZE(opcodes); i++) if (op == opcodes[i].opcode) break; assert(i < ARRAY_SIZE(opcodes)); len = 1; kgem_debug_print(data, offset, 0, "%s\n", opcodes[i].name); if (opcodes[i].max_len > 1) { len = (data[0] & 0xff) + 2; assert(len >= opcodes[i].min_len && len <= opcodes[i].max_len); } for (i = 1; i < len; i++) kgem_debug_print(data, offset, i, "dword %d\n", i); return len; } void kgem_gen6_finish_state(struct kgem *kgem) { finish_state(kgem); }