/* * Copyright © 2007-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * Chris Wilson * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "sna.h" #include "sna_reg.h" #include "gen7_render.h" #include "kgem_debug.h" static struct state { struct vertex_buffer { int handle; void *base; const char *ptr; int pitch; struct kgem_bo *current; } vb[33]; struct vertex_elements { int buffer; int offset; bool valid; uint32_t type; uint8_t swizzle[4]; } ve[33]; int num_ve; struct dynamic_state { struct kgem_bo *current; void *base, *ptr; } dynamic_state; } state; static void gen7_update_vertex_buffer(struct kgem *kgem, const uint32_t *data) { uint32_t reloc = sizeof(uint32_t) * (&data[1] - kgem->batch); struct kgem_bo *bo = NULL; void *base, *ptr; int i; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == reloc) break; assert(i < kgem->nreloc); reloc = kgem->reloc[i].target_handle; if (reloc == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == reloc) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); } ptr = (char *)base + kgem->reloc[i].delta; i = data[0] >> 26; if (state.vb[i].current) munmap(state.vb[i].base, state.vb[i].current->size); state.vb[i].current = bo; state.vb[i].base = base; state.vb[i].ptr = ptr; state.vb[i].pitch = data[0] & 0x7ff; } static void gen7_update_dynamic_buffer(struct kgem *kgem, const uint32_t offset) { uint32_t reloc = sizeof(uint32_t) * offset; struct kgem_bo *bo = NULL; void *base, *ptr; int i; if ((kgem->batch[offset] & 1) == 0) return; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == reloc) break; if(i < kgem->nreloc) { reloc = kgem->reloc[i].target_handle; if (reloc == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == reloc) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); } ptr = (char *)base + (kgem->reloc[i].delta & ~1); } else { bo = NULL; base = NULL; ptr = NULL; } if (state.dynamic_state.current) munmap(state.dynamic_state.base, state.dynamic_state.current->size); state.dynamic_state.current = bo; state.dynamic_state.base = base; state.dynamic_state.ptr = ptr; } static uint32_t get_ve_component(uint32_t data, int component) { return (data >> (16 + (3 - component) * 4)) & 0x7; } static void gen7_update_vertex_elements(struct kgem *kgem, int id, const uint32_t *data) { state.ve[id].buffer = data[0] >> 26; state.ve[id].valid = !!(data[0] & (1 << 25)); state.ve[id].type = (data[0] >> 16) & 0x1ff; state.ve[id].offset = data[0] & 0x7ff; state.ve[id].swizzle[0] = get_ve_component(data[1], 0); state.ve[id].swizzle[1] = get_ve_component(data[1], 1); state.ve[id].swizzle[2] = get_ve_component(data[1], 2); state.ve[id].swizzle[3] = get_ve_component(data[1], 3); } static void gen7_update_sf_state(struct kgem *kgem, uint32_t *data) { state.num_ve = 1 + ((data[1] >> 22) & 0x3f); } static void vertices_sint16_out(const struct vertex_elements *ve, const int16_t *v, int max) { int c; ErrorF("("); for (c = 0; c < max; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("%d", v[c]); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } for (; c < 4; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("1.0"); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } ErrorF(")"); } static void vertices_float_out(const struct vertex_elements *ve, const float *f, int max) { int c, o; ErrorF("("); for (c = o = 0; c < 4 && o < max; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("%f", f[o++]); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } for (; c < 4; c++) { switch (ve->swizzle[c]) { case 0: ErrorF("#"); break; case 1: ErrorF("1.0"); break; case 2: ErrorF("0.0"); break; case 3: ErrorF("1.0"); break; case 4: ErrorF("0x1"); break; case 5: break; default: ErrorF("?"); } if (c < 3) ErrorF(", "); } ErrorF(")"); } static void ve_out(const struct vertex_elements *ve, const void *ptr) { switch (ve->type) { case GEN7_SURFACEFORMAT_R32_FLOAT: vertices_float_out(ve, ptr, 1); break; case GEN7_SURFACEFORMAT_R32G32_FLOAT: vertices_float_out(ve, ptr, 2); break; case GEN7_SURFACEFORMAT_R32G32B32_FLOAT: vertices_float_out(ve, ptr, 3); break; case GEN7_SURFACEFORMAT_R32G32B32A32_FLOAT: vertices_float_out(ve, ptr, 4); break; case GEN7_SURFACEFORMAT_R16_SINT: vertices_sint16_out(ve, ptr, 1); break; case GEN7_SURFACEFORMAT_R16G16_SINT: vertices_sint16_out(ve, ptr, 2); break; case GEN7_SURFACEFORMAT_R16G16B16A16_SINT: vertices_sint16_out(ve, ptr, 4); break; case GEN7_SURFACEFORMAT_R16_SSCALED: vertices_sint16_out(ve, ptr, 1); break; case GEN7_SURFACEFORMAT_R16G16_SSCALED: vertices_sint16_out(ve, ptr, 2); break; case GEN7_SURFACEFORMAT_R16G16B16A16_SSCALED: vertices_sint16_out(ve, ptr, 4); break; } } static void indirect_vertex_out(struct kgem *kgem, uint32_t v) { int i = 1; do { const struct vertex_elements *ve = &state.ve[i]; const struct vertex_buffer *vb = &state.vb[ve->buffer]; const void *ptr = vb->ptr + v * vb->pitch + ve->offset; if (!ve->valid) continue; ve_out(ve, ptr); while (++i <= state.num_ve && !state.ve[i].valid) ; if (i <= state.num_ve) ErrorF(", "); } while (i <= state.num_ve); } static void primitive_out(struct kgem *kgem, uint32_t *data) { int n; assert((data[0] & (1<<15)) == 0); /* XXX index buffers */ for (n = 0; n < data[1]; n++) { int v = data[2] + n; ErrorF(" [%d:%d] = ", n, v); indirect_vertex_out(kgem, v); ErrorF("\n"); } } static void finish_vertex_buffers(struct kgem *kgem) { int i; for (i = 0; i < ARRAY_SIZE(state.vb); i++) if (state.vb[i].current) munmap(state.vb[i].base, state.vb[i].current->size); } static void finish_state(struct kgem *kgem) { finish_vertex_buffers(kgem); if (state.dynamic_state.current) munmap(state.dynamic_state.base, state.dynamic_state.current->size); memset(&state, 0, sizeof(state)); } static void state_base_out(uint32_t *data, uint32_t offset, unsigned int index, char *name) { if (data[index] & 1) kgem_debug_print(data, offset, index, "%s state base address 0x%08x\n", name, data[index] & ~1); else kgem_debug_print(data, offset, index, "%s state base not updated\n", name); } static void state_max_out(uint32_t *data, uint32_t offset, unsigned int index, char *name) { if (data[index] == 1) kgem_debug_print(data, offset, index, "%s state upper bound disabled\n", name); else if (data[index] & 1) kgem_debug_print(data, offset, index, "%s state upper bound 0x%08x\n", name, data[index] & ~1); else kgem_debug_print(data, offset, index, "%s state upper bound not updated\n", name); } static const char * get_965_surfacetype(unsigned int surfacetype) { switch (surfacetype) { case 0: return "1D"; case 1: return "2D"; case 2: return "3D"; case 3: return "CUBE"; case 4: return "BUFFER"; case 7: return "NULL"; default: return "unknown"; } } static const char * get_965_depthformat(unsigned int depthformat) { switch (depthformat) { case 0: return "s8_z24float"; case 1: return "z32float"; case 2: return "z24s8"; case 5: return "z16"; default: return "unknown"; } } static const char * get_965_element_component(uint32_t data, int component) { uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7; switch (component_control) { case 0: return "nostore"; case 1: switch (component) { case 0: return "X"; case 1: return "Y"; case 2: return "Z"; case 3: return "W"; default: return "fail"; } case 2: return "0.0"; case 3: return "1.0"; case 4: return "0x1"; case 5: return "VID"; default: return "fail"; } } static const char * get_965_prim_type(uint32_t data) { uint32_t primtype = (data >> 10) & 0x1f; switch (primtype) { case 0x01: return "point list"; case 0x02: return "line list"; case 0x03: return "line strip"; case 0x04: return "tri list"; case 0x05: return "tri strip"; case 0x06: return "tri fan"; case 0x07: return "quad list"; case 0x08: return "quad strip"; case 0x09: return "line list adj"; case 0x0a: return "line strip adj"; case 0x0b: return "tri list adj"; case 0x0c: return "tri strip adj"; case 0x0d: return "tri strip reverse"; case 0x0e: return "polygon"; case 0x0f: return "rect list"; case 0x10: return "line loop"; case 0x11: return "point list bf"; case 0x12: return "line strip cont"; case 0x13: return "line strip bf"; case 0x14: return "line strip cont bf"; case 0x15: return "tri fan no stipple"; default: return "fail"; } } struct reloc { struct kgem_bo *bo; void *base; }; static void * get_reloc(struct kgem *kgem, void *base, const uint32_t *reloc, struct reloc *r) { uint32_t delta = *reloc; memset(r, 0, sizeof(*r)); if (base == 0) { uint32_t handle = sizeof(uint32_t) * (reloc - kgem->batch); struct kgem_bo *bo = NULL; int i; for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == handle) break; assert(i < kgem->nreloc); handle = kgem->reloc[i].target_handle; delta = kgem->reloc[i].delta; if (handle == 0) { base = kgem->batch; } else { list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->handle == handle) break; assert(&bo->request != &kgem->next_request->buffers); base = kgem_bo_map(kgem, bo, PROT_READ); r->bo = bo; r->base = base; } } return (char *)base + (delta & ~3); } static void put_reloc(struct kgem *kgem, struct reloc *r) { if (r->bo != NULL) munmap(r->base, r->bo->size); } static const char * gen7_filter_to_string(uint32_t filter) { switch (filter) { default: case GEN7_MAPFILTER_NEAREST: return "nearest"; case GEN7_MAPFILTER_LINEAR: return "linear"; } } static const char * gen7_repeat_to_string(uint32_t repeat) { switch (repeat) { default: case GEN7_TEXCOORDMODE_CLAMP_BORDER: return "border"; case GEN7_TEXCOORDMODE_WRAP: return "wrap"; case GEN7_TEXCOORDMODE_CLAMP: return "clamp"; case GEN7_TEXCOORDMODE_MIRROR: return "mirror"; } } static void gen7_decode_sampler_state(struct kgem *kgem, const uint32_t *reloc) { const struct gen7_sampler_state *ss; struct reloc r; const char *min, *mag; const char *s_wrap, *t_wrap, *r_wrap; ss = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r); min = gen7_filter_to_string(ss->ss0.min_filter); mag = gen7_filter_to_string(ss->ss0.mag_filter); s_wrap = gen7_repeat_to_string(ss->ss3.s_wrap_mode); t_wrap = gen7_repeat_to_string(ss->ss3.t_wrap_mode); r_wrap = gen7_repeat_to_string(ss->ss3.r_wrap_mode); ErrorF(" Sampler 0:\n"); ErrorF(" filter: min=%s, mag=%s\n", min, mag); ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap); ss++; min = gen7_filter_to_string(ss->ss0.min_filter); mag = gen7_filter_to_string(ss->ss0.mag_filter); s_wrap = gen7_repeat_to_string(ss->ss3.s_wrap_mode); t_wrap = gen7_repeat_to_string(ss->ss3.t_wrap_mode); r_wrap = gen7_repeat_to_string(ss->ss3.r_wrap_mode); ErrorF(" Sampler 1:\n"); ErrorF(" filter: min=%s, mag=%s\n", min, mag); ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap); put_reloc(kgem, &r); } static const char * gen7_blend_factor_to_string(uint32_t v) { switch (v) { #define C(x) case GEN7_BLENDFACTOR_##x: return #x; C(ONE); C(SRC_COLOR); C(SRC_ALPHA); C(DST_ALPHA); C(DST_COLOR); C(SRC_ALPHA_SATURATE); C(CONST_COLOR); C(CONST_ALPHA); C(SRC1_COLOR); C(SRC1_ALPHA); C(ZERO); C(INV_SRC_COLOR); C(INV_SRC_ALPHA); C(INV_DST_ALPHA); C(INV_DST_COLOR); C(INV_CONST_COLOR); C(INV_CONST_ALPHA); C(INV_SRC1_COLOR); C(INV_SRC1_ALPHA); #undef C default: return "???"; } } static const char * gen7_blend_function_to_string(uint32_t v) { switch (v) { #define C(x) case GEN7_BLENDFUNCTION_##x: return #x; C(ADD); C(SUBTRACT); C(REVERSE_SUBTRACT); C(MIN); C(MAX); #undef C default: return "???"; } } static void gen7_decode_blend(struct kgem *kgem, const uint32_t *reloc) { const struct gen7_blend_state *blend; struct reloc r; const char *dst, *src; const char *func; blend = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r); dst = gen7_blend_factor_to_string(blend->blend0.dest_blend_factor); src = gen7_blend_factor_to_string(blend->blend0.source_blend_factor); func = gen7_blend_function_to_string(blend->blend0.blend_func); ErrorF(" Blend (%s): function %s, src=%s, dst=%s\n", blend->blend0.blend_enable ? "enabled" : "disabled", func, src, dst); put_reloc(kgem, &r); } int kgem_gen7_decode_3d(struct kgem *kgem, uint32_t offset) { static const struct { uint32_t opcode; int min_len; int max_len; const char *name; } opcodes[] = { { 0x6101, 6, 6, "STATE_BASE_ADDRESS" }, { 0x6102, 2, 2 , "STATE_SIP" }, { 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" }, { 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" }, }; uint32_t *data = kgem->batch + offset; uint32_t op; unsigned int len; int i, j; char *desc1 = NULL; const char *name; len = (data[0] & 0xff) + 2; op = (data[0] & 0xffff0000) >> 16; switch (op) { case 0x6101: i = 0; kgem_debug_print(data, offset, i++, "STATE_BASE_ADDRESS\n"); assert(len == 10); state_base_out(data, offset, i++, "general"); state_base_out(data, offset, i++, "surface"); state_base_out(data, offset, i++, "dynamic"); state_base_out(data, offset, i++, "indirect"); state_base_out(data, offset, i++, "instruction"); state_max_out(data, offset, i++, "general"); state_max_out(data, offset, i++, "dynamic"); state_max_out(data, offset, i++, "indirect"); state_max_out(data, offset, i++, "instruction"); gen7_update_dynamic_buffer(kgem, offset + 3); return len; case 0x7808: assert((len - 1) % 4 == 0); kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_BUFFERS\n"); for (i = 1; i < len;) { gen7_update_vertex_buffer(kgem, data + i); kgem_debug_print(data, offset, i, "buffer %d: %s, pitch %db\n", data[i] >> 26, data[i] & (1 << 20) ? "random" : "sequential", data[i] & 0x07ff); i++; kgem_debug_print(data, offset, i++, "buffer address\n"); kgem_debug_print(data, offset, i++, "max index\n"); kgem_debug_print(data, offset, i++, "mbz\n"); } return len; case 0x7809: assert((len + 1) % 2 == 0); kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_ELEMENTS\n"); for (i = 1; i < len;) { gen7_update_vertex_elements(kgem, (i - 1)/2, data + i); kgem_debug_print(data, offset, i, "buffer %d: %svalid, type 0x%04x, " "src offset 0x%04x bytes\n", data[i] >> 26, data[i] & (1 << 25) ? "" : "in", (data[i] >> 16) & 0x1ff, data[i] & 0x07ff); i++; kgem_debug_print(data, offset, i, "(%s, %s, %s, %s), " "dst offset 0x%02x bytes\n", get_965_element_component(data[i], 0), get_965_element_component(data[i], 1), get_965_element_component(data[i], 2), get_965_element_component(data[i], 3), (data[i] & 0xff) * 4); i++; } return len; case 0x780a: assert(len == 3); kgem_debug_print(data, offset, 0, "3DSTATE_INDEX_BUFFER\n"); kgem_debug_print(data, offset, 1, "beginning buffer address\n"); kgem_debug_print(data, offset, 2, "ending buffer address\n"); return len; case 0x7b00: assert(len == 6); kgem_debug_print(data, offset, 0, "3DPRIMITIVE: %s %s\n", get_965_prim_type(data[0]), (data[0] & (1 << 15)) ? "random" : "sequential"); kgem_debug_print(data, offset, 1, "vertex count\n"); kgem_debug_print(data, offset, 2, "start vertex\n"); kgem_debug_print(data, offset, 3, "instance count\n"); kgem_debug_print(data, offset, 4, "start instance\n"); kgem_debug_print(data, offset, 5, "index bias\n"); primitive_out(kgem, data); return len; } /* For the rest, just dump the bytes */ name = NULL; for (i = 0; i < ARRAY_SIZE(opcodes); i++) if (op == opcodes[i].opcode) { name = opcodes[i].name; break; } len = (data[0] & 0xff) + 2; if (name == NULL) { kgem_debug_print(data, offset, 0, "unknown\n"); } else { kgem_debug_print(data, offset, 0, "%s\n", opcodes[i].name); if (opcodes[i].max_len > 1) { assert(len >= opcodes[i].min_len && len <= opcodes[i].max_len); } } for (i = 1; i < len; i++) kgem_debug_print(data, offset, i, "dword %d\n", i); return len; } void kgem_gen7_finish_state(struct kgem *kgem) { finish_state(kgem); }