/* * Copyright © 2007 Red Hat, Inc. * Copyright © 2013-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Dave Airlie * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include "sna.h" #include "sna_reg.h" #include "fb/fbpict.h" #include "intel_options.h" #include "backlight.h" #include #include #include #if XF86_CRTC_VERSION >= 3 #define HAS_GAMMA 1 #else #define HAS_GAMMA 0 #endif #include #if defined(HAVE_X11_EXTENSIONS_DPMSCONST_H) #include #else #define DPMSModeOn 0 #define DPMSModeOff 3 #endif #include /* for xf86InterpretEDID */ #include #ifdef HAVE_VALGRIND #include #include #endif /* Minor discrepancy between 32-bit/64-bit ABI in old kernels */ union compat_mode_get_connector{ struct drm_mode_get_connector conn; uint32_t pad[20]; }; #define KNOWN_MODE_FLAGS ((1<<14)-1) #ifndef MONITOR_EDID_COMPLETE_RAWDATA #define MONITOR_EDID_COMPLETE_RAWDATA 1 #endif #ifndef DEFAULT_DPI #define DEFAULT_DPI 96 #endif #define DRM_MODE_PAGE_FLIP_ASYNC 0x02 #define DRM_CLIENT_CAP_UNIVERSAL_PLANES 2 #define DRM_PLANE_TYPE_OVERLAY 0 #define DRM_PLANE_TYPE_PRIMARY 1 #define DRM_PLANE_TYPE_CURSOR 2 #define LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES DRM_IOWR(0xb9, struct local_mode_obj_get_properties) struct local_mode_obj_get_properties { uint64_t props_ptr; uint64_t prop_values_ptr; uint32_t count_props; uint32_t obj_id; uint32_t obj_type; uint32_t pad; }; #define LOCAL_MODE_OBJECT_PLANE 0xeeeeeeee #if 0 #define __DBG DBG #else #define __DBG(x) #endif extern XF86ConfigPtr xf86configptr; struct sna_crtc { xf86CrtcPtr base; struct drm_mode_modeinfo kmode; int dpms_mode; PixmapPtr slave_pixmap; DamagePtr slave_damage; struct kgem_bo *bo, *shadow_bo; struct sna_cursor *cursor; unsigned int last_cursor_size; uint32_t offset; bool shadow; bool fallback_shadow; bool transform; uint8_t id; uint8_t pipe; uint32_t rotation; struct plane { uint32_t id; struct { uint32_t prop; uint32_t supported; uint32_t current; } rotation; } primary, sprite; uint32_t mode_serial, flip_serial; uint32_t last_seq, wrap_seq; struct ust_msc swap; sna_flip_handler_t flip_handler; struct kgem_bo *flip_bo; void *flip_data; struct list shadow_link; }; struct sna_property { drmModePropertyPtr kprop; int num_atoms; /* if range prop, num_atoms == 1; if enum prop, num_atoms == num_enums + 1 */ Atom *atoms; }; struct sna_output { xf86OutputPtr base; unsigned id; unsigned serial; unsigned possible_encoders; unsigned attached_encoders; unsigned int is_panel : 1; unsigned int add_default_modes : 1; uint32_t edid_idx; uint32_t edid_blob_id; uint32_t edid_len; void *edid_raw; bool has_panel_limits; int panel_hdisplay; int panel_vdisplay; uint32_t dpms_id; int dpms_mode; struct backlight backlight; int backlight_active_level; int num_modes; struct drm_mode_modeinfo *modes; int num_props; uint32_t *prop_ids; uint64_t *prop_values; struct sna_property *props; }; enum { /* XXX copied from hw/xfree86/modes/xf86Crtc.c */ OPTION_PREFERRED_MODE, #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,14,99,1,0) OPTION_ZOOM_MODES, #endif OPTION_POSITION, OPTION_BELOW, OPTION_RIGHT_OF, OPTION_ABOVE, OPTION_LEFT_OF, OPTION_ENABLE, OPTION_DISABLE, OPTION_MIN_CLOCK, OPTION_MAX_CLOCK, OPTION_IGNORE, OPTION_ROTATE, OPTION_PANNING, OPTION_PRIMARY, OPTION_DEFAULT_MODES, }; static void sna_crtc_disable_cursor(struct sna *sna, struct sna_crtc *crtc); inline static unsigned count_to_mask(int x) { return (1 << x) - 1; } static inline struct sna_output *to_sna_output(xf86OutputPtr output) { return output->driver_private; } static inline int to_connector_id(xf86OutputPtr output) { assert(to_sna_output(output)); assert(to_sna_output(output)->id); return to_sna_output(output)->id; } static inline struct sna_crtc *to_sna_crtc(xf86CrtcPtr crtc) { return crtc->driver_private; } static inline bool event_pending(int fd) { struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; return poll(&pfd, 1, 0) == 1; } static bool sna_mode_has_pending_events(struct sna *sna) { /* In order to workaround a kernel bug in not honouring O_NONBLOCK, * check that the fd is readable before attempting to read the next * event from drm. */ return event_pending(sna->kgem.fd); } static bool sna_mode_wait_for_event(struct sna *sna) { struct pollfd pfd; pfd.fd = sna->kgem.fd; pfd.events = POLLIN; return poll(&pfd, 1, -1) == 1; } static inline uint32_t fb_id(struct kgem_bo *bo) { return bo->delta; } uint32_t sna_crtc_id(xf86CrtcPtr crtc) { if (to_sna_crtc(crtc) == NULL) return 0; return to_sna_crtc(crtc)->id; } int sna_crtc_to_pipe(xf86CrtcPtr crtc) { assert(to_sna_crtc(crtc)); return to_sna_crtc(crtc)->pipe; } uint32_t sna_crtc_to_sprite(xf86CrtcPtr crtc) { assert(to_sna_crtc(crtc)); return to_sna_crtc(crtc)->sprite.id; } bool sna_crtc_is_on(xf86CrtcPtr crtc) { assert(to_sna_crtc(crtc)); return to_sna_crtc(crtc)->bo != NULL; } bool sna_crtc_is_transformed(xf86CrtcPtr crtc) { assert(to_sna_crtc(crtc)); return to_sna_crtc(crtc)->transform; } static inline uint64_t msc64(struct sna_crtc *sna_crtc, uint32_t seq) { if (seq < sna_crtc->last_seq) { if (sna_crtc->last_seq - seq > 0x40000000) { sna_crtc->wrap_seq++; DBG(("%s: pipe=%d wrapped; was %u, now %u, wraps=%u\n", __FUNCTION__, sna_crtc->pipe, sna_crtc->last_seq, seq, sna_crtc->wrap_seq)); } else { ERR(("%s: pipe=%d msc went backwards; was %u, now %u\n", __FUNCTION__, sna_crtc->pipe, sna_crtc->last_seq, seq)); seq = sna_crtc->last_seq; } } sna_crtc->last_seq = seq; return (uint64_t)sna_crtc->wrap_seq << 32 | seq; } uint64_t sna_crtc_record_swap(xf86CrtcPtr crtc, int tv_sec, int tv_usec, unsigned seq) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); assert(sna_crtc); DBG(("%s: recording last swap on pipe=%d, frame %d, time %d.%06d\n", __FUNCTION__, sna_crtc->pipe, seq, tv_sec, tv_usec)); sna_crtc->swap.tv_sec = tv_sec; sna_crtc->swap.tv_usec = tv_usec; return sna_crtc->swap.msc = msc64(sna_crtc, seq); } const struct ust_msc *sna_crtc_last_swap(xf86CrtcPtr crtc) { static struct ust_msc zero; if (crtc == NULL) { return &zero; } else { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); assert(sna_crtc); return &sna_crtc->swap; } } xf86CrtcPtr sna_mode_first_crtc(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); if (sna->mode.num_real_crtc) return config->crtc[0]; else return NULL; } #ifndef NDEBUG static void gem_close(int fd, uint32_t handle); static void assert_scanout(struct kgem *kgem, struct kgem_bo *bo, int width, int height) { struct drm_mode_fb_cmd info; assert(bo->scanout); VG_CLEAR(info); info.fb_id = fb_id(bo); assert(drmIoctl(kgem->fd, DRM_IOCTL_MODE_GETFB, &info) == 0); gem_close(kgem->fd, info.handle); assert(width == info.width && height == info.height); } #else #define assert_scanout(k, b, w, h) #endif static unsigned get_fb(struct sna *sna, struct kgem_bo *bo, int width, int height) { ScrnInfoPtr scrn = sna->scrn; struct drm_mode_fb_cmd arg; assert(bo->refcnt); assert(bo->proxy == NULL); assert(!bo->snoop); assert(8*bo->pitch >= width * scrn->bitsPerPixel); assert(height * bo->pitch <= kgem_bo_size(bo)); /* XXX crtc offset */ if (fb_id(bo)) { DBG(("%s: reusing fb=%d for handle=%d\n", __FUNCTION__, fb_id(bo), bo->handle)); assert_scanout(&sna->kgem, bo, width, height); return fb_id(bo); } DBG(("%s: create fb %dx%d@%d/%d\n", __FUNCTION__, width, height, scrn->depth, scrn->bitsPerPixel)); assert(bo->tiling != I915_TILING_Y); assert((bo->pitch & 63) == 0); VG_CLEAR(arg); arg.width = width; arg.height = height; arg.pitch = bo->pitch; arg.bpp = scrn->bitsPerPixel; arg.depth = scrn->depth; arg.handle = bo->handle; assert(sna->scrn->vtSema); /* must be master */ if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_ADDFB, &arg)) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "%s: failed to add fb: %dx%d depth=%d, bpp=%d, pitch=%d: %d\n", __FUNCTION__, width, height, scrn->depth, scrn->bitsPerPixel, bo->pitch, errno); return 0; } assert(arg.fb_id != 0); DBG(("%s: attached fb=%d to handle=%d\n", __FUNCTION__, arg.fb_id, arg.handle)); bo->scanout = true; return bo->delta = arg.fb_id; } static uint32_t gem_create(int fd, int size) { struct drm_i915_gem_create create; assert((size & 4095) == 0); VG_CLEAR(create); create.handle = 0; create.size = size; (void)drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); return create.handle; } static void *gem_mmap(int fd, int handle, int size) { struct drm_i915_gem_mmap_gtt mmap_arg; void *ptr; VG_CLEAR(mmap_arg); mmap_arg.handle = handle; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg)) return NULL; ptr = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, mmap_arg.offset); if (ptr == MAP_FAILED) return NULL; return ptr; } static void gem_close(int fd, uint32_t handle) { struct drm_gem_close close; VG_CLEAR(close); close.handle = handle; (void)drmIoctl(fd, DRM_IOCTL_GEM_CLOSE, &close); } #define BACKLIGHT_NAME "Backlight" #define BACKLIGHT_DEPRECATED_NAME "BACKLIGHT" static Atom backlight_atom, backlight_deprecated_atom; #if HAVE_UDEV static void sna_backlight_uevent(int fd, void *closure) { struct sna *sna = closure; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; DBG(("%s()\n", __FUNCTION__)); /* Drain the event queue */ while (event_pending(fd)) { struct udev_device *dev; DBG(("%s: waiting for uevent\n", __FUNCTION__)); dev = udev_monitor_receive_device(sna->mode.backlight_monitor); if (dev == NULL) break; udev_device_unref(dev); } /* Query all backlights for any changes */ DBG(("%s: probing backlights for changes\n", __FUNCTION__)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); int val; if (sna_output->dpms_mode != DPMSModeOn) continue; assert(output->randr_output); val = backlight_get(&sna_output->backlight); if (val < 0) continue; DBG(("%s(%s): backlight '%s' was %d, now %d\n", __FUNCTION__, output->name, sna_output->backlight.iface, sna_output->backlight_active_level, val)); if (val == sna_output->backlight_active_level) continue; sna_output->backlight_active_level = val; if (output->randr_output) { DBG(("%s(%s): sending change notification\n", __FUNCTION__, output->name)); RRChangeOutputProperty(output->randr_output, backlight_atom, XA_INTEGER, 32, PropModeReplace, 1, &val, TRUE, FALSE); RRChangeOutputProperty(output->randr_output, backlight_deprecated_atom, XA_INTEGER, 32, PropModeReplace, 1, &val, TRUE, FALSE); } } } static void sna_backlight_pre_init(struct sna *sna) { struct udev *u; struct udev_monitor *mon; #if !USE_BACKLIGHT return; #endif u = udev_new(); if (!u) return; mon = udev_monitor_new_from_netlink(u, "udev"); if (!mon) goto free_udev; if (udev_monitor_filter_add_match_subsystem_devtype(mon, "backlight", NULL)) goto free_monitor; if (udev_monitor_enable_receiving(mon)) goto free_monitor; sna->mode.backlight_handler = xf86AddGeneralHandler(udev_monitor_get_fd(mon), sna_backlight_uevent, sna); if (!sna->mode.backlight_handler) goto free_monitor; DBG(("%s: installed backlight monitor\n", __FUNCTION__)); sna->mode.backlight_monitor = mon; return; free_monitor: udev_monitor_unref(mon); free_udev: udev_unref(u); } static void sna_backlight_drain_uevents(struct sna *sna) { if (sna->mode.backlight_monitor == NULL) return; sna_backlight_uevent(udev_monitor_get_fd(sna->mode.backlight_monitor), sna); } static void sna_backlight_close(struct sna *sna) { struct udev *u; if (sna->mode.backlight_handler == NULL) return; xf86RemoveGeneralHandler(sna->mode.backlight_handler); u = udev_monitor_get_udev(sna->mode.backlight_monitor); udev_monitor_unref(sna->mode.backlight_monitor); udev_unref(u); sna->mode.backlight_handler = NULL; sna->mode.backlight_monitor = NULL; } #else static void sna_backlight_pre_init(struct sna *sna) { } static void sna_backlight_drain_uevents(struct sna *sna) { } static void sna_backlight_close(struct sna *sna) { } #endif static int sna_output_backlight_set(struct sna_output *sna_output, int level) { xf86OutputPtr output = sna_output->base; int ret = 0; DBG(("%s(%s) level=%d, max=%d\n", __FUNCTION__, output->name, level, sna_output->backlight.max)); if (backlight_set(&sna_output->backlight, level)) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "Failed to set backlight %s for output %s to brightness level %d, disabling\n", sna_output->backlight.iface, output->name, level); backlight_disable(&sna_output->backlight); if (output->randr_output) { RRDeleteOutputProperty(output->randr_output, backlight_atom); RRDeleteOutputProperty(output->randr_output, backlight_deprecated_atom); } ret = -1; } /* Consume the uevent notification now so that we don't misconstrue * the change latter when we wake up and the output is in a different * state. */ sna_backlight_drain_uevents(to_sna(output->scrn)); return ret; } static int sna_output_backlight_get(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; int level = backlight_get(&sna_output->backlight); DBG(("%s(%s) level=%d, max=%d\n", __FUNCTION__, output->name, level, sna_output->backlight.max)); return level; } static char * has_user_backlight_override(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); const char *str; str = xf86GetOptValString(sna->Options, OPTION_BACKLIGHT); if (str == NULL) return NULL; DBG(("%s(%s) requested %s\n", __FUNCTION__, output->name, str)); if (*str == '\0') return (char *)str; if (backlight_exists(str) == BL_NONE) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "Unrecognised backlight control interface '%s'\n", str); return NULL; } return strdup(str); } static void sna_output_backlight_init(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; struct pci_device *pci; MessageType from; char *best_iface; #if !USE_BACKLIGHT return; #endif from = X_CONFIG; best_iface = has_user_backlight_override(output); if (best_iface) goto done; /* XXX detect right backlight for multi-GPU/panels */ from = X_PROBED; pci = xf86GetPciInfoForEntity(to_sna(output->scrn)->pEnt->index); if (pci != NULL) best_iface = backlight_find_for_device(pci); done: DBG(("%s(%s) opening backlight %s\n", __FUNCTION__, output->name, best_iface ?: "none")); sna_output->backlight_active_level = backlight_open(&sna_output->backlight, best_iface); DBG(("%s(%s): initial backlight value %d\n", __FUNCTION__, output->name, sna_output->backlight_active_level)); if (sna_output->backlight_active_level < 0) return; switch (sna_output->backlight.type) { case BL_FIRMWARE: best_iface = (char *)"firmware"; break; case BL_PLATFORM: best_iface = (char *)"platform"; break; case BL_RAW: best_iface = (char *)"raw"; break; default: best_iface = (char *)"unknown"; break; } xf86DrvMsg(output->scrn->scrnIndex, from, "Found backlight control interface %s (type '%s') for output %s\n", sna_output->backlight.iface, best_iface, output->name); } static char *canonical_kmode_name(const struct drm_mode_modeinfo *kmode) { char tmp[32], *buf; int len; len = sprintf(tmp, "%dx%d%s", kmode->hdisplay, kmode->vdisplay, kmode->flags & V_INTERLACE ? "i" : ""); if ((unsigned)len >= sizeof(tmp)) return NULL; buf = malloc(len + 1); if (buf == NULL) return NULL; return memcpy(buf, tmp, len + 1); } static char *get_kmode_name(const struct drm_mode_modeinfo *kmode) { if (*kmode->name == '\0') return canonical_kmode_name(kmode); return strdup(kmode->name); } static DisplayModePtr mode_from_kmode(ScrnInfoPtr scrn, const struct drm_mode_modeinfo *kmode, DisplayModePtr mode) { DBG(("kmode: %s, clock=%d, %d %d %d %d %d, %d %d %d %d %d, flags=%x, type=%x\n", kmode->name, kmode->clock, kmode->hdisplay, kmode->hsync_start, kmode->hsync_end, kmode->htotal, kmode->hskew, kmode->vdisplay, kmode->vsync_start, kmode->vsync_end, kmode->vtotal, kmode->vscan, kmode->flags, kmode->type)); mode->status = MODE_OK; mode->Clock = kmode->clock; mode->HDisplay = kmode->hdisplay; mode->HSyncStart = kmode->hsync_start; mode->HSyncEnd = kmode->hsync_end; mode->HTotal = kmode->htotal; mode->HSkew = kmode->hskew; mode->VDisplay = kmode->vdisplay; mode->VSyncStart = kmode->vsync_start; mode->VSyncEnd = kmode->vsync_end; mode->VTotal = kmode->vtotal; mode->VScan = kmode->vscan; mode->Flags = kmode->flags; mode->name = get_kmode_name(kmode); if (kmode->type & DRM_MODE_TYPE_DRIVER) mode->type = M_T_DRIVER; if (kmode->type & DRM_MODE_TYPE_PREFERRED) mode->type |= M_T_PREFERRED; if (mode->status == MODE_OK && kmode->flags & ~KNOWN_MODE_FLAGS) mode->status = MODE_BAD; /* unknown flags => unhandled */ xf86SetModeCrtc(mode, scrn->adjustFlags); return mode; } static void mode_to_kmode(struct drm_mode_modeinfo *kmode, DisplayModePtr mode) { memset(kmode, 0, sizeof(*kmode)); kmode->clock = mode->Clock; kmode->hdisplay = mode->HDisplay; kmode->hsync_start = mode->HSyncStart; kmode->hsync_end = mode->HSyncEnd; kmode->htotal = mode->HTotal; kmode->hskew = mode->HSkew; kmode->vdisplay = mode->VDisplay; kmode->vsync_start = mode->VSyncStart; kmode->vsync_end = mode->VSyncEnd; kmode->vtotal = mode->VTotal; kmode->vscan = mode->VScan; kmode->flags = mode->Flags; if (mode->name) strncpy(kmode->name, mode->name, DRM_DISPLAY_MODE_LEN); kmode->name[DRM_DISPLAY_MODE_LEN-1] = 0; } static void sna_crtc_force_outputs_on(xf86CrtcPtr crtc) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); int i; assert(to_sna_crtc(crtc)); DBG(("%s(pipe=%d), currently? %d\n", __FUNCTION__, to_sna_crtc(crtc)->pipe, to_sna_crtc(crtc)->dpms_mode)); /* DPMS handling by the kernel is inconsistent, so after setting a * mode on an output presume that we intend for it to be on, or that * the kernel will force it on. * * So force DPMS to be on for all connected outputs, and restore * the backlight. */ for (i = 0; i < config->num_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; output->funcs->dpms(output, DPMSModeOn); } to_sna_crtc(crtc)->dpms_mode = DPMSModeOn; #if XF86_CRTC_VERSION >= 3 crtc->active = TRUE; #endif } static void sna_crtc_force_outputs_off(xf86CrtcPtr crtc) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); int i; assert(to_sna_crtc(crtc)); DBG(("%s(pipe=%d), currently? %d\n", __FUNCTION__, to_sna_crtc(crtc)->pipe, to_sna_crtc(crtc)->dpms_mode)); /* DPMS handling by the kernel is inconsistent, so after setting a * mode on an output presume that we intend for it to be on, or that * the kernel will force it on. * * So force DPMS to be on for all connected outputs, and restore * the backlight. */ for (i = 0; i < config->num_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; output->funcs->dpms(output, DPMSModeOff); } to_sna_crtc(crtc)->dpms_mode = DPMSModeOff; } static unsigned rotation_reduce(struct plane *p, unsigned rotation) { unsigned unsupported_rotations = rotation & ~p->rotation.supported; if (unsupported_rotations == 0) return rotation; #define RR_Reflect_XY (RR_Reflect_X | RR_Reflect_Y) if ((unsupported_rotations & RR_Reflect_XY) == RR_Reflect_XY && p->rotation.supported& RR_Rotate_180) { rotation &= ~RR_Reflect_XY; rotation ^= RR_Rotate_180; } if ((unsupported_rotations & RR_Rotate_180) && (p->rotation.supported& RR_Reflect_XY) == RR_Reflect_XY) { rotation ^= RR_Reflect_XY; rotation &= ~RR_Rotate_180; } #undef RR_Reflect_XY return rotation; } static bool rotation_set(struct sna *sna, struct plane *p, uint32_t desired) { #define LOCAL_IOCTL_MODE_OBJ_SETPROPERTY DRM_IOWR(0xbA, struct local_mode_obj_set_property) struct local_mode_obj_set_property { uint64_t value; uint32_t prop_id; uint32_t obj_id; uint32_t obj_type; uint32_t pad; } prop; if (desired == p->rotation.current) return true; if ((desired & p->rotation.supported) == 0) { errno = EINVAL; return false; } DBG(("%s: obj=%d, type=%x prop=%d set-rotation=%x\n", __FUNCTION__, p->id, LOCAL_MODE_OBJECT_PLANE, p->rotation.prop, desired)); assert(p->id); assert(p->rotation.prop); prop.obj_id = p->id; prop.obj_type = LOCAL_MODE_OBJECT_PLANE; prop.prop_id = p->rotation.prop; prop.value = desired; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_SETPROPERTY, &prop)) return false; p->rotation.current = desired; return true; } static void rotation_reset(struct plane *p) { if (p->rotation.prop == 0) return; p->rotation.current = 0; } bool sna_crtc_set_sprite_rotation(xf86CrtcPtr crtc, uint32_t rotation) { assert(to_sna_crtc(crtc)); DBG(("%s: CRTC:%d [pipe=%d], sprite=%u set-rotation=%x\n", __FUNCTION__, to_sna_crtc(crtc)->id, to_sna_crtc(crtc)->pipe, to_sna_crtc(crtc)->sprite.id, rotation)); return rotation_set(to_sna(crtc->scrn), &to_sna_crtc(crtc)->sprite, rotation_reduce(&to_sna_crtc(crtc)->sprite, rotation)); } static bool sna_crtc_apply(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); struct drm_mode_crtc arg; uint32_t output_ids[32]; int output_count = 0; int i; DBG(("%s CRTC:%d [pipe=%d], handle=%d\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, sna_crtc->bo->handle)); assert(sna->mode.num_real_output < ARRAY_SIZE(output_ids)); sna_crtc_disable_cursor(sna, sna_crtc); if (!rotation_set(sna, &sna_crtc->primary, sna_crtc->rotation)) { ERR(("%s: set-primary-rotation failed (rotation-id=%d, rotation=%d) on CRTC:%d [pipe=%d], errno=%d\n", __FUNCTION__, sna_crtc->primary.rotation.prop, sna_crtc->rotation, sna_crtc->id, sna_crtc->pipe, errno)); sna_crtc->primary.rotation.supported &= ~sna_crtc->rotation; return false; } DBG(("%s: CRTC:%d [pipe=%d] primary rotation set to %x\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, sna_crtc->rotation)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; /* Make sure we mark the output as off (and save the backlight) * before the kernel turns it off due to changing the pipe. * This is necessary as the kernel may turn off the backlight * and we lose track of the user settings. */ if (output->crtc == NULL) output->funcs->dpms(output, DPMSModeOff); if (output->crtc != crtc) continue; DBG(("%s: attaching output '%s' %d [%d] to crtc:%d (pipe %d) (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), sna_crtc->id, sna_crtc->pipe, (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); assert(output->possible_crtcs & (1 << sna_crtc->pipe) || xf86IsEntityShared(crtc->scrn->entityList[0])); output_ids[output_count] = to_connector_id(output); if (++output_count == ARRAY_SIZE(output_ids)) { errno = EINVAL; return false; } } VG_CLEAR(arg); arg.crtc_id = sna_crtc->id; arg.fb_id = fb_id(sna_crtc->bo); if (sna_crtc->transform || sna_crtc->slave_pixmap) { arg.x = 0; arg.y = 0; sna_crtc->offset = 0; } else { arg.x = crtc->x; arg.y = crtc->y; sna_crtc->offset = arg.y << 16 | arg.x; } arg.set_connectors_ptr = (uintptr_t)output_ids; arg.count_connectors = output_count; arg.mode = sna_crtc->kmode; arg.mode_valid = 1; DBG(("%s: applying crtc [%d, pipe=%d] mode=%dx%d+%d+%d@%d, fb=%d%s%s update to %d outputs [%d...]\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, arg.mode.hdisplay, arg.mode.vdisplay, arg.x, arg.y, arg.mode.clock, arg.fb_id, sna_crtc->shadow ? " [shadow]" : "", sna_crtc->transform ? " [transformed]" : "", output_count, output_count ? output_ids[0] : 0)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg)) return false; sna_crtc->mode_serial++; sna_crtc_force_outputs_on(crtc); return true; } static bool overlap(const BoxRec *a, const BoxRec *b) { if (a->x1 >= b->x2) return false; if (a->x2 <= b->x1) return false; if (a->y1 >= b->y2) return false; if (a->y2 <= b->y1) return false; return true; } static bool wait_for_shadow(struct sna *sna, struct sna_pixmap *priv, unsigned flags) { PixmapPtr pixmap = priv->pixmap; DamagePtr damage; struct kgem_bo *bo, *tmp; bool ret = true; DBG(("%s: flags=%x, flips=%d, handle=%d, shadow=%d\n", __FUNCTION__, flags, sna->mode.flip_active, priv->gpu_bo->handle, sna->mode.shadow->handle)); assert(priv->move_to_gpu_data == sna); assert(sna->mode.shadow != priv->gpu_bo); if (flags == 0 || pixmap != sna->front || !sna->mode.shadow_damage) goto done; if ((flags & MOVE_WRITE) == 0) { if ((flags & __MOVE_SCANOUT) == 0) { while (!list_is_empty(&sna->mode.shadow_crtc)) { struct sna_crtc *crtc = list_first_entry(&sna->mode.shadow_crtc, struct sna_crtc, shadow_link); if (overlap(&sna->mode.shadow_region.extents, &crtc->base->bounds)) { DrawableRec draw; draw.width = crtc->base->mode.HDisplay; draw.height = crtc->base->mode.VDisplay; draw.depth = sna->front->drawable.depth; draw.bitsPerPixel = sna->front->drawable.bitsPerPixel; DBG(("%s: copying replaced CRTC: (%d, %d), (%d, %d), handle=%d\n", __FUNCTION__, crtc->base->bounds.x1, crtc->base->bounds.y1, crtc->base->bounds.x2, crtc->base->bounds.y2, crtc->shadow_bo->handle)); ret &= sna->render.copy_boxes(sna, GXcopy, &draw, crtc->shadow_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &pixmap->drawable, priv->gpu_bo, 0, 0, &crtc->base->bounds, 1, 0); } kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; list_del(&crtc->shadow_link); } } return ret; } assert(sna->mode.shadow_active); damage = sna->mode.shadow_damage; sna->mode.shadow_damage = NULL; if (sna->mode.flip_active) { /* raw cmd to avoid setting wedged in the middle of an op */ drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_THROTTLE, 0); sna->kgem.need_throttle = false; while (sna->mode.flip_active && sna_mode_has_pending_events(sna)) sna_mode_wakeup(sna); } bo = sna->mode.shadow; if (sna->mode.flip_active) { bo = kgem_create_2d(&sna->kgem, pixmap->drawable.width, pixmap->drawable.height, pixmap->drawable.bitsPerPixel, priv->gpu_bo->tiling, CREATE_EXACT | CREATE_SCANOUT); if (bo != NULL) { DBG(("%s: replacing still-attached GPU bo handle=%d, flips=%d\n", __FUNCTION__, priv->gpu_bo->tiling, sna->mode.flip_active)); RegionUninit(&sna->mode.shadow_region); sna->mode.shadow_region.extents.x1 = 0; sna->mode.shadow_region.extents.y1 = 0; sna->mode.shadow_region.extents.x2 = pixmap->drawable.width; sna->mode.shadow_region.extents.y2 = pixmap->drawable.height; sna->mode.shadow_region.data = NULL; } else { while (sna->mode.flip_active && sna_mode_wait_for_event(sna)) sna_mode_wakeup(sna); bo = sna->mode.shadow; } } if (bo->refcnt > 1) { bo = kgem_create_2d(&sna->kgem, pixmap->drawable.width, pixmap->drawable.height, pixmap->drawable.bitsPerPixel, priv->gpu_bo->tiling, CREATE_EXACT | CREATE_SCANOUT); if (bo != NULL) { DBG(("%s: replacing exported GPU bo\n", __FUNCTION__)); RegionUninit(&sna->mode.shadow_region); sna->mode.shadow_region.extents.x1 = 0; sna->mode.shadow_region.extents.y1 = 0; sna->mode.shadow_region.extents.x2 = pixmap->drawable.width; sna->mode.shadow_region.extents.y2 = pixmap->drawable.height; sna->mode.shadow_region.data = NULL; } else bo = sna->mode.shadow; } sna->mode.shadow_damage = damage; RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, &sna->mode.shadow_cancel); while (!list_is_empty(&sna->mode.shadow_crtc)) { struct sna_crtc *crtc = list_first_entry(&sna->mode.shadow_crtc, struct sna_crtc, shadow_link); if (overlap(&crtc->base->bounds, &sna->mode.shadow_region.extents)) { RegionRec region; DrawableRec draw; draw.width = crtc->base->mode.HDisplay; draw.height = crtc->base->mode.VDisplay; draw.depth = sna->front->drawable.depth; draw.bitsPerPixel = sna->front->drawable.bitsPerPixel; DBG(("%s: copying replaced CRTC: (%d, %d), (%d, %d), handle=%d\n", __FUNCTION__, crtc->base->bounds.x1, crtc->base->bounds.y1, crtc->base->bounds.x2, crtc->base->bounds.y2, crtc->shadow_bo->handle)); ret = sna->render.copy_boxes(sna, GXcopy, &draw, crtc->shadow_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &pixmap->drawable, bo, 0, 0, &crtc->base->bounds, 1, 0); region.extents = crtc->base->bounds; region.data = NULL; RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, ®ion); } kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; list_del(&crtc->shadow_link); } if (RegionNotEmpty(&sna->mode.shadow_region)) { DBG(("%s: copying existing GPU damage: %dx(%d, %d), (%d, %d)\n", __FUNCTION__, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); ret = sna->render.copy_boxes(sna, GXcopy, &pixmap->drawable, priv->gpu_bo, 0, 0, &pixmap->drawable, bo, 0, 0, region_rects(&sna->mode.shadow_region), region_num_rects(&sna->mode.shadow_region), 0); } if (priv->cow) sna_pixmap_undo_cow(sna, priv, 0); sna_pixmap_unmap(pixmap, priv); DBG(("%s: setting front pixmap to handle=%d\n", __FUNCTION__, bo->handle)); tmp = priv->gpu_bo; priv->gpu_bo = bo; if (bo != sna->mode.shadow) kgem_bo_destroy(&sna->kgem, sna->mode.shadow); sna->mode.shadow = tmp; sna_dri2_pixmap_update_bo(sna, pixmap, bo); done: RegionEmpty(&sna->mode.shadow_cancel); RegionEmpty(&sna->mode.shadow_region); sna->mode.shadow_dirty = false; priv->move_to_gpu_data = NULL; priv->move_to_gpu = NULL; return ret; } bool sna_pixmap_discard_shadow_damage(struct sna_pixmap *priv, const RegionRec *region) { struct sna *sna; if (priv->move_to_gpu != wait_for_shadow) return false; sna = priv->move_to_gpu_data; if (region) { DBG(("%s: discarding region %dx[(%d, %d), (%d, %d)] from damage %dx[(%d, %d], (%d, %d)]\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, (RegionPtr)region); RegionUnion(&sna->mode.shadow_cancel, &sna->mode.shadow_cancel, (RegionPtr)region); } else { DBG(("%s: discarding all damage %dx[(%d, %d], (%d, %d)]\n", __FUNCTION__, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); RegionEmpty(&sna->mode.shadow_region); RegionUninit(&sna->mode.shadow_cancel); sna->mode.shadow_cancel.extents.x1 = 0; sna->mode.shadow_cancel.extents.y1 = 0; sna->mode.shadow_cancel.extents.x2 = sna->front->drawable.width; sna->mode.shadow_cancel.extents.y2 = sna->front->drawable.height; sna->mode.shadow_cancel.data = NULL; } return RegionNil(&sna->mode.shadow_region); } static bool sna_mode_enable_shadow(struct sna *sna) { ScreenPtr screen = sna->scrn->pScreen; DBG(("%s\n", __FUNCTION__)); assert(sna->mode.shadow == NULL); assert(sna->mode.shadow_damage == NULL); assert(sna->mode.shadow_active == 0); sna->mode.shadow_damage = DamageCreate(NULL, NULL, DamageReportNone, TRUE, screen, screen); if (!sna->mode.shadow_damage) return false; DamageRegister(&sna->front->drawable, sna->mode.shadow_damage); return true; } static void sna_mode_disable_shadow(struct sna *sna) { struct sna_pixmap *priv; if (!sna->mode.shadow_damage) return; DBG(("%s\n", __FUNCTION__)); priv = sna_pixmap(sna->front); if (priv->move_to_gpu == wait_for_shadow) priv->move_to_gpu(sna, priv, 0); DamageUnregister(&sna->front->drawable, sna->mode.shadow_damage); DamageDestroy(sna->mode.shadow_damage); sna->mode.shadow_damage = NULL; if (sna->mode.shadow) { kgem_bo_destroy(&sna->kgem, sna->mode.shadow); sna->mode.shadow = NULL; } assert(sna->mode.shadow_active == 0); sna->mode.shadow_dirty = false; } static void sna_crtc_slave_damage(DamagePtr damage, RegionPtr region, void *closure) { struct sna_crtc *crtc = closure; struct sna *sna = to_sna(crtc->base->scrn); RegionPtr scr; DBG(("%s: pushing damage [(%d, %d), (%d, %d) x %d] to CRTC [pipe=%d] (%d, %d)\n", __FUNCTION__, region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(region), crtc->pipe, crtc->base->x, crtc->base->y)); assert(crtc->slave_damage == damage); assert(sna->mode.shadow_damage); RegionTranslate(region, crtc->base->x, crtc->base->y); scr = DamageRegion(sna->mode.shadow_damage); RegionUnion(scr, scr, region); RegionTranslate(region, -crtc->base->x, -crtc->base->y); } static bool sna_crtc_enable_shadow(struct sna *sna, struct sna_crtc *crtc) { if (crtc->shadow) { assert(sna->mode.shadow_damage && sna->mode.shadow_active); return true; } DBG(("%s: enabling for crtc %d\n", __FUNCTION__, crtc->id)); if (!sna->mode.shadow_active) { if (!sna_mode_enable_shadow(sna)) return false; assert(sna->mode.shadow_damage); assert(sna->mode.shadow == NULL); } if (crtc->slave_pixmap) { assert(crtc->slave_damage == NULL); crtc->slave_damage = DamageCreate(sna_crtc_slave_damage, NULL, DamageReportRawRegion, TRUE, sna->scrn->pScreen, crtc); if (crtc->slave_damage == NULL) { if (!--sna->mode.shadow_active) sna_mode_disable_shadow(sna); return false; } DamageRegister(&crtc->slave_pixmap->drawable, crtc->slave_damage); } crtc->shadow = true; sna->mode.shadow_active++; return true; } static void sna_crtc_disable_override(struct sna *sna, struct sna_crtc *crtc) { if (crtc->shadow_bo == NULL) return; if (!crtc->transform) { DrawableRec tmp; tmp.width = crtc->base->mode.HDisplay; tmp.height = crtc->base->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; sna->render.copy_boxes(sna, GXcopy, &tmp, crtc->shadow_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &sna->front->drawable, __sna_pixmap_get_bo(sna->front), 0, 0, &crtc->base->bounds, 1, 0); list_del(&crtc->shadow_link); } kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; } static void sna_crtc_disable_shadow(struct sna *sna, struct sna_crtc *crtc) { crtc->fallback_shadow = false; if (!crtc->shadow) return; DBG(("%s: disabling for crtc %d\n", __FUNCTION__, crtc->id)); assert(sna->mode.shadow_active > 0); if (crtc->slave_damage) { assert(crtc->slave_pixmap); DamageUnregister(&crtc->slave_pixmap->drawable, crtc->slave_damage); DamageDestroy(crtc->slave_damage); crtc->slave_damage = NULL; } sna_crtc_disable_override(sna, crtc); if (!--sna->mode.shadow_active) sna_mode_disable_shadow(sna); crtc->shadow = false; } static void sna_crtc_disable(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc arg; if (sna_crtc == NULL) return; DBG(("%s: disabling crtc [%d, pipe=%d]\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe)); sna_crtc_force_outputs_off(crtc); memset(&arg, 0, sizeof(arg)); arg.crtc_id = sna_crtc->id; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg); sna_crtc->mode_serial++; sna_crtc_disable_cursor(sna, sna_crtc); rotation_set(sna, &sna_crtc->primary, RR_Rotate_0); sna_crtc_disable_shadow(sna, sna_crtc); if (sna_crtc->bo) { assert(sna_crtc->bo->active_scanout); assert(sna_crtc->bo->refcnt >= sna_crtc->bo->active_scanout); sna_crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, sna_crtc->bo); sna_crtc->bo = NULL; assert(sna->mode.front_active); sna->mode.front_active--; sna->mode.dirty = true; } sna_crtc->transform = false; assert(sna_crtc->dpms_mode == DPMSModeOff); assert(!sna_crtc->shadow); } static void update_flush_interval(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i, max_vrefresh = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; assert(to_sna_crtc(crtc) != NULL); if (!crtc->enabled) { DBG(("%s: CRTC:%d (pipe %d) disabled\n", __FUNCTION__,i, to_sna_crtc(crtc)->pipe)); assert(to_sna_crtc(crtc)->bo == NULL); continue; } if (to_sna_crtc(crtc)->dpms_mode != DPMSModeOn) { DBG(("%s: CRTC:%d (pipe %d) turned off\n", __FUNCTION__,i, to_sna_crtc(crtc)->pipe)); continue; } DBG(("%s: CRTC:%d (pipe %d) vrefresh=%f\n", __FUNCTION__, i, to_sna_crtc(crtc)->pipe, xf86ModeVRefresh(&crtc->mode))); max_vrefresh = max(max_vrefresh, xf86ModeVRefresh(&crtc->mode)); } if (max_vrefresh == 0) { assert(sna->mode.front_active == 0); sna->vblank_interval = 0; } else sna->vblank_interval = 1000 / max_vrefresh; /* Hz -> ms */ DBG(("max_vrefresh=%d, vblank_interval=%d ms\n", max_vrefresh, sna->vblank_interval)); } static struct kgem_bo *sna_create_bo_for_fbcon(struct sna *sna, const struct drm_mode_fb_cmd *fbcon) { struct drm_gem_flink flink; struct kgem_bo *bo; int ret; /* Create a new reference for the fbcon so that we can track it * using a normal bo and so that when we call gem_close on it we * delete our reference and not fbcon's! */ VG_CLEAR(flink); flink.handle = fbcon->handle; ret = drmIoctl(sna->kgem.fd, DRM_IOCTL_GEM_FLINK, &flink); if (ret) return NULL; bo = kgem_create_for_name(&sna->kgem, flink.name); if (bo == NULL) return NULL; bo->pitch = fbcon->pitch; return bo; } /* Copy the current framebuffer contents into the front-buffer for a seamless * transition from e.g. plymouth. */ void sna_copy_fbcon(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_fb_cmd fbcon; PixmapRec scratch; struct sna_pixmap *priv; struct kgem_bo *bo; BoxRec box; bool ok; int sx, sy; int dx, dy; int i; if (wedged(sna)) return; DBG(("%s\n", __FUNCTION__)); assert((sna->flags & SNA_IS_HOSTED) == 0); priv = sna_pixmap(sna->front); assert(priv && priv->gpu_bo); /* Scan the connectors for a framebuffer and assume that is the fbcon */ VG_CLEAR(fbcon); fbcon.fb_id = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = to_sna_crtc(config->crtc[i]); struct drm_mode_crtc mode; assert(crtc != NULL); VG_CLEAR(mode); mode.crtc_id = crtc->id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; if (!mode.fb_id) continue; fbcon.fb_id = mode.fb_id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETFB, &fbcon)) { fbcon.fb_id = 0; continue; } break; } if (fbcon.fb_id == 0) { DBG(("%s: no fbcon found\n", __FUNCTION__)); return; } if (fbcon.fb_id == fb_id(priv->gpu_bo)) { DBG(("%s: fb already installed as scanout\n", __FUNCTION__)); return; } DBG(("%s: found fbcon, size=%dx%d, depth=%d, bpp=%d\n", __FUNCTION__, fbcon.width, fbcon.height, fbcon.depth, fbcon.bpp)); bo = sna_create_bo_for_fbcon(sna, &fbcon); if (bo == NULL) return; DBG(("%s: fbcon handle=%d\n", __FUNCTION__, bo->handle)); scratch.drawable.width = fbcon.width; scratch.drawable.height = fbcon.height; scratch.drawable.depth = fbcon.depth; scratch.drawable.bitsPerPixel = fbcon.bpp; scratch.devPrivate.ptr = NULL; box.x1 = box.y1 = 0; box.x2 = min(fbcon.width, sna->front->drawable.width); box.y2 = min(fbcon.height, sna->front->drawable.height); sx = dx = 0; if (box.x2 < (uint16_t)fbcon.width) sx = (fbcon.width - box.x2) / 2; if (box.x2 < sna->front->drawable.width) dx = (sna->front->drawable.width - box.x2) / 2; sy = dy = 0; if (box.y2 < (uint16_t)fbcon.height) sy = (fbcon.height - box.y2) / 2; if (box.y2 < sna->front->drawable.height) dy = (sna->front->drawable.height - box.y2) / 2; ok = sna->render.copy_boxes(sna, GXcopy, &scratch.drawable, bo, sx, sy, &sna->front->drawable, priv->gpu_bo, dx, dy, &box, 1, 0); if (!DAMAGE_IS_ALL(priv->gpu_damage)) sna_damage_add_box(&priv->gpu_damage, &box); kgem_bo_destroy(&sna->kgem, bo); #if ABI_VIDEODRV_VERSION >= SET_ABI_VERSION(10, 0) sna->scrn->pScreen->canDoBGNoneRoot = ok; #endif } static bool use_shadow(struct sna *sna, xf86CrtcPtr crtc) { RRTransformPtr transform; PictTransform crtc_to_fb; struct pict_f_transform f_crtc_to_fb, f_fb_to_crtc; unsigned long pitch_limit; struct sna_pixmap *priv; BoxRec b; assert(sna->scrn->virtualX && sna->scrn->virtualY); if (sna->flags & SNA_FORCE_SHADOW) { DBG(("%s: forcing shadow\n", __FUNCTION__)); return true; } if (to_sna_crtc(crtc)->fallback_shadow) { DBG(("%s: fallback shadow\n", __FUNCTION__)); return true; } if (sna->flags & SNA_TEAR_FREE && to_sna_crtc(crtc)->slave_pixmap) { DBG(("%s: tear-free shadow required\n", __FUNCTION__)); return true; } if (sna->scrn->virtualX > sna->mode.max_crtc_width || sna->scrn->virtualY > sna->mode.max_crtc_height) { DBG(("%s: framebuffer too large (%dx%d) > (%dx%d)\n", __FUNCTION__, sna->scrn->virtualX, sna->scrn->virtualY, sna->mode.max_crtc_width, sna->mode.max_crtc_height)); return true; } priv = sna_pixmap_force_to_gpu(sna->front, MOVE_READ); if (priv == NULL) return true; /* maybe we can create a bo for the scanout? */ if (sna->kgem.gen == 071) pitch_limit = priv->gpu_bo->tiling ? 16 * 1024 : 32 * 1024; else if ((sna->kgem.gen >> 3) > 4) pitch_limit = 32 * 1024; else if ((sna->kgem.gen >> 3) == 4) pitch_limit = priv->gpu_bo->tiling ? 16 * 1024 : 32 * 1024; else if ((sna->kgem.gen >> 3) == 3) pitch_limit = priv->gpu_bo->tiling ? 8 * 1024 : 16 * 1024; else pitch_limit = 8 * 1024; DBG(("%s: gpu bo handle=%d tiling=%d pitch=%d, limit=%d\n", __FUNCTION__, priv->gpu_bo->handle, priv->gpu_bo->tiling, priv->gpu_bo->pitch, pitch_limit)); if (priv->gpu_bo->pitch > pitch_limit) return true; if (priv->gpu_bo->tiling && sna->flags & SNA_LINEAR_FB) { DBG(("%s: gpu bo is tiled, need linear, forcing shadow\n", __FUNCTION__)); return true; } transform = NULL; if (crtc->transformPresent) transform = &crtc->transform; if (RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->rotation, transform, &crtc_to_fb, &f_crtc_to_fb, &f_fb_to_crtc)) { bool needs_transform = true; unsigned rotation = rotation_reduce(&to_sna_crtc(crtc)->primary, crtc->rotation); DBG(("%s: natively supported rotation? rotation=%x & supported=%x == %d\n", __FUNCTION__, crtc->rotation, to_sna_crtc(crtc)->primary.rotation.supported, !!(crtc->rotation & to_sna_crtc(crtc)->primary.rotation.supported))); if (to_sna_crtc(crtc)->primary.rotation.supported & rotation) needs_transform = RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, RR_Rotate_0, transform, NULL, NULL, NULL); if (needs_transform) { DBG(("%s: RandR transform present\n", __FUNCTION__)); return true; } } /* And finally check that it is entirely visible */ b.x1 = b.y1 = 0; b.x2 = crtc->mode.HDisplay; b.y2 = crtc->mode.VDisplay; pixman_f_transform_bounds(&f_crtc_to_fb, &b); DBG(("%s? bounds (%d, %d), (%d, %d), framebufer %dx%d\n", __FUNCTION__, b.x1, b.y1, b.x2, b.y2, sna->scrn->virtualX, sna->scrn->virtualY)); if (b.x1 < 0 || b.y1 < 0 || b.x2 > sna->scrn->virtualX || b.y2 > sna->scrn->virtualY) { DBG(("%s: scanout is partly outside the framebuffer\n", __FUNCTION__)); return true; } return false; } static void set_shadow(struct sna *sna, RegionPtr region) { struct sna_pixmap *priv = sna_pixmap(sna->front); assert(priv->gpu_bo); assert(sna->mode.shadow); DBG(("%s: waiting for region %dx[(%d, %d), (%d, %d)], front handle=%d, shadow handle=%d\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, priv->gpu_bo->handle, sna->mode.shadow->handle)); assert(priv->pinned & PIN_SCANOUT); assert((priv->pinned & PIN_PRIME) == 0); assert(sna->mode.shadow != priv->gpu_bo); RegionCopy(&sna->mode.shadow_region, region); priv->move_to_gpu = wait_for_shadow; priv->move_to_gpu_data = sna; } static struct kgem_bo *sna_crtc_attach(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); ScrnInfoPtr scrn = crtc->scrn; struct sna *sna = to_sna(scrn); struct kgem_bo *bo; sna_crtc->transform = false; sna_crtc->rotation = RR_Rotate_0; if (use_shadow(sna, crtc)) { unsigned long tiled_limit; int tiling; if (!sna_crtc_enable_shadow(sna, sna_crtc)) { DBG(("%s: failed to enable crtc shadow\n")); return NULL; } DBG(("%s: attaching to per-crtc pixmap %dx%d\n", __FUNCTION__, crtc->mode.HDisplay, crtc->mode.VDisplay)); tiling = I915_TILING_X; if (sna->kgem.gen == 071) tiled_limit = 16 * 1024 * 8; else if ((sna->kgem.gen >> 3) > 4) tiled_limit = 32 * 1024 * 8; else if ((sna->kgem.gen >> 3) == 4) tiled_limit = 16 * 1024 * 8; else tiled_limit = 8 * 1024 * 8; if ((unsigned long)crtc->mode.HDisplay * scrn->bitsPerPixel > tiled_limit) tiling = I915_TILING_NONE; if (sna->flags & SNA_LINEAR_FB) tiling = I915_TILING_NONE; bo = kgem_create_2d(&sna->kgem, crtc->mode.HDisplay, crtc->mode.VDisplay, scrn->bitsPerPixel, tiling, CREATE_SCANOUT); if (bo == NULL) { DBG(("%s: failed to allocate crtc scanout\n")); return NULL; } if (!get_fb(sna, bo, crtc->mode.HDisplay, crtc->mode.VDisplay)) { DBG(("%s: failed to bind fb for crtc scanout\n")); kgem_bo_destroy(&sna->kgem, bo); return NULL; } sna_crtc->transform = true; return bo; } else { if (sna_crtc->slave_pixmap) { DBG(("%s: attaching to scanout pixmap\n", __FUNCTION__)); bo = sna_pixmap_pin(sna_crtc->slave_pixmap, PIN_SCANOUT); if (bo == NULL) { DBG(("%s: failed to pin crtc scanout\n")); return NULL; } if (!get_fb(sna, bo, sna_crtc->slave_pixmap->drawable.width, sna_crtc->slave_pixmap->drawable.height)) { DBG(("%s: failed to bind fb for crtc scanout\n")); return NULL; } } else { DBG(("%s: attaching to framebuffer\n", __FUNCTION__)); bo = sna_pixmap_pin(sna->front, PIN_SCANOUT); if (bo == NULL) { DBG(("%s: failed to pin framebuffer\n", __FUNCTION__)); return NULL; } if (!get_fb(sna, bo, scrn->virtualX, scrn->virtualY)) { DBG(("%s: failed to bind fb for crtc scanout\n")); return NULL; } } if (sna->flags & SNA_TEAR_FREE) { assert(sna_crtc->slave_pixmap == NULL); DBG(("%s: enabling TearFree shadow\n", __FUNCTION__)); if (!sna_crtc_enable_shadow(sna, sna_crtc)) { DBG(("%s: failed to enable crtc shadow\n")); return NULL; } if (sna->mode.shadow == NULL) { RegionRec region; struct kgem_bo *shadow; DBG(("%s: creating TearFree shadow bo\n", __FUNCTION__)); region.extents.x1 = 0; region.extents.y1 = 0; region.extents.x2 = sna->scrn->virtualX; region.extents.y2 = sna->scrn->virtualY; region.data = NULL; shadow = kgem_create_2d(&sna->kgem, region.extents.x2, region.extents.y2, scrn->bitsPerPixel, kgem_choose_tiling(&sna->kgem, I915_TILING_X, region.extents.x2, region.extents.y2, sna->scrn->bitsPerPixel), CREATE_SCANOUT); if (shadow == NULL) { DBG(("%s: failed to allocate TearFree shadow bo\n", __FUNCTION__)); return NULL; } if (!get_fb(sna, shadow, region.extents.x2, region.extents.y2)) { DBG(("%s: failed to bind fb for TearFeee shadow\n")); kgem_bo_destroy(&sna->kgem, shadow); return NULL; } sna->mode.shadow = shadow; set_shadow(sna, ®ion); } sna_crtc_disable_override(sna, sna_crtc); } else sna_crtc_disable_shadow(sna, sna_crtc); sna_crtc->rotation = rotation_reduce(&sna_crtc->primary, crtc->rotation); assert(sna_crtc->primary.rotation.supported & sna_crtc->rotation); return kgem_bo_reference(bo); } } static void sna_crtc_randr(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct pict_f_transform f_crtc_to_fb, f_fb_to_crtc; PictTransform crtc_to_fb; PictFilterPtr filter; xFixed *params; int nparams; RRTransformPtr transform; int needs_transform; transform = NULL; if (crtc->transformPresent) transform = &crtc->transform; needs_transform = RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->rotation, transform, &crtc_to_fb, &f_crtc_to_fb, &f_fb_to_crtc); filter = NULL; params = NULL; nparams = 0; if (sna_crtc->transform) { #ifdef RANDR_12_INTERFACE if (transform) { if (transform->nparams) { params = malloc(transform->nparams * sizeof(xFixed)); if (params) { memcpy(params, transform->params, transform->nparams * sizeof(xFixed)); nparams = transform->nparams; filter = transform->filter; } } else filter = transform->filter; } #endif crtc->transform_in_use = needs_transform; } else crtc->transform_in_use = sna_crtc->rotation != RR_Rotate_0; crtc->crtc_to_framebuffer = crtc_to_fb; crtc->f_crtc_to_framebuffer = f_crtc_to_fb; crtc->f_framebuffer_to_crtc = f_fb_to_crtc; free(crtc->params); crtc->params = params; crtc->nparams = nparams; crtc->filter = filter; if (filter) { crtc->filter_width = filter->width; crtc->filter_height = filter->height; } else { crtc->filter_width = 0; crtc->filter_height = 0; } crtc->bounds.x1 = 0; crtc->bounds.x2 = crtc->mode.HDisplay; crtc->bounds.y1 = 0; crtc->bounds.y2 = crtc->mode.VDisplay; pixman_f_transform_bounds(&f_crtc_to_fb, &crtc->bounds); DBG(("%s: transform? %d, bounds (%d, %d), (%d, %d)\n", __FUNCTION__, crtc->transform_in_use, crtc->bounds.x1, crtc->bounds.y1, crtc->bounds.x2, crtc->bounds.y2)); } static void sna_crtc_damage(xf86CrtcPtr crtc) { ScreenPtr screen = crtc->scrn->pScreen; struct sna *sna = to_sna(crtc->scrn); RegionRec region, *damage; region.extents = crtc->bounds; region.data = NULL; if (region.extents.x1 < 0) region.extents.x1 = 0; if (region.extents.y1 < 0) region.extents.y1 = 0; if (region.extents.x2 > screen->width) region.extents.x2 = screen->width; if (region.extents.y2 > screen->height) region.extents.y2 = screen->height; DBG(("%s: marking crtc %d as completely damaged (%d, %d), (%d, %d)\n", __FUNCTION__, to_sna_crtc(crtc)->id, region.extents.x1, region.extents.y1, region.extents.x2, region.extents.y2)); assert(sna->mode.shadow_damage && sna->mode.shadow_active); damage = DamageRegion(sna->mode.shadow_damage); RegionUnion(damage, damage, ®ion); DBG(("%s: damage now %dx[(%d, %d), (%d, %d)]\n", __FUNCTION__, region_num_rects(damage), damage->extents.x1, damage->extents.y1, damage->extents.x2, damage->extents.y2)); } static char *outputs_for_crtc(xf86CrtcPtr crtc, char *outputs, int max) { struct sna *sna = to_sna(crtc->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); int len, i; for (i = len = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; len += snprintf(outputs+len, max-len, "%s, ", output->name); } assert(len >= 2); outputs[len-2] = '\0'; return outputs; } static const char *rotation_to_str(Rotation rotation) { switch (rotation & RR_Rotate_All) { case 0: case RR_Rotate_0: return "normal"; case RR_Rotate_90: return "left"; case RR_Rotate_180: return "inverted"; case RR_Rotate_270: return "right"; default: return "unknown"; } } static const char *reflection_to_str(Rotation rotation) { switch (rotation & RR_Reflect_All) { case 0: return "none"; case RR_Reflect_X: return "X axis"; case RR_Reflect_Y: return "Y axis"; case RR_Reflect_X | RR_Reflect_Y: return "X and Y axes"; default: return "invalid"; } } static Bool __sna_crtc_set_mode(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct kgem_bo *saved_bo, *bo; uint32_t saved_offset; bool saved_transform; saved_bo = sna_crtc->bo; saved_transform = sna_crtc->transform; saved_offset = sna_crtc->offset; sna_crtc->fallback_shadow = false; retry: /* Attach per-crtc pixmap or direct */ bo = sna_crtc_attach(crtc); if (bo == NULL) { xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "unable to attach scanout\n"); goto error; } kgem_bo_submit(&sna->kgem, bo); sna_crtc->bo = bo; if (!sna_crtc_apply(crtc)) { int err = errno; kgem_bo_destroy(&sna->kgem, bo); if (!sna_crtc->shadow) { sna_crtc->fallback_shadow = true; goto retry; } xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "failed to set mode: %s [%d]\n", strerror(err), err); goto error; } bo->active_scanout++; if (saved_bo) { assert(saved_bo->active_scanout); assert(saved_bo->refcnt >= saved_bo->active_scanout); saved_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, saved_bo); } sna_crtc_randr(crtc); if (sna_crtc->transform) sna_crtc_damage(crtc); sna->mode.front_active += saved_bo == NULL; sna->mode.dirty = true; return TRUE; error: sna_crtc->offset = saved_offset; sna_crtc->transform = saved_transform; sna_crtc->bo = saved_bo; return FALSE; } static Bool sna_crtc_set_mode_major(xf86CrtcPtr crtc, DisplayModePtr mode, Rotation rotation, int x, int y) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_modeinfo saved_kmode; char outputs[256]; if (mode->HDisplay == 0 || mode->VDisplay == 0) return FALSE; assert(sna_crtc); xf86DrvMsg(crtc->scrn->scrnIndex, X_INFO, "switch to mode %dx%d@%.1f on %s using pipe %d, position (%d, %d), rotation %s, reflection %s\n", mode->HDisplay, mode->VDisplay, xf86ModeVRefresh(mode), outputs_for_crtc(crtc, outputs, sizeof(outputs)), sna_crtc->pipe, x, y, rotation_to_str(rotation), reflection_to_str(rotation)); assert(mode->HDisplay <= sna->mode.max_crtc_width && mode->VDisplay <= sna->mode.max_crtc_height); #if HAS_GAMMA drmModeCrtcSetGamma(sna->kgem.fd, sna_crtc->id, crtc->gamma_size, crtc->gamma_red, crtc->gamma_green, crtc->gamma_blue); #endif saved_kmode = sna_crtc->kmode; mode_to_kmode(&sna_crtc->kmode, mode); if (__sna_crtc_set_mode(crtc)) return TRUE; sna_crtc->kmode = saved_kmode; return FALSE; } static void sna_crtc_dpms(xf86CrtcPtr crtc, int mode) { struct sna_crtc *priv = to_sna_crtc(crtc); DBG(("%s(pipe %d, dpms mode -> %d):= active=%d\n", __FUNCTION__, priv->pipe, mode, mode == DPMSModeOn)); if (priv->dpms_mode == mode) return; assert(priv); priv->dpms_mode = mode; if (mode == DPMSModeOn && crtc->enabled && priv->bo == NULL && !__sna_crtc_set_mode(crtc)) mode = DPMSModeOff; if (mode != DPMSModeOn) sna_crtc_disable(crtc); } void sna_mode_adjust_frame(struct sna *sna, int x, int y) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); xf86CrtcPtr crtc; int saved_x, saved_y; if ((unsigned)config->compat_output >= config->num_output) return; crtc = config->output[config->compat_output]->crtc; if (crtc == NULL || !crtc->enabled) return; if (crtc->x == x && crtc->y == y) return; saved_x = crtc->x; saved_y = crtc->y; crtc->x = x; crtc->y = y; if (to_sna_crtc(crtc) && !__sna_crtc_set_mode(crtc)) { crtc->x = saved_x; crtc->y = saved_y; } } static void sna_crtc_gamma_set(xf86CrtcPtr crtc, CARD16 *red, CARD16 *green, CARD16 *blue, int size) { assert(to_sna_crtc(crtc)); drmModeCrtcSetGamma(to_sna(crtc->scrn)->kgem.fd, to_sna_crtc(crtc)->id, size, red, green, blue); } static void sna_crtc_destroy(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); if (sna_crtc == NULL) return; free(sna_crtc); crtc->driver_private = NULL; } #if HAS_PIXMAP_SHARING static Bool sna_crtc_set_scanout_pixmap(xf86CrtcPtr crtc, PixmapPtr pixmap) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); if (sna_crtc == NULL) return FALSE; if (pixmap == sna_crtc->slave_pixmap) return TRUE; DBG(("%s: CRTC:%d, pipe=%d setting scanout pixmap=%ld\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, pixmap ? pixmap->drawable.serialNumber : 0)); /* Disable first so that we can unregister the damage tracking */ sna_crtc_disable_shadow(to_sna(crtc->scrn), sna_crtc); sna_crtc->slave_pixmap = pixmap; return TRUE; } #endif static const xf86CrtcFuncsRec sna_crtc_funcs = { #if XF86_CRTC_VERSION >= 1 .dpms = sna_crtc_dpms, #endif .set_mode_major = sna_crtc_set_mode_major, .gamma_set = sna_crtc_gamma_set, .destroy = sna_crtc_destroy, #if HAS_PIXMAP_SHARING .set_scanout_pixmap = sna_crtc_set_scanout_pixmap, #endif }; inline static bool prop_is_rotation(struct drm_mode_get_property *prop) { if ((prop->flags & (1 << 5)) == 0) return false; if (strcmp(prop->name, "rotation")) return false; return true; } static int plane_details(struct sna *sna, struct plane *p) { struct local_mode_obj_get_properties arg; uint64_t stack_props[24]; uint32_t *props = (uint32_t *)stack_props; uint64_t *values = stack_props + 8; int i, type = DRM_PLANE_TYPE_OVERLAY; memset(&arg, 0, sizeof(struct local_mode_obj_get_properties)); arg.obj_id = p->id; arg.obj_type = LOCAL_MODE_OBJECT_PLANE; arg.props_ptr = (uintptr_t)props; arg.prop_values_ptr = (uintptr_t)values; arg.count_props = 16; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES, &arg)) return -1; DBG(("%s: object %d (type %x) has %d props\n", __FUNCTION__, p->id, LOCAL_MODE_OBJECT_PLANE, arg.count_props)); if (arg.count_props > 16) { props = malloc(2*sizeof(uint64_t)*arg.count_props); if (props == NULL) return -1; values = (uint64_t *)props + arg.count_props; arg.props_ptr = (uintptr_t)props; arg.prop_values_ptr = (uintptr_t)values; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES, &arg)) arg.count_props = 0; } VG(VALGRIND_MAKE_MEM_DEFINED(arg.props_ptr, sizeof(uint32_t)*arg.count_props)); VG(VALGRIND_MAKE_MEM_DEFINED(arg.prop_values_ptr, sizeof(uint64_t)*arg.count_props)); for (i = 0; i < arg.count_props; i++) { struct drm_mode_get_property prop; memset(&prop, 0, sizeof(prop)); prop.prop_id = props[i]; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop)) { ERR(("%s: prop[%d].id=%d GETPROPERTY failed with errno=%d\n", __FUNCTION__, i, props[i], errno)); continue; } DBG(("%s: prop[%d] .id=%d, .name=%s, .flags=%x, .value=%ld\n", __FUNCTION__, i, (long)props[i], prop.name, prop.flags, (long)values[i])); if (strcmp(prop.name, "type") == 0) { type = values[i]; } else if (prop_is_rotation(&prop)) { struct drm_mode_property_enum *enums; p->rotation.prop = props[i]; p->rotation.current = values[i]; DBG(("%s: found rotation property .id=%d, value=%ld, num_enums=%d\n", __FUNCTION__, prop.prop_id, (long)values[i], prop.count_enum_blobs)); enums = malloc(prop.count_enum_blobs * sizeof(struct drm_mode_property_enum)); if (enums != NULL) { prop.count_values = 0; prop.enum_blob_ptr = (uintptr_t)enums; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop) == 0) { int j; /* XXX we assume that the mapping between kernel enum and * RandR remains fixed for our lifetimes. */ VG(VALGRIND_MAKE_MEM_DEFINED(enums, sizeof(*enums)*prop.count_enum_blobs)); for (j = 0; j < prop.count_enum_blobs; j++) { DBG(("%s: rotation[%d] = %s [%lx]\n", __FUNCTION__, j, enums[j].name, (long)enums[j].value)); p->rotation.supported |= 1 << enums[j].value; } } free(enums); } } } if (props != (uint32_t *)stack_props) free(props); DBG(("%s: plane=%d type=%d\n", __FUNCTION__, p->id, type)); return type; } static void sna_crtc_find_planes(struct sna *sna, struct sna_crtc *crtc) { #define LOCAL_IOCTL_SET_CAP DRM_IOWR(0x0d, struct local_set_cap) #define LOCAL_IOCTL_MODE_GETPLANERESOURCES DRM_IOWR(0xb5, struct local_mode_get_plane_res) #define LOCAL_IOCTL_MODE_GETPLANE DRM_IOWR(0xb6, struct local_mode_get_plane) struct local_set_cap { uint64_t name; uint64_t value; } cap; struct local_mode_get_plane_res { uint64_t plane_id_ptr; uint64_t count_planes; } r; uint32_t stack_planes[32]; uint32_t *planes = stack_planes; int i; VG_CLEAR(cap); cap.name = DRM_CLIENT_CAP_UNIVERSAL_PLANES; cap.value = 1; (void)drmIoctl(sna->kgem.fd, LOCAL_IOCTL_SET_CAP, &cap); VG_CLEAR(r); r.plane_id_ptr = (uintptr_t)planes; r.count_planes = ARRAY_SIZE(stack_planes); if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANERESOURCES, &r)) { ERR(("%s: GETPLANERESOURCES failed with errno=%d\n", __FUNCTION__, errno)); return; } DBG(("%s: %d planes\n", __FUNCTION__, r.count_planes)); if (r.count_planes > ARRAY_SIZE(stack_planes)) { planes = malloc(sizeof(uint32_t)*r.count_planes); if (planes == NULL) return; r.plane_id_ptr = (uintptr_t)planes; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANERESOURCES, &r)) r.count_planes = 0; } VG(VALGRIND_MAKE_MEM_DEFINED(planes, sizeof(uint32_t)*r.count_planes)); for (i = 0; i < r.count_planes; i++) { struct local_mode_get_plane { uint32_t plane_id; uint32_t crtc_id; uint32_t fb_id; uint32_t possible_crtcs; uint32_t gamma_size; uint32_t count_format_types; uint64_t format_type_ptr; } p; struct plane details; VG_CLEAR(p); p.plane_id = planes[i]; p.count_format_types = 0; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANE, &p)) continue; if ((p.possible_crtcs & (1 << crtc->pipe)) == 0) continue; DBG(("%s: plane %d is attached to our pipe=%d\n", __FUNCTION__, planes[i], crtc->pipe)); details.id = p.plane_id; details.rotation.prop = 0; details.rotation.supported = RR_Rotate_0; details.rotation.current = RR_Rotate_0; switch (plane_details(sna, &details)) { default: break; case DRM_PLANE_TYPE_PRIMARY: crtc->primary = details; break; case DRM_PLANE_TYPE_CURSOR: break; case DRM_PLANE_TYPE_OVERLAY: if (crtc->sprite.id == 0) crtc->sprite = details; break; } } if (planes != stack_planes) free(planes); } static void sna_crtc_init__rotation(struct sna *sna, struct sna_crtc *crtc) { crtc->rotation = RR_Rotate_0; crtc->primary.rotation.supported = RR_Rotate_0; crtc->primary.rotation.current = RR_Rotate_0; crtc->sprite.rotation = crtc->primary.rotation; } static void sna_crtc_init__cursor(struct sna *sna, struct sna_crtc *crtc) { struct drm_mode_cursor arg; VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = crtc->id; arg.width = arg.height = 0; arg.handle = 0; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg); } static bool sna_crtc_add(ScrnInfoPtr scrn, int id) { struct sna *sna = to_sna(scrn); xf86CrtcPtr crtc; struct sna_crtc *sna_crtc; struct drm_i915_get_pipe_from_crtc_id get_pipe; DBG(("%s(%d)\n", __FUNCTION__, id)); sna_crtc = calloc(sizeof(struct sna_crtc), 1); if (sna_crtc == NULL) return false; sna_crtc->id = id; sna_crtc->dpms_mode = -1; VG_CLEAR(get_pipe); get_pipe.pipe = 0; get_pipe.crtc_id = sna_crtc->id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &get_pipe)) { free(sna_crtc); return false; } sna_crtc->pipe = get_pipe.pipe; if (xf86IsEntityShared(scrn->entityList[0]) && scrn->confScreen->device->screen != sna_crtc->pipe) { free(sna_crtc); return true; } sna_crtc_init__rotation(sna, sna_crtc); sna_crtc_find_planes(sna, sna_crtc); DBG(("%s: CRTC:%d [pipe=%d], primary id=%x: supported-rotations=%x, current-rotation=%x, sprite id=%x: supported-rotations=%x, current-rotation=%x\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, sna_crtc->primary.id, sna_crtc->primary.rotation.supported, sna_crtc->primary.rotation.current, sna_crtc->sprite.id, sna_crtc->sprite.rotation.supported, sna_crtc->sprite.rotation.current)); list_init(&sna_crtc->shadow_link); crtc = xf86CrtcCreate(scrn, &sna_crtc_funcs); if (crtc == NULL) { free(sna_crtc); return false; } sna_crtc_init__cursor(sna, sna_crtc); crtc->driver_private = sna_crtc; sna_crtc->base = crtc; DBG(("%s: attached crtc[%d] pipe=%d\n", __FUNCTION__, id, sna_crtc->pipe)); return true; } static bool is_panel(int type) { #define DRM_MODE_CONNECTOR_LVDS 7 #define DRM_MODE_CONNECTOR_eDP 14 #define DRM_MODE_CONNECTOR_DSI 16 return (type == DRM_MODE_CONNECTOR_LVDS || type == DRM_MODE_CONNECTOR_eDP || type == DRM_MODE_CONNECTOR_DSI); } static int find_property(struct sna *sna, struct sna_output *output, const char *name) { struct drm_mode_get_property prop; int i; VG_CLEAR(prop); for (i = 0; i < output->num_props; i++) { prop.prop_id = output->prop_ids[i]; prop.count_values = 0; prop.count_enum_blobs = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop)) continue; if (strcmp(prop.name, name) == 0) return i; } return -1; } static xf86OutputStatus sna_output_detect(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; union compat_mode_get_connector compat_conn; DBG(("%s(%s:%d)\n", __FUNCTION__, output->name, sna_output->id)); if (!sna_output->id) { DBG(("%s(%s) hiding due to lost connection\n", __FUNCTION__, output->name)); return XF86OutputStatusDisconnected; } VG_CLEAR(compat_conn); compat_conn.conn.connector_id = sna_output->id; sna_output->num_modes = compat_conn.conn.count_modes = 0; /* reprobe */ compat_conn.conn.count_encoders = 0; compat_conn.conn.count_props = sna_output->num_props; compat_conn.conn.props_ptr = (uintptr_t)sna_output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)sna_output->prop_values; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) return XF86OutputStatusUnknown; DBG(("%s(%s): num modes %d -> %d, num props %d -> %d\n", __FUNCTION__, output->name, sna_output->num_modes, compat_conn.conn.count_modes, sna_output->num_props, compat_conn.conn.count_props)); assert(compat_conn.conn.count_props == sna_output->num_props); while (compat_conn.conn.count_modes && compat_conn.conn.count_modes != sna_output->num_modes) { struct drm_mode_modeinfo *new_modes; int old_count; old_count = sna_output->num_modes; new_modes = realloc(sna_output->modes, sizeof(*sna_output->modes)*compat_conn.conn.count_modes); if (new_modes == NULL) break; sna_output->modes = new_modes; sna_output->num_modes = compat_conn.conn.count_modes; compat_conn.conn.modes_ptr = (uintptr_t)sna_output->modes; compat_conn.conn.count_encoders = 0; compat_conn.conn.count_props = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { sna_output->num_modes = min(old_count, sna_output->num_modes); break; } VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->modes, sizeof(*sna_output->modes)*sna_output->num_modes)); } DBG(("%s(%s): found %d modes, connection status=%d\n", __FUNCTION__, output->name, sna_output->num_modes, compat_conn.conn.connection)); switch (compat_conn.conn.connection) { case DRM_MODE_CONNECTED: return XF86OutputStatusConnected; case DRM_MODE_DISCONNECTED: return XF86OutputStatusDisconnected; default: case DRM_MODE_UNKNOWNCONNECTION: return XF86OutputStatusUnknown; } } static Bool sna_output_mode_valid(xf86OutputPtr output, DisplayModePtr mode) { struct sna_output *sna_output = output->driver_private; struct sna *sna = to_sna(output->scrn); if (mode->HDisplay > sna->mode.max_crtc_width) return MODE_VIRTUAL_X; if (mode->VDisplay > sna->mode.max_crtc_height) return MODE_VIRTUAL_Y; /* Check that we can successfully pin this into the global GTT */ if ((kgem_can_create_2d(&sna->kgem, mode->HDisplay, mode->VDisplay, sna->scrn->bitsPerPixel) & KGEM_CAN_CREATE_GTT) == 0) return MODE_MEM_VIRT; /* * If the connector type is a panel, we will use the panel limit to * verfiy whether the mode is valid. */ if (sna_output->has_panel_limits) { if (mode->HDisplay > sna_output->panel_hdisplay || mode->VDisplay > sna_output->panel_vdisplay) return MODE_PANEL; } return MODE_OK; } static void sna_output_attach_edid(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; struct drm_mode_get_blob blob; void *old, *raw = NULL; xf86MonPtr mon = NULL; if (sna_output->edid_idx == -1) return; raw = sna_output->edid_raw; blob.length = sna_output->edid_len; if (blob.length && output->MonInfo) { old = alloca(blob.length); memcpy(old, raw, blob.length); } else old = NULL; blob.blob_id = sna_output->prop_values[sna_output->edid_idx]; DBG(("%s: attaching EDID id=%d, current=%d\n", __FUNCTION__, blob.blob_id, sna_output->edid_blob_id)); if (blob.blob_id == sna_output->edid_blob_id && 0) { /* sigh */ if (output->MonInfo) { /* XXX the property keeps on disappearing... */ RRChangeOutputProperty(output->randr_output, MakeAtom("EDID", strlen("EDID"), TRUE), XA_INTEGER, 8, PropModeReplace, sna_output->edid_len, sna_output->edid_raw, FALSE, FALSE); return; } goto skip_read; } blob.data = (uintptr_t)raw; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) goto done; DBG(("%s: retrieving blob id=%d, length=%d\n", __FUNCTION__, blob.blob_id, blob.length)); if (blob.length > sna_output->edid_len) { raw = realloc(raw, blob.length); if (raw == NULL) goto done; VG(memset(raw, 0, blob.length)); blob.data = (uintptr_t)raw; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) goto done; } if (old && blob.length == sna_output->edid_len && memcmp(old, raw, blob.length) == 0) { assert(sna_output->edid_raw == raw); sna_output->edid_blob_id = blob.blob_id; RRChangeOutputProperty(output->randr_output, MakeAtom("EDID", strlen("EDID"), TRUE), XA_INTEGER, 8, PropModeReplace, sna_output->edid_len, sna_output->edid_raw, FALSE, FALSE); return; } skip_read: if (raw) { mon = xf86InterpretEDID(output->scrn->scrnIndex, raw); if (mon && blob.length > 128) mon->flags |= MONITOR_EDID_COMPLETE_RAWDATA; } done: xf86OutputSetEDID(output, mon); if (raw) { sna_output->edid_raw = raw; sna_output->edid_len = blob.length; sna_output->edid_blob_id = blob.blob_id; } } static DisplayModePtr default_modes(void) { #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,6,99,900,0) return xf86GetDefaultModes(); #else return xf86GetDefaultModes(0, 0); #endif } static DisplayModePtr sna_output_panel_edid(xf86OutputPtr output, DisplayModePtr modes) { xf86MonPtr mon = output->MonInfo; DisplayModePtr i, m, preferred = NULL; int max_x = 0, max_y = 0; float max_vrefresh = 0.0; if (mon && GTF_SUPPORTED(mon->features.msc)) return modes; for (m = modes; m; m = m->next) { if (m->type & M_T_PREFERRED) preferred = m; max_x = max(max_x, m->HDisplay); max_y = max(max_y, m->VDisplay); max_vrefresh = max(max_vrefresh, xf86ModeVRefresh(m)); } max_vrefresh = max(max_vrefresh, 60.0); max_vrefresh *= (1 + SYNC_TOLERANCE); m = default_modes(); xf86ValidateModesSize(output->scrn, m, max_x, max_y, 0); for (i = m; i; i = i->next) { if (xf86ModeVRefresh(i) > max_vrefresh) i->status = MODE_VSYNC; if (preferred && i->HDisplay >= preferred->HDisplay && i->VDisplay >= preferred->VDisplay && xf86ModeVRefresh(i) >= xf86ModeVRefresh(preferred)) i->status = MODE_PANEL; } xf86PruneInvalidModes(output->scrn, &m, FALSE); return xf86ModesAdd(modes, m); } static DisplayModePtr sna_output_get_modes(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; DisplayModePtr Modes = NULL, current = NULL; int i; DBG(("%s(%s:%d)\n", __FUNCTION__, output->name, sna_output->id)); assert(sna_output->id); sna_output_attach_edid(output); if (output->crtc) { struct drm_mode_crtc mode; VG_CLEAR(mode); assert(to_sna_crtc(output->crtc)); mode.crtc_id = to_sna_crtc(output->crtc)->id; if (drmIoctl(to_sna(output->scrn)->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode) == 0) { DBG(("%s: CRTC:%d, pipe=%d: has mode?=%d\n", __FUNCTION__, to_sna_crtc(output->crtc)->id, to_sna_crtc(output->crtc)->pipe, mode.mode_valid && mode.mode.clock)); if (mode.mode_valid && mode.mode.clock) { current = calloc(1, sizeof(DisplayModeRec)); if (current) { mode_from_kmode(output->scrn, &mode.mode, current); current->type |= M_T_DRIVER | M_T_PREFERRED; } } } } DBG(("%s: adding %d probed modes\n", __FUNCTION__, sna_output->num_modes)); for (i = 0; i < sna_output->num_modes; i++) { DisplayModePtr mode; mode = calloc(1, sizeof(DisplayModeRec)); if (mode == NULL) continue; mode = mode_from_kmode(output->scrn, &sna_output->modes[i], mode); Modes = xf86ModesAdd(Modes, mode); if (current && xf86ModesEqual(mode, current)) { free((void*)current->name); free(current); current = NULL; } if (current && mode->type & M_T_PREFERRED) current->type &= ~M_T_PREFERRED; } if (current) Modes = xf86ModesAdd(current, Modes); /* * If the connector type is a panel, we will traverse the kernel mode to * get the panel limit. And then add all the standard modes to fake * the fullscreen experience. * If it is incorrect, please fix me. */ sna_output->has_panel_limits = false; if (sna_output->is_panel) { sna_output->panel_hdisplay = sna_output->panel_vdisplay = 0; for (i = 0; i < sna_output->num_modes; i++) { struct drm_mode_modeinfo *m; m = &sna_output->modes[i]; if (m->hdisplay > sna_output->panel_hdisplay) sna_output->panel_hdisplay = m->hdisplay; if (m->vdisplay > sna_output->panel_vdisplay) sna_output->panel_vdisplay = m->vdisplay; } sna_output->has_panel_limits = sna_output->panel_hdisplay && sna_output->panel_vdisplay; } if (sna_output->add_default_modes) Modes = sna_output_panel_edid(output, Modes); return Modes; } static void sna_output_destroy(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; int i; if (sna_output == NULL) return; free(sna_output->edid_raw); for (i = 0; i < sna_output->num_props; i++) { if (sna_output->props[i].kprop == NULL) continue; if (sna_output->props[i].atoms) { if (output->randr_output) RRDeleteOutputProperty(output->randr_output, sna_output->props[i].atoms[0]); free(sna_output->props[i].atoms); } drmModeFreeProperty(sna_output->props[i].kprop); } free(sna_output->props); free(sna_output->prop_ids); free(sna_output->prop_values); backlight_close(&sna_output->backlight); free(sna_output); output->driver_private = NULL; } static void sna_output_dpms(xf86OutputPtr output, int dpms) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int old_dpms = sna_output->dpms_mode; DBG(("%s(%s:%d): dpms=%d (current: %d), active? %d\n", __FUNCTION__, output->name, sna_output->id, dpms, sna_output->dpms_mode, output->crtc != NULL)); if (!sna_output->id) return; if (old_dpms == dpms) return; /* Record the value of the backlight before turning * off the display, and reset if after turning it on. * Order is important as the kernel may record and also * reset the backlight across DPMS. Hence we need to * record the value before the kernel modifies it * and reapply it afterwards. */ if (sna_output->backlight.iface && dpms != DPMSModeOn) { if (old_dpms == DPMSModeOn) { sna_output->backlight_active_level = sna_output_backlight_get(output); DBG(("%s: saving current backlight %d\n", __FUNCTION__, sna_output->backlight_active_level)); } sna_output->dpms_mode = dpms; sna_output_backlight_set(sna_output, 0); } if (output->crtc && drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, sna_output->dpms_id, dpms)) dpms = old_dpms; if (sna_output->backlight.iface && dpms == DPMSModeOn) { DBG(("%s: restoring previous backlight %d\n", __FUNCTION__, sna_output->backlight_active_level)); sna_output_backlight_set(sna_output, sna_output->backlight_active_level); } sna_output->dpms_mode = dpms; } static bool sna_property_ignore(drmModePropertyPtr prop) { if (!prop) return true; /* ignore blob prop */ if (prop->flags & DRM_MODE_PROP_BLOB) return true; /* ignore standard property */ if (!strcmp(prop->name, "EDID") || !strcmp(prop->name, "DPMS")) return true; return false; } static void sna_output_create_ranged_atom(xf86OutputPtr output, Atom *atom, const char *name, INT32 min, INT32 max, uint64_t value, Bool immutable) { int err; INT32 atom_range[2]; atom_range[0] = min; atom_range[1] = max; *atom = MakeAtom(name, strlen(name), TRUE); err = RRConfigureOutputProperty(output->randr_output, *atom, FALSE, TRUE, immutable, 2, atom_range); if (err != 0) xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "RRConfigureOutputProperty error, %d\n", err); err = RRChangeOutputProperty(output->randr_output, *atom, XA_INTEGER, 32, PropModeReplace, 1, &value, FALSE, FALSE); if (err != 0) xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "RRChangeOutputProperty error, %d\n", err); } static void sna_output_create_resources(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int i, j, err; sna_output->props = calloc(sna_output->num_props, sizeof(struct sna_property)); if (!sna_output->props) return; for (i = 0; i < sna_output->num_props; i++) { struct sna_property *p = &sna_output->props[i]; p->kprop = drmModeGetProperty(sna->kgem.fd, sna_output->prop_ids[i]); if (sna_property_ignore(p->kprop)) { drmModeFreeProperty(p->kprop); p->kprop = NULL; continue; } if (p->kprop->flags & DRM_MODE_PROP_RANGE) { p->num_atoms = 1; p->atoms = calloc(p->num_atoms, sizeof(Atom)); if (!p->atoms) continue; sna_output_create_ranged_atom(output, &p->atoms[0], p->kprop->name, p->kprop->values[0], p->kprop->values[1], sna_output->prop_values[i], p->kprop->flags & DRM_MODE_PROP_IMMUTABLE ? TRUE : FALSE); } else if (p->kprop->flags & DRM_MODE_PROP_ENUM) { p->num_atoms = p->kprop->count_enums + 1; p->atoms = calloc(p->num_atoms, sizeof(Atom)); if (!p->atoms) continue; p->atoms[0] = MakeAtom(p->kprop->name, strlen(p->kprop->name), TRUE); for (j = 1; j <= p->kprop->count_enums; j++) { struct drm_mode_property_enum *e = &p->kprop->enums[j-1]; p->atoms[j] = MakeAtom(e->name, strlen(e->name), TRUE); } err = RRConfigureOutputProperty(output->randr_output, p->atoms[0], FALSE, FALSE, p->kprop->flags & DRM_MODE_PROP_IMMUTABLE ? TRUE : FALSE, p->num_atoms - 1, (INT32 *)&p->atoms[1]); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "RRConfigureOutputProperty error, %d\n", err); } for (j = 0; j < p->kprop->count_enums; j++) if (p->kprop->enums[j].value == sna_output->prop_values[i]) break; /* there's always a matching value */ err = RRChangeOutputProperty(output->randr_output, p->atoms[0], XA_ATOM, 32, PropModeReplace, 1, &p->atoms[j+1], FALSE, FALSE); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "RRChangeOutputProperty error, %d\n", err); } } } if (sna_output->backlight.iface) { /* Set up the backlight property, which takes effect * immediately and accepts values only within the * backlight_range. */ sna_output_create_ranged_atom(output, &backlight_atom, BACKLIGHT_NAME, 0, sna_output->backlight.max, sna_output->backlight_active_level, FALSE); sna_output_create_ranged_atom(output, &backlight_deprecated_atom, BACKLIGHT_DEPRECATED_NAME, 0, sna_output->backlight.max, sna_output->backlight_active_level, FALSE); } } static Bool sna_output_set_property(xf86OutputPtr output, Atom property, RRPropertyValuePtr value) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int i; if (property == backlight_atom || property == backlight_deprecated_atom) { INT32 val; int ret = 0; if (value->type != XA_INTEGER || value->format != 32 || value->size != 1) { return FALSE; } val = *(INT32 *)value->data; DBG(("%s: setting backlight to %d (max=%d)\n", __FUNCTION__, (int)val, sna_output->backlight.max)); if (val < 0 || val > sna_output->backlight.max) return FALSE; sna_output->backlight_active_level = val; if (sna_output->dpms_mode == DPMSModeOn) ret = sna_output_backlight_set(sna_output, val); return ret == 0; } if (!sna_output->id) return TRUE; for (i = 0; i < sna_output->num_props; i++) { struct sna_property *p = &sna_output->props[i]; if (p->atoms == NULL || p->atoms[0] != property) continue; if (p->kprop->flags & DRM_MODE_PROP_RANGE) { uint32_t val; if (value->type != XA_INTEGER || value->format != 32 || value->size != 1) return FALSE; val = *(uint32_t *)value->data; drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, p->kprop->prop_id, (uint64_t)val); return TRUE; } else if (p->kprop->flags & DRM_MODE_PROP_ENUM) { Atom atom; const char *name; int j; if (value->type != XA_ATOM || value->format != 32 || value->size != 1) return FALSE; memcpy(&atom, value->data, 4); name = NameForAtom(atom); if (name == NULL) return FALSE; /* search for matching name string, then set its value down */ for (j = 0; j < p->kprop->count_enums; j++) { if (!strcmp(p->kprop->enums[j].name, name)) { drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, p->kprop->prop_id, p->kprop->enums[j].value); return TRUE; } } return FALSE; } } /* We didn't recognise this property, just report success in order * to allow the set to continue, otherwise we break setting of * common properties like EDID. */ return TRUE; } static Bool sna_output_get_property(xf86OutputPtr output, Atom property) { struct sna_output *sna_output = output->driver_private; int err; if (property == backlight_atom || property == backlight_deprecated_atom) { INT32 val; if (!sna_output->backlight.iface) return FALSE; if (sna_output->dpms_mode == DPMSModeOn) { val = sna_output_backlight_get(output); if (val < 0) return FALSE; DBG(("%s(%s): output on, reporting actual backlight value [%d]\n", __FUNCTION__, output->name, val)); } else { val = sna_output->backlight_active_level; DBG(("%s(%s): output off, reporting cached backlight value [%d]\n", __FUNCTION__, output->name, val)); } err = RRChangeOutputProperty(output->randr_output, property, XA_INTEGER, 32, PropModeReplace, 1, &val, FALSE, FALSE); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "RRChangeOutputProperty error, %d\n", err); return FALSE; } return TRUE; } return FALSE; } static const xf86OutputFuncsRec sna_output_funcs = { .create_resources = sna_output_create_resources, #ifdef RANDR_12_INTERFACE .set_property = sna_output_set_property, .get_property = sna_output_get_property, #endif .dpms = sna_output_dpms, .detect = sna_output_detect, .mode_valid = sna_output_mode_valid, .get_modes = sna_output_get_modes, .destroy = sna_output_destroy }; static const int subpixel_conv_table[] = { SubPixelUnknown, SubPixelHorizontalRGB, SubPixelHorizontalBGR, SubPixelVerticalRGB, SubPixelVerticalBGR, SubPixelNone }; static const char * const output_names[] = { /* DRM_MODE_CONNECTOR_Unknown */ "None", /* DRM_MODE_CONNECTOR_VGA */ "VGA", /* DRM_MODE_CONNECTOR_DVII */ "DVI", /* DRM_MODE_CONNECTOR_DVID */ "DVI", /* DRM_MODE_CONNECTOR_DVIA */ "DVI", /* DRM_MODE_CONNECTOR_Composite */ "Composite", /* DRM_MODE_CONNECTOR_SVIDEO */ "TV", /* DRM_MODE_CONNECTOR_LVDS */ "LVDS", /* DRM_MODE_CONNECTOR_Component */ "CTV", /* DRM_MODE_CONNECTOR_9PinDIN */ "DIN", /* DRM_MODE_CONNECTOR_DisplayPort */ "DP", /* DRM_MODE_CONNECTOR_HDMIA */ "HDMI", /* DRM_MODE_CONNECTOR_HDMIB */ "HDMI", /* DRM_MODE_CONNECTOR_TV */ "TV", /* DRM_MODE_CONNECTOR_eDP */ "eDP", /* DRM_MODE_CONNECTOR_VIRTUAL */ "Virtual", /* DRM_MODE_CONNECTOR_DSI */ "DSI" }; static bool sna_zaphod_match(const char *s, const char *output) { char t[20]; unsigned int i = 0; do { /* match any outputs in a comma list, stopping at whitespace */ switch (*s) { case '\0': t[i] = '\0'; return strcmp(t, output) == 0; case ',': t[i] ='\0'; if (strcmp(t, output) == 0) return TRUE; i = 0; break; case ' ': case '\t': case '\n': case '\r': break; default: t[i++] = *s; break; } s++; } while (i < sizeof(t)); return false; } static bool output_ignored(ScrnInfoPtr scrn, const char *name) { char monitor_name[64]; const char *monitor; XF86ConfMonitorPtr conf; snprintf(monitor_name, sizeof(monitor_name), "monitor-%s", name); monitor = xf86findOptionValue(scrn->options, monitor_name); if (!monitor) monitor = name; conf = xf86findMonitor(monitor, xf86configptr->conf_monitor_lst); if (conf == NULL && XF86_CRTC_CONFIG_PTR(scrn)->num_output == 0) conf = xf86findMonitor(scrn->monitor->id, xf86configptr->conf_monitor_lst); if (conf == NULL) return false; return xf86CheckBoolOption(conf->mon_option_lst, "Ignore", 0); } static bool gather_encoders(struct sna *sna, uint32_t id, int count, struct drm_mode_get_encoder *out) { union compat_mode_get_connector compat_conn; struct drm_mode_modeinfo dummy; struct drm_mode_get_encoder enc; uint32_t *ids = NULL; VG_CLEAR(compat_conn); memset(out, 0, sizeof(*out)); do { free(ids); ids = malloc(sizeof(*ids) * count); if (ids == 0) return false; compat_conn.conn.connector_id = id; compat_conn.conn.count_props = 0; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = count; compat_conn.conn.encoders_ptr = (uintptr_t)ids; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: GETCONNECTOR[%d] failed, ret=%d\n", __FUNCTION__, id, errno)); compat_conn.conn.count_encoders = count = 0; } if (count == compat_conn.conn.count_encoders) break; count = compat_conn.conn.count_encoders; } while (1); for (count = 0; count < compat_conn.conn.count_encoders; count++) { enc.encoder_id = ids[count]; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc)) { DBG(("%s: GETENCODER[%d] failed, ret=%d\n", __FUNCTION__, ids[count], errno)); count = 0; break; } out->possible_crtcs |= enc.possible_crtcs; out->possible_clones |= enc.possible_clones; for (id = 0; id < sna->mode.num_real_encoder; id++) { if (enc.encoder_id == sna->mode.encoders[id]) { out->crtc_id |= 1 << id; break; } } } free(ids); return count > 0; } /* We need to map from kms encoder based possible_clones mask to X output based * possible clones masking. Note that for SDVO and on Haswell with DP/HDMI we * can have more than one output hanging off the same encoder. */ static void sna_mode_compute_possible_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int encoder_mask[32]; int i, j; assert(sna->mode.num_real_output < 32); assert(sna->mode.num_real_crtc < 32); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); assert(sna_output); if (sna_output->id) { output->possible_clones = sna_output->possible_encoders; encoder_mask[i] = sna_output->attached_encoders; } else { output->possible_clones = 0; encoder_mask[i] = 0; } } /* Convert from encoder numbering to output numbering */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; unsigned clones; if (output->possible_clones == 0) continue; clones = 0; for (j = 0; j < sna->mode.num_real_output; j++) if (i != j && output->possible_clones & encoder_mask[j]) clones |= 1 << j; output->possible_clones = clones; DBG(("%s: updated output '%s' %d [%d] (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); } } static int name_from_path(struct sna *sna, struct sna_output *sna_output, char *name) { struct drm_mode_get_blob blob; char buf[32], *path = buf; int id; id = find_property(sna, sna_output, "PATH"); DBG(("%s: found? PATH=%d\n", __FUNCTION__, id)); if (id == -1) return 0; VG_CLEAR(blob); blob.blob_id = sna_output->prop_values[id]; blob.length = sizeof(buf)-1; blob.data = (uintptr_t)path; VG(memset(path, 0, blob.length)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) return 0; if (blob.length >= sizeof(buf)) { path = alloca(blob.length + 1); blob.data = (uintptr_t)path; VG(memset(path, 0, blob.length)); DBG(("%s: reading %d bytes for path blob\n", __FUNCTION__, blob.length)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) return 0; } path[blob.length] = '\0'; /* paranoia */ DBG(("%s: PATH='%s'\n", __FUNCTION__, path)); /* we only handle MST paths for now */ if (strncmp(path, "mst:", 4) == 0) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); char tmp[5], *c; int n; c = strchr(path + 4, '-'); if (c == NULL) return 0; id = c - (path + 4); if (id + 1> 5) return 0; memcpy(tmp, path + 4, id); tmp[id] = '\0'; id = strtoul(tmp, NULL, 0); for (n = 0; n < sna->mode.num_real_output; n++) { if (to_sna_output(config->output[n])->id == id) return snprintf(name, 32, "%s-%s", config->output[n]->name, c + 1); } } return 0; } static int sna_output_add(struct sna *sna, unsigned id, unsigned serial) { ScrnInfoPtr scrn = sna->scrn; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); union compat_mode_get_connector compat_conn; struct drm_mode_get_encoder enc; struct drm_mode_modeinfo dummy; struct sna_output *sna_output; xf86OutputPtr *outputs, output; unsigned possible_encoders, attached_encoders, possible_crtcs; const char *output_name; char name[32]; int path, len, i; DBG(("%s(%d): serial=%d\n", __FUNCTION__, id, serial)); COMPILE_TIME_ASSERT(sizeof(struct drm_mode_get_connector) <= sizeof(compat_conn.pad)); VG_CLEAR(compat_conn); memset(&enc, 0, sizeof(enc)); compat_conn.conn.connector_id = id; compat_conn.conn.count_props = 0; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = 1; compat_conn.conn.encoders_ptr = (uintptr_t)&enc.encoder_id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: GETCONNECTOR[%d] failed, ret=%d\n", __FUNCTION__, id, errno)); return -1; } assert(compat_conn.conn.connector_id == id); if (compat_conn.conn.connector_type < ARRAY_SIZE(output_names)) output_name = output_names[compat_conn.conn.connector_type]; else output_name = "UNKNOWN"; len = snprintf(name, 32, "%s%d", output_name, compat_conn.conn.connector_type_id); if (output_ignored(scrn, name)) return 0; if (enc.encoder_id) { if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc)) { DBG(("%s: GETENCODER[%d] failed, ret=%d\n", __FUNCTION__, enc.encoder_id, errno)); return 0; } possible_encoders = enc.possible_clones; attached_encoders = 0; for (i = 0; i < sna->mode.num_real_encoder; i++) { if (enc.encoder_id == sna->mode.encoders[i]) { attached_encoders = 1 << i; break; } } if (attached_encoders == 0) { DBG(("%s: failed to find attached encoder\n", __FUNCTION__)); return 0; } possible_crtcs = enc.possible_crtcs; assert(enc.encoder_id == compat_conn.conn.encoder_id || compat_conn.conn.encoder_id == 0); } else { DBG(("%s: unexpected number [%d] of encoders attached\n", __FUNCTION__, compat_conn.conn.count_encoders)); if (!gather_encoders(sna, id, compat_conn.conn.count_encoders, &enc)) { DBG(("%s: gather encoders failed\n", __FUNCTION__)); return 0; } possible_encoders = enc.possible_clones; attached_encoders = enc.crtc_id; possible_crtcs = enc.possible_crtcs; memset(&enc, 0, sizeof(enc)); enc.encoder_id = compat_conn.conn.encoder_id; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc); } if (xf86IsEntityShared(scrn->entityList[0])) { const char *str; str = xf86GetOptValString(sna->Options, OPTION_ZAPHOD); if (str && !sna_zaphod_match(str, name)) { DBG(("%s: zaphod mismatch, want %s, have %s\n", __FUNCTION__, str, name)); return 0; } if ((possible_crtcs & (1 << scrn->confScreen->device->screen)) == 0) { if (str) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "%s is an invalid output for screen (pipe) %d\n", name, scrn->confScreen->device->screen); return -1; } else return 0; } possible_crtcs = 1; } sna_output = calloc(sizeof(struct sna_output), 1); if (!sna_output) return -1; sna_output->num_props = compat_conn.conn.count_props; sna_output->prop_ids = malloc(sizeof(uint32_t)*compat_conn.conn.count_props); sna_output->prop_values = malloc(sizeof(uint64_t)*compat_conn.conn.count_props); compat_conn.conn.count_encoders = 0; compat_conn.conn.count_modes = 1; compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_props = sna_output->num_props; compat_conn.conn.props_ptr = (uintptr_t)sna_output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)sna_output->prop_values; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: second! GETCONNECTOR failed, ret=%d\n", __FUNCTION__, errno)); goto cleanup; } assert(compat_conn.conn.connector_id == id); /* statically constructed property list */ assert(sna_output->num_props == compat_conn.conn.count_props); VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->prop_ids, sizeof(uint32_t)*sna_output->num_props)); VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->prop_values, sizeof(uint64_t)*sna_output->num_props)); /* Construct name from topology, and recheck if output is acceptable */ path = name_from_path(sna, sna_output, name); if (path) { const char *str; if (output_ignored(scrn, name)) { len = 0; goto skip; } str = xf86GetOptValString(sna->Options, OPTION_ZAPHOD); if (str && !sna_zaphod_match(str, name)) { DBG(("%s: zaphod mismatch, want %s, have %s\n", __FUNCTION__, str, name)); len = 0; goto skip; } len = path; } /* Check if we are dynamically reattaching an old connector */ if (serial) { for (i = 0; i < sna->mode.num_real_output; i++) { output = config->output[i]; if (strcmp(output->name, name) == 0) { assert(output->scrn == scrn); assert(output->funcs == &sna_output_funcs); assert(to_sna_output(output)->id == 0); sna_output_destroy(output); goto reset; } } } output = calloc(1, sizeof(*output) + len + 1); if (!output) goto cleanup; outputs = realloc(config->output, (config->num_output + 1) * sizeof(output)); if (outputs == NULL) { free(output); goto cleanup; } output->scrn = scrn; output->funcs = &sna_output_funcs; output->name = (char *)(output + 1); memcpy(output->name, name, len + 1); output->use_screen_monitor = config->num_output != 1; xf86OutputUseScreenMonitor(output, !output->use_screen_monitor); assert(output->options); DBG(("%s: inserting output #%d of %d\n", __FUNCTION__, sna->mode.num_real_output, config->num_output)); for (i = config->num_output; i > sna->mode.num_real_output; i--) { outputs[i] = outputs[i-1]; assert(outputs[i]->driver_private == NULL); outputs[i]->possible_clones <<= 1; } if (xf86ReturnOptValBool(output->options, OPTION_PRIMARY, FALSE)) { memmove(outputs + 1, outputs, sizeof(output)*config->num_output); outputs[0] = output; } else outputs[i] = output; sna->mode.num_real_output++; config->num_output++; config->output = outputs; reset: sna_output->id = compat_conn.conn.connector_id; sna_output->is_panel = is_panel(compat_conn.conn.connector_type); sna_output->edid_idx = find_property(sna, sna_output, "EDID"); if (find_property(sna, sna_output, "scaling mode") != -1) sna_output->add_default_modes = xf86ReturnOptValBool(output->options, OPTION_DEFAULT_MODES, TRUE); i = find_property(sna, sna_output, "DPMS"); if (i != -1) { sna_output->dpms_id = sna_output->prop_ids[i]; sna_output->dpms_mode = sna_output->prop_values[i]; DBG(("%s: found 'DPMS' (idx=%d, id=%d), initial value=%d\n", __FUNCTION__, i, sna_output->dpms_id, sna_output->dpms_mode)); } else { sna_output->dpms_id = -1; sna_output->dpms_mode = DPMSModeOff; } sna_output->possible_encoders = possible_encoders; sna_output->attached_encoders = attached_encoders; output->mm_width = compat_conn.conn.mm_width; output->mm_height = compat_conn.conn.mm_height; if (compat_conn.conn.subpixel >= ARRAY_SIZE(subpixel_conv_table)) compat_conn.conn.subpixel = 0; output->subpixel_order = subpixel_conv_table[compat_conn.conn.subpixel]; output->driver_private = sna_output; sna_output->base = output; backlight_init(&sna_output->backlight); if (sna_output->is_panel) sna_output_backlight_init(output); output->possible_crtcs = possible_crtcs & count_to_mask(sna->mode.num_real_crtc); output->interlaceAllowed = TRUE; if (serial) { if (output->randr_output == NULL) { output->randr_output = RROutputCreate(xf86ScrnToScreen(scrn), name, len, output); if (output->randr_output == NULL) goto cleanup; } sna_output_create_resources(output); RRPostPendingProperties(output->randr_output); sna_output->serial = serial; } else { /* stash the active CRTC id for our probe function */ if (compat_conn.conn.connection != DRM_MODE_DISCONNECTED) output->crtc = (void *)(uintptr_t)enc.crtc_id; } DBG(("%s: created output '%s' %d, encoder=%d (possible crtc:%x, attached encoders:%x, possible clones:%x), serial=%d, edid=%d, dpms=%d, crtc=%lu\n", __FUNCTION__, name, id, enc.encoder_id, (uint32_t)output->possible_crtcs, sna_output->attached_encoders, sna_output->possible_encoders, serial, sna_output->edid_idx, sna_output->dpms_id, (unsigned long)(uintptr_t)output->crtc)); assert(sna_output->id == id); xf86DrvMsg(scrn->scrnIndex, X_INFO, "Enabled output %s\n", output->name); return 1; cleanup: len = -1; skip: free(sna_output->prop_ids); free(sna_output->prop_values); free(sna_output); return len; } static void sna_output_del(xf86OutputPtr output) { ScrnInfoPtr scrn = output->scrn; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); int i; DBG(("%s(%s)\n", __FUNCTION__, output->name)); assert(to_sna_output(output)); RROutputDestroy(output->randr_output); sna_output_destroy(output); while (output->probed_modes) xf86DeleteMode(&output->probed_modes, output->probed_modes); free(output); for (i = 0; i < config->num_output; i++) if (config->output[i] == output) break; assert(i < to_sna(scrn)->mode.num_real_output); DBG(("%s: removing output #%d of %d\n", __FUNCTION__, i, to_sna(scrn)->mode.num_real_output)); for (; i < config->num_output; i++) { config->output[i] = config->output[i+1]; config->output[i]->possible_clones >>= 1; } config->num_output--; to_sna(scrn)->mode.num_real_output--; } static int output_rank(const void *A, const void *B) { const xf86OutputPtr *a = A; const xf86OutputPtr *b = B; struct sna_output *sa = to_sna_output(*a); struct sna_output *sb = to_sna_output(*b); if (sa->is_panel != sb->is_panel) return sb->is_panel - sa->is_panel; return strcmp((*a)->name, (*b)->name); } static void sort_config_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); qsort(config->output, sna->mode.num_real_output, sizeof(*config->output), output_rank); } static void sort_randr_outputs(struct sna *sna, ScreenPtr screen) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); rrScrPriv(screen); int i; assert(pScrPriv->numOutputs == config->num_output); for (i = 0; i < config->num_output; i++) { assert(config->output[i]->randr_output); pScrPriv->outputs[i] = config->output[i]->randr_output; } } static void disable_unused_crtc(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool update = false; int o, c; for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; if (!crtc->enabled) continue; for (o = 0; o < sna->mode.num_real_output; o++) { xf86OutputPtr output = config->output[o]; if (output->crtc == crtc) break; } if (o == sna->mode.num_real_output) { crtc->enabled = false; update = true; } } if (update) xf86DisableUnusedFunctions(sna->scrn); } void sna_mode_discover(struct sna *sna) { ScreenPtr screen = xf86ScrnToScreen(sna->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_card_res res; uint32_t connectors[32]; unsigned changed = 0; unsigned serial; int i, j; DBG(("%s()\n", __FUNCTION__)); VG_CLEAR(connectors); memset(&res, 0, sizeof(res)); res.count_connectors = 32; res.connector_id_ptr = (uintptr_t)connectors; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETRESOURCES, &res)) return; DBG(("%s: now %d (was %d) connectors\n", __FUNCTION__, res.count_connectors, sna->mode.num_real_output)); if (res.count_connectors > 32) return; assert(sna->mode.num_real_crtc == res.count_crtcs); assert(sna->mode.max_crtc_width == res.max_width); assert(sna->mode.max_crtc_height == res.max_height); assert(sna->mode.num_real_encoder == res.count_encoders); serial = ++sna->mode.serial; if (serial == 0) serial = ++sna->mode.serial; for (i = 0; i < res.count_connectors; i++) { DBG(("%s: connector[%d] = %d\n", __FUNCTION__, i, connectors[i])); for (j = 0; j < sna->mode.num_real_output; j++) { xf86OutputPtr output = config->output[j]; if (to_sna_output(output)->id == connectors[i]) { DBG(("%s: found %s (id=%d)\n", __FUNCTION__, output->name, connectors[i])); assert(to_sna_output(output)->id); to_sna_output(output)->serial = serial; break; } } if (j == sna->mode.num_real_output) { DBG(("%s: adding id=%d\n", __FUNCTION__, connectors[i])); changed |= sna_output_add(sna, connectors[i], serial) > 0; } } for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (to_sna_output(output)->id == 0) continue; if (to_sna_output(output)->serial == serial) continue; DBG(("%s: removing output %s (id=%d), serial=%u [now %u]\n", __FUNCTION__, output->name, to_sna_output(output)->id, to_sna_output(output)->serial, serial)); xf86DrvMsg(sna->scrn->scrnIndex, X_INFO, "%s output %s\n", sna->flags & SNA_REMOVE_OUTPUTS ? "Removed" : "Disabled", output->name); if (sna->flags & SNA_REMOVE_OUTPUTS) { sna_output_del(output); i--; } else { to_sna_output(output)->id = 0; output->crtc = NULL; } changed |= 2; } if (changed) { DBG(("%s: outputs changed, broadcasting\n", __FUNCTION__)); sna_mode_compute_possible_outputs(sna); sna_mode_set_primary(sna); /* Reorder user visible listing */ sort_config_outputs(sna); sort_randr_outputs(sna, screen); if (changed & 2) disable_unused_crtc(sna); xf86RandR12TellChanged(screen); } } static void copy_front(struct sna *sna, PixmapPtr old, PixmapPtr new) { struct sna_pixmap *old_priv, *new_priv; DBG(("%s\n", __FUNCTION__)); if (wedged(sna)) return; old_priv = sna_pixmap_force_to_gpu(old, MOVE_READ); if (!old_priv) return; new_priv = sna_pixmap_force_to_gpu(new, MOVE_WRITE); if (!new_priv) return; if (old_priv->clear) { (void)sna->render.fill_one(sna, new, new_priv->gpu_bo, old_priv->clear_color, 0, 0, new->drawable.width, new->drawable.height, GXcopy); new_priv->clear = true; new_priv->clear_color = old_priv->clear_color; } else { BoxRec box; int16_t sx, sy, dx, dy; if (new->drawable.width >= old->drawable.width && new->drawable.height >= old->drawable.height) { int nx = (new->drawable.width + old->drawable.width - 1) / old->drawable.width; int ny = (new->drawable.height + old->drawable.height - 1) / old->drawable.height; box.x1 = box.y1 = 0; dy = 0; for (sy = 0; sy < ny; sy++) { box.y2 = old->drawable.height; if (box.y2 + dy > new->drawable.height) box.y2 = new->drawable.height - dy; dx = 0; for (sx = 0; sx < nx; sx++) { box.x2 = old->drawable.width; if (box.x2 + dx > new->drawable.width) box.x2 = new->drawable.width - dx; (void)sna->render.copy_boxes(sna, GXcopy, &old->drawable, old_priv->gpu_bo, 0, 0, &new->drawable, new_priv->gpu_bo, dx, dy, &box, 1, 0); dx += old->drawable.width; } dy += old->drawable.height; } } else { box.x1 = box.y1 = 0; box.x2 = min(old->drawable.width, new->drawable.width); box.y2 = min(old->drawable.height, new->drawable.height); sx = dx = 0; if (box.x2 < old->drawable.width) sx = (old->drawable.width - box.x2) / 2; if (box.x2 < new->drawable.width) dx = (new->drawable.width - box.x2) / 2; sy = dy = 0; if (box.y2 < old->drawable.height) sy = (old->drawable.height - box.y2) / 2; if (box.y2 < new->drawable.height) dy = (new->drawable.height - box.y2) / 2; DBG(("%s: copying box (%dx%d) from (%d, %d) to (%d, %d)\n", __FUNCTION__, box.x2, box.y2, sx, sy, dx, dy)); if (box.x2 != new->drawable.width || box.y2 != new->drawable.height) { (void)sna->render.fill_one(sna, new, new_priv->gpu_bo, 0, 0, 0, new->drawable.width, new->drawable.height, GXclear); } (void)sna->render.copy_boxes(sna, GXcopy, &old->drawable, old_priv->gpu_bo, sx, sy, &new->drawable, new_priv->gpu_bo, dx, dy, &box, 1, 0); } } sna_damage_all(&new_priv->gpu_damage, new); } static Bool sna_mode_resize(ScrnInfoPtr scrn, int width, int height) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); ScreenPtr screen = scrn->pScreen; PixmapPtr new_front; int i; DBG(("%s (%d, %d) -> (%d, %d)\n", __FUNCTION__, scrn->virtualX, scrn->virtualY, width, height)); assert((sna->flags & SNA_IS_HOSTED) == 0); if (scrn->virtualX == width && scrn->virtualY == height) return TRUE; /* Paranoid defense against rogue internal calls by Xorg */ if (width == 0 || height == 0) return FALSE; assert(sna->front); assert(screen->GetScreenPixmap(screen) == sna->front); DBG(("%s: creating new framebuffer %dx%d\n", __FUNCTION__, width, height)); new_front = screen->CreatePixmap(screen, width, height, scrn->depth, SNA_CREATE_FB); if (!new_front) return FALSE; xf86DrvMsg(scrn->scrnIndex, X_INFO, "resizing framebuffer to %dx%d\n", width, height); for (i = 0; i < sna->mode.num_real_crtc; i++) sna_crtc_disable_shadow(sna, to_sna_crtc(config->crtc[i])); assert(sna->mode.shadow_active == 0); assert(sna->mode.shadow_damage == NULL); assert(sna->mode.shadow == NULL); copy_front(sna, sna->front, new_front); screen->SetScreenPixmap(new_front); assert(screen->GetScreenPixmap(screen) == new_front); assert(sna->front == new_front); screen->DestroyPixmap(new_front); /* owned by screen now */ scrn->virtualX = width; scrn->virtualY = height; scrn->displayWidth = width; /* Flush pending shadow updates */ if (sna->mode.flip_active) { DBG(("%s: waiting for %d outstanding TearFree flips\n", __FUNCTION__, sna->mode.flip_active)); while (sna->mode.flip_active && sna_mode_wait_for_event(sna)) sna_mode_wakeup(sna); } /* Only update the CRTCs if we are in control */ if (!scrn->vtSema) return TRUE; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; assert(to_sna_crtc(crtc) != NULL); if (!crtc->enabled) continue; if (!__sna_crtc_set_mode(crtc)) sna_crtc_disable(crtc); } while (sna_mode_has_pending_events(sna)) sna_mode_wakeup(sna); kgem_clean_scanout_cache(&sna->kgem); return TRUE; } /* cursor handling */ struct sna_cursor { struct sna_cursor *next; uint32_t *image; Rotation rotation; int ref; int size; int last_width; int last_height; unsigned handle; unsigned serial; unsigned alloc; }; static void rotate_coord(Rotation rotation, int size, int x_dst, int y_dst, int *x_src, int *y_src) { int t; switch (rotation & 0xf) { case RR_Rotate_0: break; case RR_Rotate_90: t = x_dst; x_dst = size - y_dst - 1; y_dst = t; break; case RR_Rotate_180: x_dst = size - x_dst - 1; y_dst = size - y_dst - 1; break; case RR_Rotate_270: t = x_dst; x_dst = y_dst; y_dst = size - t - 1; break; } if (rotation & RR_Reflect_X) x_dst = size - x_dst - 1; if (rotation & RR_Reflect_Y) y_dst = size - y_dst - 1; *x_src = x_dst; *y_src = y_dst; } static void rotate_coord_back(Rotation rotation, int size, int *x, int *y) { int t; if (rotation & RR_Reflect_X) *x = size - *x - 1; if (rotation & RR_Reflect_Y) *y = size - *y - 1; switch (rotation & 0xf) { case RR_Rotate_0: break; case RR_Rotate_90: t = *x; *x = *y; *y = size - t - 1; break; case RR_Rotate_180: *x = size - *x - 1; *y = size - *y - 1; break; case RR_Rotate_270: t = *x; *x = size - *y - 1; *y = t; break; } } static struct sna_cursor *__sna_create_cursor(struct sna *sna, int size) { struct sna_cursor *c; for (c = sna->cursor.cursors; c; c = c->next) { if (c->ref == 0 && c->alloc >= size) { __DBG(("%s: stealing handle=%d, serial=%d, rotation=%d, alloc=%d\n", __FUNCTION__, c->handle, c->serial, c->rotation, c->alloc)); return c; } } __DBG(("%s(size=%d, num_stash=%d)\n", __FUNCTION__, size, sna->cursor.num_stash)); c = sna->cursor.stash; assert(c); c->alloc = ALIGN(size, 4096); c->handle = gem_create(sna->kgem.fd, c->alloc); if (c->handle == 0) return NULL; /* Old hardware uses physical addresses, which the kernel * implements in an incoherent fashion requiring a pwrite. */ if (sna->cursor.use_gtt) { c->image = gem_mmap(sna->kgem.fd, c->handle, c->alloc); if (c->image == NULL) { gem_close(sna->kgem.fd, c->handle); return NULL; } } else c->image = NULL; __DBG(("%s: handle=%d, allocated %d\n", __FUNCTION__, c->handle, size)); c->ref = 0; c->serial = 0; c->rotation = 0; c->last_width = c->last_height = 0; /* all clear */ c->size = size; sna->cursor.num_stash--; sna->cursor.stash = c->next; c->next = sna->cursor.cursors; sna->cursor.cursors = c; return c; } static uint32_t *get_cursor_argb(CursorPtr c) { #ifdef ARGB_CURSOR return (uint32_t *)c->bits->argb; #else return NULL; #endif } static struct sna_cursor *__sna_get_cursor(struct sna *sna, xf86CrtcPtr crtc) { struct sna_cursor *cursor; const uint8_t *source, *mask; const uint32_t *argb; uint32_t *image; int width, height, pitch, size, x, y; Rotation rotation; assert(sna->cursor.ref); cursor = to_sna_crtc(crtc)->cursor; __DBG(("%s: current cursor handle=%d, serial=%d [expected %d]\n", __FUNCTION__, cursor ? cursor->handle : 0, cursor ? cursor->serial : 0, sna->cursor.serial)); if (cursor && cursor->serial == sna->cursor.serial) { assert(cursor->size == sna->cursor.size); assert(cursor->rotation == crtc->transform_in_use ? crtc->rotation : RR_Rotate_0); assert(cursor->ref); return cursor; } __DBG(("%s: cursor=%dx%d, pitch=%d, serial=%d, argb?=%d\n", __FUNCTION__, sna->cursor.ref->bits->width, sna->cursor.ref->bits->height, get_cursor_argb(sna->cursor.ref) ? 4*sna->cursor.ref->bits->width : BitmapBytePad(sna->cursor.ref->bits->width), sna->cursor.serial, get_cursor_argb(sna->cursor.ref) != NULL)); rotation = crtc->transform_in_use ? crtc->rotation : RR_Rotate_0; if (sna->cursor.use_gtt) { /* Don't allow phys cursor sharing */ for (cursor = sna->cursor.cursors; cursor; cursor = cursor->next) { if (cursor->serial == sna->cursor.serial && cursor->rotation == rotation) { __DBG(("%s: reusing handle=%d, serial=%d, rotation=%d, size=%d\n", __FUNCTION__, cursor->handle, cursor->serial, cursor->rotation, cursor->size)); assert(cursor->size == sna->cursor.size); return cursor; } } cursor = to_sna_crtc(crtc)->cursor; } size = sna->cursor.size; if (cursor && cursor->alloc < 4*size*size) cursor = NULL; if (cursor == NULL) { cursor = __sna_create_cursor(sna, 4*size*size); if (cursor == NULL) { DBG(("%s: failed to allocate cursor\n", __FUNCTION__)); return NULL; } } width = sna->cursor.ref->bits->width; height = sna->cursor.ref->bits->height; source = sna->cursor.ref->bits->source; mask = sna->cursor.ref->bits->mask; argb = get_cursor_argb(sna->cursor.ref); pitch = BitmapBytePad(width); image = cursor->image; if (image == NULL) { image = sna->cursor.scratch; cursor->last_width = cursor->last_height = size; } if (size > cursor->size || width < cursor->last_width || height < cursor->last_height || rotation != cursor->rotation) memset(image, 0, 4*size*size); if (rotation == RR_Rotate_0) { if (argb == NULL) { for (y = 0; y < height; y++) { uint32_t *p = image + y*size; for (x = 0; x < width; x++) { int byte = x / 8; uint8_t bit = 1 << (x & 7); uint32_t pixel; if (mask[byte] & bit) { if (source[byte] & bit) pixel = sna->cursor.fg; else pixel = sna->cursor.bg; } else pixel = 0; *p++ = pixel; } mask += pitch; source += pitch; } } else memcpy_blt(argb, image, 32, width * 4, size * 4, 0, 0, 0, 0, width, height); } else { for (y = 0; y < size; y++) for (x = 0; x < size; x++) { uint32_t pixel; int xin, yin; rotate_coord(rotation, size, x, y, &xin, &yin); if (xin < width && yin < height) if (argb == NULL) { int byte = xin / 8; int bit = xin & 7; if (mask[yin*pitch + byte] & (1 << bit)) { if (source[yin*pitch + byte] & (1 << bit)) pixel = sna->cursor.fg; else pixel = sna->cursor.bg; } else pixel = 0; } else pixel = argb[yin * width + xin]; else pixel = 0; image[y * size + x] = pixel; } } if (image != cursor->image) { struct drm_i915_gem_pwrite pwrite; VG_CLEAR(pwrite); pwrite.handle = cursor->handle; pwrite.offset = 0; pwrite.size = 4*size*size; pwrite.data_ptr = (uintptr_t)image; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite)) __DBG(("%s: cursor update (pwrite) failed: %d\n", __FUNCTION__, errno)); } cursor->size = size; cursor->rotation = rotation; cursor->serial = sna->cursor.serial; cursor->last_width = width; cursor->last_height = height; return cursor; } static unsigned char * sna_realize_cursor(xf86CursorInfoPtr info, CursorPtr cursor) { return NULL; } #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,12,99,901,0) static inline int sigio_block(void) { OsBlockSIGIO(); return 0; } static inline void sigio_unblock(int was_blocked) { OsReleaseSIGIO(); (void)was_blocked; } #else #include static inline int sigio_block(void) { return xf86BlockSIGIO(); } static inline void sigio_unblock(int was_blocked) { xf86UnblockSIGIO(was_blocked); } #endif static void sna_show_cursors(ScrnInfoPtr scrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); int sigio, c; DBG(("%s: cursor?=%d\n", __FUNCTION__, sna->cursor.ref != NULL)); if (sna->cursor.ref == NULL) return; sigio = sigio_block(); for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = xf86_config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_cursor arg; struct sna_cursor *cursor; assert(sna_crtc != NULL); if (sna_crtc->bo == NULL) continue; if (!crtc->cursor_in_range) { DBG(("%s: skipping cursor outside CRTC (pipe=%d)\n", __FUNCTION__, sna_crtc->pipe)); continue; } cursor = __sna_get_cursor(sna, crtc); if (cursor == NULL || (sna_crtc->cursor == cursor && sna_crtc->last_cursor_size == cursor->size)) { DBG(("%s: skipping cursor already show on CRTC (pipe=%d)\n", __FUNCTION__, sna_crtc->pipe)); continue; } DBG(("%s: CRTC pipe=%d, handle->%d\n", __FUNCTION__, sna_crtc->pipe, cursor->handle)); VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = sna_crtc->id; arg.width = arg.height = cursor->size; arg.handle = cursor->handle; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg) == 0) { if (sna_crtc->cursor) { assert(sna_crtc->cursor->ref > 0); sna_crtc->cursor->ref--; } cursor->ref++; sna_crtc->cursor = cursor; sna_crtc->last_cursor_size = cursor->size; } } sigio_unblock(sigio); } static void sna_set_cursor_colors(ScrnInfoPtr scrn, int _bg, int _fg) { struct sna *sna = to_sna(scrn); uint32_t fg = _fg, bg = _bg; __DBG(("%s(bg=%08x, fg=%08x)\n", __FUNCTION__, bg, fg)); /* Save ARGB versions of these colors */ fg |= 0xff000000; bg |= 0xff000000; if (fg == sna->cursor.fg && bg == sna->cursor.bg) return; sna->cursor.fg = fg; sna->cursor.bg = bg; if (sna->cursor.ref == NULL) return; if (get_cursor_argb(sna->cursor.ref)) return; sna->cursor.serial++; __DBG(("%s: serial->%d\n", __FUNCTION__, sna->cursor.serial)); sna_show_cursors(scrn); } static void sna_crtc_disable_cursor(struct sna *sna, struct sna_crtc *crtc) { struct drm_mode_cursor arg; if (!crtc->cursor) return; DBG(("%s: CRTC:%d, handle=%d\n", __FUNCTION__, crtc->id, crtc->cursor->handle)); assert(crtc->cursor->ref); VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = crtc->id; arg.width = arg.height = 0; arg.handle = 0; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg); assert(crtc->cursor->ref > 0); crtc->cursor->ref--; crtc->cursor = NULL; crtc->last_cursor_size = 0; } static void sna_hide_cursors(ScrnInfoPtr scrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); struct sna_cursor *cursor, **prev; int sigio, c; DBG(("%s\n", __FUNCTION__)); sigio = sigio_block(); for (c = 0; c < sna->mode.num_real_crtc; c++) { assert(to_sna_crtc(xf86_config->crtc[c])); sna_crtc_disable_cursor(sna, to_sna_crtc(xf86_config->crtc[c])); } for (prev = &sna->cursor.cursors; (cursor = *prev) != NULL; ) { assert(cursor->ref == 0); if (cursor->serial == sna->cursor.serial) { prev = &cursor->next; continue; } *prev = cursor->next; if (cursor->image) munmap(cursor->image, cursor->alloc); gem_close(sna->kgem.fd, cursor->handle); cursor->next = sna->cursor.stash; sna->cursor.stash = cursor; sna->cursor.num_stash++; } sigio_unblock(sigio); } static void sna_set_cursor_position(ScrnInfoPtr scrn, int x, int y) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); int sigio, c; __DBG(("%s(%d, %d), cursor? %d\n", __FUNCTION__, x, y, sna->cursor.ref!=NULL)); if (sna->cursor.ref == NULL) return; sigio = sigio_block(); sna->cursor.last_x = x; sna->cursor.last_y = y; /* undo what xf86HWCurs did to the coordinates */ x += scrn->frameX0; y += scrn->frameY0; for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = xf86_config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct sna_cursor *cursor = NULL; struct drm_mode_cursor arg; assert(sna_crtc != NULL); VG_CLEAR(arg); arg.flags = 0; arg.crtc_id = sna_crtc->id; arg.handle = 0; if (sna_crtc->bo == NULL) goto disable; if (crtc->transform_in_use) { int xhot = sna->cursor.ref->bits->xhot; int yhot = sna->cursor.ref->bits->yhot; struct pict_f_vector v; v.v[0] = (x + xhot) + 0.5; v.v[1] = (y + yhot) + 0.5; v.v[2] = 1; pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &v); rotate_coord_back(crtc->rotation, sna->cursor.size, &xhot, &yhot); /* cursor will have 0.5 added to it already so floor is sufficent */ arg.x = floor(v.v[0]) - xhot; arg.y = floor(v.v[1]) - yhot; } else { arg.x = x - crtc->x; arg.y = y - crtc->y; } if (arg.x < crtc->mode.HDisplay && arg.x > -sna->cursor.size && arg.y < crtc->mode.VDisplay && arg.y > -sna->cursor.size) { cursor = __sna_get_cursor(sna, crtc); if (cursor == NULL) cursor = sna_crtc->cursor; if (cursor == NULL) { __DBG(("%s: failed to grab cursor, disabling\n", __FUNCTION__)); goto disable; } if (sna_crtc->cursor != cursor || sna_crtc->last_cursor_size != cursor->size) { arg.flags |= DRM_MODE_CURSOR_BO; arg.handle = cursor->handle; } arg.width = arg.height = cursor->size; arg.flags |= DRM_MODE_CURSOR_MOVE; crtc->cursor_in_range = true; } else { crtc->cursor_in_range = false; disable: if (sna_crtc->cursor) { arg.flags = DRM_MODE_CURSOR_BO; arg.width = arg.height = 0; } cursor = NULL; } __DBG(("%s: CRTC:%d (%d, %d), handle=%d, flags=%x (old cursor handle=%d), move? %d, update handle? %d\n", __FUNCTION__, sna_crtc->id, arg.x, arg.y, arg.handle, arg.flags, sna_crtc->cursor ? sna_crtc->cursor->handle : 0, arg.flags & DRM_MODE_CURSOR_MOVE, arg.flags & DRM_MODE_CURSOR_BO)); if (arg.flags && drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg) == 0) { if (arg.flags & DRM_MODE_CURSOR_BO) { if (sna_crtc->cursor) { assert(sna_crtc->cursor->ref > 0); sna_crtc->cursor->ref--; } sna_crtc->cursor = cursor; if (cursor) { sna_crtc->last_cursor_size = cursor->size; cursor->ref++; } else sna_crtc->last_cursor_size = 0; } } } sigio_unblock(sigio); } #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,15,99,902,2) static Bool sna_load_cursor_argb2(ScrnInfoPtr scrn, CursorPtr cursor) { return TRUE; } static Bool sna_load_cursor_image2(ScrnInfoPtr scrn, unsigned char *src) { return TRUE; } #endif static void sna_load_cursor_argb(ScrnInfoPtr scrn, CursorPtr cursor) { } static void sna_load_cursor_image(ScrnInfoPtr scrn, unsigned char *src) { } static int __cursor_size(CursorPtr cursor) { int i, size; i = MAX(cursor->bits->width, cursor->bits->height); for (size = 64; size < i; size <<= 1) ; return size; } static bool sna_cursor_preallocate(struct sna *sna) { while (sna->cursor.num_stash < 0) { struct sna_cursor *cursor = malloc(sizeof(*cursor)); if (!cursor) return false; cursor->next = sna->cursor.stash; sna->cursor.stash = cursor; sna->cursor.num_stash++; } return true; } static Bool sna_use_hw_cursor(ScreenPtr screen, CursorPtr cursor) { struct sna *sna = to_sna_from_screen(screen); DBG(("%s (%dx%d)?\n", __FUNCTION__, cursor->bits->width, cursor->bits->height)); /* cursors are invariant */ if (cursor == sna->cursor.ref) return TRUE; if (sna->cursor.ref) { FreeCursor(sna->cursor.ref, None); sna->cursor.ref = NULL; } sna->cursor.size = __cursor_size(cursor); if (sna->cursor.size > sna->cursor.max_size) return FALSE; if (!sna_cursor_preallocate(sna)) return FALSE; sna->cursor.ref = cursor; cursor->refcnt++; sna->cursor.serial++; DBG(("%s(%dx%d): ARGB?=%d, serial->%d, size->%d\n", __FUNCTION__, cursor->bits->width, cursor->bits->height, get_cursor_argb(cursor) != NULL, sna->cursor.serial, sna->cursor.size)); return TRUE; } static void sna_cursor_pre_init(struct sna *sna) { struct local_get_cap { uint64_t name; uint64_t value; } cap; int v; if (sna->mode.num_real_crtc == 0) return; #define LOCAL_IOCTL_GET_CAP DRM_IOWR(0x0c, struct local_get_cap) #define DRM_CAP_CURSOR_WIDTH 8 #define DRM_CAP_CURSOR_HEIGHT 9 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 sna->cursor.max_size = 64; cap.value = 0; cap.name = DRM_CAP_CURSOR_WIDTH; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0) sna->cursor.max_size = cap.value; cap.name = DRM_CAP_CURSOR_HEIGHT; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0 && cap.value < sna->cursor.max_size) sna->cursor.max_size = cap.value; v = -1; /* No param uses the sign bit, reserve it for errors */ if (sna->kgem.gen >= 033) { v = 1; } else { drm_i915_getparam_t gp = { I915_PARAM_HAS_COHERENT_PHYS_GTT, &v, }; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GETPARAM, &gp); } sna->cursor.use_gtt = v > 0; DBG(("%s: cursor updates use_gtt?=%d\n", __FUNCTION__, sna->cursor.use_gtt)); if (!sna->cursor.use_gtt) { sna->cursor.scratch = malloc(sna->cursor.max_size * sna->cursor.max_size * 4); if (!sna->cursor.scratch) sna->cursor.max_size = 0; } sna->cursor.num_stash = -sna->mode.num_real_crtc; xf86DrvMsg(sna->scrn->scrnIndex, X_PROBED, "Using a maximum size of %dx%d for hardware cursors\n", sna->cursor.max_size, sna->cursor.max_size); } static void sna_cursor_close(struct sna *sna) { sna->cursor.serial = 0; sna_hide_cursors(sna->scrn); while (sna->cursor.stash) { struct sna_cursor *cursor = sna->cursor.stash; sna->cursor.stash = cursor->next; free(cursor); } sna->cursor.num_stash = -sna->mode.num_real_crtc; } bool sna_cursors_init(ScreenPtr screen, struct sna *sna) { xf86CursorInfoPtr cursor_info; if (sna->cursor.max_size == 0) return false; cursor_info = xf86CreateCursorInfoRec(); if (cursor_info == NULL) return false; cursor_info->MaxWidth = sna->cursor.max_size; cursor_info->MaxHeight = sna->cursor.max_size; cursor_info->Flags = (HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | HARDWARE_CURSOR_UPDATE_UNHIDDEN | HARDWARE_CURSOR_ARGB); cursor_info->RealizeCursor = sna_realize_cursor; cursor_info->SetCursorColors = sna_set_cursor_colors; cursor_info->SetCursorPosition = sna_set_cursor_position; cursor_info->LoadCursorImage = sna_load_cursor_image; cursor_info->HideCursor = sna_hide_cursors; cursor_info->ShowCursor = sna_show_cursors; cursor_info->UseHWCursor = sna_use_hw_cursor; #ifdef ARGB_CURSOR cursor_info->UseHWCursorARGB = sna_use_hw_cursor; cursor_info->LoadCursorARGB = sna_load_cursor_argb; #endif #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,15,99,902,3) cursor_info->LoadCursorImageCheck = sna_load_cursor_image2; #ifdef ARGB_CURSOR cursor_info->LoadCursorARGBCheck = sna_load_cursor_argb2; #endif #endif if (!xf86InitCursor(screen, cursor_info)) { xf86DestroyCursorInfoRec(cursor_info); return false; } sna->cursor.info = cursor_info; return true; } static void sna_cursors_reload(struct sna *sna) { sna_set_cursor_position(sna->scrn, sna->cursor.last_x, sna->cursor.last_y); } static void sna_cursors_fini(struct sna *sna) { if (sna->cursor.info) { xf86DestroyCursorInfoRec(sna->cursor.info); sna->cursor.info = NULL; } if (sna->cursor.ref) { FreeCursor(sna->cursor.ref, None); sna->cursor.ref = NULL; } } static bool sna_crtc_flip(struct sna *sna, struct sna_crtc *crtc, struct kgem_bo *bo, int x, int y) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_crtc arg; uint32_t output_ids[32]; int output_count = 0; int i; DBG(("%s CRTC:%d [pipe=%d], handle=%d\n", __FUNCTION__, crtc->id, crtc->pipe, bo->handle)); assert(sna->mode.num_real_output < ARRAY_SIZE(output_ids)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc->base) continue; DBG(("%s: attaching output '%s' %d [%d] to crtc:%d (pipe %d) (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), crtc->id, crtc->pipe, (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); assert(output->possible_crtcs & (1 << crtc->pipe) || xf86IsEntityShared(sna->scrn->entityList[0])); output_ids[output_count] = to_connector_id(output); if (++output_count == ARRAY_SIZE(output_ids)) return false; } VG_CLEAR(arg); arg.crtc_id = crtc->id; arg.fb_id = fb_id(bo); assert(arg.fb_id); arg.x = x; arg.y = y; arg.set_connectors_ptr = (uintptr_t)output_ids; arg.count_connectors = output_count; arg.mode = crtc->kmode; arg.mode_valid = 1; DBG(("%s: applying crtc [%d, pipe=%d] mode=%dx%d+%d+%d@%d, fb=%d across %d outputs [%d...]\n", __FUNCTION__, crtc->id, crtc->pipe, arg.mode.hdisplay, arg.mode.vdisplay, arg.x, arg.y, arg.mode.clock, arg.fb_id, output_count, output_count ? output_ids[0] : 0)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg)) return false; crtc->offset = y << 16 | x; return true; } int sna_page_flip(struct sna *sna, struct kgem_bo *bo, sna_flip_handler_t handler, void *data) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); const int width = sna->scrn->virtualX; const int height = sna->scrn->virtualY; int count = 0; int i; DBG(("%s: handle %d attached\n", __FUNCTION__, bo->handle)); assert(bo->refcnt); assert((sna->flags & SNA_IS_HOSTED) == 0); assert((sna->flags & SNA_TEAR_FREE) == 0); assert(sna->mode.flip_active == 0); assert(sna->mode.front_active); assert(sna->scrn->vtSema); if ((sna->flags & (data ? SNA_HAS_FLIP : SNA_HAS_ASYNC_FLIP)) == 0) return 0; kgem_bo_submit(&sna->kgem, bo); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = config->crtc[i]->driver_private; struct drm_mode_crtc_page_flip arg; uint32_t crtc_offset; DBG(("%s: crtc %d id=%d, pipe=%d active? %d\n", __FUNCTION__, i, crtc->id, crtc->pipe, crtc->bo != NULL)); if (crtc->bo == NULL) continue; assert(!crtc->transform); assert(!crtc->slave_pixmap); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); assert(crtc->flip_bo == NULL); arg.crtc_id = crtc->id; arg.fb_id = get_fb(sna, bo, width, height); if (arg.fb_id == 0) { assert(count == 0); return 0; } crtc_offset = crtc->base->y << 16 | crtc->base->x; if (bo->pitch != crtc->bo->pitch || crtc_offset != crtc->offset) { DBG(("%s: changing pitch (%d == %d) or offset (%x == %x)\n", __FUNCTION__, bo->pitch, crtc->bo->pitch, crtc_offset, crtc->offset)); fixup_flip: if (crtc->bo != bo && sna_crtc_flip(sna, crtc, bo, crtc->base->x, crtc->base->y)) { assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); crtc->bo = kgem_bo_reference(bo); crtc->bo->active_scanout++; if (data == NULL) goto next_crtc; /* queue a flip in order to send the event */ } else { if (count && !xf86SetDesiredModes(sna->scrn)) { xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "failed to restore display configuration\n"); for (; i < sna->mode.num_real_crtc; i++) sna_crtc_disable(config->crtc[i]); } return 0; } } /* Only the reference crtc will finally deliver its page flip * completion event. All other crtc's events will be discarded. */ if (data) { arg.user_data = (uintptr_t)crtc; arg.flags = DRM_MODE_PAGE_FLIP_EVENT; } else { arg.user_data = 0; arg.flags = DRM_MODE_PAGE_FLIP_ASYNC; } arg.reserved = 0; retry_flip: DBG(("%s: crtc %d id=%d, pipe=%d --> fb %d\n", __FUNCTION__, i, crtc->id, crtc->pipe, arg.fb_id)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { ERR(("%s: pageflip failed with err=%d\n", __FUNCTION__, errno)); if (errno == EBUSY) { struct drm_mode_crtc mode; memset(&mode, 0, sizeof(mode)); mode.crtc_id = crtc->id; drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode); DBG(("%s: crtc=%d, valid?=%d, fb attached?=%d, expected=%d\n", __FUNCTION__, mode.crtc_id, mode.mode_valid, mode.fb_id, fb_id(crtc->bo))); if (mode.fb_id != fb_id(crtc->bo)) goto fixup_flip; if (count == 0) return 0; DBG(("%s: throttling on busy flip / waiting for kernel to catch up\n", __FUNCTION__)); drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_THROTTLE, 0); sna->kgem.need_throttle = false; goto retry_flip; } xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "page flipping failed, on CRTC:%d (pipe=%d), disabling %s page flips\n", crtc->id, crtc->pipe, data ? "synchronous": "asynchronous"); sna->flags &= ~(data ? SNA_HAS_FLIP : SNA_HAS_ASYNC_FLIP); goto fixup_flip; } if (data) { assert(crtc->flip_bo == NULL); crtc->flip_handler = handler; crtc->flip_data = data; crtc->flip_bo = kgem_bo_reference(bo); crtc->flip_bo->active_scanout++; crtc->flip_serial = crtc->mode_serial; sna->mode.flip_active++; } next_crtc: count++; } DBG(("%s: page flipped %d crtcs\n", __FUNCTION__, count)); return count; } static const xf86CrtcConfigFuncsRec sna_mode_funcs = { sna_mode_resize }; static void set_size_range(struct sna *sna) { /* We lie slightly as we expect no single monitor to exceed the * crtc limits, so if the mode exceeds the scanout restrictions, * we will quietly convert that to per-crtc pixmaps. */ xf86CrtcSetSizeRange(sna->scrn, 8, 8, INT16_MAX, INT16_MAX); } #if HAS_GAMMA static void set_gamma(uint16_t *curve, int size, double value) { int i; value = 1/value; for (i = 0; i < size; i++) curve[i] = 256*(size-1)*pow(i/(double)(size-1), value); } static void output_set_gamma(xf86OutputPtr output, xf86CrtcPtr crtc) { XF86ConfMonitorPtr mon = output->conf_monitor; if (!mon) return; DBG(("%s: red=%f\n", __FUNCTION__, mon->mon_gamma_red)); if (mon->mon_gamma_red >= GAMMA_MIN && mon->mon_gamma_red <= GAMMA_MAX && mon->mon_gamma_red != 1.0) set_gamma(crtc->gamma_red, crtc->gamma_size, mon->mon_gamma_red); DBG(("%s: green=%f\n", __FUNCTION__, mon->mon_gamma_green)); if (mon->mon_gamma_green >= GAMMA_MIN && mon->mon_gamma_green <= GAMMA_MAX && mon->mon_gamma_green != 1.0) set_gamma(crtc->gamma_green, crtc->gamma_size, mon->mon_gamma_green); DBG(("%s: blue=%f\n", __FUNCTION__, mon->mon_gamma_blue)); if (mon->mon_gamma_blue >= GAMMA_MIN && mon->mon_gamma_blue <= GAMMA_MAX && mon->mon_gamma_blue != 1.0) set_gamma(crtc->gamma_blue, crtc->gamma_size, mon->mon_gamma_blue); } static void crtc_init_gamma(xf86CrtcPtr crtc) { uint16_t *gamma; /* Initialize the gamma ramps */ gamma = NULL; if (crtc->gamma_size == 256) gamma = crtc->gamma_red; if (gamma == NULL) gamma = malloc(3 * 256 * sizeof(uint16_t)); if (gamma) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc_lut lut; bool gamma_set = false; assert(sna_crtc); lut.crtc_id = sna_crtc->id; lut.gamma_size = 256; lut.red = (uintptr_t)(gamma); lut.green = (uintptr_t)(gamma + 256); lut.blue = (uintptr_t)(gamma + 2 * 256); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETGAMMA, &lut) == 0) { VG(VALGRIND_MAKE_MEM_DEFINED(gamma, 3*256*sizeof(gamma[0]))); gamma_set = gamma[256 - 1] && gamma[2*256 - 1] && gamma[3*256 - 1]; } DBG(("%s: CRTC:%d, pipe=%d: gamma set?=%d\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, gamma_set)); if (!gamma_set) { int i; for (i = 0; i < 256; i++) { gamma[i] = i << 8; gamma[256 + i] = i << 8; gamma[2*256 + i] = i << 8; } } if (gamma != crtc->gamma_red) { free(crtc->gamma_red); crtc->gamma_red = gamma; crtc->gamma_green = gamma + 256; crtc->gamma_blue = gamma + 2*256; } } } #else static void output_set_gamma(xf86OutputPtr output, xf86CrtcPtr crtc) { } static void crtc_init_gamma(xf86CrtcPtr crtc) { } #endif static const char *preferred_mode(xf86OutputPtr output) { const char *mode; mode = xf86GetOptValString(output->options, OPTION_PREFERRED_MODE); if (mode) return mode; if (output->scrn->display->modes && *output->scrn->display->modes) return *output->scrn->display->modes; return NULL; } static bool sna_probe_initial_configuration(struct sna *sna) { ScrnInfoPtr scrn = sna->scrn; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); int width, height; int i, j; assert((sna->flags & SNA_IS_HOSTED) == 0); if ((sna->flags & SNA_IS_SLAVED) == 0) { const int user_overrides[] = { OPTION_POSITION, OPTION_BELOW, OPTION_RIGHT_OF, OPTION_ABOVE, OPTION_LEFT_OF, OPTION_ROTATE, OPTION_PANNING, }; if (xf86ReturnOptValBool(sna->Options, OPTION_REPROBE, FALSE)) { DBG(("%s: user requests reprobing\n", __FUNCTION__)); return false; } /* First scan through all outputs and look for user overrides */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; for (j = 0; j < ARRAY_SIZE(user_overrides); j++) { if (xf86GetOptValString(output->options, user_overrides[j])) { DBG(("%s: user placement [%d] for %s\n", __FUNCTION__, user_overrides[j], output->name)); return false; } } } } /* Copy the existing modes on each CRTCs */ for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc mode; crtc->enabled = FALSE; crtc->desiredMode.status = MODE_NOMODE; crtc_init_gamma(crtc); /* Retrieve the current mode */ VG_CLEAR(mode); mode.crtc_id = sna_crtc->id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; DBG(("%s: CRTC:%d, pipe=%d: has mode?=%d\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe, mode.mode_valid && mode.mode.clock)); if (!mode.mode_valid || mode.mode.clock == 0) continue; mode_from_kmode(scrn, &mode.mode, &crtc->desiredMode); crtc->desiredRotation = sna_crtc->primary.rotation.current; crtc->desiredX = mode.x; crtc->desiredY = mode.y; crtc->desiredTransformPresent = FALSE; } /* Reconstruct outputs pointing to active CRTC */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; uint32_t crtc_id; assert(to_sna_output(output)); crtc_id = (uintptr_t)output->crtc; output->crtc = NULL; if (sna->flags & SNA_IS_SLAVED) continue; if (crtc_id == 0) { DBG(("%s: not using output %s, disconnected\n", __FUNCTION__, output->name)); continue; } if (xf86ReturnOptValBool(output->options, OPTION_DISABLE, 0)) { DBG(("%s: not using output %s, manually disabled\n", __FUNCTION__, output->name)); continue; } for (j = 0; j < sna->mode.num_real_crtc; j++) { xf86CrtcPtr crtc = config->crtc[j]; assert(to_sna_crtc(crtc)); if (to_sna_crtc(crtc)->id != crtc_id) continue; if (crtc->desiredMode.status == MODE_OK) { DisplayModePtr M; const char *pref; pref = preferred_mode(output); if (pref && strcmp(pref, crtc->desiredMode.name)) { DBG(("%s: output %s user requests a different preferred mode %s, found %s\n", __FUNCTION__, output->name, pref, crtc->desiredMode.name)); return false; } xf86DrvMsg(scrn->scrnIndex, X_PROBED, "Output %s using initial mode %s on pipe %d\n", output->name, crtc->desiredMode.name, to_sna_crtc(crtc)->pipe); output->crtc = crtc; crtc->enabled = TRUE; if (output->mm_width == 0 || output->mm_height == 0) { output->mm_height = (crtc->desiredMode.VDisplay * 254) / (10*DEFAULT_DPI); output->mm_width = (crtc->desiredMode.HDisplay * 254) / (10*DEFAULT_DPI); } output_set_gamma(output, crtc); M = calloc(1, sizeof(DisplayModeRec)); if (M) { *M = crtc->desiredMode; M->name = strdup(M->name); output->probed_modes = xf86ModesAdd(output->probed_modes, M); } } break; } if (j == sna->mode.num_real_crtc) { /* Can not find the earlier associated CRTC, bail */ DBG(("%s: existing setup conflicts with output assignment (Zaphod), reprobing\n", __FUNCTION__)); return false; } } width = height = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; int w, h; if (!crtc->enabled) continue; w = crtc->desiredX + crtc->desiredMode.HDisplay; if (w > width) width = w; h = crtc->desiredY + crtc->desiredMode.VDisplay; if (h > height) height = h; } /* Prefer the native panel size if any */ if (!width || !height) { for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); if (!sna_output->is_panel) continue; DBG(("%s: querying panel '%s' for preferred unattached size\n", __FUNCTION__, output->name)); if (sna_output_detect(output) != XF86OutputStatusConnected) continue; if (sna_output->num_modes == 0) continue; width = sna_output->modes[0].hdisplay; height= sna_output->modes[0].vdisplay; DBG(("%s: panel '%s' is %dx%d\n", __FUNCTION__, output->name, width, height)); break; } } if (!width || !height) { width = 1024; height = 768; } scrn->display->frameX0 = 0; scrn->display->frameY0 = 0; scrn->display->virtualX = width; scrn->display->virtualY = height; scrn->virtualX = width; scrn->virtualY = height; xf86SetScrnInfoModes(sna->scrn); DBG(("%s: SetScrnInfoModes = %p\n", __FUNCTION__, scrn->modes)); return scrn->modes != NULL; } static void sanitize_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < config->num_output; i++) config->output[i]->crtc = NULL; } static bool has_flip(struct sna *sna) { drm_i915_getparam_t gp; int v; if (sna->flags & SNA_NO_FLIP) return false; v = 0; VG_CLEAR(gp); gp.param = I915_PARAM_HAS_PAGEFLIPPING; gp.value = &v; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GETPARAM, &gp)) return false; VG(VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v))); return v > 0; } static bool has_flip__async(struct sna *sna) { #define DRM_CAP_ASYNC_PAGE_FLIP 0x7 struct local_get_cap { uint64_t name; uint64_t value; } cap = { DRM_CAP_ASYNC_PAGE_FLIP }; if (sna->flags & SNA_NO_FLIP) return false; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0) return cap.value > 0; return false; } static void probe_capabilities(struct sna *sna) { sna->flags &= ~(SNA_HAS_FLIP | SNA_HAS_ASYNC_FLIP); if (has_flip(sna)) sna->flags |= SNA_HAS_FLIP; if (has_flip__async(sna)) sna->flags |= SNA_HAS_ASYNC_FLIP; DBG(("%s: page flips? %s, async? %s\n", __FUNCTION__, sna->flags & SNA_HAS_FLIP ? "enabled" : "disabled", sna->flags & SNA_HAS_ASYNC_FLIP ? "enabled" : "disabled")); } void sna_crtc_config_notify(ScreenPtr screen) { struct sna *sna = to_sna_from_screen(screen); DBG(("%s(dirty?=%d)\n", __FUNCTION__, sna->mode.dirty)); if (!sna->mode.dirty) return; probe_capabilities(sna); update_flush_interval(sna); sna_cursors_reload(sna); sna_present_update(sna); sna->mode.dirty = false; } #if HAS_PIXMAP_SHARING #define sna_setup_provider(scrn) xf86ProviderSetup(scrn, NULL, "Intel") #else #define sna_setup_provider(scrn) #endif bool sna_mode_pre_init(ScrnInfoPtr scrn, struct sna *sna) { drmModeResPtr res; int num_fake = 0; int i; if (sna->flags & SNA_IS_HOSTED) { sna_setup_provider(scrn); return true; } probe_capabilities(sna); if (!xf86GetOptValInteger(sna->Options, OPTION_VIRTUAL, &num_fake)) num_fake = 1; res = drmModeGetResources(sna->kgem.fd); if (res && (res->count_crtcs == 0 || res->count_encoders == 0 || res->count_connectors == 0)) { drmModeFreeResources(res); res = NULL; } if (res) { xf86CrtcConfigPtr xf86_config; assert(res->count_crtcs); assert(res->count_connectors); xf86CrtcConfigInit(scrn, &sna_mode_funcs); xf86_config = XF86_CRTC_CONFIG_PTR(scrn); xf86_config->xf86_crtc_notify = sna_crtc_config_notify; for (i = 0; i < res->count_crtcs; i++) if (!sna_crtc_add(scrn, res->crtcs[i])) return false; sna->mode.num_real_crtc = xf86_config->num_crtc; sna->mode.num_real_encoder = res->count_encoders; sna->mode.encoders = res->encoders; res->encoders = NULL; for (i = 0; i < res->count_connectors; i++) if (sna_output_add(sna, res->connectors[i], 0) < 0) return false; sna->mode.num_real_output = xf86_config->num_output; sna_mode_compute_possible_outputs(sna); sna->mode.max_crtc_width = res->max_width; sna->mode.max_crtc_height = res->max_height; RegionEmpty(&sna->mode.shadow_region); RegionEmpty(&sna->mode.shadow_cancel); list_init(&sna->mode.shadow_crtc); drmModeFreeResources(res); sna_cursor_pre_init(sna); sna_backlight_pre_init(sna); set_size_range(sna); } else { if (num_fake == 0) num_fake = 1; } if (!sna_mode_fake_init(sna, num_fake)) return false; if (!sna_probe_initial_configuration(sna)) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); sanitize_outputs(sna); if (config->num_crtc && config->num_output) { if (!xf86ReturnOptValBool(config->output[0]->options, OPTION_PRIMARY, FALSE)) sort_config_outputs(sna); xf86InitialConfiguration(scrn, TRUE); } } sort_config_outputs(sna); sna_setup_provider(scrn); return scrn->modes != NULL; } bool sna_mode_wants_tear_free(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < sna->mode.num_real_output; i++) { struct sna_output *output = to_sna_output(config->output[i]); int id = find_property(sna, output, "Panel Self-Refresh"); if (id !=-1 && output->prop_values[id] != -1) { DBG(("%s: Panel Self-Refresh detected on %s\n", __FUNCTION__, config->output[i]->name)); return true; } } return false; } void sna_mode_set_primary(struct sna *sna) { #ifdef RANDR_12_INTERFACE xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); rrScrPrivPtr rr = rrGetScrPriv(xf86ScrnToScreen(sna->scrn)); int i; if (rr->primaryOutput) return; for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (!xf86ReturnOptValBool(output->options, OPTION_PRIMARY, FALSE)) continue; DBG(("%s: setting PrimaryOutput %s\n", __FUNCTION__, output->name)); rr->primaryOutput = output->randr_output; RROutputChanged(rr->primaryOutput, 0); rr->layoutChanged = TRUE; break; } #endif } void sna_mode_close(struct sna *sna) { while (sna_mode_has_pending_events(sna)) sna_mode_wakeup(sna); if (sna->flags & SNA_IS_HOSTED) return; sna_mode_reset(sna); sna_cursor_close(sna); sna_cursors_fini(sna); sna_backlight_close(sna); } void sna_mode_fini(struct sna *sna) { free(sna->mode.encoders); } static bool sna_box_intersect(BoxPtr r, const BoxRec *a, const BoxRec *b) { r->x1 = a->x1 > b->x1 ? a->x1 : b->x1; r->x2 = a->x2 < b->x2 ? a->x2 : b->x2; if (r->x1 >= r->x2) return false; r->y1 = a->y1 > b->y1 ? a->y1 : b->y1; r->y2 = a->y2 < b->y2 ? a->y2 : b->y2; DBG(("%s: (%d, %d), (%d, %d) intersect (%d, %d), (%d, %d) = (%d, %d), (%d, %d)\n", __FUNCTION__, a->x1, a->y1, a->x2, a->y2, b->x1, b->y1, b->x2, b->y2, r->x1, r->y1, r->x2, r->y2)); if (r->y1 >= r->y2) return false; return true; } static int sna_box_area(const BoxRec *box) { return (int)(box->x2 - box->x1) * (int)(box->y2 - box->y1); } /* * Return the crtc covering 'box'. If two crtcs cover a portion of * 'box', then prefer 'desired'. If 'desired' is NULL, then prefer the crtc * with greater coverage */ xf86CrtcPtr sna_covering_crtc(struct sna *sna, const BoxRec *box, xf86CrtcPtr desired) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); xf86CrtcPtr best_crtc; int best_coverage, c; if (sna->flags & SNA_IS_HOSTED) return NULL; /* If we do not own the VT, we do not own the CRTC either */ if (!sna->scrn->vtSema) return NULL; DBG(("%s for box=(%d, %d), (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2)); if (desired == NULL) { rrScrPrivPtr rr = rrGetScrPriv(xf86ScrnToScreen(sna->scrn)); if (rr && rr->primaryOutput) { xf86OutputPtr output = rr->primaryOutput->devPrivate; DBG(("%s: have PrimaryOutput? %d marking as desired\n", __FUNCTION__, output->crtc != NULL)); desired = output->crtc; } } if (desired && to_sna_crtc(desired) && to_sna_crtc(desired)->bo) { BoxRec cover_box; if (sna_box_intersect(&cover_box, &desired->bounds, box)) { DBG(("%s: box overlaps desired crtc: (%d, %d), (%d, %d)\n", __FUNCTION__, cover_box.x1, cover_box.y1, cover_box.x2, cover_box.y2)); return desired; } } best_crtc = NULL; best_coverage = 0; for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; BoxRec cover_box; int coverage; assert(to_sna_crtc(crtc)); /* If the CRTC is off, treat it as not covering */ if (to_sna_crtc(crtc)->bo == NULL) { DBG(("%s: crtc %d off, skipping\n", __FUNCTION__, c)); continue; } DBG(("%s: crtc %d: (%d, %d), (%d, %d)\n", __FUNCTION__, c, crtc->bounds.x1, crtc->bounds.y1, crtc->bounds.x2, crtc->bounds.y2)); if (*(const uint64_t *)box == *(uint64_t *)&crtc->bounds) { DBG(("%s: box exactly matches crtc [%d]\n", __FUNCTION__, c)); return crtc; } if (!sna_box_intersect(&cover_box, &crtc->bounds, box)) continue; DBG(("%s: box instersects (%d, %d), (%d, %d) of crtc %d\n", __FUNCTION__, cover_box.x1, cover_box.y1, cover_box.x2, cover_box.y2, c)); coverage = sna_box_area(&cover_box); DBG(("%s: box covers %d of crtc %d\n", __FUNCTION__, coverage, c)); if (coverage > best_coverage) { best_crtc = crtc; best_coverage = coverage; } } DBG(("%s: best crtc = %p, coverage = %d\n", __FUNCTION__, best_crtc, best_coverage)); return best_crtc; } #define MI_LOAD_REGISTER_IMM (0x22<<23) static bool sna_emit_wait_for_scanline_hsw(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event; uint32_t *b; if (!sna->kgem.has_secure_batches) return false; b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 17; switch (pipe) { default: assert(0); case 0: event = 1 << 0; break; case 1: event = 1 << 8; break; case 2: event = 1 << 14; break; } b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0xa188; /* FORCEWAKE_MT */ b[5] = 2 << 16 | 2; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ switch (pipe) { default: assert(0); case 0: event = 0 << 19; break; case 1: event = 1 << 19; break; case 2: event = 4 << 19; break; } b[8] = b[6] = MI_LOAD_SCAN_LINES_INCL | event; b[9] = b[7] = (y1 << 16) | (y2-1); switch (pipe) { default: assert(0); case 0: event = 1 << 0; break; case 1: event = 1 << 8; break; case 2: event = 1 << 14; break; } b[10] = MI_WAIT_FOR_EVENT | event; b[11] = MI_LOAD_REGISTER_IMM | 1; b[12] = 0xa188; /* FORCEWAKE_MT */ b[13] = 2 << 16; b[14] = MI_LOAD_REGISTER_IMM | 1; b[15] = 0x44050; /* DERRMR */ b[16] = ~0; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_ivb(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event, *b; if (!sna->kgem.has_secure_batches) return false; assert(y1 >= 0); assert(y2 > y1); assert(sna->kgem.mode); /* Always program one less than the desired value */ if (--y1 < 0) y1 = crtc->bounds.y2; y2--; switch (pipe) { default: assert(0); case 0: event = 1 << (full_height ? 3 : 0); break; case 1: event = 1 << (full_height ? 11 : 8); break; case 2: event = 1 << (full_height ? 21 : 14); break; } b = kgem_get_batch(&sna->kgem); /* Both the LRI and WAIT_FOR_EVENT must be in the same cacheline */ if (((sna->kgem.nbatch + 6) >> 4) != (sna->kgem.nbatch + 10) >> 4) { int dw = sna->kgem.nbatch + 6; dw = ALIGN(dw, 16) - dw; while (dw--) *b++ = MI_NOOP; } b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0xa188; /* FORCEWAKE_MT */ b[5] = 2 << 16 | 2; b[6] = MI_LOAD_REGISTER_IMM | 1; b[7] = 0x70068 + 0x1000 * pipe; b[8] = (1 << 31) | (1 << 30) | (y1 << 16) | y2; b[9] = MI_WAIT_FOR_EVENT | event; b[10] = MI_LOAD_REGISTER_IMM | 1; b[11] = 0xa188; /* FORCEWAKE_MT */ b[12] = 2 << 16; b[13] = MI_LOAD_REGISTER_IMM | 1; b[14] = 0x44050; /* DERRMR */ b[15] = ~0; sna->kgem.nbatch = b - sna->kgem.batch + 16; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_gen6(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t *b; uint32_t event; if (!sna->kgem.has_secure_batches) return false; assert(y1 >= 0); assert(y2 > y1); assert(sna->kgem.mode == KGEM_RENDER); /* Always program one less than the desired value */ if (--y1 < 0) y1 = crtc->bounds.y2; y2--; /* The scanline granularity is 3 bits */ y1 &= ~7; y2 &= ~7; if (y2 == y1) return false; event = 1 << (3*full_height + pipe*8); b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 10; b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0x4f100; /* magic */ b[5] = (1 << 31) | (1 << 30) | pipe << 29 | (y1 << 16) | y2; b[6] = MI_WAIT_FOR_EVENT | event; b[7] = MI_LOAD_REGISTER_IMM | 1; b[8] = 0x44050; /* DERRMR */ b[9] = ~0; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_gen4(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event; uint32_t *b; if (pipe == 0) { if (full_height) event = MI_WAIT_FOR_PIPEA_SVBLANK; else event = MI_WAIT_FOR_PIPEA_SCAN_LINE_WINDOW; } else { if (full_height) event = MI_WAIT_FOR_PIPEB_SVBLANK; else event = MI_WAIT_FOR_PIPEB_SCAN_LINE_WINDOW; } b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 5; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ b[2] = b[0] = MI_LOAD_SCAN_LINES_INCL | pipe << 20; b[3] = b[1] = (y1 << 16) | (y2-1); b[4] = MI_WAIT_FOR_EVENT | event; return true; } static bool sna_emit_wait_for_scanline_gen2(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t *b; /* * Pre-965 doesn't have SVBLANK, so we need a bit * of extra time for the blitter to start up and * do its job for a full height blit */ if (full_height) y2 -= 2; b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 5; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ b[2] = b[0] = MI_LOAD_SCAN_LINES_INCL | pipe << 20; b[3] = b[1] = (y1 << 16) | (y2-1); b[4] = MI_WAIT_FOR_EVENT | 1 << (1 + 4*pipe); return true; } bool sna_wait_for_scanline(struct sna *sna, PixmapPtr pixmap, xf86CrtcPtr crtc, const BoxRec *clip) { bool full_height; int y1, y2, pipe; bool ret; assert(crtc != NULL); assert(to_sna_crtc(crtc) != NULL); assert(to_sna_crtc(crtc)->bo != NULL); assert(pixmap == sna->front); if (sna->flags & SNA_NO_VSYNC) return false; /* * Make sure we don't wait for a scanline that will * never occur */ y1 = clip->y1 - crtc->bounds.y1; if (y1 < 0) y1 = 0; y2 = clip->y2 - crtc->bounds.y1; if (y2 > crtc->bounds.y2 - crtc->bounds.y1) y2 = crtc->bounds.y2 - crtc->bounds.y1; DBG(("%s: clipped range = %d, %d\n", __FUNCTION__, y1, y2)); if (y2 <= y1 + 4) return false; full_height = y1 == 0 && y2 == crtc->bounds.y2 - crtc->bounds.y1; if (crtc->mode.Flags & V_INTERLACE) { /* DSL count field lines */ y1 /= 2; y2 /= 2; } pipe = sna_crtc_to_pipe(crtc); DBG(("%s: pipe=%d, y1=%d, y2=%d, full_height?=%d\n", __FUNCTION__, pipe, y1, y2, full_height)); if (sna->kgem.gen >= 0110) ret = false; else if (sna->kgem.gen == 0101) ret = false; /* chv, vsync method unknown */ else if (sna->kgem.gen >= 075) ret = sna_emit_wait_for_scanline_hsw(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen == 071) ret = false; /* vlv, vsync method unknown */ else if (sna->kgem.gen >= 070) ret = sna_emit_wait_for_scanline_ivb(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen >= 060) ret =sna_emit_wait_for_scanline_gen6(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen >= 040) ret = sna_emit_wait_for_scanline_gen4(sna, crtc, pipe, y1, y2, full_height); else ret = sna_emit_wait_for_scanline_gen2(sna, crtc, pipe, y1, y2, full_height); return ret; } void sna_mode_check(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; if (sna->flags & SNA_IS_HOSTED) return; DBG(("%s\n", __FUNCTION__)); /* Validate CRTC attachments and force consistency upon the kernel */ for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc mode; uint32_t expected[2]; assert(sna_crtc); #if XF86_CRTC_VERSION >= 3 assert(sna_crtc->bo == NULL || crtc->active); #endif expected[0] = sna_crtc->bo ? fb_id(sna_crtc->bo) : 0; expected[1] = sna_crtc->flip_bo ? fb_id(sna_crtc->flip_bo) : -1; VG_CLEAR(mode); mode.crtc_id = sna_crtc->id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; DBG(("%s: crtc=%d, valid?=%d, fb attached?=%d, expected=(%d or %d)\n", __FUNCTION__, mode.crtc_id, mode.mode_valid, mode.fb_id, expected[0], expected[1])); if (mode.fb_id != expected[0] && mode.fb_id != expected[1]) { xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "%s: invalid state found on pipe %d, disabling CRTC:%d\n", __FUNCTION__, sna_crtc->pipe, sna_crtc->id); sna_crtc_disable(crtc); } } for (i = 0; i < config->num_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output; if (output->crtc) continue; sna_output = to_sna_output(output); if (sna_output == NULL) continue; sna_output->dpms_mode = DPMSModeOff; } update_flush_interval(sna); } void sna_mode_reset(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; if (sna->flags & SNA_IS_HOSTED) return; DBG(("%s\n", __FUNCTION__)); sna_hide_cursors(sna->scrn); for (i = 0; i < sna->mode.num_real_crtc; i++) sna_crtc_disable(config->crtc[i]); assert(sna->mode.front_active == 0); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *sna_crtc = to_sna_crtc(config->crtc[i]); assert(sna_crtc != NULL); sna_crtc->dpms_mode = -1; /* Force the rotation property to be reset on next use */ rotation_reset(&sna_crtc->primary); rotation_reset(&sna_crtc->sprite); } /* VT switching, likely to be fbcon so make the backlight usable */ for (i = 0; i < sna->mode.num_real_output; i++) { struct sna_output *sna_output = to_sna_output(config->output[i]); assert(sna_output != NULL); assert(sna_output->dpms_mode == DPMSModeOff); if (!sna_output->backlight.iface) continue; sna_output_backlight_set(sna_output, sna_output->backlight_active_level); } /* drain the event queue */ while (sna_mode_has_pending_events(sna)) sna_mode_wakeup(sna); } static void transformed_box(BoxRec *box, xf86CrtcPtr crtc) { box->x1 -= crtc->filter_width >> 1; box->x2 += crtc->filter_width >> 1; box->y1 -= crtc->filter_height >> 1; box->y2 += crtc->filter_height >> 1; pixman_f_transform_bounds(&crtc->f_framebuffer_to_crtc, box); if (box->x1 < 0) box->x1 = 0; if (box->y1 < 0) box->y1 = 0; if (box->x2 > crtc->mode.HDisplay) box->x2 = crtc->mode.HDisplay; if (box->y2 > crtc->mode.VDisplay) box->y2 = crtc->mode.VDisplay; } inline static DrawablePtr crtc_source(xf86CrtcPtr crtc, int16_t *sx, int16_t *sy) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); if (sna_crtc->slave_pixmap) { *sx = -crtc->x; *sy = -crtc->y; return &sna_crtc->slave_pixmap->drawable; } else { *sx = *sy = 0; return &to_sna(crtc->scrn)->front->drawable; } } static void sna_crtc_redisplay__fallback(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t sx, sy; struct sna *sna = to_sna(crtc->scrn); ScreenPtr screen = sna->scrn->pScreen; DrawablePtr draw = crtc_source(crtc, &sx, &sy); PictFormatPtr format; PicturePtr src, dst; PixmapPtr pixmap; int depth, error; void *ptr; DBG(("%s: compositing transformed damage boxes\n", __FUNCTION__)); error = sna_render_format_for_depth(draw->depth); depth = PIXMAN_FORMAT_DEPTH(error); format = PictureMatchFormat(screen, depth, error); if (format == NULL) { DBG(("%s: can't find format for depth=%d [%08x]\n", __FUNCTION__, depth, error)); return; } ptr = kgem_bo_map__gtt(&sna->kgem, bo); if (ptr == NULL) return; pixmap = sna_pixmap_create_unattached(screen, 0, 0, depth); if (pixmap == NullPixmap) return; if (!screen->ModifyPixmapHeader(pixmap, crtc->mode.HDisplay, crtc->mode.VDisplay, depth, draw->bitsPerPixel, bo->pitch, ptr)) goto free_pixmap; src = CreatePicture(None, draw, format, 0, NULL, serverClient, &error); if (!src) goto free_pixmap; error = SetPictureTransform(src, &crtc->crtc_to_framebuffer); if (error) goto free_src; if (crtc->filter) SetPicturePictFilter(src, crtc->filter, crtc->params, crtc->nparams); dst = CreatePicture(None, &pixmap->drawable, format, 0, NULL, serverClient, &error); if (!dst) goto free_src; kgem_bo_sync__gtt(&sna->kgem, bo); if (sigtrap_get() == 0) { /* paranoia */ const BoxRec *b = region_rects(region); int n = region_num_rects(region); do { BoxRec box; box = *b++; transformed_box(&box, crtc); DBG(("%s: (%d, %d)x(%d, %d) -> (%d, %d), (%d, %d)\n", __FUNCTION__, b[-1].x1, b[-1].y1, b[-1].x2-b[-1].x1, b[-1].y2-b[-1].y1, box.x1, box.y1, box.x2, box.y2)); fbComposite(PictOpSrc, src, NULL, dst, box.x1 + sx, box.y1 + sy, 0, 0, box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1); } while (--n); sigtrap_put(); } FreePicture(dst, None); free_src: FreePicture(src, None); free_pixmap: screen->DestroyPixmap(pixmap); } static void sna_crtc_redisplay__composite(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t sx, sy; struct sna *sna = to_sna(crtc->scrn); ScreenPtr screen = crtc->scrn->pScreen; DrawablePtr draw = crtc_source(crtc, &sx, &sy); struct sna_composite_op tmp; PictFormatPtr format; PicturePtr src, dst; PixmapPtr pixmap; const BoxRec *b; int n, depth, error; DBG(("%s: compositing transformed damage boxes\n", __FUNCTION__)); error = sna_render_format_for_depth(draw->depth); depth = PIXMAN_FORMAT_DEPTH(error); format = PictureMatchFormat(screen, depth, error); if (format == NULL) { DBG(("%s: can't find format for depth=%d [%08x]\n", __FUNCTION__, depth, error)); return; } pixmap = sna_pixmap_create_unattached(screen, 0, 0, depth); if (pixmap == NullPixmap) return; if (!screen->ModifyPixmapHeader(pixmap, crtc->mode.HDisplay, crtc->mode.VDisplay, depth, draw->bitsPerPixel, bo->pitch, NULL)) goto free_pixmap; if (!sna_pixmap_attach_to_bo(pixmap, kgem_bo_reference(bo))) { kgem_bo_destroy(&sna->kgem, bo); goto free_pixmap; } src = CreatePicture(None, draw, format, 0, NULL, serverClient, &error); if (!src) goto free_pixmap; error = SetPictureTransform(src, &crtc->crtc_to_framebuffer); if (error) goto free_src; if (crtc->filter) SetPicturePictFilter(src, crtc->filter, crtc->params, crtc->nparams); dst = CreatePicture(None, &pixmap->drawable, format, 0, NULL, serverClient, &error); if (!dst) goto free_src; ValidatePicture(src); ValidatePicture(dst); if (!sna->render.composite(sna, PictOpSrc, src, NULL, dst, sx, sy, 0, 0, 0, 0, crtc->mode.HDisplay, crtc->mode.VDisplay, COMPOSITE_PARTIAL, memset(&tmp, 0, sizeof(tmp)))) { DBG(("%s: unsupported operation!\n", __FUNCTION__)); sna_crtc_redisplay__fallback(crtc, region, bo); goto free_dst; } n = region_num_rects(region); b = region_rects(region); do { BoxRec box; box = *b++; transformed_box(&box, crtc); DBG(("%s: (%d, %d)x(%d, %d) -> (%d, %d), (%d, %d)\n", __FUNCTION__, b[-1].x1, b[-1].y1, b[-1].x2-b[-1].x1, b[-1].y2-b[-1].y1, box.x1, box.y1, box.x2, box.y2)); tmp.box(sna, &tmp, &box); } while (--n); tmp.done(sna, &tmp); free_dst: FreePicture(dst, None); free_src: FreePicture(src, None); free_pixmap: screen->DestroyPixmap(pixmap); } static void sna_crtc_redisplay(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t tx, ty, sx, sy; struct sna *sna = to_sna(crtc->scrn); DrawablePtr draw = crtc_source(crtc, &sx, &sy); struct sna_pixmap *priv = sna_pixmap((PixmapPtr)draw); DBG(("%s: crtc %d [pipe=%d], damage (%d, %d), (%d, %d) x %d\n", __FUNCTION__, to_sna_crtc(crtc)->id, to_sna_crtc(crtc)->pipe, region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(region))); assert(!wedged(sna)); if (priv->clear) { RegionRec whole; DBG(("%s: clear damage boxes\n", __FUNCTION__)); if (sna_transform_is_integer_translation(&crtc->crtc_to_framebuffer, &tx, &ty)) { RegionTranslate(region, -tx, -ty); } else { whole.extents = region->extents; whole.data = NULL; transformed_box(&whole.extents, crtc); region = &whole; } sna_blt_fill_boxes(sna, GXcopy, bo, draw->bitsPerPixel, priv->clear_color, region_rects(region), region_num_rects(region)); return; } if (crtc->filter == NULL && sna_transform_is_integer_translation(&crtc->crtc_to_framebuffer, &tx, &ty)) { DrawableRec tmp; DBG(("%s: copy damage boxes\n", __FUNCTION__)); tmp.width = crtc->mode.HDisplay; tmp.height = crtc->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; if (sna->render.copy_boxes(sna, GXcopy, draw, priv->gpu_bo, sx, sy, &tmp, bo, -tx, -ty, region_rects(region), region_num_rects(region), 0)) return; } if (can_render(sna)) sna_crtc_redisplay__composite(crtc, region, bo); else sna_crtc_redisplay__fallback(crtc, region, bo); } #define shadow_flip_handler (sna_flip_handler_t)sna_mode_redisplay void sna_shadow_set_crtc(struct sna *sna, xf86CrtcPtr crtc, struct kgem_bo *bo) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct sna_pixmap *priv; DBG(("%s: setting shadow override for CRTC:%d to handle=%d\n", __FUNCTION__, sna_crtc->id, bo->handle)); assert(sna->flags & SNA_TEAR_FREE); assert(sna_crtc); assert(!sna_crtc->transform); if (sna_crtc->shadow_bo != bo) { if (sna_crtc->shadow_bo) kgem_bo_destroy(&sna->kgem, sna_crtc->shadow_bo); sna_crtc->shadow_bo = kgem_bo_reference(bo); sna_crtc_damage(crtc); } list_move(&sna_crtc->shadow_link, &sna->mode.shadow_crtc); sna->mode.shadow_dirty = true; priv = sna_pixmap(sna->front); assert(priv->gpu_bo); priv->move_to_gpu = wait_for_shadow; priv->move_to_gpu_data = sna; } void sna_shadow_unset_crtc(struct sna *sna, xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); DBG(("%s: clearin shadow override for CRTC:%d\n", __FUNCTION__, sna_crtc->id)); if (sna_crtc->shadow_bo == NULL) return; kgem_bo_destroy(&sna->kgem, sna_crtc->shadow_bo); sna_crtc->shadow_bo = NULL; list_del(&sna_crtc->shadow_link); sna->mode.shadow_dirty = true; sna_crtc_damage(crtc); } void sna_mode_redisplay(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); RegionPtr region; int i; if (!sna->mode.shadow_damage) return; DBG(("%s: posting shadow damage? %d (flips pending? %d)\n", __FUNCTION__, !RegionNil(DamageRegion(sna->mode.shadow_damage)), sna->mode.flip_active)); assert((sna->flags & SNA_IS_HOSTED) == 0); assert(sna->mode.shadow_active); region = DamageRegion(sna->mode.shadow_damage); if (RegionNil(region)) return; DBG(("%s: damage: %dx(%d, %d), (%d, %d)\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2)); if (sna->mode.flip_active) { DamagePtr damage; damage = sna->mode.shadow_damage; sna->mode.shadow_damage = NULL; while (sna->mode.flip_active && sna_mode_has_pending_events(sna)) sna_mode_wakeup(sna); sna->mode.shadow_damage = damage; } if (sna->mode.flip_active) return; if (wedged(sna) || !sna_pixmap_move_to_gpu(sna->front, MOVE_READ | MOVE_ASYNC_HINT | __MOVE_SCANOUT)) { DBG(("%s: forcing scanout update using the CPU\n", __FUNCTION__)); if (!sna_pixmap_move_to_cpu(sna->front, MOVE_READ)) return; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); RegionRec damage; assert(sna_crtc != NULL); if (!sna_crtc->shadow) continue; assert(crtc->enabled); assert(sna_crtc->transform || sna->flags & SNA_TEAR_FREE); damage.extents = crtc->bounds; damage.data = NULL; RegionIntersect(&damage, &damage, region); if (RegionNotEmpty(&damage)) sna_crtc_redisplay__fallback(crtc, &damage, sna_crtc->bo); RegionUninit(&damage); if (sna_crtc->slave_damage) DamageEmpty(sna_crtc->slave_damage); } RegionEmpty(region); return; } { struct sna_pixmap *priv; priv = sna_pixmap(sna->front); assert(priv != NULL); if (priv->move_to_gpu) { if (priv->move_to_gpu == wait_for_shadow && !sna->mode.shadow_dirty) { /* No damage written to new scanout * (backbuffer), ignore redisplay request * and continue with the current intact * scanout (frontbuffer). */ DBG(("%s: shadow idle, skipping update\n", __FUNCTION__)); RegionEmpty(region); return; } (void)priv->move_to_gpu(sna, priv, 0); } assert(priv->move_to_gpu == NULL); } for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); RegionRec damage; assert(sna_crtc != NULL); DBG(("%s: crtc[%d] transformed? %d\n", __FUNCTION__, i, sna_crtc->transform)); if (!sna_crtc->transform) continue; assert(crtc->enabled); assert(sna_crtc->bo); damage.extents = crtc->bounds; damage.data = NULL; RegionIntersect(&damage, &damage, region); if (RegionNotEmpty(&damage)) { if (sna->flags & SNA_TEAR_FREE) { struct drm_mode_crtc_page_flip arg; struct kgem_bo *bo; RegionUninit(&damage); damage.extents = crtc->bounds; damage.data = NULL; bo = sna_crtc->shadow_bo; if (bo == NULL) bo = kgem_create_2d(&sna->kgem, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->scrn->bitsPerPixel, sna_crtc->bo->tiling, CREATE_SCANOUT); if (bo == NULL) goto disable1; sna_crtc_redisplay(crtc, &damage, bo); kgem_bo_submit(&sna->kgem, bo); arg.crtc_id = sna_crtc->id; arg.fb_id = get_fb(sna, bo, crtc->mode.HDisplay, crtc->mode.VDisplay); if (arg.fb_id == 0) goto disable1; arg.user_data = (uintptr_t)sna_crtc; arg.flags = DRM_MODE_PAGE_FLIP_EVENT; arg.reserved = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { BoxRec box; DrawableRec tmp; DBG(("%s: flip [fb=%d] on crtc %d [%d, pipe=%d] failed - %d\n", __FUNCTION__, arg.fb_id, i, sna_crtc->id, sna_crtc->pipe, errno)); disable1: box.x1 = 0; box.y1 = 0; tmp.width = box.x2 = crtc->mode.HDisplay; tmp.height = box.y2 = crtc->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; if (!sna->render.copy_boxes(sna, GXcopy, &sna->front->drawable, bo, 0, 0, &tmp, sna_crtc->bo, 0, 0, &box, 1, COPY_LAST)) { xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "%s: page flipping failed, disabling CRTC:%d (pipe=%d)\n", __FUNCTION__, sna_crtc->id, sna_crtc->pipe); sna_crtc_disable(crtc); } kgem_bo_destroy(&sna->kgem, bo); sna_crtc->shadow_bo = NULL; continue; } sna->mode.flip_active++; assert(sna_crtc->flip_bo == NULL); sna_crtc->flip_handler = shadow_flip_handler; sna_crtc->flip_bo = bo; sna_crtc->flip_bo->active_scanout++; sna_crtc->flip_serial = sna_crtc->mode_serial; sna_crtc->shadow_bo = kgem_bo_reference(sna_crtc->bo); } else { sna_crtc_redisplay(crtc, &damage, sna_crtc->bo); kgem_scanout_flush(&sna->kgem, sna_crtc->bo); } } RegionUninit(&damage); if (sna_crtc->slave_damage) DamageEmpty(sna_crtc->slave_damage); } if (sna->mode.shadow) { struct kgem_bo *new = __sna_pixmap_get_bo(sna->front); struct kgem_bo *old = sna->mode.shadow; struct drm_mode_crtc_page_flip arg; uint32_t fb = 0; DBG(("%s: flipping tear-free outputs, current scanout handle=%d [active?=%d], new handle=%d [active=%d]\n", __FUNCTION__, old->handle, old->active_scanout, new->handle, new->active_scanout)); assert(new != old); assert(new->refcnt); arg.flags = DRM_MODE_PAGE_FLIP_EVENT; arg.reserved = 0; kgem_bo_submit(&sna->kgem, new); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = config->crtc[i]->driver_private; struct kgem_bo *flip_bo; int x, y; assert(crtc != NULL); DBG(("%s: crtc %d [%d, pipe=%d] active? %d, transformed? %d\n", __FUNCTION__, i, crtc->id, crtc->pipe, crtc->bo ? crtc->bo->handle : 0, crtc->transform)); if (crtc->bo == NULL || crtc->transform) continue; assert(config->crtc[i]->enabled); assert(crtc->dpms_mode <= DPMSModeOn); assert(crtc->flip_bo == NULL); arg.crtc_id = crtc->id; arg.user_data = (uintptr_t)crtc; if (crtc->shadow_bo) { DBG(("%s: apply shadow override bo for CRTC:%d on pipe=%d, handle=%d\n", __FUNCTION__, crtc->id, crtc->pipe, crtc->shadow_bo->handle)); arg.fb_id = get_fb(sna, crtc->shadow_bo, crtc->base->mode.HDisplay, crtc->base->mode.VDisplay); assert(arg.fb_id != fb); flip_bo = crtc->shadow_bo; x = y = 0; } else { if (fb == 0) fb = get_fb(sna, new, sna->scrn->virtualX, sna->scrn->virtualY); if (fb == 0) { fixup_shadow: if (sna_pixmap_move_to_gpu(sna->front, MOVE_READ | MOVE_ASYNC_HINT)) { BoxRec box; box.x1 = 0; box.y1 = 0; box.x2 = sna->scrn->virtualX; box.y2 = sna->scrn->virtualY; if (sna->render.copy_boxes(sna, GXcopy, &sna->front->drawable, __sna_pixmap_get_bo(sna->front), 0, 0, &sna->front->drawable, old, 0, 0, &box, 1, COPY_LAST)) { kgem_submit(&sna->kgem); RegionEmpty(region); } } return; } arg.fb_id = fb; flip_bo = new; x = crtc->base->x; y = crtc->base->y; } if (crtc->bo == flip_bo) continue; if (flip_bo->pitch != crtc->bo->pitch || (y << 16 | x) != crtc->offset) { DBG(("%s: changing pitch (%d == %d) or offset (%x == %x)\n", __FUNCTION__, flip_bo->pitch, crtc->bo->pitch, y << 16 | x, crtc->offset)); fixup_flip: if (sna_crtc_flip(sna, crtc, flip_bo, x, y)) { assert(flip_bo != crtc->bo); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); crtc->bo = kgem_bo_reference(flip_bo); crtc->bo->active_scanout++; } else { if (sna->mode.flip_active == 0) { DBG(("%s: abandoning flip attempt\n", __FUNCTION__)); goto fixup_shadow; } xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "%s: page flipping failed, disabling CRTC:%d (pipe=%d)\n", __FUNCTION__, crtc->id, crtc->pipe); sna_crtc_disable(crtc->base); } continue; } if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { ERR(("%s: flip [fb=%d] on crtc %d [%d, pipe=%d] failed - %d\n", __FUNCTION__, arg.fb_id, i, crtc->id, crtc->pipe, errno)); goto fixup_flip; } sna->mode.flip_active++; assert(crtc->flip_bo == NULL); crtc->flip_handler = shadow_flip_handler; crtc->flip_bo = kgem_bo_reference(flip_bo); crtc->flip_bo->active_scanout++; crtc->flip_serial = crtc->mode_serial; { struct drm_i915_gem_busy busy = { flip_bo->handle }; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_BUSY, &busy) == 0) { if (busy.busy) { int mode = KGEM_RENDER; if (busy.busy & (0xfffe << 16)) mode = KGEM_BLT; DBG(("%s: marking flip bo as busy [%x -> mode=%d]\n", __FUNCTION__, busy.busy, mode)); kgem_bo_mark_busy(&sna->kgem, flip_bo, mode); } else __kgem_bo_clear_busy(flip_bo); } } } DBG(("%s: flipped %d outputs, shadow active? %d\n", __FUNCTION__, sna->mode.flip_active, sna->mode.shadow ? sna->mode.shadow->handle : 0)); if (sna->mode.flip_active) { assert(old == sna->mode.shadow); assert(old->refcnt >= 1); set_shadow(sna, region); } } else kgem_submit(&sna->kgem); RegionEmpty(region); } void sna_mode_wakeup(struct sna *sna) { char buffer[1024]; int len, i; /* The DRM read semantics guarantees that we always get only * complete events. */ len = read(sna->kgem.fd, buffer, sizeof (buffer)); if (len < (int)sizeof(struct drm_event)) return; DBG(("%s: len=%d\n", __FUNCTION__, len)); i = 0; while (i < len) { struct drm_event *e = (struct drm_event *)&buffer[i]; switch (e->type) { case DRM_EVENT_VBLANK: if (((uintptr_t)((struct drm_event_vblank *)e)->user_data) & 2) sna_present_vblank_handler(sna, (struct drm_event_vblank *)e); else sna_dri2_vblank_handler(sna, (struct drm_event_vblank *)e); break; case DRM_EVENT_FLIP_COMPLETE: { struct drm_event_vblank *vbl = (struct drm_event_vblank *)e; struct sna_crtc *crtc = (void *)(uintptr_t)vbl->user_data; crtc->swap.tv_sec = vbl->tv_sec; crtc->swap.tv_usec = vbl->tv_usec; crtc->swap.msc = msc64(crtc, vbl->sequence); assert(crtc->flip_bo); assert(crtc->flip_bo->active_scanout); assert(crtc->flip_bo->refcnt >= crtc->flip_bo->active_scanout); if (crtc->flip_serial == crtc->mode_serial) { DBG(("%s: removing handle=%d from scanout, installing handle=%d\n", __FUNCTION__, crtc->bo->handle, crtc->flip_bo->handle)); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); crtc->bo = crtc->flip_bo; crtc->flip_bo = NULL; } else { crtc->flip_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->flip_bo); crtc->flip_bo = NULL; } DBG(("%s: flip complete, pending? %d\n", __FUNCTION__, sna->mode.flip_active)); assert(sna->mode.flip_active); if (--sna->mode.flip_active == 0) crtc->flip_handler(sna, vbl, crtc->flip_data); } break; default: break; } i += e->length; } }