/* * Copyright © 2007 Red Hat, Inc. * Copyright © 2013-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Dave Airlie * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #if HAVE_ALLOCA_H #include #elif defined __GNUC__ #define alloca __builtin_alloca #elif defined _AIX #define alloca __alloca #elif defined _MSC_VER #include #define alloca _alloca #else void *alloca(size_t); #endif #define _PARSE_EDID_ /* Jump through a few hoops in order to fixup EDIDs */ #undef VERSION #undef REVISION #include "sna.h" #include "sna_reg.h" #include "fb/fbpict.h" #include "intel_options.h" #include "backlight.h" #include #include #include #if XF86_CRTC_VERSION >= 3 #define HAS_GAMMA 1 #else #define HAS_GAMMA 0 #endif #include #if defined(HAVE_X11_EXTENSIONS_DPMSCONST_H) #include #else #define DPMSModeOn 0 #define DPMSModeOff 3 #endif #include /* for xf86InterpretEDID */ #include #ifdef HAVE_VALGRIND #include #include #endif #define FAIL_CURSOR_IOCTL 0 #define COLDPLUG_DELAY_MS 2000 /* Minor discrepancy between 32-bit/64-bit ABI in old kernels */ union compat_mode_get_connector{ struct drm_mode_get_connector conn; uint32_t pad[20]; }; #define KNOWN_MODE_FLAGS ((1<<14)-1) #ifndef MONITOR_EDID_COMPLETE_RAWDATA #define MONITOR_EDID_COMPLETE_RAWDATA 1 #endif #ifndef DEFAULT_DPI #define DEFAULT_DPI 96 #endif #define OUTPUT_STATUS_CACHE_MS 15000 #define DRM_MODE_PAGE_FLIP_ASYNC 0x02 #define DRM_CLIENT_CAP_UNIVERSAL_PLANES 2 #define DRM_PLANE_TYPE_OVERLAY 0 #define DRM_PLANE_TYPE_PRIMARY 1 #define DRM_PLANE_TYPE_CURSOR 2 #define LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES DRM_IOWR(0xb9, struct local_mode_obj_get_properties) struct local_mode_obj_get_properties { uint64_t props_ptr; uint64_t prop_values_ptr; uint32_t count_props; uint32_t obj_id; uint32_t obj_type; uint32_t pad; }; #define LOCAL_MODE_OBJECT_PLANE 0xeeeeeeee struct local_mode_set_plane { uint32_t plane_id; uint32_t crtc_id; uint32_t fb_id; /* fb object contains surface format type */ uint32_t flags; /* Signed dest location allows it to be partially off screen */ int32_t crtc_x, crtc_y; uint32_t crtc_w, crtc_h; /* Source values are 16.16 fixed point */ uint32_t src_x, src_y; uint32_t src_h, src_w; }; #define LOCAL_IOCTL_MODE_SETPLANE DRM_IOWR(0xB7, struct local_mode_set_plane) struct local_mode_get_plane { uint32_t plane_id; uint32_t crtc_id; uint32_t fb_id; uint32_t possible_crtcs; uint32_t gamma_size; uint32_t count_format_types; uint64_t format_type_ptr; }; #define LOCAL_IOCTL_MODE_GETPLANE DRM_IOWR(0xb6, struct local_mode_get_plane) struct local_mode_get_plane_res { uint64_t plane_id_ptr; uint64_t count_planes; }; #define LOCAL_IOCTL_MODE_GETPLANERESOURCES DRM_IOWR(0xb5, struct local_mode_get_plane_res) #if 1 #define __DBG DBG #else #define __DBG(x) #endif #define DBG_NATIVE_ROTATION ~0 /* minimum RR_Rotate_0 */ extern XF86ConfigPtr xf86configptr; struct sna_cursor { struct sna_cursor *next; uint32_t *image; bool transformed; Rotation rotation; int ref; int size; int last_width; int last_height; unsigned handle; unsigned serial; unsigned alloc; }; struct sna_crtc { unsigned long flags; uint32_t id; xf86CrtcPtr base; struct drm_mode_modeinfo kmode; PixmapPtr slave_pixmap; DamagePtr slave_damage; struct kgem_bo *bo, *shadow_bo, *client_bo, *cache_bo; struct sna_cursor *cursor; unsigned int last_cursor_size; uint32_t offset; bool shadow; bool fallback_shadow; bool transform; bool cursor_transform; bool hwcursor; bool flip_pending; struct pict_f_transform cursor_to_fb, fb_to_cursor; RegionRec crtc_damage; uint16_t shadow_bo_width, shadow_bo_height; uint32_t rotation; struct plane { uint32_t id; struct { uint32_t prop; uint32_t supported; uint32_t current; } rotation; struct list link; } primary; struct list sprites; uint32_t mode_serial, flip_serial; uint32_t last_seq, wrap_seq; struct ust_msc swap; sna_flip_handler_t flip_handler; struct kgem_bo *flip_bo; void *flip_data; struct list shadow_link; }; struct sna_property { drmModePropertyPtr kprop; int num_atoms; /* if range prop, num_atoms == 1; if enum prop, num_atoms == num_enums + 1 */ Atom *atoms; }; struct sna_output { xf86OutputPtr base; unsigned id; unsigned serial; unsigned possible_encoders; unsigned attached_encoders; unsigned int is_panel : 1; unsigned int add_default_modes : 1; int connector_type; int connector_type_id; uint32_t edid_idx; uint32_t edid_blob_id; uint32_t edid_len; void *edid_raw; xf86MonPtr fake_edid_mon; void *fake_edid_raw; bool has_panel_limits; int panel_hdisplay; int panel_vdisplay; uint32_t dpms_id; uint8_t dpms_mode; struct backlight backlight; int backlight_active_level; uint32_t last_detect; uint32_t status; unsigned int hotplug_count; bool update_properties; bool reprobe; int num_modes; struct drm_mode_modeinfo *modes; int num_props; uint32_t *prop_ids; uint64_t *prop_values; struct sna_property *props; }; enum { /* XXX copied from hw/xfree86/modes/xf86Crtc.c */ OPTION_PREFERRED_MODE, #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,14,99,1,0) OPTION_ZOOM_MODES, #endif OPTION_POSITION, OPTION_BELOW, OPTION_RIGHT_OF, OPTION_ABOVE, OPTION_LEFT_OF, OPTION_ENABLE, OPTION_DISABLE, OPTION_MIN_CLOCK, OPTION_MAX_CLOCK, OPTION_IGNORE, OPTION_ROTATE, OPTION_PANNING, OPTION_PRIMARY, OPTION_DEFAULT_MODES, }; static void __sna_output_dpms(xf86OutputPtr output, int dpms, int fixup); static void sna_crtc_disable_cursor(struct sna *sna, struct sna_crtc *crtc); static bool is_zaphod(ScrnInfoPtr scrn) { return xf86IsEntityShared(scrn->entityList[0]); } static bool sna_zaphod_match(struct sna *sna, const char *output) { const char *s, *colon; char t[20]; unsigned int i = 0; s = xf86GetOptValString(sna->Options, OPTION_ZAPHOD); if (s == NULL) return false; colon = strchr(s, ':'); if (colon) /* Skip over the ZaphodPipes */ s = colon + 1; do { /* match any outputs in a comma list, stopping at whitespace */ switch (*s) { case '\0': t[i] = '\0'; return strcmp(t, output) == 0; case ',': t[i] ='\0'; if (strcmp(t, output) == 0) return TRUE; i = 0; break; case ' ': case '\t': case '\n': case '\r': break; default: t[i++] = *s; break; } s++; } while (i < sizeof(t)); return false; } static unsigned get_zaphod_crtcs(struct sna *sna) { const char *str, *colon; unsigned crtcs = 0; str = xf86GetOptValString(sna->Options, OPTION_ZAPHOD); if (str == NULL || (colon = strchr(str, ':')) == NULL) { DBG(("%s: no zaphod pipes, using screen number: %x\n", __FUNCTION__, sna->scrn->confScreen->device->screen)); return 1 << sna->scrn->confScreen->device->screen; } DBG(("%s: ZaphodHeads='%s'\n", __FUNCTION__, str)); while (str < colon) { char *end; unsigned crtc = strtoul(str, &end, 0); if (end == str) break; DBG(("%s: adding CRTC %d to zaphod pipes\n", __FUNCTION__, crtc)); crtcs |= 1 << crtc; str = end + 1; } DBG(("%s: ZaphodPipes=%x\n", __FUNCTION__, crtcs)); return crtcs; } inline static unsigned count_to_mask(int x) { return (1 << x) - 1; } static inline struct sna_output *to_sna_output(xf86OutputPtr output) { return output->driver_private; } static inline int to_connector_id(xf86OutputPtr output) { assert(to_sna_output(output)); assert(to_sna_output(output)->id); return to_sna_output(output)->id; } static inline struct sna_crtc *to_sna_crtc(xf86CrtcPtr crtc) { return crtc->driver_private; } static inline unsigned __sna_crtc_pipe(struct sna_crtc *crtc) { return crtc->flags >> 8 & 0xff; } static inline unsigned __sna_crtc_id(struct sna_crtc *crtc) { return crtc->id; } uint32_t sna_crtc_id(xf86CrtcPtr crtc) { return __sna_crtc_id(to_sna_crtc(crtc)); } static inline bool event_pending(int fd) { struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; return poll(&pfd, 1, 0) == 1; } static bool sna_mode_wait_for_event(struct sna *sna) { struct pollfd pfd; pfd.fd = sna->kgem.fd; pfd.events = POLLIN; return poll(&pfd, 1, -1) == 1; } static inline uint32_t fb_id(struct kgem_bo *bo) { return bo->delta; } unsigned sna_crtc_count_sprites(xf86CrtcPtr crtc) { struct plane *sprite; unsigned count; count = 0; list_for_each_entry(sprite, &to_sna_crtc(crtc)->sprites, link) count++; return count; } static struct plane *lookup_sprite(struct sna_crtc *crtc, unsigned idx) { struct plane *sprite; list_for_each_entry(sprite, &crtc->sprites, link) if (idx-- == 0) return sprite; return NULL; } uint32_t sna_crtc_to_sprite(xf86CrtcPtr crtc, unsigned idx) { struct plane *sprite; assert(to_sna_crtc(crtc)); sprite = lookup_sprite(to_sna_crtc(crtc), idx); return sprite ? sprite->id : 0; } bool sna_crtc_is_transformed(xf86CrtcPtr crtc) { assert(to_sna_crtc(crtc)); return to_sna_crtc(crtc)->transform; } static inline bool msc64(struct sna_crtc *sna_crtc, uint32_t seq, uint64_t *msc) { bool record = true; if (seq < sna_crtc->last_seq) { if (sna_crtc->last_seq - seq > 0x40000000) { sna_crtc->wrap_seq++; DBG(("%s: pipe=%d wrapped; was %u, now %u, wraps=%u\n", __FUNCTION__, __sna_crtc_pipe(sna_crtc), sna_crtc->last_seq, seq, sna_crtc->wrap_seq)); } else { DBG(("%s: pipe=%d msc went backwards; was %u, now %u; ignoring for last_swap\n", __FUNCTION__, __sna_crtc_pipe(sna_crtc), sna_crtc->last_seq, seq)); record = false; } } *msc = (uint64_t)sna_crtc->wrap_seq << 32 | seq; return record; } uint64_t sna_crtc_record_swap(xf86CrtcPtr crtc, int tv_sec, int tv_usec, unsigned seq) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); uint64_t msc; assert(sna_crtc); if (msc64(sna_crtc, seq, &msc)) { DBG(("%s: recording last swap on pipe=%d, frame %d [msc=%08lld], time %d.%06d\n", __FUNCTION__, __sna_crtc_pipe(sna_crtc), seq, (long long)msc, tv_sec, tv_usec)); sna_crtc->swap.tv_sec = tv_sec; sna_crtc->swap.tv_usec = tv_usec; sna_crtc->swap.msc = msc; } else { DBG(("%s: swap event on pipe=%d, frame %d [msc=%08lld], time %d.%06d\n", __FUNCTION__, __sna_crtc_pipe(sna_crtc), seq, (long long)msc, tv_sec, tv_usec)); } return msc; } const struct ust_msc *sna_crtc_last_swap(xf86CrtcPtr crtc) { static struct ust_msc zero; if (crtc == NULL) { return &zero; } else { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); assert(sna_crtc); return &sna_crtc->swap; } } #ifndef NDEBUG static void gem_close(int fd, uint32_t handle); static void assert_scanout(struct kgem *kgem, struct kgem_bo *bo, int width, int height) { struct drm_mode_fb_cmd info; assert(bo->scanout); VG_CLEAR(info); info.fb_id = fb_id(bo); assert(drmIoctl(kgem->fd, DRM_IOCTL_MODE_GETFB, &info) == 0); gem_close(kgem->fd, info.handle); assert(width == info.width && height == info.height); } #else #define assert_scanout(k, b, w, h) #endif static void assert_crtc_fb(struct sna *sna, struct sna_crtc *crtc) { #ifndef NDEBUG struct drm_mode_crtc mode = { .crtc_id = __sna_crtc_id(crtc) }; drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode); assert(mode.fb_id == fb_id(crtc->bo)); #endif } static unsigned get_fb(struct sna *sna, struct kgem_bo *bo, int width, int height) { ScrnInfoPtr scrn = sna->scrn; struct drm_mode_fb_cmd arg; if (!kgem_bo_is_fenced(&sna->kgem, bo)) return 0; assert(bo->refcnt); assert(bo->proxy == NULL); assert(!bo->snoop); assert(8*bo->pitch >= width * scrn->bitsPerPixel); assert(height * bo->pitch <= kgem_bo_size(bo)); /* XXX crtc offset */ if (fb_id(bo)) { DBG(("%s: reusing fb=%d for handle=%d\n", __FUNCTION__, fb_id(bo), bo->handle)); assert_scanout(&sna->kgem, bo, width, height); return fb_id(bo); } DBG(("%s: create fb %dx%d@%d/%d\n", __FUNCTION__, width, height, scrn->depth, scrn->bitsPerPixel)); assert(bo->tiling != I915_TILING_Y || sna->kgem.can_scanout_y); assert((bo->pitch & 63) == 0); assert(scrn->vtSema); /* must be master */ VG_CLEAR(arg); arg.width = width; arg.height = height; arg.pitch = bo->pitch; arg.bpp = scrn->bitsPerPixel; arg.depth = scrn->depth; arg.handle = bo->handle; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_ADDFB, &arg)) { /* Try again with the fancy version */ struct local_mode_fb_cmd2 { uint32_t fb_id; uint32_t width, height; uint32_t pixel_format; uint32_t flags; uint32_t handles[4]; uint32_t pitches[4]; /* pitch for each plane */ uint32_t offsets[4]; /* offset of each plane */ uint64_t modifiers[4]; } f; #define LOCAL_IOCTL_MODE_ADDFB2 DRM_IOWR(0xb8, struct local_mode_fb_cmd2) memset(&f, 0, sizeof(f)); f.width = width; f.height = height; /* XXX interlaced */ f.flags = 1 << 1; /* +modifiers */ f.handles[0] = bo->handle; f.pitches[0] = bo->pitch; switch (bo->tiling) { case I915_TILING_NONE: break; case I915_TILING_X: /* I915_FORMAT_MOD_X_TILED */ f.modifiers[0] = (uint64_t)1 << 56 | 1; break; case I915_TILING_Y: /* I915_FORMAT_MOD_X_TILED */ f.modifiers[0] = (uint64_t)1 << 56 | 2; break; } #define fourcc(a,b,c,d) ((a) | (b) << 8 | (c) << 16 | (d) << 24) switch (scrn->depth) { default: ERR(("%s: unhandled screen format, depth=%d\n", __FUNCTION__, scrn->depth)); goto fail; case 8: f.pixel_format = fourcc('C', '8', ' ', ' '); break; case 15: f.pixel_format = fourcc('X', 'R', '1', '5'); break; case 16: f.pixel_format = fourcc('R', 'G', '1', '6'); break; case 24: f.pixel_format = fourcc('X', 'R', '2', '4'); break; case 30: f.pixel_format = fourcc('X', 'R', '3', '0'); break; } #undef fourcc if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_ADDFB2, &f)) { fail: xf86DrvMsg(scrn->scrnIndex, X_ERROR, "%s: failed to add fb: %dx%d depth=%d, bpp=%d, pitch=%d: %d\n", __FUNCTION__, width, height, scrn->depth, scrn->bitsPerPixel, bo->pitch, errno); return 0; } arg.fb_id = f.fb_id; } assert(arg.fb_id != 0); bo->delta = arg.fb_id; DBG(("%s: attached fb=%d to handle=%d\n", __FUNCTION__, bo->delta, arg.handle)); bo->scanout = true; return bo->delta; } static uint32_t gem_create(int fd, int size) { struct drm_i915_gem_create create; assert((size & 4095) == 0); VG_CLEAR(create); create.handle = 0; create.size = size; (void)drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); return create.handle; } static void *gem_mmap(int fd, int handle, int size) { struct drm_i915_gem_mmap_gtt mmap_arg; struct drm_i915_gem_set_domain set_domain; void *ptr; VG_CLEAR(mmap_arg); mmap_arg.handle = handle; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg)) return NULL; ptr = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, mmap_arg.offset); if (ptr == MAP_FAILED) return NULL; VG_CLEAR(set_domain); set_domain.handle = handle; set_domain.read_domains = I915_GEM_DOMAIN_GTT; set_domain.write_domain = I915_GEM_DOMAIN_GTT; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain)) { munmap(ptr, size); return NULL; } return ptr; } static void gem_close(int fd, uint32_t handle) { struct drm_gem_close close; VG_CLEAR(close); close.handle = handle; (void)drmIoctl(fd, DRM_IOCTL_GEM_CLOSE, &close); } #define BACKLIGHT_NAME "Backlight" #define BACKLIGHT_DEPRECATED_NAME "BACKLIGHT" static Atom backlight_atom, backlight_deprecated_atom; #if HAVE_UDEV static void sna_backlight_uevent(int fd, void *closure) { struct sna *sna = closure; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; DBG(("%s()\n", __FUNCTION__)); /* Drain the event queue */ while (event_pending(fd)) { struct udev_device *dev; DBG(("%s: waiting for uevent\n", __FUNCTION__)); dev = udev_monitor_receive_device(sna->mode.backlight_monitor); if (dev == NULL) break; udev_device_unref(dev); } /* Query all backlights for any changes */ DBG(("%s: probing backlights for changes\n", __FUNCTION__)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); int val; if (sna_output->dpms_mode != DPMSModeOn) continue; val = backlight_get(&sna_output->backlight); if (val < 0) continue; DBG(("%s(%s): backlight '%s' was %d, now %d\n", __FUNCTION__, output->name, sna_output->backlight.iface, sna_output->backlight_active_level, val)); if (val == sna_output->backlight_active_level) continue; sna_output->backlight_active_level = val; if (output->randr_output) { DBG(("%s(%s): sending change notification\n", __FUNCTION__, output->name)); RRChangeOutputProperty(output->randr_output, backlight_atom, XA_INTEGER, 32, PropModeReplace, 1, &val, TRUE, FALSE); RRChangeOutputProperty(output->randr_output, backlight_deprecated_atom, XA_INTEGER, 32, PropModeReplace, 1, &val, TRUE, FALSE); } } DBG(("%s: complete\n", __FUNCTION__)); } static void sna_backlight_pre_init(struct sna *sna) { struct udev *u; struct udev_monitor *mon; #if !USE_BACKLIGHT return; #endif u = udev_new(); if (!u) return; mon = udev_monitor_new_from_netlink(u, "udev"); if (!mon) goto free_udev; if (udev_monitor_filter_add_match_subsystem_devtype(mon, "backlight", NULL)) goto free_monitor; if (udev_monitor_enable_receiving(mon)) goto free_monitor; sna->mode.backlight_handler = xf86AddGeneralHandler(udev_monitor_get_fd(mon), sna_backlight_uevent, sna); if (!sna->mode.backlight_handler) goto free_monitor; DBG(("%s: installed backlight monitor\n", __FUNCTION__)); sna->mode.backlight_monitor = mon; return; free_monitor: udev_monitor_unref(mon); free_udev: udev_unref(u); } static void sna_backlight_drain_uevents(struct sna *sna) { if (sna->mode.backlight_monitor == NULL) return; DBG(("%s()\n", __FUNCTION__)); sna_backlight_uevent(udev_monitor_get_fd(sna->mode.backlight_monitor), sna); } static void sna_backlight_close(struct sna *sna) { struct udev *u; if (sna->mode.backlight_handler == NULL) return; xf86RemoveGeneralHandler(sna->mode.backlight_handler); u = udev_monitor_get_udev(sna->mode.backlight_monitor); udev_monitor_unref(sna->mode.backlight_monitor); udev_unref(u); sna->mode.backlight_handler = NULL; sna->mode.backlight_monitor = NULL; } #else static void sna_backlight_pre_init(struct sna *sna) { } static void sna_backlight_drain_uevents(struct sna *sna) { } static void sna_backlight_close(struct sna *sna) { } #endif static void sna_output_backlight_disable(struct sna_output *sna_output) { xf86OutputPtr output = sna_output->base; xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "Failed to set backlight %s for output %s, disabling\n", sna_output->backlight.iface, output->name); backlight_disable(&sna_output->backlight); if (output->randr_output) { RRDeleteOutputProperty(output->randr_output, backlight_atom); RRDeleteOutputProperty(output->randr_output, backlight_deprecated_atom); } } static int sna_output_backlight_set(struct sna_output *sna_output, int level) { int ret = 0; DBG(("%s(%s) level=%d, max=%d\n", __FUNCTION__, sna_output->base->name, level, sna_output->backlight.max)); if (backlight_set(&sna_output->backlight, level)) { sna_output_backlight_disable(sna_output); ret = -1; } /* Consume the uevent notification now so that we don't misconstrue * the change latter when we wake up and the output is in a different * state. */ sna_backlight_drain_uevents(to_sna(sna_output->base->scrn)); return ret; } static bool has_native_backlight(struct sna_output *sna_output) { return sna_output->backlight.type == BL_RAW; } static void sna_output_backlight_off(struct sna_output *sna_output) { /* Trust the kernel to turn the native backlight off. However, we * do explicitly turn the backlight back on (when we wake the output) * just in case a third party turns it off! */ if (has_native_backlight(sna_output)) return; DBG(("%s(%s)\n", __FUNCTION__, sna_output->base->name)); backlight_off(&sna_output->backlight); sna_output_backlight_set(sna_output, 0); } static void sna_output_backlight_on(struct sna_output *sna_output) { DBG(("%s(%s)\n", __FUNCTION__, sna_output->base->name)); sna_output_backlight_set(sna_output, sna_output->backlight_active_level); if (backlight_on(&sna_output->backlight) < 0) sna_output_backlight_disable(sna_output); } static int sna_output_backlight_get(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; int level = backlight_get(&sna_output->backlight); DBG(("%s(%s) level=%d, max=%d\n", __FUNCTION__, output->name, level, sna_output->backlight.max)); return level; } static char * has_user_backlight_override(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); const char *str; str = xf86GetOptValString(sna->Options, OPTION_BACKLIGHT); if (str == NULL) return NULL; DBG(("%s(%s) requested %s\n", __FUNCTION__, output->name, str)); if (*str == '\0') return (char *)str; if (!backlight_exists(str)) { xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "Unrecognised backlight control interface '%s'\n", str); return NULL; } return strdup(str); } static int get_device_minor(int fd) { struct stat st; if (fstat(fd, &st) || !S_ISCHR(st.st_mode)) return -1; return st.st_rdev & 0x63; } static const char * const sysfs_connector_types[] = { /* DRM_MODE_CONNECTOR_Unknown */ "Unknown", /* DRM_MODE_CONNECTOR_VGA */ "VGA", /* DRM_MODE_CONNECTOR_DVII */ "DVI-I", /* DRM_MODE_CONNECTOR_DVID */ "DVI-D", /* DRM_MODE_CONNECTOR_DVIA */ "DVI-A", /* DRM_MODE_CONNECTOR_Composite */ "Composite", /* DRM_MODE_CONNECTOR_SVIDEO */ "SVIDEO", /* DRM_MODE_CONNECTOR_LVDS */ "LVDS", /* DRM_MODE_CONNECTOR_Component */ "Component", /* DRM_MODE_CONNECTOR_9PinDIN */ "DIN", /* DRM_MODE_CONNECTOR_DisplayPort */ "DP", /* DRM_MODE_CONNECTOR_HDMIA */ "HDMI-A", /* DRM_MODE_CONNECTOR_HDMIB */ "HDMI-B", /* DRM_MODE_CONNECTOR_TV */ "TV", /* DRM_MODE_CONNECTOR_eDP */ "eDP", /* DRM_MODE_CONNECTOR_VIRTUAL */ "Virtual", /* DRM_MODE_CONNECTOR_DSI */ "DSI", /* DRM_MODE_CONNECTOR_DPI */ "DPI" }; static char *has_connector_backlight(xf86OutputPtr output, char *buf) { struct sna_output *sna_output = output->driver_private; struct sna *sna = to_sna(output->scrn); char path[1024]; DIR *dir; struct dirent *de; int minor, len; char *ret = NULL; if (sna_output->connector_type >= ARRAY_SIZE(sysfs_connector_types)) return NULL; minor = get_device_minor(sna->kgem.fd); if (minor < 0) return NULL; len = snprintf(path, sizeof(path), "/sys/class/drm/card%d-%s-%d", minor, sysfs_connector_types[sna_output->connector_type], sna_output->connector_type_id); DBG(("%s: lookup %s\n", __FUNCTION__, path)); dir = opendir(path); while ((de = readdir(dir))) { struct stat st; if (*de->d_name == '.') continue; snprintf(path + len, sizeof(path) - len, "/%s", de->d_name); if (stat(path, &st)) continue; if (!S_ISDIR(st.st_mode)) continue; DBG(("%s: testing %s as backlight\n", __FUNCTION__, de->d_name)); if (backlight_exists(de->d_name)) { snprintf(buf, 128, "%s", de->d_name); ret = buf; break; } } closedir(dir); return ret; } static void sna_output_backlight_init(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; struct pci_device *pci; char buf[128]; MessageType from; char *best_iface; #if !USE_BACKLIGHT return; #endif if (sna_output->is_panel) { from = X_CONFIG; best_iface = has_user_backlight_override(output); if (best_iface) goto done; } best_iface = has_connector_backlight(output, buf); if (best_iface) goto done; if (!sna_output->is_panel) return; /* XXX detect right backlight for multi-GPU/panels */ from = X_PROBED; pci = xf86GetPciInfoForEntity(to_sna(output->scrn)->pEnt->index); if (pci != NULL) best_iface = backlight_find_for_device(pci); done: DBG(("%s(%s) opening backlight %s\n", __FUNCTION__, output->name, best_iface ?: "none")); sna_output->backlight_active_level = backlight_open(&sna_output->backlight, best_iface); DBG(("%s(%s): initial backlight value %d\n", __FUNCTION__, output->name, sna_output->backlight_active_level)); if (sna_output->backlight_active_level < 0) return; switch (sna_output->backlight.type) { case BL_FIRMWARE: best_iface = (char *)"firmware"; break; case BL_PLATFORM: best_iface = (char *)"platform"; break; case BL_RAW: best_iface = (char *)"raw"; break; default: best_iface = (char *)"unknown"; break; } xf86DrvMsg(output->scrn->scrnIndex, from, "Found backlight control interface %s (type '%s') for output %s\n", sna_output->backlight.iface, best_iface, output->name); } #if ABI_VIDEODRV_VERSION >= SET_ABI_VERSION(22, 0) static inline int sigio_block(void) { return 0; } static inline void sigio_unblock(int was_blocked) { (void)was_blocked; } #elif XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,12,99,901,0) static inline int sigio_block(void) { OsBlockSIGIO(); return 0; } static inline void sigio_unblock(int was_blocked) { OsReleaseSIGIO(); (void)was_blocked; } #else #include static inline int sigio_block(void) { return xf86BlockSIGIO(); } static inline void sigio_unblock(int was_blocked) { xf86UnblockSIGIO(was_blocked); } #endif static char *canonical_kmode_name(const struct drm_mode_modeinfo *kmode) { char tmp[32], *buf; int len; len = sprintf(tmp, "%dx%d%s", kmode->hdisplay, kmode->vdisplay, kmode->flags & V_INTERLACE ? "i" : ""); if ((unsigned)len >= sizeof(tmp)) return NULL; buf = malloc(len + 1); if (buf == NULL) return NULL; return memcpy(buf, tmp, len + 1); } static char *get_kmode_name(const struct drm_mode_modeinfo *kmode) { if (*kmode->name == '\0') return canonical_kmode_name(kmode); return strdup(kmode->name); } static DisplayModePtr mode_from_kmode(ScrnInfoPtr scrn, const struct drm_mode_modeinfo *kmode, DisplayModePtr mode) { DBG(("kmode: %s, clock=%d, %d %d %d %d %d, %d %d %d %d %d, flags=%x, type=%x\n", kmode->name, kmode->clock, kmode->hdisplay, kmode->hsync_start, kmode->hsync_end, kmode->htotal, kmode->hskew, kmode->vdisplay, kmode->vsync_start, kmode->vsync_end, kmode->vtotal, kmode->vscan, kmode->flags, kmode->type)); mode->status = MODE_OK; mode->Clock = kmode->clock; mode->HDisplay = kmode->hdisplay; mode->HSyncStart = kmode->hsync_start; mode->HSyncEnd = kmode->hsync_end; mode->HTotal = kmode->htotal; mode->HSkew = kmode->hskew; mode->VDisplay = kmode->vdisplay; mode->VSyncStart = kmode->vsync_start; mode->VSyncEnd = kmode->vsync_end; mode->VTotal = kmode->vtotal; mode->VScan = kmode->vscan; mode->VRefresh = kmode->vrefresh; mode->Flags = kmode->flags; mode->name = get_kmode_name(kmode); if (kmode->type & DRM_MODE_TYPE_DRIVER) mode->type = M_T_DRIVER; if (kmode->type & DRM_MODE_TYPE_PREFERRED) mode->type |= M_T_PREFERRED; if (mode->status == MODE_OK && kmode->flags & ~KNOWN_MODE_FLAGS) mode->status = MODE_BAD; /* unknown flags => unhandled */ xf86SetModeCrtc(mode, scrn->adjustFlags); return mode; } static void mode_to_kmode(struct drm_mode_modeinfo *kmode, DisplayModePtr mode) { memset(kmode, 0, sizeof(*kmode)); kmode->clock = mode->Clock; kmode->hdisplay = mode->HDisplay; kmode->hsync_start = mode->HSyncStart; kmode->hsync_end = mode->HSyncEnd; kmode->htotal = mode->HTotal; kmode->hskew = mode->HSkew; kmode->vdisplay = mode->VDisplay; kmode->vsync_start = mode->VSyncStart; kmode->vsync_end = mode->VSyncEnd; kmode->vtotal = mode->VTotal; kmode->vscan = mode->VScan; kmode->vrefresh = mode->VRefresh; kmode->flags = mode->Flags; if (mode->name) strncpy(kmode->name, mode->name, DRM_DISPLAY_MODE_LEN); kmode->name[DRM_DISPLAY_MODE_LEN-1] = 0; } static void sna_crtc_force_outputs_on(xf86CrtcPtr crtc) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); /* All attached outputs are valid, so update our timestamps */ unsigned now = GetTimeInMillis(); int i; assert(to_sna_crtc(crtc)); DBG(("%s(pipe=%d)\n", __FUNCTION__, sna_crtc_pipe(crtc))); /* DPMS handling by the kernel is inconsistent, so after setting a * mode on an output presume that we intend for it to be on, or that * the kernel will force it on. * * So force DPMS to be on for all connected outputs, and restore * the backlight. */ for (i = 0; i < config->num_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; __sna_output_dpms(output, DPMSModeOn, false); if (to_sna_output(output)->last_detect) to_sna_output(output)->last_detect = now; } #if XF86_CRTC_VERSION >= 3 crtc->active = TRUE; #endif } static void sna_crtc_force_outputs_off(xf86CrtcPtr crtc) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); int i; assert(to_sna_crtc(crtc)); DBG(("%s(pipe=%d)\n", __FUNCTION__, sna_crtc_pipe(crtc))); /* DPMS handling by the kernel is inconsistent, so after setting a * mode on an output presume that we intend for it to be on, or that * the kernel will force it on. * * So force DPMS to be on for all connected outputs, and restore * the backlight. */ for (i = 0; i < config->num_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; __sna_output_dpms(output, DPMSModeOff, false); } } static unsigned rotation_reflect(unsigned rotation) { unsigned other_bits; /* paranoia for future extensions */ other_bits = rotation & ~RR_Rotate_All; /* flip the reflection to compensate for reflecting the rotation */ other_bits ^= RR_Reflect_X | RR_Reflect_Y; /* Reflect the screen by rotating the rotation bit, * which has to have at least RR_Rotate_0 set. This allows * us to reflect any of the rotation bits, not just 0. */ rotation &= RR_Rotate_All; assert(rotation); rotation <<= 2; /* RR_Rotate_0 -> RR_Rotate_180 etc */ rotation |= rotation >> 4; /* RR_Rotate_270' to RR_Rotate_90 */ rotation &= RR_Rotate_All; assert(rotation); return rotation | other_bits; } static unsigned rotation_reduce(struct plane *p, unsigned rotation) { /* If unsupported try exchanging rotation for a reflection */ if (rotation & ~p->rotation.supported) { unsigned new_rotation = rotation_reflect(rotation); if ((new_rotation & p->rotation.supported) == new_rotation) rotation = new_rotation; } /* Only one rotation bit should be set */ assert(is_power_of_two(rotation & RR_Rotate_All)); return rotation; } static bool rotation_set(struct sna *sna, struct plane *p, uint32_t desired) { #define LOCAL_IOCTL_MODE_OBJ_SETPROPERTY DRM_IOWR(0xbA, struct local_mode_obj_set_property) struct local_mode_obj_set_property { uint64_t value; uint32_t prop_id; uint32_t obj_id; uint32_t obj_type; uint32_t pad; } prop; if (desired == p->rotation.current) return true; if ((desired & p->rotation.supported) != desired) { errno = EINVAL; return false; } DBG(("%s: obj=%d, type=%x prop=%d set-rotation=%x\n", __FUNCTION__, p->id, LOCAL_MODE_OBJECT_PLANE, p->rotation.prop, desired)); assert(p->id); assert(p->rotation.prop); VG_CLEAR(prop); prop.obj_id = p->id; prop.obj_type = LOCAL_MODE_OBJECT_PLANE; prop.prop_id = p->rotation.prop; prop.value = desired; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_SETPROPERTY, &prop)) return false; p->rotation.current = desired; return true; } static void rotation_reset(struct plane *p) { if (p->rotation.prop == 0) return; p->rotation.current = 0; } bool sna_crtc_set_sprite_rotation(xf86CrtcPtr crtc, unsigned idx, uint32_t rotation) { struct plane *sprite; assert(to_sna_crtc(crtc)); sprite = lookup_sprite(to_sna_crtc(crtc), idx); if (!sprite) return false; DBG(("%s: CRTC:%d [pipe=%d], sprite=%u set-rotation=%x\n", __FUNCTION__, sna_crtc_id(crtc), sna_crtc_pipe(crtc), sprite->id, rotation)); return rotation_set(to_sna(crtc->scrn), sprite, rotation_reduce(sprite, rotation)); } #if HAS_DEBUG_FULL #if !HAS_DEBUG_FULL #define LogF ErrorF #endif struct kmsg { int fd; int saved_loglevel; }; static int kmsg_get_debug(void) { FILE *file; int v = -1; file = fopen("/sys/module/drm/parameters/debug", "r"); if (file) { fscanf(file, "%d", &v); fclose(file); } return v; } static void kmsg_set_debug(int v) { FILE *file; file = fopen("/sys/module/drm/parameters/debug", "w"); if (file) { fprintf(file, "%d\n", v); fclose(file); } } static void kmsg_open(struct kmsg *k) { k->saved_loglevel = kmsg_get_debug(); if (k->saved_loglevel != -1) kmsg_set_debug(0xff); k->fd = open("/dev/kmsg", O_RDONLY | O_NONBLOCK); if (k->fd != -1) lseek(k->fd, 0, SEEK_END); } static void kmsg_close(struct kmsg *k, int dump) { FILE *file; file = NULL; if (k->fd != -1 && dump) file = fdopen(k->fd, "r"); if (file) { size_t len = 0; char *line = NULL; while (getline(&line, &len, file) != -1) { char *start = strchr(line, ';'); if (start) LogF("KMSG: %s", start + 1); } free(line); fclose(file); } if (k->fd != -1) close(k->fd); if (k->saved_loglevel != -1) kmsg_set_debug(k->saved_loglevel); } #else struct kmsg { int unused; }; static void kmsg_open(struct kmsg *k) {} static void kmsg_close(struct kmsg *k, int dump) {} #endif static int sna_crtc_apply(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); struct drm_mode_crtc arg; uint32_t output_ids[32]; int output_count = 0; int sigio, i; struct kmsg kmsg; int ret = EINVAL; DBG(("%s CRTC:%d [pipe=%d], handle=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), sna_crtc->bo->handle)); if (!sna_crtc->kmode.clock) { ERR(("%s(CRTC:%d [pipe=%d]): attempted to set an invalid mode\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc))); return EINVAL; } kmsg_open(&kmsg); sigio = sigio_block(); assert(sna->mode.num_real_output < ARRAY_SIZE(output_ids)); sna_crtc_disable_cursor(sna, sna_crtc); if (!rotation_set(sna, &sna_crtc->primary, sna_crtc->rotation)) { memset(&arg, 0, sizeof(arg)); arg.crtc_id = __sna_crtc_id(sna_crtc); (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg); } if (!rotation_set(sna, &sna_crtc->primary, sna_crtc->rotation)) { ERR(("%s: set-primary-rotation failed (rotation-id=%d, rotation=%d) on CRTC:%d [pipe=%d], errno=%d\n", __FUNCTION__, sna_crtc->primary.rotation.prop, sna_crtc->rotation, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), errno)); sna_crtc->primary.rotation.supported &= ~sna_crtc->rotation; goto unblock; } DBG(("%s: CRTC:%d [pipe=%d] primary rotation set to %x\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), sna_crtc->rotation)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; /* Make sure we mark the output as off (and save the backlight) * before the kernel turns it off due to changing the pipe. * This is necessary as the kernel may turn off the backlight * and we lose track of the user settings. */ if (output->crtc == NULL) __sna_output_dpms(output, DPMSModeOff, false); if (output->crtc != crtc) continue; /* Skip over any hotunplugged outputs so that we can * recover in cases where the previous mode is now * only partially valid. */ if (!to_sna_output(output)->id) continue; DBG(("%s: attaching output '%s' %d [%d] to crtc:%d (pipe %d) (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); assert(output->possible_crtcs & (1 << __sna_crtc_pipe(sna_crtc)) || is_zaphod(crtc->scrn)); output_ids[output_count] = to_connector_id(output); if (++output_count == ARRAY_SIZE(output_ids)) { DBG(("%s: too many outputs (%d) for me!\n", __FUNCTION__, output_count)); goto unblock; } } if (output_count == 0) { DBG(("%s: no outputs\n", __FUNCTION__)); goto unblock; } VG_CLEAR(arg); arg.crtc_id = __sna_crtc_id(sna_crtc); arg.fb_id = fb_id(sna_crtc->bo); if (sna_crtc->transform || sna_crtc->slave_pixmap) { arg.x = 0; arg.y = 0; sna_crtc->offset = 0; } else { arg.x = crtc->x; arg.y = crtc->y; sna_crtc->offset = arg.y << 16 | arg.x; } arg.set_connectors_ptr = (uintptr_t)output_ids; arg.count_connectors = output_count; arg.mode = sna_crtc->kmode; arg.mode_valid = 1; DBG(("%s: applying crtc [%d, pipe=%d] mode=%dx%d+%d+%d@%d, fb=%d%s%s update to %d outputs [%d...]\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), arg.mode.hdisplay, arg.mode.vdisplay, arg.x, arg.y, arg.mode.clock, arg.fb_id, sna_crtc->shadow ? " [shadow]" : "", sna_crtc->transform ? " [transformed]" : "", output_count, output_count ? output_ids[0] : 0)); ret = 0; if (unlikely(drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg))) { ret = errno; goto unblock; } sna_crtc->mode_serial++; sna_crtc_force_outputs_on(crtc); unblock: sigio_unblock(sigio); kmsg_close(&kmsg, ret); return ret; } static bool overlap(const BoxRec *a, const BoxRec *b) { if (a->x1 >= b->x2) return false; if (a->x2 <= b->x1) return false; if (a->y1 >= b->y2) return false; if (a->y2 <= b->y1) return false; return true; } static void defer_event(struct sna *sna, struct drm_event *base) { if (sna->mode.shadow_nevent == sna->mode.shadow_size) { int size = sna->mode.shadow_size * 2; void *ptr; ptr = realloc(sna->mode.shadow_events, sizeof(struct drm_event_vblank)*size); if (!ptr) return; sna->mode.shadow_events = ptr; sna->mode.shadow_size = size; } memcpy(&sna->mode.shadow_events[sna->mode.shadow_nevent++], base, sizeof(struct drm_event_vblank)); DBG(("%s: deferring event count=%d\n", __func__, sna->mode.shadow_nevent)); } static void flush_events(struct sna *sna) { int n; if (!sna->mode.shadow_nevent) return; DBG(("%s: flushing %d events=%d\n", __func__, sna->mode.shadow_nevent)); for (n = 0; n < sna->mode.shadow_nevent; n++) { struct drm_event_vblank *vb = &sna->mode.shadow_events[n]; if ((uintptr_t)(vb->user_data) & 2) sna_present_vblank_handler(vb); else sna_dri2_vblank_handler(vb); } sna->mode.shadow_nevent = 0; } static bool wait_for_shadow(struct sna *sna, struct sna_pixmap *priv, unsigned flags) { PixmapPtr pixmap = priv->pixmap; struct kgem_bo *bo, *tmp; int flip_active; bool ret = true; DBG(("%s: enabled? %d waiting? %d, flags=%x, flips=%d, pixmap=%ld [front?=%d], handle=%d, shadow=%d\n", __FUNCTION__, sna->mode.shadow_enabled, sna->mode.shadow_wait, flags, sna->mode.flip_active, pixmap->drawable.serialNumber, pixmap == sna->front, priv->gpu_bo->handle, sna->mode.shadow->handle)); assert(priv->move_to_gpu_data == sna); assert(sna->mode.shadow != priv->gpu_bo); if (flags == 0 || pixmap != sna->front || !sna->mode.shadow_enabled) goto done; assert(sna->mode.shadow_damage); assert(!sna->mode.shadow_wait); if ((flags & MOVE_WRITE) == 0) { if ((flags & __MOVE_SCANOUT) == 0) { struct sna_crtc *crtc; list_for_each_entry(crtc, &sna->mode.shadow_crtc, shadow_link) { if (overlap(&sna->mode.shadow_region.extents, &crtc->base->bounds)) { DrawableRec draw; RegionRec region; draw.width = crtc->base->mode.HDisplay; draw.height = crtc->base->mode.VDisplay; draw.depth = sna->front->drawable.depth; draw.bitsPerPixel = sna->front->drawable.bitsPerPixel; DBG(("%s: copying replaced CRTC: (%d, %d), (%d, %d), handle=%d\n", __FUNCTION__, crtc->base->bounds.x1, crtc->base->bounds.y1, crtc->base->bounds.x2, crtc->base->bounds.y2, crtc->client_bo->handle)); ret &= sna->render.copy_boxes(sna, GXcopy, &draw, crtc->client_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &pixmap->drawable, priv->gpu_bo, 0, 0, &crtc->base->bounds, 1, 0); region.extents = crtc->base->bounds; region.data = NULL; RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, ®ion); } } } return ret; } assert(sna->mode.shadow_active); sna->mode.shadow_wait = true; flip_active = sna->mode.flip_active; if (flip_active) { struct sna_crtc *crtc; list_for_each_entry(crtc, &sna->mode.shadow_crtc, shadow_link) flip_active -= crtc->flip_pending; DBG(("%s: %d flips still pending, shadow flip_active=%d\n", __FUNCTION__, sna->mode.flip_active, flip_active)); } if (flip_active) { /* raw cmd to avoid setting wedged in the middle of an op */ drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_THROTTLE, 0); sna->kgem.need_throttle = false; while (flip_active && sna_mode_wakeup(sna)) { struct sna_crtc *crtc; flip_active = sna->mode.flip_active; list_for_each_entry(crtc, &sna->mode.shadow_crtc, shadow_link) flip_active -= crtc->flip_pending; } DBG(("%s: after waiting %d flips outstanding, flip_active=%d\n", __FUNCTION__, sna->mode.flip_active, flip_active)); } bo = sna->mode.shadow; if (flip_active) { bo = kgem_create_2d(&sna->kgem, pixmap->drawable.width, pixmap->drawable.height, pixmap->drawable.bitsPerPixel, priv->gpu_bo->tiling, CREATE_EXACT | CREATE_SCANOUT); if (bo != NULL) { DBG(("%s: replacing still-attached GPU bo handle=%d, flips=%d\n", __FUNCTION__, priv->gpu_bo->tiling, sna->mode.flip_active)); RegionUninit(&sna->mode.shadow_region); sna->mode.shadow_region.extents.x1 = 0; sna->mode.shadow_region.extents.y1 = 0; sna->mode.shadow_region.extents.x2 = pixmap->drawable.width; sna->mode.shadow_region.extents.y2 = pixmap->drawable.height; sna->mode.shadow_region.data = NULL; } else { while (sna->mode.flip_active && sna_mode_wait_for_event(sna)) sna_mode_wakeup(sna); bo = sna->mode.shadow; } } assert(sna->mode.shadow_wait); sna->mode.shadow_wait = false; if (bo->refcnt > 1) { bo = kgem_create_2d(&sna->kgem, pixmap->drawable.width, pixmap->drawable.height, pixmap->drawable.bitsPerPixel, priv->gpu_bo->tiling, CREATE_EXACT | CREATE_SCANOUT); if (bo != NULL) { DBG(("%s: replacing exported GPU bo\n", __FUNCTION__)); RegionUninit(&sna->mode.shadow_region); sna->mode.shadow_region.extents.x1 = 0; sna->mode.shadow_region.extents.y1 = 0; sna->mode.shadow_region.extents.x2 = pixmap->drawable.width; sna->mode.shadow_region.extents.y2 = pixmap->drawable.height; sna->mode.shadow_region.data = NULL; } else bo = sna->mode.shadow; } RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, &sna->mode.shadow_cancel); while (!list_is_empty(&sna->mode.shadow_crtc)) { struct sna_crtc *crtc = list_first_entry(&sna->mode.shadow_crtc, struct sna_crtc, shadow_link); if (overlap(&crtc->base->bounds, &sna->mode.shadow_region.extents)) { RegionRec region; DrawableRec draw; draw.width = crtc->base->mode.HDisplay; draw.height = crtc->base->mode.VDisplay; draw.depth = sna->front->drawable.depth; draw.bitsPerPixel = sna->front->drawable.bitsPerPixel; DBG(("%s: copying replaced CRTC: (%d, %d), (%d, %d), handle=%d\n", __FUNCTION__, crtc->base->bounds.x1, crtc->base->bounds.y1, crtc->base->bounds.x2, crtc->base->bounds.y2, crtc->client_bo->handle)); ret = sna->render.copy_boxes(sna, GXcopy, &draw, crtc->client_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &pixmap->drawable, bo, 0, 0, &crtc->base->bounds, 1, 0); region.extents = crtc->base->bounds; region.data = NULL; RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, ®ion); } crtc->client_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->client_bo); crtc->client_bo = NULL; list_del(&crtc->shadow_link); } if (RegionNotEmpty(&sna->mode.shadow_region)) { DBG(("%s: copying existing GPU damage: %dx(%d, %d), (%d, %d)\n", __FUNCTION__, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); if (!sna->render.copy_boxes(sna, GXcopy, &pixmap->drawable, priv->gpu_bo, 0, 0, &pixmap->drawable, bo, 0, 0, region_rects(&sna->mode.shadow_region), region_num_rects(&sna->mode.shadow_region), 0)) ERR(("%s: copy failed\n", __FUNCTION__)); } if (priv->cow) sna_pixmap_undo_cow(sna, priv, 0); sna_pixmap_unmap(pixmap, priv); DBG(("%s: setting front pixmap to handle=%d\n", __FUNCTION__, bo->handle)); sna->mode.shadow->active_scanout--; tmp = priv->gpu_bo; priv->gpu_bo = bo; if (bo != sna->mode.shadow) kgem_bo_destroy(&sna->kgem, sna->mode.shadow); sna->mode.shadow = tmp; sna->mode.shadow->active_scanout++; sna_dri2_pixmap_update_bo(sna, pixmap, bo); done: RegionEmpty(&sna->mode.shadow_cancel); RegionEmpty(&sna->mode.shadow_region); sna->mode.shadow_dirty = false; priv->move_to_gpu_data = NULL; priv->move_to_gpu = NULL; assert(!sna->mode.shadow_wait); flush_events(sna); return ret; } bool sna_pixmap_discard_shadow_damage(struct sna_pixmap *priv, const RegionRec *region) { struct sna *sna; if (priv->move_to_gpu != wait_for_shadow) return false; sna = priv->move_to_gpu_data; if (region) { DBG(("%s: discarding region %dx[(%d, %d), (%d, %d)] from damage %dx[(%d, %d], (%d, %d)]\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); RegionSubtract(&sna->mode.shadow_region, &sna->mode.shadow_region, (RegionPtr)region); RegionUnion(&sna->mode.shadow_cancel, &sna->mode.shadow_cancel, (RegionPtr)region); } else { DBG(("%s: discarding all damage %dx[(%d, %d], (%d, %d)]\n", __FUNCTION__, region_num_rects(&sna->mode.shadow_region), sna->mode.shadow_region.extents.x1, sna->mode.shadow_region.extents.y1, sna->mode.shadow_region.extents.x2, sna->mode.shadow_region.extents.y2)); RegionEmpty(&sna->mode.shadow_region); RegionUninit(&sna->mode.shadow_cancel); sna->mode.shadow_cancel.extents.x1 = 0; sna->mode.shadow_cancel.extents.y1 = 0; sna->mode.shadow_cancel.extents.x2 = sna->front->drawable.width; sna->mode.shadow_cancel.extents.y2 = sna->front->drawable.height; sna->mode.shadow_cancel.data = NULL; } return RegionNil(&sna->mode.shadow_region); } static void sna_mode_damage(DamagePtr damage, RegionPtr region, void *closure) { struct sna *sna = closure; if (sna->mode.rr_active) return; /* Throw away the rectangles if the region grows too big */ region = DamageRegion(damage); if (region->data) { RegionRec dup; dup = *region; RegionUninit(&dup); region->data = NULL; } } static bool sna_mode_enable_shadow(struct sna *sna) { ScreenPtr screen = to_screen_from_sna(sna); DBG(("%s\n", __FUNCTION__)); assert(sna->mode.shadow == NULL); assert(sna->mode.shadow_damage == NULL); assert(sna->mode.shadow_active == 0); assert(!sna->mode.shadow_enabled); sna->mode.shadow_damage = DamageCreate(sna_mode_damage, NULL, DamageReportRawRegion, TRUE, screen, sna); if (!sna->mode.shadow_damage) return false; DamageRegister(&sna->front->drawable, sna->mode.shadow_damage); sna->mode.shadow_enabled = true; return true; } static void sna_mode_disable_shadow(struct sna *sna) { struct sna_pixmap *priv; if (!sna->mode.shadow_damage) { assert(!sna->mode.shadow_enabled); return; } DBG(("%s\n", __FUNCTION__)); priv = sna_pixmap(sna->front); if (priv->move_to_gpu == wait_for_shadow) priv->move_to_gpu(sna, priv, 0); DamageUnregister(&sna->front->drawable, sna->mode.shadow_damage); DamageDestroy(sna->mode.shadow_damage); sna->mode.shadow_damage = NULL; sna->mode.shadow_enabled = false; if (sna->mode.shadow) { sna->mode.shadow->active_scanout--; kgem_bo_destroy(&sna->kgem, sna->mode.shadow); sna->mode.shadow = NULL; } assert(sna->mode.shadow_active == 0); sna->mode.shadow_dirty = false; } static void sna_crtc_slave_damage(DamagePtr damage, RegionPtr region, void *closure) { struct sna_crtc *crtc = closure; struct sna *sna = to_sna(crtc->base->scrn); RegionPtr scr; DBG(("%s: pushing damage [(%d, %d), (%d, %d) x %d] to CRTC [pipe=%d] (%d, %d)\n", __FUNCTION__, region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(region), __sna_crtc_pipe(crtc), crtc->base->x, crtc->base->y)); assert(crtc->slave_damage == damage); assert(sna->mode.shadow_damage); RegionTranslate(region, crtc->base->x, crtc->base->y); scr = DamageRegion(sna->mode.shadow_damage); RegionUnion(scr, scr, region); RegionTranslate(region, -crtc->base->x, -crtc->base->y); } static bool sna_crtc_enable_shadow(struct sna *sna, struct sna_crtc *crtc) { if (crtc->shadow) { assert(sna->mode.shadow_damage && sna->mode.shadow_active); return true; } DBG(("%s: enabling for crtc %d\n", __FUNCTION__, __sna_crtc_id(crtc))); if (!sna->mode.shadow_active) { if (!sna_mode_enable_shadow(sna)) return false; assert(sna->mode.shadow_damage); assert(sna->mode.shadow == NULL); } if (crtc->slave_pixmap) { assert(crtc->slave_damage == NULL); DBG(("%s: enabling PRIME slave tracking on CRTC %d [pipe=%d], pixmap=%ld\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), crtc->slave_pixmap->drawable.serialNumber)); crtc->slave_damage = DamageCreate(sna_crtc_slave_damage, NULL, DamageReportRawRegion, TRUE, to_screen_from_sna(sna), crtc); if (crtc->slave_damage == NULL) { if (!--sna->mode.shadow_active) sna_mode_disable_shadow(sna); return false; } DamageRegister(&crtc->slave_pixmap->drawable, crtc->slave_damage); } crtc->shadow = true; sna->mode.shadow_active++; return true; } static void sna_crtc_disable_override(struct sna *sna, struct sna_crtc *crtc) { if (crtc->client_bo == NULL) return; assert(crtc->client_bo->refcnt >= crtc->client_bo->active_scanout); crtc->client_bo->active_scanout--; if (!crtc->transform) { DrawableRec tmp; tmp.width = crtc->base->mode.HDisplay; tmp.height = crtc->base->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; sna->render.copy_boxes(sna, GXcopy, &tmp, crtc->client_bo, -crtc->base->bounds.x1, -crtc->base->bounds.y1, &sna->front->drawable, __sna_pixmap_get_bo(sna->front), 0, 0, &crtc->base->bounds, 1, 0); list_del(&crtc->shadow_link); } kgem_bo_destroy(&sna->kgem, crtc->client_bo); crtc->client_bo = NULL; } static void sna_crtc_disable_shadow(struct sna *sna, struct sna_crtc *crtc) { crtc->fallback_shadow = false; if (!crtc->shadow) return; DBG(("%s: disabling for crtc %d\n", __FUNCTION__, __sna_crtc_id(crtc))); assert(sna->mode.shadow_active > 0); if (crtc->slave_damage) { assert(crtc->slave_pixmap); DamageUnregister(&crtc->slave_pixmap->drawable, crtc->slave_damage); DamageDestroy(crtc->slave_damage); crtc->slave_damage = NULL; } sna_crtc_disable_override(sna, crtc); if (!--sna->mode.shadow_active) sna_mode_disable_shadow(sna); crtc->shadow = false; } static void __sna_crtc_disable(struct sna *sna, struct sna_crtc *sna_crtc) { sna_crtc->mode_serial++; sna_crtc_disable_cursor(sna, sna_crtc); rotation_set(sna, &sna_crtc->primary, RR_Rotate_0); sna_crtc_disable_shadow(sna, sna_crtc); if (sna_crtc->bo) { DBG(("%s: releasing handle=%d from scanout, active=%d\n", __FUNCTION__,sna_crtc->bo->handle, sna_crtc->bo->active_scanout-1)); assert(sna_crtc->flags & CRTC_ON); assert(sna_crtc->bo->active_scanout); assert(sna_crtc->bo->refcnt >= sna_crtc->bo->active_scanout); sna_crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, sna_crtc->bo); sna_crtc->bo = NULL; sna_crtc->flags &= ~CRTC_ON; if (sna->mode.hidden) { sna->mode.hidden--; assert(sna->mode.hidden); assert(sna->mode.front_active == 0); } else { assert(sna->mode.front_active); sna->mode.front_active--; } sna->mode.dirty = true; } if (sna_crtc->shadow_bo) { kgem_bo_destroy(&sna->kgem, sna_crtc->shadow_bo); sna_crtc->shadow_bo = NULL; } if (sna_crtc->transform) { assert(sna->mode.rr_active); sna->mode.rr_active--; sna_crtc->transform = false; } sna_crtc->cursor_transform = false; sna_crtc->hwcursor = true; assert(!sna_crtc->shadow); } static void sna_crtc_disable(xf86CrtcPtr crtc, bool force) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc arg; if (sna_crtc == NULL) return; if (!force && sna_crtc->bo == NULL) return; DBG(("%s: disabling crtc [%d, pipe=%d], force?=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), force)); sna_crtc_force_outputs_off(crtc); memset(&arg, 0, sizeof(arg)); arg.crtc_id = __sna_crtc_id(sna_crtc); (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg); __sna_crtc_disable(sna, sna_crtc); } static void update_flush_interval(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i, max_vrefresh = 0; DBG(("%s: front_active=%d\n", __FUNCTION__, sna->mode.front_active)); for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; assert(to_sna_crtc(crtc) != NULL); if (!crtc->enabled) { DBG(("%s: CRTC:%d (pipe %d) disabled\n", __FUNCTION__,i, sna_crtc_pipe(crtc))); assert(to_sna_crtc(crtc)->bo == NULL); continue; } if (to_sna_crtc(crtc)->bo == NULL) { DBG(("%s: CRTC:%d (pipe %d) turned off\n", __FUNCTION__,i, sna_crtc_pipe(crtc))); continue; } DBG(("%s: CRTC:%d (pipe %d) vrefresh=%f\n", __FUNCTION__, i, sna_crtc_pipe(crtc), xf86ModeVRefresh(&crtc->mode))); max_vrefresh = max(max_vrefresh, xf86ModeVRefresh(&crtc->mode)); } if (max_vrefresh == 0) { assert(sna->mode.front_active == 0); sna->vblank_interval = 0; } else sna->vblank_interval = 1000 / max_vrefresh; /* Hz -> ms */ DBG(("max_vrefresh=%d, vblank_interval=%d ms\n", max_vrefresh, sna->vblank_interval)); } static struct kgem_bo *sna_create_bo_for_fbcon(struct sna *sna, const struct drm_mode_fb_cmd *fbcon) { struct drm_gem_flink flink; struct kgem_bo *bo; int ret; /* Create a new reference for the fbcon so that we can track it * using a normal bo and so that when we call gem_close on it we * delete our reference and not fbcon's! */ VG_CLEAR(flink); flink.handle = fbcon->handle; ret = drmIoctl(sna->kgem.fd, DRM_IOCTL_GEM_FLINK, &flink); if (ret) return NULL; bo = kgem_create_for_name(&sna->kgem, flink.name); if (bo == NULL) return NULL; bo->pitch = fbcon->pitch; return bo; } /* Copy the current framebuffer contents into the front-buffer for a seamless * transition from e.g. plymouth. */ void sna_copy_fbcon(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_fb_cmd fbcon; PixmapRec scratch; struct sna_pixmap *priv; struct kgem_bo *bo; BoxRec box; bool ok; int sx, sy; int dx, dy; int i; if (wedged(sna) || isGPU(sna->scrn)) return; DBG(("%s\n", __FUNCTION__)); assert((sna->flags & SNA_IS_HOSTED) == 0); priv = sna_pixmap_move_to_gpu(sna->front, MOVE_WRITE | __MOVE_SCANOUT); if (priv == NULL) return; /* Scan the connectors for a framebuffer and assume that is the fbcon */ VG_CLEAR(fbcon); fbcon.fb_id = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = to_sna_crtc(config->crtc[i]); struct drm_mode_crtc mode; assert(crtc != NULL); VG_CLEAR(mode); mode.crtc_id = __sna_crtc_id(crtc); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; if (!mode.fb_id) continue; fbcon.fb_id = mode.fb_id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETFB, &fbcon)) { fbcon.fb_id = 0; continue; } break; } if (fbcon.fb_id == 0) { DBG(("%s: no fbcon found\n", __FUNCTION__)); return; } if (fbcon.fb_id == fb_id(priv->gpu_bo)) { DBG(("%s: fb already installed as scanout\n", __FUNCTION__)); return; } DBG(("%s: found fbcon, size=%dx%d, depth=%d, bpp=%d\n", __FUNCTION__, fbcon.width, fbcon.height, fbcon.depth, fbcon.bpp)); bo = sna_create_bo_for_fbcon(sna, &fbcon); if (bo == NULL) return; DBG(("%s: fbcon handle=%d\n", __FUNCTION__, bo->handle)); scratch.drawable.width = fbcon.width; scratch.drawable.height = fbcon.height; scratch.drawable.depth = fbcon.depth; scratch.drawable.bitsPerPixel = fbcon.bpp; scratch.devPrivate.ptr = NULL; box.x1 = box.y1 = 0; box.x2 = min(fbcon.width, sna->front->drawable.width); box.y2 = min(fbcon.height, sna->front->drawable.height); sx = dx = 0; if (box.x2 < (uint16_t)fbcon.width) sx = (fbcon.width - box.x2) / 2; if (box.x2 < sna->front->drawable.width) dx = (sna->front->drawable.width - box.x2) / 2; sy = dy = 0; if (box.y2 < (uint16_t)fbcon.height) sy = (fbcon.height - box.y2) / 2; if (box.y2 < sna->front->drawable.height) dy = (sna->front->drawable.height - box.y2) / 2; ok = sna->render.copy_boxes(sna, GXcopy, &scratch.drawable, bo, sx, sy, &sna->front->drawable, priv->gpu_bo, dx, dy, &box, 1, 0); if (!DAMAGE_IS_ALL(priv->gpu_damage)) sna_damage_add_box(&priv->gpu_damage, &box); kgem_bo_destroy(&sna->kgem, bo); #if ABI_VIDEODRV_VERSION >= SET_ABI_VERSION(10, 0) to_screen_from_sna(sna)->canDoBGNoneRoot = ok; #endif } static bool use_shadow(struct sna *sna, xf86CrtcPtr crtc) { RRTransformPtr transform; PictTransform crtc_to_fb; struct pict_f_transform f_crtc_to_fb, f_fb_to_crtc; unsigned pitch_limit; BoxRec b; assert(sna->scrn->virtualX && sna->scrn->virtualY); if (sna->flags & SNA_FORCE_SHADOW) { DBG(("%s: forcing shadow\n", __FUNCTION__)); return true; } if (to_sna_crtc(crtc)->fallback_shadow) { DBG(("%s: fallback shadow\n", __FUNCTION__)); return true; } if (sna->flags & SNA_TEAR_FREE && to_sna_crtc(crtc)->slave_pixmap) { DBG(("%s: TearFree shadow required\n", __FUNCTION__)); return true; } if (sna->scrn->virtualX > sna->mode.max_crtc_width || sna->scrn->virtualY > sna->mode.max_crtc_height) { DBG(("%s: framebuffer too large (%dx%d) > (%dx%d)\n", __FUNCTION__, sna->scrn->virtualX, sna->scrn->virtualY, sna->mode.max_crtc_width, sna->mode.max_crtc_height)); return true; } if (!isGPU(sna->scrn)) { struct sna_pixmap *priv; priv = sna_pixmap_force_to_gpu(sna->front, MOVE_READ | __MOVE_SCANOUT); if (priv == NULL) return true; /* maybe we can create a bo for the scanout? */ if (sna->kgem.gen == 071) pitch_limit = priv->gpu_bo->tiling ? 16 * 1024 : 32 * 1024; else if ((sna->kgem.gen >> 3) > 4) pitch_limit = 32 * 1024; else if ((sna->kgem.gen >> 3) == 4) pitch_limit = priv->gpu_bo->tiling ? 16 * 1024 : 32 * 1024; else if ((sna->kgem.gen >> 3) == 3) pitch_limit = priv->gpu_bo->tiling ? 8 * 1024 : 16 * 1024; else pitch_limit = 8 * 1024; DBG(("%s: gpu bo handle=%d tiling=%d pitch=%d, limit=%d\n", __FUNCTION__, priv->gpu_bo->handle, priv->gpu_bo->tiling, priv->gpu_bo->pitch, pitch_limit)); if (priv->gpu_bo->pitch > pitch_limit) return true; if (priv->gpu_bo->tiling && sna->flags & SNA_LINEAR_FB) { DBG(("%s: gpu bo is tiled, need linear, forcing shadow\n", __FUNCTION__)); return true; } } transform = NULL; if (crtc->transformPresent) transform = &crtc->transform; if (RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->rotation, transform, &crtc_to_fb, &f_crtc_to_fb, &f_fb_to_crtc)) { bool needs_transform = true; unsigned rotation = rotation_reduce(&to_sna_crtc(crtc)->primary, crtc->rotation); DBG(("%s: natively supported rotation? rotation=%x & supported=%x == %d\n", __FUNCTION__, rotation, to_sna_crtc(crtc)->primary.rotation.supported, rotation == (rotation & to_sna_crtc(crtc)->primary.rotation.supported))); if ((to_sna_crtc(crtc)->primary.rotation.supported & rotation) == rotation) needs_transform = RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, RR_Rotate_0, transform, NULL, NULL, NULL); if (needs_transform) { DBG(("%s: RandR transform present\n", __FUNCTION__)); return true; } } /* And finally check that it is entirely visible */ b.x1 = b.y1 = 0; b.x2 = crtc->mode.HDisplay; b.y2 = crtc->mode.VDisplay; pixman_f_transform_bounds(&f_crtc_to_fb, &b); DBG(("%s? bounds (%d, %d), (%d, %d), framebufer %dx%d\n", __FUNCTION__, b.x1, b.y1, b.x2, b.y2, sna->scrn->virtualX, sna->scrn->virtualY)); if (b.x1 < 0 || b.y1 < 0 || b.x2 > sna->scrn->virtualX || b.y2 > sna->scrn->virtualY) { DBG(("%s: scanout is partly outside the framebuffer\n", __FUNCTION__)); return true; } return false; } static void set_shadow(struct sna *sna, RegionPtr region) { struct sna_pixmap *priv = sna_pixmap(sna->front); assert(priv->gpu_bo); assert(sna->mode.shadow); assert(sna->mode.shadow->active_scanout); DBG(("%s: waiting for region %dx[(%d, %d), (%d, %d)], front handle=%d, shadow handle=%d\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, priv->gpu_bo->handle, sna->mode.shadow->handle)); assert(priv->pinned & PIN_SCANOUT); assert((priv->pinned & PIN_PRIME) == 0); assert(sna->mode.shadow != priv->gpu_bo); RegionCopy(&sna->mode.shadow_region, region); priv->move_to_gpu = wait_for_shadow; priv->move_to_gpu_data = sna; } static struct kgem_bo * get_scanout_bo(struct sna *sna, PixmapPtr pixmap) { struct sna_pixmap *priv; priv = sna_pixmap_force_to_gpu(pixmap, MOVE_READ | __MOVE_SCANOUT); if (!priv) return NULL; if (priv->gpu_bo->pitch & 63) { struct kgem_bo *tmp; BoxRec b; DBG(("%s: converting to scanout bo due to bad pitch [%d]\n", __FUNCTION__, priv->gpu_bo->pitch)); if (priv->pinned) { DBG(("%s: failed as the Pixmap is already pinned [%x]\n", __FUNCTION__, priv->pinned)); return NULL; } tmp = kgem_create_2d(&sna->kgem, pixmap->drawable.width, pixmap->drawable.height, sna->scrn->bitsPerPixel, priv->gpu_bo->tiling, CREATE_EXACT | CREATE_SCANOUT); if (tmp == NULL) { DBG(("%s: allocation failed\n", __FUNCTION__)); return NULL; } b.x1 = 0; b.y1 = 0; b.x2 = pixmap->drawable.width; b.y2 = pixmap->drawable.height; if (sna->render.copy_boxes(sna, GXcopy, &pixmap->drawable, priv->gpu_bo, 0, 0, &pixmap->drawable, tmp, 0, 0, &b, 1, COPY_LAST)) { DBG(("%s: copy failed\n", __FUNCTION__)); kgem_bo_destroy(&sna->kgem, tmp); return NULL; } kgem_bo_destroy(&sna->kgem, priv->gpu_bo); priv->gpu_bo = tmp; } priv->pinned |= PIN_SCANOUT; return priv->gpu_bo; } static void shadow_clear(struct sna *sna, PixmapPtr front, struct kgem_bo *bo, xf86CrtcPtr crtc) { bool ok = false; if (!wedged(sna)) ok = sna->render.fill_one(sna, front, bo, 0, 0, 0, crtc->mode.HDisplay, crtc->mode.VDisplay, GXclear); if (!ok) { void *ptr = kgem_bo_map__gtt(&sna->kgem, bo); if (ptr) memset(ptr, 0, bo->pitch * crtc->mode.HDisplay); } sna->mode.shadow_dirty = true; } static bool rr_active(xf86CrtcPtr crtc) { return crtc->transformPresent || crtc->rotation != RR_Rotate_0; } static struct kgem_bo *sna_crtc_attach(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); ScrnInfoPtr scrn = crtc->scrn; struct sna *sna = to_sna(scrn); struct kgem_bo *bo; if (sna_crtc->transform) { assert(sna->mode.rr_active); sna_crtc->transform = false; sna->mode.rr_active--; } sna_crtc->rotation = RR_Rotate_0; if (use_shadow(sna, crtc)) { PixmapPtr front; unsigned long tiled_limit; int tiling; force_shadow: if (!sna_crtc_enable_shadow(sna, sna_crtc)) { DBG(("%s: failed to enable crtc shadow\n", __FUNCTION__)); return NULL; } DBG(("%s: attaching to per-crtc pixmap %dx%d\n", __FUNCTION__, crtc->mode.HDisplay, crtc->mode.VDisplay)); bo = sna_crtc->shadow_bo; if (bo) { if (sna_crtc->shadow_bo_width == crtc->mode.HDisplay && sna_crtc->shadow_bo_height == crtc->mode.VDisplay) { DBG(("%s: reusing current shadow bo handle=%d\n", __FUNCTION__, bo->handle)); goto out_shadow; } kgem_bo_destroy(&sna->kgem, bo); sna_crtc->shadow_bo = NULL; } tiling = I915_TILING_X; if (crtc->rotation & (RR_Rotate_90 | RR_Rotate_270) && sna->kgem.can_scanout_y) tiling = I915_TILING_Y; if (sna->kgem.gen == 071) tiled_limit = 16 * 1024 * 8; else if ((sna->kgem.gen >> 3) > 4) tiled_limit = 32 * 1024 * 8; else if ((sna->kgem.gen >> 3) == 4) tiled_limit = 16 * 1024 * 8; else tiled_limit = 8 * 1024 * 8; if ((unsigned long)crtc->mode.HDisplay * scrn->bitsPerPixel > tiled_limit) tiling = I915_TILING_NONE; if (sna->flags & SNA_LINEAR_FB) tiling = I915_TILING_NONE; bo = kgem_create_2d(&sna->kgem, crtc->mode.HDisplay, crtc->mode.VDisplay, scrn->bitsPerPixel, tiling, CREATE_SCANOUT); if (bo == NULL) { DBG(("%s: failed to allocate crtc scanout\n", __FUNCTION__)); return NULL; } if (!get_fb(sna, bo, crtc->mode.HDisplay, crtc->mode.VDisplay)) { DBG(("%s: failed to bind fb for crtc scanout\n", __FUNCTION__)); kgem_bo_destroy(&sna->kgem, bo); return NULL; } front = sna_crtc->slave_pixmap ?: sna->front; if (__sna_pixmap_get_bo(front) && !rr_active(crtc)) { BoxRec b; b.x1 = crtc->x; b.y1 = crtc->y; b.x2 = crtc->x + crtc->mode.HDisplay; b.y2 = crtc->y + crtc->mode.VDisplay; if (b.x1 < 0) b.x1 = 0; if (b.y1 < 0) b.y1 = 0; if (b.x2 > scrn->virtualX) b.x2 = scrn->virtualX; if (b.y2 > scrn->virtualY) b.y2 = scrn->virtualY; if (b.x2 - b.x1 < crtc->mode.HDisplay || b.y2 - b.y1 < crtc->mode.VDisplay) shadow_clear(sna, front, bo, crtc); if (b.y2 > b.y1 && b.x2 > b.x1) { DrawableRec tmp; DBG(("%s: copying onto shadow CRTC: (%d, %d)x(%d, %d) [fb=%dx%d], handle=%d\n", __FUNCTION__, b.x1, b.y1, b.x2-b.x1, b.y2-b.y1, scrn->virtualX, scrn->virtualY, bo->handle)); tmp.width = crtc->mode.HDisplay; tmp.height = crtc->mode.VDisplay; tmp.depth = front->drawable.depth; tmp.bitsPerPixel = front->drawable.bitsPerPixel; if (!sna->render.copy_boxes(sna, GXcopy, &front->drawable, __sna_pixmap_get_bo(front), 0, 0, &tmp, bo, -crtc->x, -crtc->y, &b, 1, COPY_LAST)) shadow_clear(sna, front, bo, crtc); } } else shadow_clear(sna, front, bo, crtc); sna_crtc->shadow_bo_width = crtc->mode.HDisplay; sna_crtc->shadow_bo_height = crtc->mode.VDisplay; sna_crtc->shadow_bo = bo; out_shadow: sna_crtc->transform = true; sna->mode.rr_active++; return kgem_bo_reference(bo); } else { if (sna_crtc->shadow_bo) { kgem_bo_destroy(&sna->kgem, sna_crtc->shadow_bo); sna_crtc->shadow_bo = NULL; } if (sna_crtc->slave_pixmap) { DBG(("%s: attaching to scanout pixmap\n", __FUNCTION__)); bo = get_scanout_bo(sna, sna_crtc->slave_pixmap); if (bo == NULL) { DBG(("%s: failed to pin crtc scanout\n", __FUNCTION__)); sna_crtc->fallback_shadow = true; goto force_shadow; } if (!get_fb(sna, bo, sna_crtc->slave_pixmap->drawable.width, sna_crtc->slave_pixmap->drawable.height)) { DBG(("%s: failed to bind fb for crtc scanout\n", __FUNCTION__)); sna_crtc->fallback_shadow = true; goto force_shadow; } } else { DBG(("%s: attaching to framebuffer\n", __FUNCTION__)); bo = get_scanout_bo(sna, sna->front); if (bo == NULL) { DBG(("%s: failed to pin framebuffer\n", __FUNCTION__)); sna_crtc->fallback_shadow = true; goto force_shadow; } if (!get_fb(sna, bo, scrn->virtualX, scrn->virtualY)) { DBG(("%s: failed to bind fb for crtc scanout\n", __FUNCTION__)); sna_crtc->fallback_shadow = true; goto force_shadow; } } if (sna->flags & SNA_TEAR_FREE) { RegionRec region; assert(sna_crtc->slave_pixmap == NULL); DBG(("%s: enabling TearFree shadow\n", __FUNCTION__)); region.extents.x1 = 0; region.extents.y1 = 0; region.extents.x2 = sna->scrn->virtualX; region.extents.y2 = sna->scrn->virtualY; region.data = NULL; if (!sna_crtc_enable_shadow(sna, sna_crtc)) { DBG(("%s: failed to enable crtc shadow\n", __FUNCTION__)); return NULL; } if (sna->mode.shadow == NULL) { struct kgem_bo *shadow; DBG(("%s: creating TearFree shadow bo\n", __FUNCTION__)); shadow = kgem_create_2d(&sna->kgem, region.extents.x2, region.extents.y2, scrn->bitsPerPixel, kgem_choose_tiling(&sna->kgem, I915_TILING_X, region.extents.x2, region.extents.y2, sna->scrn->bitsPerPixel), CREATE_SCANOUT); if (shadow == NULL) { DBG(("%s: failed to allocate TearFree shadow bo\n", __FUNCTION__)); sna_crtc->fallback_shadow = true; goto force_shadow; } if (!get_fb(sna, shadow, region.extents.x2, region.extents.y2)) { DBG(("%s: failed to bind fb for TearFeee shadow\n", __FUNCTION__)); kgem_bo_destroy(&sna->kgem, shadow); sna_crtc->fallback_shadow = true; goto force_shadow; } assert(__sna_pixmap_get_bo(sna->front) == NULL || __sna_pixmap_get_bo(sna->front)->pitch == shadow->pitch); sna->mode.shadow = shadow; sna->mode.shadow->active_scanout++; } set_shadow(sna, ®ion); sna_crtc_disable_override(sna, sna_crtc); } else sna_crtc_disable_shadow(sna, sna_crtc); sna_crtc->rotation = rotation_reduce(&sna_crtc->primary, crtc->rotation); assert(sna_crtc->primary.rotation.supported & sna_crtc->rotation); return kgem_bo_reference(bo); } } #define SCALING_EPSILON (1./256) static bool is_affine(const struct pixman_f_transform *t) { return (fabs(t->m[2][0]) < SCALING_EPSILON && fabs(t->m[2][1]) < SCALING_EPSILON); } static double determinant(const struct pixman_f_transform *t) { return t->m[0][0]*t->m[1][1] - t->m[1][0]*t->m[0][1]; } static bool affine_is_pixel_exact(const struct pixman_f_transform *t) { double det = t->m[2][2] * determinant(t); if (fabs (det * det - 1.0) < SCALING_EPSILON) { if (fabs(t->m[0][1]) < SCALING_EPSILON && fabs(t->m[1][0]) < SCALING_EPSILON) return true; if (fabs(t->m[0][0]) < SCALING_EPSILON && fabs(t->m[1][1]) < SCALING_EPSILON) return true; } return false; } static void sna_crtc_randr(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct pict_f_transform f_crtc_to_fb, f_fb_to_crtc; PictTransform crtc_to_fb; PictFilterPtr filter; xFixed *params; int nparams; RRTransformPtr transform; int needs_transform; transform = NULL; if (crtc->transformPresent) transform = &crtc->transform; needs_transform = RRTransformCompute(crtc->x, crtc->y, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->rotation, transform, &crtc_to_fb, &f_crtc_to_fb, &f_fb_to_crtc); filter = NULL; params = NULL; nparams = 0; if (sna_crtc->transform) { #ifdef RANDR_12_INTERFACE if (transform) { if (transform->nparams) { params = malloc(transform->nparams * sizeof(xFixed)); if (params) { memcpy(params, transform->params, transform->nparams * sizeof(xFixed)); nparams = transform->nparams; filter = transform->filter; } } else filter = transform->filter; } #endif crtc->transform_in_use = needs_transform; } else crtc->transform_in_use = sna_crtc->rotation != RR_Rotate_0; if (needs_transform) { sna_crtc->hwcursor = is_affine(&f_fb_to_crtc); sna_crtc->cursor_transform = sna_crtc->hwcursor && !affine_is_pixel_exact(&f_fb_to_crtc); } else { sna_crtc->hwcursor = true; sna_crtc->cursor_transform = false; } DBG(("%s: hwcursor?=%d, cursor_transform?=%d\n", __FUNCTION__, sna_crtc->hwcursor, sna_crtc->cursor_transform)); crtc->crtc_to_framebuffer = crtc_to_fb; crtc->f_crtc_to_framebuffer = f_crtc_to_fb; crtc->f_framebuffer_to_crtc = f_fb_to_crtc; free(crtc->params); crtc->params = params; crtc->nparams = nparams; crtc->filter = filter; if (filter) { crtc->filter_width = filter->width; crtc->filter_height = filter->height; } else { crtc->filter_width = 0; crtc->filter_height = 0; } crtc->bounds.x1 = 0; crtc->bounds.x2 = crtc->mode.HDisplay; crtc->bounds.y1 = 0; crtc->bounds.y2 = crtc->mode.VDisplay; pixman_f_transform_bounds(&f_crtc_to_fb, &crtc->bounds); DBG(("%s: transform? %d, bounds (%d, %d), (%d, %d)\n", __FUNCTION__, crtc->transform_in_use, crtc->bounds.x1, crtc->bounds.y1, crtc->bounds.x2, crtc->bounds.y2)); } static void sna_crtc_damage(xf86CrtcPtr crtc) { ScreenPtr screen = xf86ScrnToScreen(crtc->scrn); struct sna *sna = to_sna(crtc->scrn); RegionRec region, *damage; region.extents = crtc->bounds; region.data = NULL; if (region.extents.x1 < 0) region.extents.x1 = 0; if (region.extents.y1 < 0) region.extents.y1 = 0; if (region.extents.x2 > screen->width) region.extents.x2 = screen->width; if (region.extents.y2 > screen->height) region.extents.y2 = screen->height; if (region.extents.x2 <= region.extents.x1 || region.extents.y2 <= region.extents.y1) { DBG(("%s: crtc not damaged, all-clipped\n", __FUNCTION__)); return; } DBG(("%s: marking crtc %d as completely damaged (%d, %d), (%d, %d)\n", __FUNCTION__, sna_crtc_id(crtc), region.extents.x1, region.extents.y1, region.extents.x2, region.extents.y2)); assert(sna->mode.shadow_damage && sna->mode.shadow_active); damage = DamageRegion(sna->mode.shadow_damage); RegionUnion(damage, damage, ®ion); to_sna_crtc(crtc)->crtc_damage = region; DBG(("%s: damage now %dx[(%d, %d), (%d, %d)]\n", __FUNCTION__, region_num_rects(damage), damage->extents.x1, damage->extents.y1, damage->extents.x2, damage->extents.y2)); } static char *outputs_for_crtc(xf86CrtcPtr crtc, char *outputs, int max) { struct sna *sna = to_sna(crtc->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); int len, i; for (i = len = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc) continue; len += snprintf(outputs+len, max-len, "%s, ", output->name); } assert(len >= 2); outputs[len-2] = '\0'; return outputs; } static const char *rotation_to_str(Rotation rotation) { switch (rotation & RR_Rotate_All) { case 0: case RR_Rotate_0: return "normal"; case RR_Rotate_90: return "left"; case RR_Rotate_180: return "inverted"; case RR_Rotate_270: return "right"; default: return "unknown"; } } static const char *reflection_to_str(Rotation rotation) { switch (rotation & RR_Reflect_All) { case 0: return "none"; case RR_Reflect_X: return "X axis"; case RR_Reflect_Y: return "Y axis"; case RR_Reflect_X | RR_Reflect_Y: return "X and Y axes"; default: return "invalid"; } } static Bool __sna_crtc_set_mode(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct kgem_bo *saved_bo, *bo; uint32_t saved_offset; bool saved_transform; bool saved_hwcursor; bool saved_cursor_transform; int ret; DBG(("%s: CRTC=%d, pipe=%d, hidden?=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), sna->mode.hidden)); if (sna->mode.hidden) return TRUE; saved_bo = sna_crtc->bo; saved_transform = sna_crtc->transform; saved_cursor_transform = sna_crtc->cursor_transform; saved_hwcursor = sna_crtc->hwcursor; saved_offset = sna_crtc->offset; sna_crtc->fallback_shadow = false; retry: /* Attach per-crtc pixmap or direct */ bo = sna_crtc_attach(crtc); if (bo == NULL) { xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "unable to attach scanout\n"); goto error; } /* Prevent recursion when enabling outputs during execbuffer */ if (bo->exec && RQ(bo->rq)->bo == NULL) _kgem_submit(&sna->kgem); sna_crtc->bo = bo; ret = sna_crtc_apply(crtc); if (ret) { kgem_bo_destroy(&sna->kgem, bo); if (!sna_crtc->fallback_shadow) { sna_crtc->fallback_shadow = true; goto retry; } xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "failed to set mode: %s [%d]\n", strerror(ret), ret); goto error; } sna_crtc->flags |= CRTC_ON; bo->active_scanout++; DBG(("%s: marking handle=%d as active=%d (removing %d from scanout, active=%d)\n", __FUNCTION__, bo->handle, bo->active_scanout, saved_bo ? saved_bo->handle : 0, saved_bo ? saved_bo->active_scanout - 1: -1)); if (saved_bo) { assert(saved_bo->active_scanout); assert(saved_bo->refcnt >= saved_bo->active_scanout); saved_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, saved_bo); } sna_crtc_randr(crtc); if (sna_crtc->transform) sna_crtc_damage(crtc); if (sna_crtc->cursor && /* Reload cursor if RandR maybe changed */ (!sna_crtc->hwcursor || saved_cursor_transform || sna_crtc->cursor_transform || sna_crtc->cursor->rotation != crtc->rotation)) sna_crtc_disable_cursor(sna, sna_crtc); assert(!sna->mode.hidden); sna->mode.front_active += saved_bo == NULL; sna->mode.dirty = true; DBG(("%s: handle=%d, scanout_active=%d, front_active=%d\n", __FUNCTION__, bo->handle, bo->active_scanout, sna->mode.front_active)); return TRUE; error: sna_crtc->offset = saved_offset; if (sna_crtc->transform) { assert(sna->mode.rr_active); sna->mode.rr_active--; } if (saved_transform) sna->mode.rr_active++; sna_crtc->transform = saved_transform; sna_crtc->cursor_transform = saved_cursor_transform; sna_crtc->hwcursor = saved_hwcursor; sna_crtc->bo = saved_bo; sna_mode_discover(sna, true); return FALSE; } static Bool sna_crtc_set_mode_major(xf86CrtcPtr crtc, DisplayModePtr mode, Rotation rotation, int x, int y) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_modeinfo saved_kmode; char outputs[256]; if (mode->HDisplay == 0 || mode->VDisplay == 0) return FALSE; assert(sna_crtc); xf86DrvMsg(crtc->scrn->scrnIndex, X_INFO, "switch to mode %dx%d@%.1f on %s using pipe %d, position (%d, %d), rotation %s, reflection %s\n", mode->HDisplay, mode->VDisplay, xf86ModeVRefresh(mode), outputs_for_crtc(crtc, outputs, sizeof(outputs)), __sna_crtc_pipe(sna_crtc), x, y, rotation_to_str(rotation), reflection_to_str(rotation)); assert(mode->HDisplay <= sna->mode.max_crtc_width && mode->VDisplay <= sna->mode.max_crtc_height); #if HAS_GAMMA drmModeCrtcSetGamma(sna->kgem.fd, __sna_crtc_id(sna_crtc), crtc->gamma_size, crtc->gamma_red, crtc->gamma_green, crtc->gamma_blue); #endif saved_kmode = sna_crtc->kmode; mode_to_kmode(&sna_crtc->kmode, mode); if (__sna_crtc_set_mode(crtc)) return TRUE; sna_crtc->kmode = saved_kmode; return FALSE; } static void sna_crtc_dpms(xf86CrtcPtr crtc, int mode) { DBG(("%s(pipe %d, dpms mode -> %d):= active=%d\n", __FUNCTION__, sna_crtc_pipe(crtc), mode, mode == DPMSModeOn)); if (mode == DPMSModeOn && crtc->enabled) { if (__sna_crtc_set_mode(crtc)) update_flush_interval(to_sna(crtc->scrn)); else mode = DPMSModeOff; } if (mode != DPMSModeOn) sna_crtc_disable(crtc, false); } void sna_mode_adjust_frame(struct sna *sna, int x, int y) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); xf86CrtcPtr crtc; int saved_x, saved_y; if ((unsigned)config->compat_output >= config->num_output) return; crtc = config->output[config->compat_output]->crtc; if (crtc == NULL || !crtc->enabled) return; if (crtc->x == x && crtc->y == y) return; saved_x = crtc->x; saved_y = crtc->y; crtc->x = x; crtc->y = y; if (to_sna_crtc(crtc) && !__sna_crtc_set_mode(crtc)) { crtc->x = saved_x; crtc->y = saved_y; } } static void sna_crtc_gamma_set(xf86CrtcPtr crtc, CARD16 *red, CARD16 *green, CARD16 *blue, int size) { assert(to_sna_crtc(crtc)); drmModeCrtcSetGamma(to_sna(crtc->scrn)->kgem.fd, sna_crtc_id(crtc), size, red, green, blue); } static void sna_crtc_destroy(xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct plane *sprite, *sn; if (sna_crtc == NULL) return; list_for_each_entry_safe(sprite, sn, &sna_crtc->sprites, link) free(sprite); free(sna_crtc); crtc->driver_private = NULL; } #if HAS_PIXMAP_SHARING static Bool sna_crtc_set_scanout_pixmap(xf86CrtcPtr crtc, PixmapPtr pixmap) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); if (sna_crtc == NULL) return FALSE; if (pixmap == sna_crtc->slave_pixmap) return TRUE; DBG(("%s: CRTC:%d, pipe=%d setting scanout pixmap=%ld\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), pixmap ? pixmap->drawable.serialNumber : 0)); /* Disable first so that we can unregister the damage tracking */ sna_crtc_disable_shadow(to_sna(crtc->scrn), sna_crtc); sna_crtc->slave_pixmap = pixmap; return TRUE; } #endif static const xf86CrtcFuncsRec sna_crtc_funcs = { #if XF86_CRTC_VERSION >= 1 .dpms = sna_crtc_dpms, #endif .set_mode_major = sna_crtc_set_mode_major, .gamma_set = sna_crtc_gamma_set, .destroy = sna_crtc_destroy, #if HAS_PIXMAP_SHARING .set_scanout_pixmap = sna_crtc_set_scanout_pixmap, #endif }; inline static bool prop_is_rotation(struct drm_mode_get_property *prop) { if ((prop->flags & (1 << 5)) == 0) return false; if (strcmp(prop->name, "rotation")) return false; return true; } static int plane_details(struct sna *sna, struct plane *p) { struct local_mode_obj_get_properties arg; uint64_t stack_props[24]; uint32_t *props = (uint32_t *)stack_props; uint64_t *values = stack_props + 8; int i, type = DRM_PLANE_TYPE_OVERLAY; memset(&arg, 0, sizeof(struct local_mode_obj_get_properties)); arg.obj_id = p->id; arg.obj_type = LOCAL_MODE_OBJECT_PLANE; arg.props_ptr = (uintptr_t)props; arg.prop_values_ptr = (uintptr_t)values; arg.count_props = 16; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES, &arg)) return -1; DBG(("%s: object %d (type %x) has %d props\n", __FUNCTION__, p->id, LOCAL_MODE_OBJECT_PLANE, arg.count_props)); if (arg.count_props > 16) { props = malloc(2*sizeof(uint64_t)*arg.count_props); if (props == NULL) return -1; values = (uint64_t *)props + arg.count_props; arg.props_ptr = (uintptr_t)props; arg.prop_values_ptr = (uintptr_t)values; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_OBJ_GETPROPERTIES, &arg)) arg.count_props = 0; } VG(VALGRIND_MAKE_MEM_DEFINED(arg.props_ptr, sizeof(uint32_t)*arg.count_props)); VG(VALGRIND_MAKE_MEM_DEFINED(arg.prop_values_ptr, sizeof(uint64_t)*arg.count_props)); for (i = 0; i < arg.count_props; i++) { struct drm_mode_get_property prop; memset(&prop, 0, sizeof(prop)); prop.prop_id = props[i]; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop)) { ERR(("%s: prop[%d].id=%d GETPROPERTY failed with errno=%d\n", __FUNCTION__, i, props[i], errno)); continue; } DBG(("%s: prop[%d] .id=%ld, .name=%s, .flags=%x, .value=%ld\n", __FUNCTION__, i, (long)props[i], prop.name, (unsigned)prop.flags, (long)values[i])); if (strcmp(prop.name, "type") == 0) { type = values[i]; } else if (prop_is_rotation(&prop)) { struct drm_mode_property_enum *enums; p->rotation.prop = props[i]; p->rotation.current = values[i]; DBG(("%s: found rotation property .id=%d, value=%ld, num_enums=%d\n", __FUNCTION__, prop.prop_id, (long)values[i], prop.count_enum_blobs)); enums = malloc(prop.count_enum_blobs * sizeof(struct drm_mode_property_enum)); if (enums != NULL) { prop.count_values = 0; prop.enum_blob_ptr = (uintptr_t)enums; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop) == 0) { int j; /* XXX we assume that the mapping between kernel enum and * RandR remains fixed for our lifetimes. */ VG(VALGRIND_MAKE_MEM_DEFINED(enums, sizeof(*enums)*prop.count_enum_blobs)); for (j = 0; j < prop.count_enum_blobs; j++) { DBG(("%s: rotation[%d] = %s [%lx]\n", __FUNCTION__, j, enums[j].name, (long)enums[j].value)); p->rotation.supported |= 1 << enums[j].value; } } free(enums); } } } p->rotation.supported &= DBG_NATIVE_ROTATION; if (!xf86ReturnOptValBool(sna->Options, OPTION_ROTATION, TRUE)) p->rotation.supported = RR_Rotate_0; if (props != (uint32_t *)stack_props) free(props); DBG(("%s: plane=%d type=%d\n", __FUNCTION__, p->id, type)); return type; } static void add_sprite_plane(struct sna_crtc *crtc, struct plane *details) { struct plane *sprite = malloc(sizeof(*sprite)); if (!sprite) return; memcpy(sprite, details, sizeof(*sprite)); list_add(&sprite->link, &crtc->sprites); } static void sna_crtc_find_planes(struct sna *sna, struct sna_crtc *crtc) { #define LOCAL_IOCTL_SET_CAP DRM_IOWR(0x0d, struct local_set_cap) struct local_set_cap { uint64_t name; uint64_t value; } cap; struct local_mode_get_plane_res r; uint32_t stack_planes[32]; uint32_t *planes = stack_planes; int i; VG_CLEAR(cap); cap.name = DRM_CLIENT_CAP_UNIVERSAL_PLANES; cap.value = 1; (void)drmIoctl(sna->kgem.fd, LOCAL_IOCTL_SET_CAP, &cap); VG_CLEAR(r); r.plane_id_ptr = (uintptr_t)planes; r.count_planes = ARRAY_SIZE(stack_planes); if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANERESOURCES, &r)) { ERR(("%s: GETPLANERESOURCES failed with errno=%d\n", __FUNCTION__, errno)); return; } DBG(("%s: %d planes\n", __FUNCTION__, (int)r.count_planes)); if (r.count_planes > ARRAY_SIZE(stack_planes)) { planes = malloc(sizeof(uint32_t)*r.count_planes); if (planes == NULL) return; r.plane_id_ptr = (uintptr_t)planes; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANERESOURCES, &r)) r.count_planes = 0; } VG(VALGRIND_MAKE_MEM_DEFINED(planes, sizeof(uint32_t)*r.count_planes)); for (i = 0; i < r.count_planes; i++) { struct local_mode_get_plane p; struct plane details; VG_CLEAR(p); p.plane_id = planes[i]; p.count_format_types = 0; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANE, &p)) continue; if ((p.possible_crtcs & (1 << __sna_crtc_pipe(crtc))) == 0) continue; DBG(("%s: plane %d is attached to our pipe=%d\n", __FUNCTION__, planes[i], __sna_crtc_pipe(crtc))); details.id = p.plane_id; details.rotation.prop = 0; details.rotation.supported = RR_Rotate_0; details.rotation.current = RR_Rotate_0; switch (plane_details(sna, &details)) { default: break; case DRM_PLANE_TYPE_PRIMARY: crtc->primary = details; break; case DRM_PLANE_TYPE_CURSOR: break; case DRM_PLANE_TYPE_OVERLAY: add_sprite_plane(crtc, &details); break; } } if (planes != stack_planes) free(planes); } static void sna_crtc_init__rotation(struct sna *sna, struct sna_crtc *crtc) { crtc->rotation = RR_Rotate_0; crtc->primary.rotation.supported = RR_Rotate_0; crtc->primary.rotation.current = RR_Rotate_0; } static void sna_crtc_init__cursor(struct sna *sna, struct sna_crtc *crtc) { struct drm_mode_cursor arg; VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = __sna_crtc_id(crtc); arg.width = arg.height = 0; arg.handle = 0; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg); crtc->hwcursor = true; } static bool sna_crtc_add(ScrnInfoPtr scrn, unsigned id) { struct sna *sna = to_sna(scrn); xf86CrtcPtr crtc; struct sna_crtc *sna_crtc; struct drm_i915_get_pipe_from_crtc_id get_pipe; DBG(("%s(%d): is-zaphod? %d\n", __FUNCTION__, id, is_zaphod(scrn))); sna_crtc = calloc(sizeof(struct sna_crtc), 1); if (sna_crtc == NULL) return false; sna_crtc->id = id; VG_CLEAR(get_pipe); get_pipe.pipe = 0; get_pipe.crtc_id = id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &get_pipe)) { free(sna_crtc); return false; } assert((unsigned)get_pipe.pipe < 256); sna_crtc->flags |= get_pipe.pipe << 8; if (is_zaphod(scrn) && (get_zaphod_crtcs(sna) & (1 << get_pipe.pipe)) == 0) { free(sna_crtc); return true; } list_init(&sna_crtc->sprites); sna_crtc_init__rotation(sna, sna_crtc); sna_crtc_find_planes(sna, sna_crtc); DBG(("%s: CRTC:%d [pipe=%d], primary id=%x: supported-rotations=%x, current-rotation=%x\n", __FUNCTION__, id, get_pipe.pipe, sna_crtc->primary.id, sna_crtc->primary.rotation.supported, sna_crtc->primary.rotation.current)); list_init(&sna_crtc->shadow_link); crtc = xf86CrtcCreate(scrn, &sna_crtc_funcs); if (crtc == NULL) { free(sna_crtc); return false; } sna_crtc_init__cursor(sna, sna_crtc); crtc->driver_private = sna_crtc; sna_crtc->base = crtc; DBG(("%s: attached crtc[%d] pipe=%d\n", __FUNCTION__, id, __sna_crtc_pipe(sna_crtc))); return true; } static bool is_panel(int type) { #define DRM_MODE_CONNECTOR_LVDS 7 #define DRM_MODE_CONNECTOR_eDP 14 #define DRM_MODE_CONNECTOR_DSI 16 return (type == DRM_MODE_CONNECTOR_LVDS || type == DRM_MODE_CONNECTOR_eDP || type == DRM_MODE_CONNECTOR_DSI); } static int find_property(struct sna *sna, struct sna_output *output, const char *name) { struct drm_mode_get_property prop; int i; VG_CLEAR(prop); for (i = 0; i < output->num_props; i++) { prop.prop_id = output->prop_ids[i]; prop.count_values = 0; prop.count_enum_blobs = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPERTY, &prop)) continue; if (strcmp(prop.name, name) == 0) return i; } return -1; } static void update_properties(struct sna *sna, struct sna_output *output) { union compat_mode_get_connector compat_conn; struct drm_mode_modeinfo dummy; VG_CLEAR(compat_conn); compat_conn.conn.connector_id = output->id; compat_conn.conn.count_props = output->num_props; compat_conn.conn.props_ptr = (uintptr_t)output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)output->prop_values; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = 0; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn); assert(compat_conn.conn.count_props == output->num_props); output->update_properties = false; } static xf86OutputStatus sna_output_detect(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; union compat_mode_get_connector compat_conn; uint32_t now; DBG(("%s(%s:%d)\n", __FUNCTION__, output->name, sna_output->id)); sna_output->update_properties = false; if (!sna_output->id) { DBG(("%s(%s) hiding due to lost connection\n", __FUNCTION__, output->name)); return XF86OutputStatusDisconnected; } /* Cache detections for 15s or hotplug event */ now = GetTimeInMillis(); if (sna_output->last_detect != 0 && (int32_t)(now - sna_output->last_detect) <= OUTPUT_STATUS_CACHE_MS) { DBG(("%s(%s) reporting cached status (since %dms): %d\n", __FUNCTION__, output->name, now - sna_output->last_detect, sna_output->status)); sna_output->update_properties = true; return sna_output->status; } VG_CLEAR(compat_conn); compat_conn.conn.connector_id = sna_output->id; sna_output->num_modes = compat_conn.conn.count_modes = 0; /* reprobe */ compat_conn.conn.count_encoders = 0; compat_conn.conn.count_props = sna_output->num_props; compat_conn.conn.props_ptr = (uintptr_t)sna_output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)sna_output->prop_values; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) return XF86OutputStatusUnknown; DBG(("%s(%s): num modes %d -> %d, num props %d -> %d\n", __FUNCTION__, output->name, sna_output->num_modes, compat_conn.conn.count_modes, sna_output->num_props, compat_conn.conn.count_props)); assert(compat_conn.conn.count_props == sna_output->num_props); while (compat_conn.conn.count_modes && compat_conn.conn.count_modes != sna_output->num_modes) { struct drm_mode_modeinfo *new_modes; int old_count; old_count = sna_output->num_modes; new_modes = realloc(sna_output->modes, sizeof(*sna_output->modes)*compat_conn.conn.count_modes); if (new_modes == NULL) break; sna_output->modes = new_modes; sna_output->num_modes = compat_conn.conn.count_modes; compat_conn.conn.modes_ptr = (uintptr_t)sna_output->modes; compat_conn.conn.count_encoders = 0; compat_conn.conn.count_props = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { sna_output->num_modes = min(old_count, sna_output->num_modes); break; } VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->modes, sizeof(*sna_output->modes)*sna_output->num_modes)); } DBG(("%s(%s): found %d modes, connection status=%d\n", __FUNCTION__, output->name, sna_output->num_modes, compat_conn.conn.connection)); sna_output->reprobe = false; sna_output->last_detect = now; switch (compat_conn.conn.connection) { case DRM_MODE_CONNECTED: sna_output->status = XF86OutputStatusConnected; output->mm_width = compat_conn.conn.mm_width; output->mm_height = compat_conn.conn.mm_height; break; case DRM_MODE_DISCONNECTED: sna_output->status = XF86OutputStatusDisconnected; break; default: case DRM_MODE_UNKNOWNCONNECTION: sna_output->status = XF86OutputStatusUnknown; break; } return sna_output->status; } static Bool sna_output_mode_valid(xf86OutputPtr output, DisplayModePtr mode) { struct sna_output *sna_output = output->driver_private; struct sna *sna = to_sna(output->scrn); if (mode->HDisplay > sna->mode.max_crtc_width) return MODE_VIRTUAL_X; if (mode->VDisplay > sna->mode.max_crtc_height) return MODE_VIRTUAL_Y; /* Check that we can successfully pin this into the global GTT */ if ((kgem_can_create_2d(&sna->kgem, mode->HDisplay, mode->VDisplay, sna->scrn->bitsPerPixel) & KGEM_CAN_CREATE_GTT) == 0) return MODE_MEM_VIRT; /* * If the connector type is a panel, we will use the panel limit to * verfiy whether the mode is valid. */ if (sna_output->has_panel_limits) { if (mode->HDisplay > sna_output->panel_hdisplay || mode->VDisplay > sna_output->panel_vdisplay) return MODE_PANEL; } return MODE_OK; } static void sna_output_set_parsed_edid(xf86OutputPtr output, xf86MonPtr mon) { unsigned conn_mm_width, conn_mm_height; /* We set the output size based on values from the kernel */ conn_mm_width = output->mm_width; conn_mm_height = output->mm_height; xf86OutputSetEDID(output, mon); if (output->mm_width != conn_mm_width || output->mm_height != conn_mm_height) { DBG(("%s)%s): kernel and Xorg disagree over physical size: kernel=%dx%dmm, Xorg=%dx%dmm\n", __FUNCTION__, output->name, conn_mm_width, conn_mm_height, output->mm_width, output->mm_height)); } output->mm_width = conn_mm_width; output->mm_height = conn_mm_height; } static void sna_output_attach_edid(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; struct drm_mode_get_blob blob; void *old, *raw = NULL; xf86MonPtr mon = NULL; if (sna_output->edid_idx == -1) return; /* Always refresh the blob as the kernel may randomly update the * id even if the contents of the blob doesn't change, and a * request for the stale id will return nothing. */ if (sna_output->update_properties) update_properties(sna, sna_output); raw = sna_output->edid_raw; blob.length = sna_output->edid_len; if (blob.length && output->MonInfo) { old = alloca(blob.length); memcpy(old, raw, blob.length); } else old = NULL; blob.blob_id = sna_output->prop_values[sna_output->edid_idx]; if (!blob.blob_id) goto done; DBG(("%s(%s): attaching EDID id=%d, current=%d\n", __FUNCTION__, output->name, blob.blob_id, sna_output->edid_blob_id)); if (blob.blob_id == sna_output->edid_blob_id && 0) { /* sigh */ if (output->MonInfo) { /* XXX the property keeps on disappearing... */ RRChangeOutputProperty(output->randr_output, MakeAtom("EDID", strlen("EDID"), TRUE), XA_INTEGER, 8, PropModeReplace, sna_output->edid_len, sna_output->edid_raw, FALSE, FALSE); return; } goto skip_read; } blob.data = (uintptr_t)raw; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) { DBG(("%s(%s): failed to read blob, reusing previous\n", __FUNCTION__, output->name)); goto skip_read; } DBG(("%s(%s): retrieving blob id=%d, length=%d\n", __FUNCTION__, output->name, blob.blob_id, blob.length)); if (blob.length > sna_output->edid_len) { raw = realloc(raw, blob.length); if (raw == NULL) goto done; VG(memset(raw, 0, blob.length)); blob.data = (uintptr_t)raw; } if (blob.length != sna_output->edid_len && drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) goto done; if (blob.length < 128) goto done; if (blob.length & 127) { /* Truncated EDID! Make sure no one reads too far */ *SECTION(NO_EDID, (uint8_t*)raw) = blob.length/128 - 1; blob.length &= -128; } if (old && blob.length == sna_output->edid_len && memcmp(old, raw, blob.length) == 0) { DBG(("%s(%s): EDID + MonInfo is unchanged\n", __FUNCTION__, output->name)); assert(sna_output->edid_raw == raw); sna_output->edid_blob_id = blob.blob_id; RRChangeOutputProperty(output->randr_output, MakeAtom("EDID", strlen("EDID"), TRUE), XA_INTEGER, 8, PropModeReplace, sna_output->edid_len, sna_output->edid_raw, FALSE, FALSE); return; } skip_read: if (raw) { mon = xf86InterpretEDID(output->scrn->scrnIndex, raw); if (mon && blob.length > 128) mon->flags |= MONITOR_EDID_COMPLETE_RAWDATA; } done: sna_output_set_parsed_edid(output, mon); if (raw) { sna_output->edid_raw = raw; sna_output->edid_len = blob.length; sna_output->edid_blob_id = blob.blob_id; } } static void sna_output_attach_tile(xf86OutputPtr output) { #if XF86_OUTPUT_VERSION >= 3 struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; struct drm_mode_get_blob blob; struct xf86CrtcTileInfo tile_info, *set = NULL; char *tile; int id; id = find_property(sna, sna_output, "TILE"); DBG(("%s: found? TILE=%d\n", __FUNCTION__, id)); if (id == -1) goto out; if (sna_output->update_properties) update_properties(sna, sna_output); VG_CLEAR(blob); blob.blob_id = sna_output->prop_values[id]; blob.length = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) goto out; do { id = blob.length; tile = alloca(id + 1); blob.data = (uintptr_t)tile; VG(memset(tile, 0, id)); DBG(("%s: reading %d bytes for TILE blob\n", __FUNCTION__, id)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) goto out; } while (id != blob.length); tile[blob.length] = '\0'; /* paranoia */ DBG(("%s: TILE='%s'\n", __FUNCTION__, tile)); if (xf86OutputParseKMSTile(tile, blob.length, &tile_info)) set = &tile_info; out: xf86OutputSetTile(output, set); #endif } static bool duplicate_mode(DisplayModePtr modes, DisplayModePtr m) { if (m == NULL) return false; while (modes) { if (xf86ModesEqual(modes, m)) return true; modes = modes->next; } return false; } static struct pixel_count { int16_t width, height; } common_16_9[] = { { 640, 360 }, { 720, 405 }, { 864, 486 }, { 960, 540 }, { 1024, 576 }, { 1280, 720 }, { 1366, 768 }, { 1600, 900 }, { 1920, 1080 }, { 2048, 1152 }, { 2560, 1440 }, { 2880, 1620 }, { 3200, 1800 }, { 3840, 2160 }, { 4096, 2304 }, { 5120, 2880 }, { 7680, 4320 }, { 15360, 8640 }, }, common_16_10[] = { { 1280, 800 }, { 1400, 900 }, { 1680, 1050 }, { 1920, 1200 }, { 2560, 1600 }, }; static DisplayModePtr default_modes(DisplayModePtr preferred) { DisplayModePtr modes; int n; #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,6,99,900,0) modes = xf86GetDefaultModes(); #else modes = xf86GetDefaultModes(0, 0); #endif /* XXX O(n^2) mode list generation :( */ #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,4,99,901,0) if (preferred) { DisplayModePtr m; /* Add a half-resolution mode useful for large panels */ m = xf86GTFMode(preferred->HDisplay/2, preferred->VDisplay/2, xf86ModeVRefresh(preferred), FALSE, FALSE); if (!duplicate_mode(modes, m)) modes = xf86ModesAdd(modes, m); else free(m); if (preferred->VDisplay * 16 > preferred->HDisplay*9 - preferred->HDisplay/32 && preferred->VDisplay * 16 < preferred->HDisplay*9 + preferred->HDisplay/32) { DBG(("Adding 16:9 modes -- %d < %d > %d\n", preferred->HDisplay*9 - preferred->HDisplay/32, preferred->VDisplay * 16, preferred->HDisplay*9 + preferred->HDisplay/32)); for (n = 0; n < ARRAY_SIZE(common_16_9); n++) { if (preferred->HDisplay <= common_16_9[n].width || preferred->VDisplay <= common_16_9[n].height) break; m = xf86GTFMode(common_16_9[n].width, common_16_9[n].height, xf86ModeVRefresh(preferred), FALSE, FALSE); if (!duplicate_mode(modes, m)) modes = xf86ModesAdd(modes, m); else free(m); } } if (preferred->VDisplay * 16 > preferred->HDisplay*10 - preferred->HDisplay/32 && preferred->VDisplay * 16 < preferred->HDisplay*10 + preferred->HDisplay/32) { DBG(("Adding 16:10 modes -- %d < %d > %d\n", preferred->HDisplay*10 - preferred->HDisplay/32, preferred->VDisplay * 16, preferred->HDisplay*10 + preferred->HDisplay/32)); for (n = 0; n < ARRAY_SIZE(common_16_10); n++) { if (preferred->HDisplay <= common_16_10[n].width || preferred->VDisplay <= common_16_10[n].height) break; m = xf86GTFMode(common_16_10[n].width, common_16_10[n].height, xf86ModeVRefresh(preferred), FALSE, FALSE); if (!duplicate_mode(modes, m)) modes = xf86ModesAdd(modes, m); else free(m); } } } #endif return modes; } static DisplayModePtr sna_output_add_default_modes(xf86OutputPtr output, DisplayModePtr modes) { xf86MonPtr mon = output->MonInfo; DisplayModePtr i, m, preferred = NULL; int max_x = 0, max_y = 0, max_clock = 0; float max_vrefresh = 0.0; if (mon && GTF_SUPPORTED(mon->features.msc)) return modes; for (m = modes; m; m = m->next) { if (m->type & M_T_PREFERRED) preferred = m; max_x = max(max_x, m->HDisplay); max_y = max(max_y, m->VDisplay); max_clock = max(max_clock, m->Clock); max_vrefresh = max(max_vrefresh, xf86ModeVRefresh(m)); } max_vrefresh *= (1 + SYNC_TOLERANCE); m = default_modes(preferred); xf86ValidateModesSize(output->scrn, m, max_x, max_y, 0); for (i = m; i; i = i->next) { if (i->Clock > max_clock) i->status = MODE_CLOCK_HIGH; if (xf86ModeVRefresh(i) > max_vrefresh) i->status = MODE_VSYNC; if (preferred && i->HDisplay >= preferred->HDisplay && i->VDisplay >= preferred->VDisplay && xf86ModeVRefresh(i) >= xf86ModeVRefresh(preferred)) i->status = MODE_PANEL; } xf86PruneInvalidModes(output->scrn, &m, FALSE); return xf86ModesAdd(modes, m); } static DisplayModePtr sna_output_override_edid(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; if (sna_output->fake_edid_mon == NULL) return NULL; xf86OutputSetEDID(output, sna_output->fake_edid_mon); return xf86DDCGetModes(output->scrn->scrnIndex, sna_output->fake_edid_mon); } static DisplayModePtr sna_output_get_modes(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; DisplayModePtr Modes, current; int i; DBG(("%s(%s:%d)\n", __FUNCTION__, output->name, sna_output->id)); assert(sna_output->id); Modes = sna_output_override_edid(output); if (Modes) return Modes; sna_output_attach_edid(output); sna_output_attach_tile(output); current = NULL; if (output->crtc && !sna_output->hotplug_count) { struct drm_mode_crtc mode; VG_CLEAR(mode); assert(to_sna_crtc(output->crtc)); mode.crtc_id = sna_crtc_id(output->crtc); if (drmIoctl(to_sna(output->scrn)->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode) == 0) { DBG(("%s: CRTC:%d, pipe=%d: has mode?=%d\n", __FUNCTION__, sna_crtc_id(output->crtc), sna_crtc_pipe(output->crtc), mode.mode_valid && mode.mode.clock)); if (mode.mode_valid && mode.mode.clock) { current = calloc(1, sizeof(DisplayModeRec)); if (current) { mode_from_kmode(output->scrn, &mode.mode, current); current->type |= M_T_DRIVER | M_T_PREFERRED; } } } } DBG(("%s: adding %d probed modes\n", __FUNCTION__, sna_output->num_modes)); for (i = 0; i < sna_output->num_modes; i++) { DisplayModePtr mode; mode = calloc(1, sizeof(DisplayModeRec)); if (mode == NULL) continue; mode = mode_from_kmode(output->scrn, &sna_output->modes[i], mode); Modes = xf86ModesAdd(Modes, mode); if (current && xf86ModesEqual(mode, current)) { free((void*)current->name); free(current); current = NULL; } if (current && mode->type & M_T_PREFERRED) current->type &= ~M_T_PREFERRED; } if (current) Modes = xf86ModesAdd(current, Modes); /* * If the connector type is a panel, we will traverse the kernel mode to * get the panel limit. And then add all the standard modes to fake * the fullscreen experience. * If it is incorrect, please fix me. */ sna_output->has_panel_limits = false; if (sna_output->is_panel) { sna_output->panel_hdisplay = sna_output->panel_vdisplay = 0; for (i = 0; i < sna_output->num_modes; i++) { struct drm_mode_modeinfo *m; m = &sna_output->modes[i]; if (m->hdisplay > sna_output->panel_hdisplay) sna_output->panel_hdisplay = m->hdisplay; if (m->vdisplay > sna_output->panel_vdisplay) sna_output->panel_vdisplay = m->vdisplay; } sna_output->has_panel_limits = sna_output->panel_hdisplay && sna_output->panel_vdisplay; } if (sna_output->add_default_modes) Modes = sna_output_add_default_modes(output, Modes); return Modes; } static void sna_output_destroy(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; int i; if (sna_output == NULL) return; free(sna_output->edid_raw); free(sna_output->fake_edid_raw); for (i = 0; i < sna_output->num_props; i++) { if (sna_output->props[i].kprop == NULL) continue; if (sna_output->props[i].atoms) { if (output->randr_output) RRDeleteOutputProperty(output->randr_output, sna_output->props[i].atoms[0]); free(sna_output->props[i].atoms); } drmModeFreeProperty(sna_output->props[i].kprop); } free(sna_output->props); free(sna_output->prop_ids); free(sna_output->prop_values); backlight_close(&sna_output->backlight); free(sna_output); output->driver_private = NULL; } static void __sna_output_dpms(xf86OutputPtr output, int dpms, int fixup) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int old_dpms = sna_output->dpms_mode; DBG(("%s(%s:%d): dpms=%d (current: %d), active? %d\n", __FUNCTION__, output->name, sna_output->id, dpms, sna_output->dpms_mode, output->crtc != NULL)); if (!sna_output->id) return; if (old_dpms == dpms) return; /* Record the value of the backlight before turning * off the display, and reset if after turning it on. * Order is important as the kernel may record and also * reset the backlight across DPMS. Hence we need to * record the value before the kernel modifies it * and reapply it afterwards. */ if (sna_output->backlight.iface && dpms != DPMSModeOn) { if (old_dpms == DPMSModeOn) { sna_output->backlight_active_level = sna_output_backlight_get(output); DBG(("%s(%s:%d): saving current backlight %d\n", __FUNCTION__, output->name, sna_output->id, sna_output->backlight_active_level)); } sna_output->dpms_mode = dpms; sna_output_backlight_off(sna_output); } if (output->crtc && drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, sna_output->dpms_id, dpms)) { DBG(("%s(%s:%d): failed to set DPMS to %d (fixup? %d)\n", __FUNCTION__, output->name, sna_output->id, dpms, fixup)); if (fixup && dpms != DPMSModeOn) { sna_crtc_disable(output->crtc, false); return; } } if (sna_output->backlight.iface && dpms == DPMSModeOn) { DBG(("%s(%d:%d: restoring previous backlight %d\n", __FUNCTION__, output->name, sna_output->id, sna_output->backlight_active_level)); sna_output_backlight_on(sna_output); } sna_output->dpms_mode = dpms; } static void sna_output_dpms(xf86OutputPtr output, int dpms) { __sna_output_dpms(output, dpms, true); } static bool sna_property_ignore(drmModePropertyPtr prop) { if (!prop) return true; /* ignore blob prop */ if (prop->flags & DRM_MODE_PROP_BLOB) return true; /* ignore standard property */ if (!strcmp(prop->name, "EDID") || !strcmp(prop->name, "DPMS")) return true; return false; } static void sna_output_create_ranged_atom(xf86OutputPtr output, Atom *atom, const char *name, INT32 min, INT32 max, uint64_t value, Bool immutable) { int err; INT32 atom_range[2]; atom_range[0] = min; atom_range[1] = max; *atom = MakeAtom(name, strlen(name), TRUE); err = RRConfigureOutputProperty(output->randr_output, *atom, FALSE, TRUE, immutable, 2, atom_range); if (err != 0) xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRConfigureOutputProperty error, %d\n", err); err = RRChangeOutputProperty(output->randr_output, *atom, XA_INTEGER, 32, PropModeReplace, 1, &value, FALSE, FALSE); if (err != 0) xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRChangeOutputProperty error, %d\n", err); } static void sna_output_create_resources(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int i, j, err; sna_output->props = calloc(sna_output->num_props, sizeof(struct sna_property)); if (!sna_output->props) return; for (i = 0; i < sna_output->num_props; i++) { struct sna_property *p = &sna_output->props[i]; p->kprop = drmModeGetProperty(sna->kgem.fd, sna_output->prop_ids[i]); if (sna_property_ignore(p->kprop)) { drmModeFreeProperty(p->kprop); p->kprop = NULL; continue; } if (p->kprop->flags & DRM_MODE_PROP_RANGE) { p->num_atoms = 1; p->atoms = calloc(p->num_atoms, sizeof(Atom)); if (!p->atoms) continue; sna_output_create_ranged_atom(output, &p->atoms[0], p->kprop->name, p->kprop->values[0], p->kprop->values[1], sna_output->prop_values[i], p->kprop->flags & DRM_MODE_PROP_IMMUTABLE ? TRUE : FALSE); } else if (p->kprop->flags & DRM_MODE_PROP_ENUM) { p->num_atoms = p->kprop->count_enums + 1; p->atoms = calloc(p->num_atoms, sizeof(Atom)); if (!p->atoms) continue; p->atoms[0] = MakeAtom(p->kprop->name, strlen(p->kprop->name), TRUE); for (j = 1; j <= p->kprop->count_enums; j++) { struct drm_mode_property_enum *e = &p->kprop->enums[j-1]; p->atoms[j] = MakeAtom(e->name, strlen(e->name), TRUE); } err = RRConfigureOutputProperty(output->randr_output, p->atoms[0], FALSE, FALSE, p->kprop->flags & DRM_MODE_PROP_IMMUTABLE ? TRUE : FALSE, p->num_atoms - 1, (INT32 *)&p->atoms[1]); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRConfigureOutputProperty error, %d\n", err); } for (j = 0; j < p->kprop->count_enums; j++) if (p->kprop->enums[j].value == sna_output->prop_values[i]) break; /* there's always a matching value */ err = RRChangeOutputProperty(output->randr_output, p->atoms[0], XA_ATOM, 32, PropModeReplace, 1, &p->atoms[j+1], FALSE, FALSE); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRChangeOutputProperty error, %d\n", err); } } } if (sna_output->backlight.iface) { /* Set up the backlight property, which takes effect * immediately and accepts values only within the * backlight_range. */ sna_output_create_ranged_atom(output, &backlight_atom, BACKLIGHT_NAME, 0, sna_output->backlight.max, sna_output->backlight_active_level, FALSE); sna_output_create_ranged_atom(output, &backlight_deprecated_atom, BACKLIGHT_DEPRECATED_NAME, 0, sna_output->backlight.max, sna_output->backlight_active_level, FALSE); } } static Bool sna_output_set_property(xf86OutputPtr output, Atom property, RRPropertyValuePtr value) { struct sna *sna = to_sna(output->scrn); struct sna_output *sna_output = output->driver_private; int i; if (property == backlight_atom || property == backlight_deprecated_atom) { INT32 val; int ret = 0; if (value->type != XA_INTEGER || value->format != 32 || value->size != 1) { return FALSE; } val = *(INT32 *)value->data; DBG(("%s: setting backlight to %d (max=%d)\n", __FUNCTION__, (int)val, sna_output->backlight.max)); if (val < 0 || val > sna_output->backlight.max) return FALSE; sna_output->backlight_active_level = val; if (sna_output->dpms_mode == DPMSModeOn) ret = sna_output_backlight_set(sna_output, val); return ret == 0; } if (!sna_output->id) return TRUE; for (i = 0; i < sna_output->num_props; i++) { struct sna_property *p = &sna_output->props[i]; if (p->atoms == NULL || p->atoms[0] != property) continue; if (p->kprop->flags & DRM_MODE_PROP_RANGE) { uint32_t val; if (value->type != XA_INTEGER || value->format != 32 || value->size != 1) return FALSE; val = *(uint32_t *)value->data; drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, p->kprop->prop_id, (uint64_t)val); return TRUE; } else if (p->kprop->flags & DRM_MODE_PROP_ENUM) { Atom atom; const char *name; int j; if (value->type != XA_ATOM || value->format != 32 || value->size != 1) return FALSE; memcpy(&atom, value->data, 4); name = NameForAtom(atom); if (name == NULL) return FALSE; /* search for matching name string, then set its value down */ for (j = 0; j < p->kprop->count_enums; j++) { if (!strcmp(p->kprop->enums[j].name, name)) { drmModeConnectorSetProperty(sna->kgem.fd, sna_output->id, p->kprop->prop_id, p->kprop->enums[j].value); return TRUE; } } return FALSE; } } /* We didn't recognise this property, just report success in order * to allow the set to continue, otherwise we break setting of * common properties like EDID. */ return TRUE; } static Bool sna_output_get_property(xf86OutputPtr output, Atom property) { struct sna_output *sna_output = output->driver_private; int err, i, j; if (property == backlight_atom || property == backlight_deprecated_atom) { INT32 val; if (!sna_output->backlight.iface) return FALSE; if (sna_output->dpms_mode == DPMSModeOn) { val = sna_output_backlight_get(output); if (val < 0) return FALSE; DBG(("%s(%s): output on, reporting actual backlight value [%d]\n", __FUNCTION__, output->name, val)); } else { val = sna_output->backlight_active_level; DBG(("%s(%s): output off, reporting cached backlight value [%d]\n", __FUNCTION__, output->name, val)); } err = RRChangeOutputProperty(output->randr_output, property, XA_INTEGER, 32, PropModeReplace, 1, &val, FALSE, FALSE); if (err != 0) { xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRChangeOutputProperty error, %d\n", err); return FALSE; } return TRUE; } for (i = 0; i < sna_output->num_props; i++) { struct sna_property *p = &sna_output->props[i]; if (p->atoms == NULL || p->atoms[0] != property) continue; if (sna_output->update_properties && output->scrn->vtSema) update_properties(to_sna(output->scrn), sna_output); err = 0; if (p->kprop->flags & DRM_MODE_PROP_RANGE) { err = RRChangeOutputProperty(output->randr_output, property, XA_INTEGER, 32, PropModeReplace, 1, &sna_output->prop_values[i], FALSE, FALSE); } else if (p->kprop->flags & DRM_MODE_PROP_ENUM) { for (j = 0; j < p->kprop->count_enums; j++) { if (p->kprop->enums[j].value == sna_output->prop_values[i]) break; } err = RRChangeOutputProperty(output->randr_output, property, XA_ATOM, 32, PropModeReplace, 1, &p->atoms[j+1], FALSE, FALSE); } if (err != 0) xf86DrvMsg(output->scrn->scrnIndex, X_WARNING, "RRChangeOutputProperty error, %d\n", err); return TRUE; } return FALSE; } static const xf86OutputFuncsRec sna_output_funcs = { .create_resources = sna_output_create_resources, #ifdef RANDR_12_INTERFACE .set_property = sna_output_set_property, .get_property = sna_output_get_property, #endif .dpms = sna_output_dpms, .detect = sna_output_detect, .mode_valid = sna_output_mode_valid, .get_modes = sna_output_get_modes, .destroy = sna_output_destroy }; static const int subpixel_conv_table[] = { SubPixelUnknown, SubPixelHorizontalRGB, SubPixelHorizontalBGR, SubPixelVerticalRGB, SubPixelVerticalBGR, SubPixelNone }; static const char * const output_names[] = { /* DRM_MODE_CONNECTOR_Unknown */ "None", /* DRM_MODE_CONNECTOR_VGA */ "VGA", /* DRM_MODE_CONNECTOR_DVII */ "DVI", /* DRM_MODE_CONNECTOR_DVID */ "DVI", /* DRM_MODE_CONNECTOR_DVIA */ "DVI", /* DRM_MODE_CONNECTOR_Composite */ "Composite", /* DRM_MODE_CONNECTOR_SVIDEO */ "TV", /* DRM_MODE_CONNECTOR_LVDS */ "LVDS", /* DRM_MODE_CONNECTOR_Component */ "CTV", /* DRM_MODE_CONNECTOR_9PinDIN */ "DIN", /* DRM_MODE_CONNECTOR_DisplayPort */ "DP", /* DRM_MODE_CONNECTOR_HDMIA */ "HDMI", /* DRM_MODE_CONNECTOR_HDMIB */ "HDMI", /* DRM_MODE_CONNECTOR_TV */ "TV", /* DRM_MODE_CONNECTOR_eDP */ "eDP", /* DRM_MODE_CONNECTOR_VIRTUAL */ "Virtual", /* DRM_MODE_CONNECTOR_DSI */ "DSI", /* DRM_MODE_CONNECTOR_DPI */ "DPI" }; static bool output_ignored(ScrnInfoPtr scrn, const char *name) { char monitor_name[64]; const char *monitor; XF86ConfMonitorPtr conf; snprintf(monitor_name, sizeof(monitor_name), "monitor-%s", name); monitor = xf86findOptionValue(scrn->options, monitor_name); if (!monitor) monitor = name; conf = xf86findMonitor(monitor, xf86configptr->conf_monitor_lst); if (conf == NULL && XF86_CRTC_CONFIG_PTR(scrn)->num_output == 0) conf = xf86findMonitor(scrn->monitor->id, xf86configptr->conf_monitor_lst); if (conf == NULL) return false; return xf86CheckBoolOption(conf->mon_option_lst, "Ignore", 0); } static bool gather_encoders(struct sna *sna, uint32_t id, int count, struct drm_mode_get_encoder *out) { union compat_mode_get_connector compat_conn; struct drm_mode_modeinfo dummy; struct drm_mode_get_encoder enc; uint32_t *ids = NULL; DBG(("%s(%d): expected count=%d\n", __FUNCTION__, id, count)); VG_CLEAR(compat_conn); VG_CLEAR(enc); memset(out, 0, sizeof(*out)); do { uint32_t *nids; nids = realloc(ids, sizeof(*ids) * count); if (nids == NULL) { free(ids); return false; } ids = nids; compat_conn.conn.connector_id = id; compat_conn.conn.count_props = 0; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = count; compat_conn.conn.encoders_ptr = (uintptr_t)ids; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: GETCONNECTOR[%d] failed, ret=%d\n", __FUNCTION__, id, errno)); compat_conn.conn.count_encoders = count = 0; } VG(VALGRIND_MAKE_MEM_DEFINED(ids, sizeof(uint32_t)*compat_conn.conn.count_encoders)); if (count == compat_conn.conn.count_encoders) break; count = compat_conn.conn.count_encoders; } while (1); DBG(("%s(%d): gathering %d encoders\n", __FUNCTION__, id, count)); for (count = 0; count < compat_conn.conn.count_encoders; count++) { enc.encoder_id = ids[count]; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc)) { DBG(("%s: GETENCODER[%d] failed, ret=%d\n", __FUNCTION__, ids[count], errno)); count = 0; break; } DBG(("%s(%d): encoder=%d, possible_crtcs=%x, possible_clones=%x\n", __FUNCTION__, id, enc.encoder_id, enc.possible_crtcs, enc.possible_clones)); out->possible_crtcs |= enc.possible_crtcs; out->possible_clones |= enc.possible_clones; for (id = 0; id < sna->mode.num_real_encoder; id++) { if (enc.encoder_id == sna->mode.encoders[id]) { out->crtc_id |= 1 << id; break; } } } free(ids); return count > 0; } /* We need to map from kms encoder based possible_clones mask to X output based * possible clones masking. Note that for SDVO and on Haswell with DP/HDMI we * can have more than one output hanging off the same encoder. */ static void sna_mode_compute_possible_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int encoder_mask[32]; int i, j; assert(sna->mode.num_real_output < 32); assert(sna->mode.num_real_crtc < 32); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); assert(sna_output); if (sna_output->id) { output->possible_clones = sna_output->possible_encoders; encoder_mask[i] = sna_output->attached_encoders; } else { output->possible_clones = 0; encoder_mask[i] = 0; } } /* Convert from encoder numbering to output numbering */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; unsigned clones; if (output->possible_clones == 0) continue; clones = 0; for (j = 0; j < sna->mode.num_real_output; j++) if (i != j && output->possible_clones & encoder_mask[j]) clones |= 1 << j; output->possible_clones = clones; DBG(("%s: updated output '%s' %d [%d] (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); } } static int name_from_path(struct sna *sna, struct sna_output *sna_output, char *name) { struct drm_mode_get_blob blob; char *path; int id; id = find_property(sna, sna_output, "PATH"); DBG(("%s: found? PATH=%d\n", __FUNCTION__, id)); if (id == -1) return 0; VG_CLEAR(blob); blob.blob_id = sna_output->prop_values[id]; blob.length = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) return 0; do { id = blob.length; path = alloca(id + 1); blob.data = (uintptr_t)path; VG(memset(path, 0, id)); DBG(("%s: reading %d bytes for path blob\n", __FUNCTION__, id)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) return 0; } while (id != blob.length); path[blob.length] = '\0'; /* paranoia */ DBG(("%s: PATH='%s'\n", __FUNCTION__, path)); /* we only handle MST paths for now */ if (strncmp(path, "mst:", 4) == 0) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); char tmp[5], *c; int n; c = strchr(path + 4, '-'); if (c == NULL) return 0; id = c - (path + 4); if (id + 1> 5) return 0; memcpy(tmp, path + 4, id); tmp[id] = '\0'; id = strtoul(tmp, NULL, 0); for (n = 0; n < sna->mode.num_real_output; n++) { if (to_sna_output(config->output[n])->id == id) return snprintf(name, 32, "%s-%s", config->output[n]->name, c + 1); } } return 0; } static char *fake_edid_name(xf86OutputPtr output) { struct sna *sna = to_sna(output->scrn); const char *str, *colon; #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,7,99,901,0) str = xf86GetOptValString(sna->Options, OPTION_EDID); #else str = NULL; #endif if (str == NULL) return NULL; do { colon = strchr(str, ':'); if (colon == NULL) return NULL; if (strncmp(str, output->name, colon-str) == 0 && output->name[colon-str] == '\0') { char *path; int len; str = colon + 1; colon = strchr(str, ','); if (colon) len = colon - str; else len = strlen(str); path = malloc(len + 1); if (path == NULL) return NULL; memcpy(path, str, len); path[len] = '\0'; return path; } str = strchr(colon + 1, ','); if (str == NULL) return NULL; str++; } while (1); } static void sna_output_load_fake_edid(xf86OutputPtr output) { struct sna_output *sna_output = output->driver_private; const char *filename; FILE *file; void *raw; int size; xf86MonPtr mon; filename = fake_edid_name(output); if (filename == NULL) return; file = fopen(filename, "rb"); if (file == NULL) goto err; fseek(file, 0, SEEK_END); size = ftell(file); if (size % 128) { fclose(file); goto err; } raw = malloc(size); if (raw == NULL) { fclose(file); free(raw); goto err; } fseek(file, 0, SEEK_SET); if (fread(raw, size, 1, file) != 1) { fclose(file); free(raw); goto err; } fclose(file); mon = xf86InterpretEDID(output->scrn->scrnIndex, raw); if (mon == NULL) { free(raw); goto err; } if (mon && size > 128) mon->flags |= MONITOR_EDID_COMPLETE_RAWDATA; sna_output->fake_edid_mon = mon; sna_output->fake_edid_raw = raw; xf86DrvMsg(output->scrn->scrnIndex, X_CONFIG, "Loading EDID from \"%s\" for output %s\n", filename, output->name); return; err: xf86DrvMsg(output->scrn->scrnIndex, X_ERROR, "Could not read EDID file \"%s\" for output %s\n", filename, output->name); } static int sna_output_add(struct sna *sna, unsigned id, unsigned serial) { ScrnInfoPtr scrn = sna->scrn; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); union compat_mode_get_connector compat_conn; struct drm_mode_get_encoder enc; struct drm_mode_modeinfo dummy; struct sna_output *sna_output; xf86OutputPtr *outputs, output; unsigned possible_encoders, attached_encoders, possible_crtcs; const char *output_name; char name[32]; int path, len, i; DBG(("%s(%d): serial=%d\n", __FUNCTION__, id, serial)); COMPILE_TIME_ASSERT(sizeof(struct drm_mode_get_connector) <= sizeof(compat_conn.pad)); VG_CLEAR(compat_conn); memset(&enc, 0, sizeof(enc)); compat_conn.conn.connector_id = id; compat_conn.conn.count_props = 0; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = 1; compat_conn.conn.encoders_ptr = (uintptr_t)&enc.encoder_id; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: GETCONNECTOR[%d] failed, ret=%d\n", __FUNCTION__, id, errno)); return -1; } assert(compat_conn.conn.connector_id == id); DBG(("%s(%d): has %d associated encoders\n", __FUNCTION__, id, compat_conn.conn.count_encoders)); if (compat_conn.conn.connector_type < ARRAY_SIZE(output_names)) output_name = output_names[compat_conn.conn.connector_type]; else output_name = "UNKNOWN"; len = snprintf(name, 32, "%s%d", output_name, compat_conn.conn.connector_type_id); if (output_ignored(scrn, name)) return 0; if (enc.encoder_id) { if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc)) { DBG(("%s: GETENCODER[%d] failed, ret=%d\n", __FUNCTION__, enc.encoder_id, errno)); return 0; } possible_encoders = enc.possible_clones; attached_encoders = 0; for (i = 0; i < sna->mode.num_real_encoder; i++) { if (enc.encoder_id == sna->mode.encoders[i]) { attached_encoders = 1 << i; break; } } if (attached_encoders == 0) { DBG(("%s: failed to find attached encoder\n", __FUNCTION__)); return 0; } possible_crtcs = enc.possible_crtcs; assert(enc.encoder_id == compat_conn.conn.encoder_id || compat_conn.conn.encoder_id == 0); } else { DBG(("%s: unexpected number [%d] of encoders attached\n", __FUNCTION__, compat_conn.conn.count_encoders)); if (!gather_encoders(sna, id, compat_conn.conn.count_encoders, &enc)) { DBG(("%s: gather encoders failed\n", __FUNCTION__)); return 0; } possible_encoders = enc.possible_clones; attached_encoders = enc.crtc_id; possible_crtcs = enc.possible_crtcs; memset(&enc, 0, sizeof(enc)); enc.encoder_id = compat_conn.conn.encoder_id; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETENCODER, &enc); } if (is_zaphod(scrn)) { unsigned zaphod_crtcs; if (!sna_zaphod_match(sna, name)) { DBG(("%s: zaphod mismatch, want %s, have %s\n", __FUNCTION__, xf86GetOptValString(sna->Options, OPTION_ZAPHOD) ?: "???", name)); return 0; } zaphod_crtcs = get_zaphod_crtcs(sna); possible_crtcs &= zaphod_crtcs; if (possible_crtcs == 0) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "%s is an invalid output for screen %d\n", name, scrn->confScreen->device->screen); return -1; } possible_crtcs >>= ffs(zaphod_crtcs) - 1; } sna_output = calloc(sizeof(struct sna_output), 1); if (!sna_output) return -1; sna_output->connector_type = compat_conn.conn.connector_type; sna_output->connector_type_id = compat_conn.conn.connector_type_id; sna_output->num_props = compat_conn.conn.count_props; sna_output->prop_ids = malloc(sizeof(uint32_t)*compat_conn.conn.count_props); sna_output->prop_values = malloc(sizeof(uint64_t)*compat_conn.conn.count_props); if (sna_output->prop_ids == NULL || sna_output->prop_values == NULL) { free(sna_output->prop_ids); free(sna_output->prop_values); free(sna_output); return -1; } compat_conn.conn.count_encoders = 0; compat_conn.conn.count_modes = 1; compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_props = sna_output->num_props; compat_conn.conn.props_ptr = (uintptr_t)sna_output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)sna_output->prop_values; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn)) { DBG(("%s: second! GETCONNECTOR failed, ret=%d\n", __FUNCTION__, errno)); goto cleanup; } assert(compat_conn.conn.connector_id == id); /* statically constructed property list */ assert(sna_output->num_props == compat_conn.conn.count_props); VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->prop_ids, sizeof(uint32_t)*sna_output->num_props)); VG(VALGRIND_MAKE_MEM_DEFINED(sna_output->prop_values, sizeof(uint64_t)*sna_output->num_props)); /* Construct name from topology, and recheck if output is acceptable */ path = name_from_path(sna, sna_output, name); if (path) { if (output_ignored(scrn, name)) { len = 0; goto skip; } if (is_zaphod(scrn) && !sna_zaphod_match(sna, name)) { DBG(("%s: zaphod mismatch, want %s, have %s\n", __FUNCTION__, xf86GetOptValString(sna->Options, OPTION_ZAPHOD) ?: "???", name)); len = 0; goto skip; } len = path; } /* Check if we are dynamically reattaching an old connector */ if (serial) { for (i = 0; i < sna->mode.num_real_output; i++) { output = config->output[i]; if (strcmp(output->name, name) == 0) { assert(output->scrn == scrn); assert(output->funcs == &sna_output_funcs); assert(to_sna_output(output)->id == 0); sna_output_destroy(output); goto reset; } } } output = calloc(1, sizeof(*output) + len + 1); if (!output) goto cleanup; outputs = realloc(config->output, (config->num_output + 1) * sizeof(output)); if (outputs == NULL) { free(output); goto cleanup; } output->scrn = scrn; output->funcs = &sna_output_funcs; output->name = (char *)(output + 1); memcpy(output->name, name, len + 1); output->use_screen_monitor = config->num_output != 0; xf86OutputUseScreenMonitor(output, !output->use_screen_monitor); assert(output->options); DBG(("%s: inserting output #%d of %d\n", __FUNCTION__, sna->mode.num_real_output, config->num_output)); for (i = config->num_output; i > sna->mode.num_real_output; i--) { outputs[i] = outputs[i-1]; assert(outputs[i]->driver_private == NULL); outputs[i]->possible_clones <<= 1; } if (xf86ReturnOptValBool(output->options, OPTION_PRIMARY, FALSE)) { memmove(outputs + 1, outputs, sizeof(output)*config->num_output); outputs[0] = output; } else outputs[i] = output; sna->mode.num_real_output++; config->num_output++; config->output = outputs; reset: sna_output->id = compat_conn.conn.connector_id; sna_output->is_panel = is_panel(compat_conn.conn.connector_type); sna_output->edid_idx = find_property(sna, sna_output, "EDID"); if (find_property(sna, sna_output, "scaling mode") != -1) sna_output->add_default_modes = xf86ReturnOptValBool(output->options, OPTION_DEFAULT_MODES, TRUE); i = find_property(sna, sna_output, "DPMS"); if (i != -1) { sna_output->dpms_id = sna_output->prop_ids[i]; sna_output->dpms_mode = sna_output->prop_values[i]; DBG(("%s: found 'DPMS' (idx=%d, id=%d), initial value=%d\n", __FUNCTION__, i, sna_output->dpms_id, sna_output->dpms_mode)); } else sna_output->dpms_mode = DPMSModeOff; sna_output->possible_encoders = possible_encoders; sna_output->attached_encoders = attached_encoders; output->mm_width = compat_conn.conn.mm_width; output->mm_height = compat_conn.conn.mm_height; if (compat_conn.conn.subpixel >= ARRAY_SIZE(subpixel_conv_table)) compat_conn.conn.subpixel = 0; output->subpixel_order = subpixel_conv_table[compat_conn.conn.subpixel]; output->driver_private = sna_output; sna_output->base = output; backlight_init(&sna_output->backlight); sna_output_backlight_init(output); output->possible_crtcs = possible_crtcs & count_to_mask(sna->mode.num_real_crtc); output->interlaceAllowed = TRUE; sna_output_load_fake_edid(output); if (serial) { if (output->randr_output == NULL) { output->randr_output = RROutputCreate(xf86ScrnToScreen(scrn), name, len, output); if (output->randr_output == NULL) goto cleanup; } RROutputChanged(output->randr_output, TRUE); sna_output_create_resources(output); RRPostPendingProperties(output->randr_output); sna_output->serial = serial; } else { /* stash the active CRTC id for our probe function */ if (compat_conn.conn.connection != DRM_MODE_DISCONNECTED) output->crtc = (void *)(uintptr_t)enc.crtc_id; } DBG(("%s: created output '%s' %d, encoder=%d (possible crtc:%x, attached encoders:%x, possible clones:%x), serial=%d, edid=%d, dpms=%d, crtc=%lu\n", __FUNCTION__, name, id, enc.encoder_id, (uint32_t)output->possible_crtcs, sna_output->attached_encoders, sna_output->possible_encoders, serial, sna_output->edid_idx, sna_output->dpms_id, (unsigned long)(uintptr_t)output->crtc)); assert(sna_output->id == id); xf86DrvMsg(scrn->scrnIndex, X_INFO, "Enabled output %s\n", output->name); return 1; cleanup: len = -1; skip: free(sna_output->prop_ids); free(sna_output->prop_values); free(sna_output); return len; } static int output_rank(const void *A, const void *B) { const xf86OutputPtr *a = A; const xf86OutputPtr *b = B; struct sna_output *sa = to_sna_output(*a); struct sna_output *sb = to_sna_output(*b); if (sa->is_panel != sb->is_panel) return sb->is_panel - sa->is_panel; return strcmp((*a)->name, (*b)->name); } static void sort_config_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); qsort(config->output, sna->mode.num_real_output, sizeof(*config->output), output_rank); config->compat_output = 0; /* make sure it is a sane value */ sna_mode_compute_possible_outputs(sna); } static void sort_randr_outputs(struct sna *sna, ScreenPtr screen) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); rrScrPriv(screen); int i; assert(pScrPriv->numOutputs == config->num_output); for (i = 0; i < config->num_output; i++) { assert(config->output[i]->randr_output); pScrPriv->outputs[i] = config->output[i]->randr_output; } } static bool disable_unused_crtc(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool update = false; int o, c; DBG(("%s\n", __FUNCTION__)); for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; if (!crtc->enabled) continue; for (o = 0; o < sna->mode.num_real_output; o++) { xf86OutputPtr output = config->output[o]; if (output->crtc == crtc) break; } if (o == sna->mode.num_real_output) { DBG(("%s: CRTC:%d was enabled with no outputs\n", __FUNCTION__, sna_crtc_id(crtc))); crtc->enabled = false; update = true; } } if (update) { DBG(("%s: disabling unused functions\n", __FUNCTION__)); xf86DisableUnusedFunctions(sna->scrn); } return update; } bool sna_mode_find_hotplug_connector(struct sna *sna, unsigned id) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < sna->mode.num_real_output; i++) { struct sna_output *output = to_sna_output(config->output[i]); if (output->id == id) { output->reprobe = true; return true; } } return false; } static bool output_check_status(struct sna *sna, struct sna_output *output) { union compat_mode_get_connector compat_conn; struct drm_mode_modeinfo dummy; struct drm_mode_get_blob blob; xf86OutputStatus status; char *edid; if (output->reprobe) return false; VG_CLEAR(compat_conn); compat_conn.conn.connection = -1; compat_conn.conn.connector_id = output->id; compat_conn.conn.count_modes = 1; /* skip detect */ compat_conn.conn.modes_ptr = (uintptr_t)&dummy; compat_conn.conn.count_encoders = 0; compat_conn.conn.props_ptr = (uintptr_t)output->prop_ids; compat_conn.conn.prop_values_ptr = (uintptr_t)output->prop_values; compat_conn.conn.count_props = output->num_props; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCONNECTOR, &compat_conn.conn) == 0) output->update_properties = false; switch (compat_conn.conn.connection) { case DRM_MODE_CONNECTED: status = XF86OutputStatusConnected; break; case DRM_MODE_DISCONNECTED: status = XF86OutputStatusDisconnected; break; default: case DRM_MODE_UNKNOWNCONNECTION: status = XF86OutputStatusUnknown; break; } if (output->status != status) return false; if (status != XF86OutputStatusConnected) return true; if (output->num_modes != compat_conn.conn.count_modes) return false; if (output->edid_len == 0) return false; edid = alloca(output->edid_len); VG_CLEAR(blob); blob.blob_id = output->prop_values[output->edid_idx]; blob.length = output->edid_len; blob.data = (uintptr_t)edid; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETPROPBLOB, &blob)) return false; if (blob.length != output->edid_len) return false; return memcmp(edid, output->edid_raw, output->edid_len) == 0; } void sna_mode_discover(struct sna *sna, bool tell) { ScreenPtr screen = xf86ScrnToScreen(sna->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_card_res res; uint32_t connectors[32], now; unsigned changed = 0; unsigned serial; int i, j; DBG(("%s()\n", __FUNCTION__)); sna->flags &= ~SNA_REPROBE; VG_CLEAR(connectors); memset(&res, 0, sizeof(res)); res.count_connectors = 32; res.connector_id_ptr = (uintptr_t)connectors; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETRESOURCES, &res)) return; DBG(("%s: now %d (was %d) connectors, %d encoders, %d crtc\n", __FUNCTION__, res.count_connectors, sna->mode.num_real_output, res.count_encoders, res.count_crtcs)); if (res.count_connectors > 32) res.count_connectors = 32; assert(sna->mode.num_real_crtc == res.count_crtcs || is_zaphod(sna->scrn)); assert(sna->mode.max_crtc_width == res.max_width); assert(sna->mode.max_crtc_height == res.max_height); assert(sna->mode.num_real_encoder == res.count_encoders); serial = ++sna->mode.serial; if (serial == 0) serial = ++sna->mode.serial; now = GetTimeInMillis(); for (i = 0; i < res.count_connectors; i++) { DBG(("%s: connector[%d] = %d\n", __FUNCTION__, i, connectors[i])); for (j = 0; j < sna->mode.num_real_output; j++) { xf86OutputPtr output = config->output[j]; if (to_sna_output(output)->id == connectors[i]) { DBG(("%s: found %s (id=%d)\n", __FUNCTION__, output->name, connectors[i])); assert(to_sna_output(output)->id); to_sna_output(output)->serial = serial; break; } } if (j == sna->mode.num_real_output) { DBG(("%s: adding id=%d\n", __FUNCTION__, connectors[i])); changed |= sna_output_add(sna, connectors[i], serial) > 0; } } for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); if (sna_output->id == 0) continue; if (sna_output->serial == serial) { if (output_check_status(sna, sna_output)) { DBG(("%s: output %s (id=%d), retained state\n", __FUNCTION__, output->name, sna_output->id)); sna_output->last_detect = now; } else { DBG(("%s: output %s (id=%d), changed state, reprobing\n", __FUNCTION__, output->name, sna_output->id)); sna_output->hotplug_count++; sna_output->last_detect = 0; changed |= 4; } continue; } DBG(("%s: removing output %s (id=%d), serial=%u [now %u]\n", __FUNCTION__, output->name, sna_output->id, sna_output->serial, serial)); xf86DrvMsg(sna->scrn->scrnIndex, X_INFO, "Disabled output %s\n", output->name); sna_output->id = 0; sna_output->last_detect = 0; output->crtc = NULL; RROutputChanged(output->randr_output, TRUE); changed |= 2; } /* Have the list of available outputs been updated? */ if (changed & 3) { DBG(("%s: outputs changed, broadcasting\n", __FUNCTION__)); sna_mode_set_primary(sna); /* Reorder user visible listing */ sort_config_outputs(sna); sort_randr_outputs(sna, screen); if (changed & 2) disable_unused_crtc(sna); xf86RandR12TellChanged(screen); } /* If anything has changed, refresh the RandR information. * Note this could recurse once from udevless RRGetInfo() probes, * but only once. */ if (changed && tell) RRGetInfo(screen, TRUE); } /* Since we only probe the current mode on startup, we may not have the full * list of modes available until the user explicitly requests them. Fake a * hotplug event after a second after starting to fill in any missing modes. */ static CARD32 sna_mode_coldplug(OsTimerPtr timer, CARD32 now, void *data) { struct sna *sna = data; ScreenPtr screen = xf86ScrnToScreen(sna->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool reprobe = false; int i; DBG(("%s()\n", __FUNCTION__)); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); if (sna_output->id == 0) continue; if (sna_output->last_detect) continue; if (output->status == XF86OutputStatusDisconnected) continue; DBG(("%s: output %s connected, needs reprobe\n", __FUNCTION__, output->name)); reprobe = true; } if (reprobe) { RRGetInfo(screen, TRUE); RRTellChanged(screen); } free(timer); return 0; } static void copy_front(struct sna *sna, PixmapPtr old, PixmapPtr new) { struct sna_pixmap *old_priv, *new_priv; DBG(("%s\n", __FUNCTION__)); if (wedged(sna) || isGPU(sna->scrn)) return; old_priv = sna_pixmap_force_to_gpu(old, MOVE_READ); if (!old_priv) return; new_priv = sna_pixmap_force_to_gpu(new, MOVE_WRITE | __MOVE_SCANOUT); if (!new_priv) return; if (old_priv->clear) { bool ok = false; if (!wedged(sna)) ok = sna->render.fill_one(sna, new, new_priv->gpu_bo, old_priv->clear_color, 0, 0, new->drawable.width, new->drawable.height, GXcopy); if (!ok) { void *ptr = kgem_bo_map__gtt(&sna->kgem, new_priv->gpu_bo); if (ptr) memset(ptr, 0, new_priv->gpu_bo->pitch*new->drawable.height); } new_priv->clear = true; new_priv->clear_color = old_priv->clear_color; } else { BoxRec box; int16_t sx, sy, dx, dy; if (new->drawable.width >= old->drawable.width && new->drawable.height >= old->drawable.height) { int nx = (new->drawable.width + old->drawable.width - 1) / old->drawable.width; int ny = (new->drawable.height + old->drawable.height - 1) / old->drawable.height; box.x1 = box.y1 = 0; dy = 0; for (sy = 0; sy < ny; sy++) { box.y2 = old->drawable.height; if (box.y2 + dy > new->drawable.height) box.y2 = new->drawable.height - dy; dx = 0; for (sx = 0; sx < nx; sx++) { box.x2 = old->drawable.width; if (box.x2 + dx > new->drawable.width) box.x2 = new->drawable.width - dx; (void)sna->render.copy_boxes(sna, GXcopy, &old->drawable, old_priv->gpu_bo, 0, 0, &new->drawable, new_priv->gpu_bo, dx, dy, &box, 1, 0); dx += old->drawable.width; } dy += old->drawable.height; } } else { box.x1 = box.y1 = 0; box.x2 = min(old->drawable.width, new->drawable.width); box.y2 = min(old->drawable.height, new->drawable.height); sx = dx = 0; if (box.x2 < old->drawable.width) sx = (old->drawable.width - box.x2) / 2; if (box.x2 < new->drawable.width) dx = (new->drawable.width - box.x2) / 2; sy = dy = 0; if (box.y2 < old->drawable.height) sy = (old->drawable.height - box.y2) / 2; if (box.y2 < new->drawable.height) dy = (new->drawable.height - box.y2) / 2; DBG(("%s: copying box (%dx%d) from (%d, %d) to (%d, %d)\n", __FUNCTION__, box.x2, box.y2, sx, sy, dx, dy)); if (box.x2 != new->drawable.width || box.y2 != new->drawable.height) { bool ok = false; if (!wedged(sna)) ok = sna->render.fill_one(sna, new, new_priv->gpu_bo, 0, 0, 0, new->drawable.width, new->drawable.height, GXclear); if (!ok) { void *ptr = kgem_bo_map__gtt(&sna->kgem, new_priv->gpu_bo); if (ptr) memset(ptr, 0, new_priv->gpu_bo->pitch*new->drawable.height); } } (void)sna->render.copy_boxes(sna, GXcopy, &old->drawable, old_priv->gpu_bo, sx, sy, &new->drawable, new_priv->gpu_bo, dx, dy, &box, 1, 0); } } sna_damage_all(&new_priv->gpu_damage, new); } static Bool sna_mode_resize(ScrnInfoPtr scrn, int width, int height) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); ScreenPtr screen = xf86ScrnToScreen(scrn); PixmapPtr new_front; int i; DBG(("%s (%d, %d) -> (%d, %d)\n", __FUNCTION__, scrn->virtualX, scrn->virtualY, width, height)); assert((sna->flags & SNA_IS_HOSTED) == 0); if (scrn->virtualX == width && scrn->virtualY == height) return TRUE; /* Paranoid defense against rogue internal calls by Xorg */ if (width == 0 || height == 0) return FALSE; assert(sna->front); assert(screen->GetScreenPixmap(screen) == sna->front); DBG(("%s: creating new framebuffer %dx%d\n", __FUNCTION__, width, height)); new_front = screen->CreatePixmap(screen, width, height, scrn->depth, SNA_CREATE_FB); if (!new_front) return FALSE; xf86DrvMsg(scrn->scrnIndex, X_INFO, "resizing framebuffer to %dx%d\n", width, height); for (i = 0; i < sna->mode.num_real_crtc; i++) sna_crtc_disable_shadow(sna, to_sna_crtc(config->crtc[i])); assert(sna->mode.shadow_active == 0); assert(!sna->mode.shadow_enabled); assert(sna->mode.shadow_damage == NULL); assert(sna->mode.shadow == NULL); /* Cancel a pending [un]flip (as the pixmaps no longer match) */ sna_present_cancel_flip(sna); copy_front(sna, sna->front, new_front); screen->SetScreenPixmap(new_front); assert(screen->GetScreenPixmap(screen) == new_front); assert(sna->front == new_front); screen->DestroyPixmap(new_front); /* owned by screen now */ scrn->virtualX = width; scrn->virtualY = height; scrn->displayWidth = width; /* Flush pending shadow updates */ if (sna->mode.flip_active) { DBG(("%s: waiting for %d outstanding TearFree flips\n", __FUNCTION__, sna->mode.flip_active)); while (sna->mode.flip_active && sna_mode_wait_for_event(sna)) sna_mode_wakeup(sna); } /* Only update the CRTCs if we are in control */ if (!scrn->vtSema) return TRUE; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; assert(to_sna_crtc(crtc) != NULL); if (to_sna_crtc(crtc)->bo == NULL) continue; if (!__sna_crtc_set_mode(crtc)) sna_crtc_disable(crtc, false); } sna_mode_wakeup(sna); kgem_clean_scanout_cache(&sna->kgem); return TRUE; } /* cursor handling */ static void rotate_coord(Rotation rotation, int size, int x_dst, int y_dst, int *x_src, int *y_src) { int t; switch (rotation & 0xf) { case RR_Rotate_0: break; case RR_Rotate_90: t = x_dst; x_dst = size - y_dst - 1; y_dst = t; break; case RR_Rotate_180: x_dst = size - x_dst - 1; y_dst = size - y_dst - 1; break; case RR_Rotate_270: t = x_dst; x_dst = y_dst; y_dst = size - t - 1; break; } if (rotation & RR_Reflect_X) x_dst = size - x_dst - 1; if (rotation & RR_Reflect_Y) y_dst = size - y_dst - 1; *x_src = x_dst; *y_src = y_dst; } static struct sna_cursor *__sna_create_cursor(struct sna *sna, int size) { struct sna_cursor *c; for (c = sna->cursor.cursors; c; c = c->next) { if (c->ref == 0 && c->alloc >= size) { __DBG(("%s: stealing handle=%d, serial=%d, rotation=%d, alloc=%d\n", __FUNCTION__, c->handle, c->serial, c->rotation, c->alloc)); return c; } } __DBG(("%s(size=%d, num_stash=%d)\n", __FUNCTION__, size, sna->cursor.num_stash)); c = sna->cursor.stash; assert(c); c->alloc = ALIGN(size, 4096); c->handle = gem_create(sna->kgem.fd, c->alloc); if (c->handle == 0) return NULL; /* Old hardware uses physical addresses, which the kernel * implements in an incoherent fashion requiring a pwrite. */ if (sna->cursor.use_gtt) { c->image = gem_mmap(sna->kgem.fd, c->handle, c->alloc); if (c->image == NULL) { gem_close(sna->kgem.fd, c->handle); return NULL; } } else c->image = NULL; __DBG(("%s: handle=%d, allocated %d\n", __FUNCTION__, c->handle, size)); c->ref = 0; c->serial = 0; c->rotation = 0; c->last_width = c->last_height = 0; /* all clear */ c->size = size; sna->cursor.num_stash--; sna->cursor.stash = c->next; c->next = sna->cursor.cursors; sna->cursor.cursors = c; return c; } static uint32_t *get_cursor_argb(CursorPtr c) { #ifdef ARGB_CURSOR return (uint32_t *)c->bits->argb; #else return NULL; #endif } static int __cursor_size(int width, int height) { int i, size; i = MAX(width, height); for (size = 64; size < i; size <<= 1) ; return size; } static struct sna_cursor *__sna_get_cursor(struct sna *sna, xf86CrtcPtr crtc) { struct sna_cursor *cursor; const uint8_t *source, *mask; const uint32_t *argb; uint32_t *image; int width, height, pitch, size, x, y; bool transformed; Rotation rotation; assert(sna->cursor.ref); cursor = to_sna_crtc(crtc)->cursor; __DBG(("%s: current cursor handle=%d, serial=%d [expected %d]\n", __FUNCTION__, cursor ? cursor->handle : 0, cursor ? cursor->serial : 0, sna->cursor.serial)); if (cursor && cursor->serial == sna->cursor.serial) { assert(cursor->size == sna->cursor.size || cursor->transformed); assert(cursor->rotation == (!to_sna_crtc(crtc)->cursor_transform && crtc->transform_in_use) ? crtc->rotation : RR_Rotate_0); assert(cursor->ref); return cursor; } __DBG(("%s: cursor=%dx%d, pitch=%d, serial=%d, argb?=%d\n", __FUNCTION__, sna->cursor.ref->bits->width, sna->cursor.ref->bits->height, get_cursor_argb(sna->cursor.ref) ? 4*sna->cursor.ref->bits->width : BitmapBytePad(sna->cursor.ref->bits->width), sna->cursor.serial, get_cursor_argb(sna->cursor.ref) != NULL)); transformed = to_sna_crtc(crtc)->cursor_transform; rotation = (!transformed && crtc->transform_in_use) ? crtc->rotation : RR_Rotate_0; /* Don't allow phys cursor sharing */ if (sna->cursor.use_gtt && !transformed) { for (cursor = sna->cursor.cursors; cursor; cursor = cursor->next) { if (cursor->serial == sna->cursor.serial && cursor->rotation == rotation && !cursor->transformed) { __DBG(("%s: reusing handle=%d, serial=%d, rotation=%d, size=%d\n", __FUNCTION__, cursor->handle, cursor->serial, cursor->rotation, cursor->size)); assert(cursor->size == sna->cursor.size); return cursor; } } } if (transformed) { struct pixman_box16 box; box.x1 = box.y1 = 0; box.x2 = sna->cursor.ref->bits->width; box.y2 = sna->cursor.ref->bits->height; pixman_f_transform_bounds(&crtc->f_crtc_to_framebuffer, &box); size = __cursor_size(box.x2 - box.x1, box.y2 - box.y1); __DBG(("%s: transformed cursor %dx%d -> %dx%d\n", __FUNCTION__ , sna->cursor.ref->bits->width, sna->cursor.ref->bits->height, box.x2 - box.x1, box.y2 - box.y1)); } else size = sna->cursor.size; if (crtc->transform_in_use) { RRTransformPtr T = NULL; struct pixman_vector v; if (crtc->transformPresent) { T = &crtc->transform; /* Cancel any translation from this affine * transformation. We just want to rotate and scale * the cursor image. */ v.vector[0] = 0; v.vector[1] = 0; v.vector[2] = pixman_fixed_1; pixman_transform_point(&crtc->transform.transform, &v); } RRTransformCompute(0, 0, size, size, crtc->rotation, T, NULL, &to_sna_crtc(crtc)->cursor_to_fb, &to_sna_crtc(crtc)->fb_to_cursor); if (T) pixman_f_transform_translate( &to_sna_crtc(crtc)->cursor_to_fb, &to_sna_crtc(crtc)->fb_to_cursor, -pixman_fixed_to_double(v.vector[0]), -pixman_fixed_to_double(v.vector[1])); __DBG(("%s: cursor_to_fb [%f %f %f, %f %f %f, %f %f %f]\n", __FUNCTION__, to_sna_crtc(crtc)->cursor_to_fb.m[0][0], to_sna_crtc(crtc)->cursor_to_fb.m[0][1], to_sna_crtc(crtc)->cursor_to_fb.m[0][2], to_sna_crtc(crtc)->cursor_to_fb.m[1][0], to_sna_crtc(crtc)->cursor_to_fb.m[1][1], to_sna_crtc(crtc)->cursor_to_fb.m[1][2], to_sna_crtc(crtc)->cursor_to_fb.m[2][0], to_sna_crtc(crtc)->cursor_to_fb.m[2][1], to_sna_crtc(crtc)->cursor_to_fb.m[2][2])); } cursor = to_sna_crtc(crtc)->cursor; if (cursor && cursor->alloc < 4*size*size) cursor = NULL; if (cursor == NULL) { cursor = __sna_create_cursor(sna, 4*size*size); if (cursor == NULL) { DBG(("%s: failed to allocate cursor\n", __FUNCTION__)); return NULL; } } width = sna->cursor.ref->bits->width; height = sna->cursor.ref->bits->height; source = sna->cursor.ref->bits->source; mask = sna->cursor.ref->bits->mask; argb = get_cursor_argb(sna->cursor.ref); pitch = BitmapBytePad(width); image = cursor->image; if (image == NULL || transformed) { image = sna->cursor.scratch; cursor->last_width = cursor->last_height = size; } if (size > cursor->size || width < cursor->last_width || height < cursor->last_height || rotation != cursor->rotation) memset(image, 0, 4*size*size); if (rotation == RR_Rotate_0) { if (argb == NULL) { for (y = 0; y < height; y++) { uint32_t *p = image + y*size; for (x = 0; x < width; x++) { int byte = x / 8; uint8_t bit = 1 << (x & 7); uint32_t pixel; if (mask[byte] & bit) { if (source[byte] & bit) pixel = sna->cursor.fg; else pixel = sna->cursor.bg; } else pixel = 0; *p++ = pixel; } mask += pitch; source += pitch; } if (transformed) { __DBG(("%s: Applying affine BLT to bitmap\n", __FUNCTION__)); affine_blt(image, cursor->image, 32, 0, 0, width, height, size * 4, 0, 0, size, size, size * 4, &to_sna_crtc(crtc)->cursor_to_fb); image = cursor->image; } } else if (transformed) { __DBG(("%s: Applying affine BLT to ARGB\n", __FUNCTION__)); affine_blt(argb, cursor->image, 32, 0, 0, width, height, width * 4, 0, 0, size, size, size * 4, &to_sna_crtc(crtc)->cursor_to_fb); image = cursor->image; } else memcpy_blt(argb, image, 32, width * 4, size * 4, 0, 0, 0, 0, width, height); } else { for (y = 0; y < size; y++) for (x = 0; x < size; x++) { uint32_t pixel; int xin, yin; rotate_coord(rotation, size, x, y, &xin, &yin); if (xin < width && yin < height) if (argb == NULL) { int byte = xin / 8; int bit = xin & 7; if (mask[yin*pitch + byte] & (1 << bit)) { if (source[yin*pitch + byte] & (1 << bit)) pixel = sna->cursor.fg; else pixel = sna->cursor.bg; } else pixel = 0; } else pixel = argb[yin * width + xin]; else pixel = 0; image[y * size + x] = pixel; } } if (image != cursor->image) { struct drm_i915_gem_pwrite pwrite; VG_CLEAR(pwrite); pwrite.handle = cursor->handle; pwrite.offset = 0; pwrite.size = 4*size*size; pwrite.data_ptr = (uintptr_t)image; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite)) __DBG(("%s: cursor update (pwrite) failed: %d\n", __FUNCTION__, errno)); } cursor->size = size; cursor->rotation = rotation; cursor->transformed = transformed; cursor->serial = sna->cursor.serial; if (transformed) { /* mark the transformed rectangle as dirty, not input */ cursor->last_width = size; cursor->last_height = size; } else { cursor->last_width = width; cursor->last_height = height; } return cursor; } static unsigned char * sna_realize_cursor(xf86CursorInfoPtr info, CursorPtr cursor) { return NULL; } static void enable_fb_access(ScrnInfoPtr scrn, int state) { scrn->EnableDisableFBAccess( #ifdef XF86_HAS_SCRN_CONV scrn, #else scrn->scrnIndex, #endif state); } static void __restore_swcursor(ScrnInfoPtr scrn) { DBG(("%s: attempting to restore SW cursor\n", __FUNCTION__)); enable_fb_access(scrn, FALSE); enable_fb_access(scrn, TRUE); RemoveBlockAndWakeupHandlers((void *)__restore_swcursor, (void *)NoopDDA, scrn); } static void restore_swcursor(struct sna *sna) { sna->cursor.info->HideCursor(sna->scrn); /* XXX Force the cursor to be restored (avoiding recursion) */ FreeCursor(sna->cursor.ref, None); sna->cursor.ref = NULL; RegisterBlockAndWakeupHandlers((void *)__restore_swcursor, (void *)NoopDDA, sna->scrn); } static void sna_show_cursors(ScrnInfoPtr scrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); struct kmsg kmsg; int sigio, c; DBG(("%s: cursor?=%d\n", __FUNCTION__, sna->cursor.ref != NULL)); if (sna->cursor.ref == NULL) return; kmsg_open(&kmsg); sigio = sigio_block(); for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = xf86_config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_cursor arg; struct sna_cursor *cursor; assert(sna_crtc != NULL); if (sna_crtc->bo == NULL) continue; if (!crtc->cursor_in_range) { DBG(("%s: skipping cursor outside CRTC (pipe=%d)\n", __FUNCTION__, sna_crtc_pipe(crtc))); continue; } cursor = __sna_get_cursor(sna, crtc); if (cursor == NULL || (sna_crtc->cursor == cursor && sna_crtc->last_cursor_size == cursor->size)) { DBG(("%s: skipping cursor already show on CRTC (pipe=%d)\n", __FUNCTION__, sna_crtc_pipe(crtc))); continue; } DBG(("%s: CRTC pipe=%d, handle->%d\n", __FUNCTION__, sna_crtc_pipe(crtc), cursor->handle)); VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = __sna_crtc_id(sna_crtc); arg.width = arg.height = cursor->size; arg.handle = cursor->handle; if (!FAIL_CURSOR_IOCTL && drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg) == 0) { if (sna_crtc->cursor) { assert(sna_crtc->cursor->ref > 0); sna_crtc->cursor->ref--; } cursor->ref++; sna_crtc->cursor = cursor; sna_crtc->last_cursor_size = cursor->size; } else { ERR(("%s: failed to show cursor on CRTC:%d [pipe=%d], disabling hwcursor: errno=%d\n", __FUNCTION__, sna_crtc_id(crtc), sna_crtc_pipe(crtc), errno)); sna->cursor.disable = true; } } sigio_unblock(sigio); sna->cursor.active = true; kmsg_close(&kmsg, sna->cursor.disable); if (unlikely(sna->cursor.disable)) restore_swcursor(sna); } static void sna_set_cursor_colors(ScrnInfoPtr scrn, int _bg, int _fg) { struct sna *sna = to_sna(scrn); uint32_t fg = _fg, bg = _bg; __DBG(("%s(bg=%08x, fg=%08x)\n", __FUNCTION__, bg, fg)); /* Save ARGB versions of these colors */ fg |= 0xff000000; bg |= 0xff000000; if (fg == sna->cursor.fg && bg == sna->cursor.bg) return; sna->cursor.fg = fg; sna->cursor.bg = bg; if (sna->cursor.ref == NULL) return; if (get_cursor_argb(sna->cursor.ref)) return; sna->cursor.serial++; __DBG(("%s: serial->%d\n", __FUNCTION__, sna->cursor.serial)); sna_show_cursors(scrn); } static void sna_crtc_disable_cursor(struct sna *sna, struct sna_crtc *crtc) { struct drm_mode_cursor arg; int sigio; if (!crtc->cursor) return; sigio = sigio_block(); if (crtc->cursor) { DBG(("%s: CRTC:%d, handle=%d\n", __FUNCTION__, __sna_crtc_id(crtc), crtc->cursor->handle)); assert(crtc->cursor->ref > 0); crtc->cursor->ref--; crtc->cursor = NULL; crtc->last_cursor_size = 0; VG_CLEAR(arg); arg.flags = DRM_MODE_CURSOR_BO; arg.crtc_id = __sna_crtc_id(crtc); arg.width = arg.height = 0; arg.handle = 0; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg); } sigio_unblock(sigio); } static void sna_disable_cursors(ScrnInfoPtr scrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); int sigio, c; DBG(("%s\n", __FUNCTION__)); sigio = sigio_block(); for (c = 0; c < sna->mode.num_real_crtc; c++) { assert(to_sna_crtc(xf86_config->crtc[c])); sna_crtc_disable_cursor(sna, to_sna_crtc(xf86_config->crtc[c])); } sigio_unblock(sigio); } static void sna_hide_cursors(ScrnInfoPtr scrn) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); struct sna_cursor *cursor, **prev; int sigio, c; DBG(("%s\n", __FUNCTION__)); sna->cursor.active = false; sigio = sigio_block(); for (c = 0; c < sna->mode.num_real_crtc; c++) { assert(to_sna_crtc(xf86_config->crtc[c])); sna_crtc_disable_cursor(sna, to_sna_crtc(xf86_config->crtc[c])); } for (prev = &sna->cursor.cursors; (cursor = *prev) != NULL; ) { assert(cursor->ref == 0); if (cursor->serial == sna->cursor.serial) { prev = &cursor->next; continue; } *prev = cursor->next; if (cursor->image) munmap(cursor->image, cursor->alloc); gem_close(sna->kgem.fd, cursor->handle); cursor->next = sna->cursor.stash; sna->cursor.stash = cursor; sna->cursor.num_stash++; } sigio_unblock(sigio); } static void sna_set_cursor_position(ScrnInfoPtr scrn, int x, int y) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); struct sna *sna = to_sna(scrn); struct kmsg kmsg; int sigio, c; __DBG(("%s(%d, %d), cursor? %d\n", __FUNCTION__, x, y, sna->cursor.ref!=NULL)); if (sna->cursor.ref == NULL) return; kmsg_open(&kmsg); sigio = sigio_block(); sna->cursor.last_x = x; sna->cursor.last_y = y; /* undo what xf86HWCurs did to the coordinates */ x += scrn->frameX0; y += scrn->frameY0; for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = xf86_config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct sna_cursor *cursor = NULL; struct drm_mode_cursor arg; assert(sna_crtc != NULL); VG_CLEAR(arg); arg.flags = 0; arg.crtc_id = __sna_crtc_id(sna_crtc); arg.handle = 0; if (sna_crtc->bo == NULL) goto disable; if (crtc->transform_in_use) { int xhot = sna->cursor.ref->bits->xhot; int yhot = sna->cursor.ref->bits->yhot; struct pict_f_vector v, hot; v.v[0] = x + xhot + .5; v.v[1] = y + yhot + .5; v.v[2] = 1.; pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &v); hot.v[0] = xhot; hot.v[1] = yhot; hot.v[2] = 1.; pixman_f_transform_point(&sna_crtc->fb_to_cursor, &hot); arg.x = floor(v.v[0] - hot.v[0]); arg.y = floor(v.v[1] - hot.v[1]); } else { arg.x = x - crtc->x; arg.y = y - crtc->y; } if (arg.x < crtc->mode.HDisplay && arg.x > -sna->cursor.size && arg.y < crtc->mode.VDisplay && arg.y > -sna->cursor.size) { cursor = __sna_get_cursor(sna, crtc); if (cursor == NULL) cursor = sna_crtc->cursor; if (cursor == NULL) { __DBG(("%s: failed to grab cursor, disabling\n", __FUNCTION__)); goto disable; } if (sna_crtc->cursor != cursor || sna_crtc->last_cursor_size != cursor->size) { arg.flags |= DRM_MODE_CURSOR_BO; arg.handle = cursor->handle; } arg.width = arg.height = cursor->size; arg.flags |= DRM_MODE_CURSOR_MOVE; crtc->cursor_in_range = true; } else { crtc->cursor_in_range = false; disable: if (sna_crtc->cursor) { arg.flags = DRM_MODE_CURSOR_BO; arg.width = arg.height = 0; } cursor = NULL; } __DBG(("%s: CRTC:%d (%d, %d), handle=%d, flags=%x (old cursor handle=%d), move? %d, update handle? %d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), arg.x, arg.y, arg.handle, arg.flags, sna_crtc->cursor ? sna_crtc->cursor->handle : 0, arg.flags & DRM_MODE_CURSOR_MOVE, arg.flags & DRM_MODE_CURSOR_BO)); if (arg.flags == 0) continue; if (!FAIL_CURSOR_IOCTL && drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_CURSOR, &arg) == 0) { if (arg.flags & DRM_MODE_CURSOR_BO) { if (sna_crtc->cursor) { assert(sna_crtc->cursor->ref > 0); sna_crtc->cursor->ref--; } sna_crtc->cursor = cursor; if (cursor) { sna_crtc->last_cursor_size = cursor->size; cursor->ref++; } else sna_crtc->last_cursor_size = 0; } } else { ERR(("%s: failed to update cursor on CRTC:%d [pipe=%d], disabling hwcursor: errno=%d\n", __FUNCTION__, sna_crtc_id(crtc), sna_crtc_pipe(crtc), errno)); /* XXX How to force switch back to SW cursor? * Right now we just want until the next cursor image * change, which is fairly frequent. */ sna->cursor.disable = true; } } sigio_unblock(sigio); kmsg_close(&kmsg, sna->cursor.disable); if (unlikely(sna->cursor.disable)) restore_swcursor(sna); } #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,15,99,902,2) static Bool sna_load_cursor_argb2(ScrnInfoPtr scrn, CursorPtr cursor) { return TRUE; } static Bool sna_load_cursor_image2(ScrnInfoPtr scrn, unsigned char *src) { return TRUE; } #endif static void sna_load_cursor_argb(ScrnInfoPtr scrn, CursorPtr cursor) { } static void sna_load_cursor_image(ScrnInfoPtr scrn, unsigned char *src) { } static bool sna_cursor_preallocate(struct sna *sna) { while (sna->cursor.num_stash < 0) { struct sna_cursor *cursor = malloc(sizeof(*cursor)); if (!cursor) return false; cursor->next = sna->cursor.stash; sna->cursor.stash = cursor; sna->cursor.num_stash++; } return true; } static bool transformable_cursor(struct sna *sna, CursorPtr cursor) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct pixman_box16 box; int size; if (!to_sna_crtc(crtc)->hwcursor) { DBG(("%s: hwcursor disabled on CRTC:%d [pipe=%d]\n", __FUNCTION__, sna_crtc_id(crtc), sna_crtc_pipe(crtc))); return false; } if (!sna->cursor.use_gtt || !sna->cursor.scratch) { DBG(("%s: unable to use GTT curosor access [%d] or no scratch [%d]\n", __FUNCTION__, sna->cursor.use_gtt, sna->cursor.scratch)); return false; } box.x1 = box.y1 = 0; box.x2 = cursor->bits->width; box.y2 = cursor->bits->height; if (!pixman_f_transform_bounds(&crtc->f_crtc_to_framebuffer, &box)) { DBG(("%s: unable to transform bounds\n", __FUNCTION__)); return false; } size = __cursor_size(box.x2 - box.x1, box.y2 - box.y1); if (size > sna->cursor.max_size) { DBG(("%s: transformed cursor size=%d too large, max=%d\n", __FUNCTION__, size, sna->cursor.max_size)); return false; } } return true; } static Bool sna_use_hw_cursor(ScreenPtr screen, CursorPtr cursor) { struct sna *sna = to_sna_from_screen(screen); DBG(("%s (%dx%d)?\n", __FUNCTION__, cursor->bits->width, cursor->bits->height)); if (sna->cursor.disable) return FALSE; /* cursors are invariant */ if (cursor == sna->cursor.ref) return TRUE; if (sna->cursor.ref) { FreeCursor(sna->cursor.ref, None); sna->cursor.ref = NULL; } sna->cursor.size = __cursor_size(cursor->bits->width, cursor->bits->height); if (sna->cursor.size > sna->cursor.max_size) { DBG(("%s: cursor size=%d too large, max %d: using sw cursor\n", __FUNCTION__, sna->cursor.size, sna->cursor.max_size)); return FALSE; } if (sna->mode.rr_active && !transformable_cursor(sna, cursor)) { DBG(("%s: RandR active [%d] and non-transformable cursor: using sw cursor\n", __FUNCTION__, sna->mode.rr_active)); return FALSE; } if (!sna_cursor_preallocate(sna)) { DBG(("%s: cursor preallocation failed: using sw cursor\n", __FUNCTION__)); return FALSE; } sna->cursor.ref = cursor; cursor->refcnt++; sna->cursor.serial++; DBG(("%s(%dx%d): ARGB?=%d, serial->%d, size->%d\n", __FUNCTION__, cursor->bits->width, cursor->bits->height, get_cursor_argb(cursor) != NULL, sna->cursor.serial, sna->cursor.size)); return TRUE; } static void sna_cursor_pre_init(struct sna *sna) { struct local_get_cap { uint64_t name; uint64_t value; } cap; int v; if (sna->mode.num_real_crtc == 0) return; #define LOCAL_IOCTL_GET_CAP DRM_IOWR(0x0c, struct local_get_cap) #ifndef DRM_CAP_CURSOR_WIDTH #define DRM_CAP_CURSOR_WIDTH 0x8 #endif #ifndef DRM_CAP_CURSOR_HEIGHT #define DRM_CAP_CURSOR_HEIGHT 0x9 #endif #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 sna->cursor.max_size = 64; cap.value = 0; cap.name = DRM_CAP_CURSOR_WIDTH; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0) sna->cursor.max_size = cap.value; cap.name = DRM_CAP_CURSOR_HEIGHT; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0 && cap.value < sna->cursor.max_size) sna->cursor.max_size = cap.value; v = -1; /* No param uses the sign bit, reserve it for errors */ if (sna->kgem.gen >= 033) { v = 1; } else { drm_i915_getparam_t gp = { I915_PARAM_HAS_COHERENT_PHYS_GTT, &v, }; (void)drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GETPARAM, &gp); } sna->cursor.use_gtt = v > 0; DBG(("%s: cursor updates use_gtt?=%d\n", __FUNCTION__, sna->cursor.use_gtt)); sna->cursor.scratch = malloc(sna->cursor.max_size * sna->cursor.max_size * 4); if (!sna->cursor.scratch && !sna->cursor.use_gtt) sna->cursor.max_size = 0; sna->cursor.num_stash = -sna->mode.num_real_crtc; xf86DrvMsg(sna->scrn->scrnIndex, X_PROBED, "Using a maximum size of %dx%d for hardware cursors\n", sna->cursor.max_size, sna->cursor.max_size); } static void sna_cursor_close(struct sna *sna) { sna->cursor.serial = 0; sna_hide_cursors(sna->scrn); while (sna->cursor.stash) { struct sna_cursor *cursor = sna->cursor.stash; sna->cursor.stash = cursor->next; free(cursor); } sna->cursor.num_stash = -sna->mode.num_real_crtc; } bool sna_cursors_init(ScreenPtr screen, struct sna *sna) { xf86CursorInfoPtr cursor_info; if (sna->cursor.max_size == 0) return false; cursor_info = xf86CreateCursorInfoRec(); if (cursor_info == NULL) return false; cursor_info->MaxWidth = sna->cursor.max_size; cursor_info->MaxHeight = sna->cursor.max_size; cursor_info->Flags = (HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | HARDWARE_CURSOR_UPDATE_UNHIDDEN | HARDWARE_CURSOR_ARGB); cursor_info->RealizeCursor = sna_realize_cursor; cursor_info->SetCursorColors = sna_set_cursor_colors; cursor_info->SetCursorPosition = sna_set_cursor_position; cursor_info->LoadCursorImage = sna_load_cursor_image; cursor_info->HideCursor = sna_hide_cursors; cursor_info->ShowCursor = sna_show_cursors; cursor_info->UseHWCursor = sna_use_hw_cursor; #ifdef ARGB_CURSOR cursor_info->UseHWCursorARGB = sna_use_hw_cursor; cursor_info->LoadCursorARGB = sna_load_cursor_argb; #endif #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,15,99,902,3) cursor_info->LoadCursorImageCheck = sna_load_cursor_image2; #ifdef ARGB_CURSOR cursor_info->LoadCursorARGBCheck = sna_load_cursor_argb2; #endif #endif if (!xf86InitCursor(screen, cursor_info)) { xf86DestroyCursorInfoRec(cursor_info); return false; } sna->cursor.info = cursor_info; return true; } static void sna_cursors_reload(struct sna *sna) { DBG(("%s: active?=%d\n", __FUNCTION__, sna->cursor.active)); if (sna->cursor.active) sna_set_cursor_position(sna->scrn, sna->cursor.last_x, sna->cursor.last_y); } static void sna_cursors_fini(struct sna *sna) { if (sna->cursor.info) { xf86DestroyCursorInfoRec(sna->cursor.info); sna->cursor.info = NULL; } if (sna->cursor.ref) { FreeCursor(sna->cursor.ref, None); sna->cursor.ref = NULL; } } static bool sna_crtc_flip(struct sna *sna, struct sna_crtc *crtc, struct kgem_bo *bo, int x, int y) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); struct drm_mode_crtc arg; uint32_t output_ids[32]; int output_count = 0; int i; DBG(("%s CRTC:%d [pipe=%d], handle=%d\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), bo->handle)); assert(sna->mode.num_real_output < ARRAY_SIZE(output_ids)); assert(crtc->bo); assert(crtc->kmode.clock); for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (output->crtc != crtc->base) continue; DBG(("%s: attaching output '%s' %d [%d] to crtc:%d (pipe %d) (possible crtc:%x, possible clones:%x)\n", __FUNCTION__, output->name, i, to_connector_id(output), __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), (uint32_t)output->possible_crtcs, (uint32_t)output->possible_clones)); assert(output->possible_crtcs & (1 << __sna_crtc_pipe(crtc)) || is_zaphod(sna->scrn)); output_ids[output_count] = to_connector_id(output); if (++output_count == ARRAY_SIZE(output_ids)) return false; } assert(output_count); VG_CLEAR(arg); arg.crtc_id = __sna_crtc_id(crtc); arg.fb_id = fb_id(bo); assert(arg.fb_id); arg.x = x; arg.y = y; arg.set_connectors_ptr = (uintptr_t)output_ids; arg.count_connectors = output_count; arg.mode = crtc->kmode; arg.mode_valid = 1; DBG(("%s: applying crtc [%d, pipe=%d] mode=%dx%d+%d+%d@%d, fb=%d across %d outputs [%d...]\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), arg.mode.hdisplay, arg.mode.vdisplay, arg.x, arg.y, arg.mode.clock, arg.fb_id, output_count, output_count ? output_ids[0] : 0)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_SETCRTC, &arg)) return false; crtc->offset = y << 16 | x; return true; } static void sna_mode_restore(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int error = 0; int i; assert(!sna->mode.hidden); for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; assert(to_sna_crtc(crtc) != NULL); if (to_sna_crtc(crtc)->bo == NULL) continue; assert(crtc->enabled); if (!__sna_crtc_set_mode(crtc)) { sna_crtc_disable(crtc, false); error++; } } sna_mode_wakeup(sna); while (sna->mode.flip_active && sna_mode_wakeup(sna)) ; update_flush_interval(sna); sna_cursors_reload(sna); sna->mode.dirty = false; if (error) xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "Failed to restore display configuration\n"); } bool sna_needs_page_flip(struct sna *sna, struct kgem_bo *bo) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = config->crtc[i]->driver_private; if (crtc->bo == NULL) continue; if (crtc->bo == bo) continue; return true; } return false; } int sna_page_flip(struct sna *sna, struct kgem_bo *bo, sna_flip_handler_t handler, void *data) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); const int width = sna->scrn->virtualX; const int height = sna->scrn->virtualY; int sigio; int count = 0; int i; DBG(("%s: handle %d attached\n", __FUNCTION__, bo->handle)); assert(bo->refcnt); assert((sna->flags & SNA_IS_HOSTED) == 0); assert(sna->mode.flip_active == 0); assert(sna->mode.front_active); assert(!sna->mode.hidden); assert(sna->scrn->vtSema); if ((sna->flags & (data ? SNA_HAS_FLIP : SNA_HAS_ASYNC_FLIP)) == 0) return 0; kgem_bo_submit(&sna->kgem, bo); sigio = sigio_block(); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = config->crtc[i]->driver_private; struct drm_mode_crtc_page_flip arg; uint32_t crtc_offset; int fixup; DBG(("%s: crtc %d id=%d, pipe=%d active? %d\n", __FUNCTION__, i, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), crtc->bo != NULL)); if (crtc->bo == NULL) continue; assert(!crtc->transform); assert(!crtc->slave_pixmap); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); assert(crtc->flip_bo == NULL); assert_crtc_fb(sna, crtc); if (data == NULL && crtc->bo == bo) goto next_crtc; arg.crtc_id = __sna_crtc_id(crtc); arg.fb_id = get_fb(sna, bo, width, height); if (arg.fb_id == 0) { assert(count == 0); break; } fixup = 0; crtc_offset = crtc->base->y << 16 | crtc->base->x; if (bo->pitch != crtc->bo->pitch || crtc_offset != crtc->offset) { DBG(("%s: changing pitch (%d == %d) or offset (%x == %x)\n", __FUNCTION__, bo->pitch, crtc->bo->pitch, crtc_offset, crtc->offset)); fixup_flip: fixup = 1; if (crtc->bo != bo && sna_crtc_flip(sna, crtc, bo, crtc->base->x, crtc->base->y)) { update_scanout: DBG(("%s: removing handle=%d [active_scanout=%d] from scanout, installing handle=%d [active_scanout=%d]\n", __FUNCTION__, crtc->bo->handle, crtc->bo->active_scanout, bo->handle, bo->active_scanout)); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); if (crtc->shadow_bo) { kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; } crtc->bo = kgem_bo_reference(bo); crtc->bo->active_scanout++; if (data == NULL) goto next_crtc; /* queue a flip in order to send the event */ } else goto error; } /* Only the reference crtc will finally deliver its page flip * completion event. All other crtc's events will be discarded. */ if (data) { arg.user_data = (uintptr_t)crtc; arg.flags = DRM_MODE_PAGE_FLIP_EVENT; } else { arg.user_data = 0; arg.flags = DRM_MODE_PAGE_FLIP_ASYNC; } arg.reserved = 0; retry_flip: DBG(("%s: crtc %d id=%d, pipe=%d --> fb %d\n", __FUNCTION__, i, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), arg.fb_id)); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { ERR(("%s: pageflip failed with err=%d\n", __FUNCTION__, errno)); if (errno == EBUSY) { struct drm_mode_crtc mode; memset(&mode, 0, sizeof(mode)); mode.crtc_id = __sna_crtc_id(crtc); drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode); DBG(("%s: crtc=%d, valid?=%d, fb attached?=%d, expected=%d\n", __FUNCTION__, mode.crtc_id, mode.mode_valid, mode.fb_id, fb_id(crtc->bo))); if (mode.fb_id != fb_id(crtc->bo)) goto fixup_flip; if (count == 0) break; DBG(("%s: throttling on busy flip / waiting for kernel to catch up\n", __FUNCTION__)); drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_THROTTLE, 0); sna->kgem.need_throttle = false; goto retry_flip; } if (!fixup) goto fixup_flip; error: xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "page flipping failed, on CRTC:%d (pipe=%d), disabling %s page flips\n", __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), data ? "synchronous": "asynchronous"); if (count || crtc->bo == bo) sna_mode_restore(sna); sna->flags &= ~(data ? SNA_HAS_FLIP : SNA_HAS_ASYNC_FLIP); count = 0; break; } if (data) { assert(crtc->flip_bo == NULL); assert(handler); crtc->flip_handler = handler; crtc->flip_data = data; crtc->flip_bo = kgem_bo_reference(bo); crtc->flip_bo->active_scanout++; crtc->flip_serial = crtc->mode_serial; crtc->flip_pending = true; sna->mode.flip_active++; DBG(("%s: recording flip on CRTC:%d handle=%d, active_scanout=%d, serial=%d\n", __FUNCTION__, __sna_crtc_id(crtc), crtc->flip_bo->handle, crtc->flip_bo->active_scanout, crtc->flip_serial)); } else goto update_scanout; next_crtc: count++; } sigio_unblock(sigio); DBG(("%s: page flipped %d crtcs\n", __FUNCTION__, count)); return count; } static const xf86CrtcConfigFuncsRec sna_mode_funcs = { sna_mode_resize }; static void set_size_range(struct sna *sna) { /* We lie slightly as we expect no single monitor to exceed the * crtc limits, so if the mode exceeds the scanout restrictions, * we will quietly convert that to per-crtc pixmaps. */ xf86CrtcSetSizeRange(sna->scrn, 8, 8, INT16_MAX, INT16_MAX); } #if HAS_GAMMA static void set_gamma(uint16_t *curve, int size, double value) { int i; value = 1/value; for (i = 0; i < size; i++) curve[i] = 256*(size-1)*pow(i/(double)(size-1), value); } static void output_set_gamma(xf86OutputPtr output, xf86CrtcPtr crtc) { XF86ConfMonitorPtr mon = output->conf_monitor; if (!mon) return; DBG(("%s: red=%f\n", __FUNCTION__, mon->mon_gamma_red)); if (mon->mon_gamma_red >= GAMMA_MIN && mon->mon_gamma_red <= GAMMA_MAX && mon->mon_gamma_red != 1.0) set_gamma(crtc->gamma_red, crtc->gamma_size, mon->mon_gamma_red); DBG(("%s: green=%f\n", __FUNCTION__, mon->mon_gamma_green)); if (mon->mon_gamma_green >= GAMMA_MIN && mon->mon_gamma_green <= GAMMA_MAX && mon->mon_gamma_green != 1.0) set_gamma(crtc->gamma_green, crtc->gamma_size, mon->mon_gamma_green); DBG(("%s: blue=%f\n", __FUNCTION__, mon->mon_gamma_blue)); if (mon->mon_gamma_blue >= GAMMA_MIN && mon->mon_gamma_blue <= GAMMA_MAX && mon->mon_gamma_blue != 1.0) set_gamma(crtc->gamma_blue, crtc->gamma_size, mon->mon_gamma_blue); } static void crtc_init_gamma(xf86CrtcPtr crtc) { uint16_t *gamma; /* Initialize the gamma ramps */ gamma = NULL; if (crtc->gamma_size == 256) gamma = crtc->gamma_red; if (gamma == NULL) gamma = malloc(3 * 256 * sizeof(uint16_t)); if (gamma) { struct sna *sna = to_sna(crtc->scrn); struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc_lut lut; bool gamma_set = false; assert(sna_crtc); lut.crtc_id = __sna_crtc_id(sna_crtc); lut.gamma_size = 256; lut.red = (uintptr_t)(gamma); lut.green = (uintptr_t)(gamma + 256); lut.blue = (uintptr_t)(gamma + 2 * 256); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETGAMMA, &lut) == 0) { VG(VALGRIND_MAKE_MEM_DEFINED(gamma, 3*256*sizeof(gamma[0]))); gamma_set = gamma[256 - 1] && gamma[2*256 - 1] && gamma[3*256 - 1]; } DBG(("%s: CRTC:%d, pipe=%d: gamma set?=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), gamma_set)); if (!gamma_set) { int i; for (i = 0; i < 256; i++) { gamma[i] = i << 8; gamma[256 + i] = i << 8; gamma[2*256 + i] = i << 8; } } if (gamma != crtc->gamma_red) { free(crtc->gamma_red); crtc->gamma_red = gamma; crtc->gamma_green = gamma + 256; crtc->gamma_blue = gamma + 2*256; crtc->gamma_size = 256; } } } #else static void output_set_gamma(xf86OutputPtr output, xf86CrtcPtr crtc) { } static void crtc_init_gamma(xf86CrtcPtr crtc) { } #endif static const char *preferred_mode(xf86OutputPtr output) { const char *mode; mode = xf86GetOptValString(output->options, OPTION_PREFERRED_MODE); if (mode) return mode; if (output->scrn->display->modes && *output->scrn->display->modes) return *output->scrn->display->modes; return NULL; } static bool sna_probe_initial_configuration(struct sna *sna) { ScrnInfoPtr scrn = sna->scrn; xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); int crtc_active, crtc_enabled; int width, height; int i, j; assert((sna->flags & SNA_IS_HOSTED) == 0); if ((sna->flags & SNA_IS_SLAVED) == 0) { const int user_overrides[] = { OPTION_POSITION, OPTION_BELOW, OPTION_RIGHT_OF, OPTION_ABOVE, OPTION_LEFT_OF, OPTION_ROTATE, OPTION_PANNING, }; if (xf86ReturnOptValBool(sna->Options, OPTION_REPROBE, FALSE)) { DBG(("%s: user requests reprobing\n", __FUNCTION__)); return false; } /* First scan through all outputs and look for user overrides */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; for (j = 0; j < ARRAY_SIZE(user_overrides); j++) { if (xf86GetOptValString(output->options, user_overrides[j])) { DBG(("%s: user placement [%d] for %s\n", __FUNCTION__, user_overrides[j], output->name)); return false; } } } } /* Copy the existing modes on each CRTCs */ crtc_active = crtc_enabled = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc mode; crtc->enabled = FALSE; crtc->desiredMode.status = MODE_NOMODE; crtc_init_gamma(crtc); /* Retrieve the current mode */ VG_CLEAR(mode); mode.crtc_id = __sna_crtc_id(sna_crtc); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; DBG(("%s: CRTC:%d, pipe=%d: has mode?=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), mode.mode_valid && mode.mode.clock)); if (!mode.mode_valid || mode.mode.clock == 0) continue; mode_from_kmode(scrn, &mode.mode, &crtc->desiredMode); crtc->desiredRotation = sna_crtc->primary.rotation.current; crtc->desiredX = mode.x; crtc->desiredY = mode.y; crtc->desiredTransformPresent = FALSE; crtc_active++; } /* Reconstruct outputs pointing to active CRTC */ for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; uint32_t crtc_id; assert(to_sna_output(output)); crtc_id = (uintptr_t)output->crtc; output->crtc = NULL; output->status = XF86OutputStatusUnknown; if (sna->flags & SNA_IS_SLAVED) continue; if (crtc_id == 0) { DBG(("%s: not using output %s, disconnected\n", __FUNCTION__, output->name)); continue; } if (xf86ReturnOptValBool(output->options, OPTION_DISABLE, 0)) { DBG(("%s: not using output %s, manually disabled\n", __FUNCTION__, output->name)); continue; } for (j = 0; j < sna->mode.num_real_crtc; j++) { xf86CrtcPtr crtc = config->crtc[j]; assert(to_sna_crtc(crtc)); if (sna_crtc_id(crtc) != crtc_id) continue; if (crtc->desiredMode.status == MODE_OK) { DisplayModePtr M; const char *pref; pref = preferred_mode(output); if (pref && strcmp(pref, crtc->desiredMode.name)) { DBG(("%s: output %s user requests a different preferred mode %s, found %s\n", __FUNCTION__, output->name, pref, crtc->desiredMode.name)); return false; } xf86DrvMsg(scrn->scrnIndex, X_PROBED, "Output %s using initial mode %s on pipe %d\n", output->name, crtc->desiredMode.name, sna_crtc_pipe(crtc)); output->crtc = crtc; output->status = XF86OutputStatusConnected; crtc->enabled = TRUE; crtc_enabled++; output_set_gamma(output, crtc); if (output->conf_monitor) { output->mm_width = output->conf_monitor->mon_width; output->mm_height = output->conf_monitor->mon_height; } #if 0 sna_output_attach_edid(output); sna_output_attach_tile(output); #endif if (output->mm_width == 0 || output->mm_height == 0) { output->mm_height = (crtc->desiredMode.VDisplay * 254) / (10*DEFAULT_DPI); output->mm_width = (crtc->desiredMode.HDisplay * 254) / (10*DEFAULT_DPI); } M = calloc(1, sizeof(DisplayModeRec)); if (M) { *M = crtc->desiredMode; M->name = strdup(M->name); output->probed_modes = xf86ModesAdd(output->probed_modes, M); } } break; } if (j == sna->mode.num_real_crtc) { /* Can not find the earlier associated CRTC, bail */ DBG(("%s: existing setup conflicts with output assignment (Zaphod), reprobing\n", __FUNCTION__)); return false; } } if (crtc_active != crtc_enabled) { DBG(("%s: only enabled %d out of %d active CRTC, forcing a reconfigure\n", __FUNCTION__, crtc_enabled, crtc_active)); return false; } width = height = 0; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; int w, h; if (!crtc->enabled) continue; w = crtc->desiredX + crtc->desiredMode.HDisplay; if (w > width) width = w; h = crtc->desiredY + crtc->desiredMode.VDisplay; if (h > height) height = h; } /* Prefer the native panel size if any */ if (!width || !height) { for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; struct sna_output *sna_output = to_sna_output(output); if (!sna_output->is_panel) continue; DBG(("%s: querying panel '%s' for preferred unattached size\n", __FUNCTION__, output->name)); if (sna_output_detect(output) != XF86OutputStatusConnected) continue; if (sna_output->num_modes == 0) continue; width = sna_output->modes[0].hdisplay; height = sna_output->modes[0].vdisplay; DBG(("%s: panel '%s' is %dx%d\n", __FUNCTION__, output->name, width, height)); break; } } if (!width || !height) { width = 1024; height = 768; } scrn->display->frameX0 = 0; scrn->display->frameY0 = 0; scrn->display->virtualX = width; scrn->display->virtualY = height; scrn->virtualX = width; scrn->virtualY = height; xf86SetScrnInfoModes(sna->scrn); DBG(("%s: SetScrnInfoModes = %p\n", __FUNCTION__, scrn->modes)); return scrn->modes != NULL; } static void sanitize_outputs(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < config->num_output; i++) config->output[i]->crtc = NULL; } static bool has_flip(struct sna *sna) { drm_i915_getparam_t gp; int v; if (sna->flags & SNA_NO_FLIP) return false; v = 0; VG_CLEAR(gp); gp.param = I915_PARAM_HAS_PAGEFLIPPING; gp.value = &v; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GETPARAM, &gp)) return false; VG(VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v))); return v > 0; } static bool has_flip__async(struct sna *sna) { #define DRM_CAP_ASYNC_PAGE_FLIP 0x7 struct local_get_cap { uint64_t name; uint64_t value; } cap = { DRM_CAP_ASYNC_PAGE_FLIP }; if (sna->flags & SNA_NO_FLIP) return false; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_GET_CAP, &cap) == 0) return cap.value > 0; return false; } static void probe_capabilities(struct sna *sna) { sna->flags &= ~(SNA_HAS_FLIP | SNA_HAS_ASYNC_FLIP); if (has_flip(sna)) sna->flags |= SNA_HAS_FLIP; if (has_flip__async(sna) && (sna->flags & SNA_TEAR_FREE) == 0) sna->flags |= SNA_HAS_ASYNC_FLIP; DBG(("%s: page flips? %s, async? %s\n", __FUNCTION__, sna->flags & SNA_HAS_FLIP ? "enabled" : "disabled", sna->flags & SNA_HAS_ASYNC_FLIP ? "enabled" : "disabled")); } void sna_crtc_config_notify(ScreenPtr screen) { struct sna *sna = to_sna_from_screen(screen); DBG(("%s(dirty?=%d)\n", __FUNCTION__, sna->mode.dirty)); if (!sna->mode.dirty) return; if (disable_unused_crtc(sna)) { /* This will have recursed, so simply bail at this point */ assert(sna->mode.dirty == false); #ifdef RANDR_12_INTERFACE xf86RandR12TellChanged(screen); #endif return; } /* Flush any events completed by the modeset */ sna_mode_wakeup(sna); update_flush_interval(sna); sna->cursor.disable = false; /* Reset HW cursor until the next fail */ sna_cursors_reload(sna); probe_capabilities(sna); sna_present_update(sna); /* Allow TearFree to come back on when everything is off */ if (!sna->mode.front_active && sna->flags & SNA_WANT_TEAR_FREE) { if ((sna->flags & SNA_TEAR_FREE) == 0) DBG(("%s: enable TearFree next modeset\n", __FUNCTION__)); sna->flags |= SNA_TEAR_FREE; } sna->mode.dirty = false; } #if HAS_PIXMAP_SHARING #define sna_setup_provider(scrn) xf86ProviderSetup(scrn, NULL, "Intel") #else #define sna_setup_provider(scrn) #endif bool sna_mode_pre_init(ScrnInfoPtr scrn, struct sna *sna) { drmModeResPtr res; int num_fake = 0; int i; if (sna->flags & SNA_IS_HOSTED) { sna_setup_provider(scrn); return true; } probe_capabilities(sna); sna->mode.hidden = 1; if (!xf86GetOptValInteger(sna->Options, OPTION_VIRTUAL, &num_fake)) num_fake = 1; res = drmModeGetResources(sna->kgem.fd); if (res && (res->count_crtcs == 0 || res->count_encoders == 0 || res->count_connectors == 0)) { drmModeFreeResources(res); res = NULL; } if (res) { xf86CrtcConfigPtr xf86_config; DBG(("%s: found %d CRTC, %d encoders, %d connectors\n", __FUNCTION__, res->count_crtcs, res->count_encoders, res->count_connectors)); assert(res->count_crtcs); assert(res->count_connectors); xf86CrtcConfigInit(scrn, &sna_mode_funcs); xf86_config = XF86_CRTC_CONFIG_PTR(scrn); xf86_config->xf86_crtc_notify = sna_crtc_config_notify; xf86_config->compat_output = 0; for (i = 0; i < res->count_crtcs; i++) if (!sna_crtc_add(scrn, res->crtcs[i])) return false; sna->mode.num_real_crtc = xf86_config->num_crtc; sna->mode.num_real_encoder = res->count_encoders; sna->mode.encoders = res->encoders; res->encoders = NULL; for (i = 0; i < res->count_connectors; i++) if (sna_output_add(sna, res->connectors[i], 0) < 0) return false; sna->mode.num_real_output = xf86_config->num_output; sna->mode.max_crtc_width = res->max_width; sna->mode.max_crtc_height = res->max_height; RegionEmpty(&sna->mode.shadow_region); RegionEmpty(&sna->mode.shadow_cancel); list_init(&sna->mode.shadow_crtc); drmModeFreeResources(res); sna_cursor_pre_init(sna); sna_backlight_pre_init(sna); set_size_range(sna); } else { if (num_fake == 0) num_fake = 1; } if (!sna_mode_fake_init(sna, num_fake)) return false; sna->mode.shadow_size = 256; sna->mode.shadow_events = malloc(sna->mode.shadow_size * sizeof(struct drm_event_vblank)); if (!sna->mode.shadow_events) return false; if (!sna_probe_initial_configuration(sna)) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn); sanitize_outputs(sna); if (config->num_crtc && config->num_output) { if (!xf86ReturnOptValBool(config->output[0]->options, OPTION_PRIMARY, FALSE)) sort_config_outputs(sna); xf86InitialConfiguration(scrn, TRUE); } } sort_config_outputs(sna); TimerSet(NULL, 0, COLDPLUG_DELAY_MS, sna_mode_coldplug, sna); sna_setup_provider(scrn); return scrn->modes != NULL; } bool sna_mode_wants_tear_free(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool found = false; FILE *file; int i; file = fopen("/sys/module/i915/parameters/enable_fbc", "r"); if (file) { int fbc_enabled = 0; int value; if (fscanf(file, "%d", &value) == 1) fbc_enabled = value > 0; fclose(file); DBG(("%s: module parameter 'enable_fbc' enabled? %d\n", __FUNCTION__, fbc_enabled)); if (fbc_enabled) return true; } for (i = 0; i < sna->mode.num_real_output; i++) { struct sna_output *output = to_sna_output(config->output[i]); int id = find_property(sna, output, "Panel Self-Refresh"); if (id == -1) continue; found = true; if (output->prop_values[id] != -1) { DBG(("%s: Panel Self-Refresh detected on %s\n", __FUNCTION__, config->output[i]->name)); return true; } } if (!found) { file = fopen("/sys/module/i915/parameters/enable_psr", "r"); if (file) { int psr_enabled = 0; int value; if (fscanf(file, "%d", &value) == 1) psr_enabled = value > 0; fclose(file); DBG(("%s: module parameter 'enable_psr' enabled? %d\n", __FUNCTION__, psr_enabled)); if (psr_enabled) return true; } } return false; } void sna_mode_set_primary(struct sna *sna) { #ifdef RANDR_12_INTERFACE xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); rrScrPrivPtr rr = rrGetScrPriv(xf86ScrnToScreen(sna->scrn)); int i; if (rr == NULL || rr->primaryOutput) return; for (i = 0; i < sna->mode.num_real_output; i++) { xf86OutputPtr output = config->output[i]; if (!xf86ReturnOptValBool(output->options, OPTION_PRIMARY, FALSE)) continue; DBG(("%s: setting PrimaryOutput %s\n", __FUNCTION__, output->name)); rr->primaryOutput = output->randr_output; RROutputChanged(rr->primaryOutput, FALSE); rr->layoutChanged = TRUE; break; } #endif } bool sna_mode_disable(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; if (sna->flags & SNA_IS_HOSTED) return false; if (!sna->scrn->vtSema) return false; sna_disable_cursors(sna->scrn); for (i = 0; i < sna->mode.num_real_crtc; i++) sna_crtc_disable(config->crtc[i], false); assert(sna->mode.front_active == 0); sna_mode_wakeup(sna); kgem_clean_scanout_cache(&sna->kgem); return true; } void sna_mode_enable(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; DBG(("%s\n", __FUNCTION__)); if (sna->flags & SNA_IS_HOSTED) return; if (!sna->scrn->vtSema) return; if (sna->mode.hidden) { DBG(("%s: hidden outputs\n", __FUNCTION__)); return; } for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; DBG(("%s: crtc[%d].enabled?=%d\n", __FUNCTION__, i, crtc->enabled)); assert(to_sna_crtc(crtc) != NULL); if (!crtc->enabled) continue; if (crtc->mode.Clock == 0) continue; __sna_crtc_set_mode(crtc); } update_flush_interval(sna); sna_cursors_reload(sna); sna->mode.dirty = false; } static void sna_randr_close(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int n; /* The RR structs are freed early during CloseScreen as they * are tracked as Resources. However, we may be tempted to * access them during shutdown so decouple them now. */ for (n = 0; n < config->num_output; n++) config->output[n]->randr_output = NULL; for (n = 0; n < config->num_crtc; n++) config->crtc[n]->randr_crtc = NULL; } void sna_mode_close(struct sna *sna) { sna_randr_close(sna); sna_mode_wakeup(sna); if (sna->flags & SNA_IS_HOSTED) return; sna_mode_reset(sna); sna_cursor_close(sna); sna_cursors_fini(sna); sna_backlight_close(sna); sna->mode.dirty = false; } void sna_mode_fini(struct sna *sna) { free(sna->mode.encoders); } static bool sna_box_intersect(BoxPtr r, const BoxRec *a, const BoxRec *b) { r->x1 = a->x1 > b->x1 ? a->x1 : b->x1; r->x2 = a->x2 < b->x2 ? a->x2 : b->x2; if (r->x1 >= r->x2) return false; r->y1 = a->y1 > b->y1 ? a->y1 : b->y1; r->y2 = a->y2 < b->y2 ? a->y2 : b->y2; DBG(("%s: (%d, %d), (%d, %d) intersect (%d, %d), (%d, %d) = (%d, %d), (%d, %d)\n", __FUNCTION__, a->x1, a->y1, a->x2, a->y2, b->x1, b->y1, b->x2, b->y2, r->x1, r->y1, r->x2, r->y2)); if (r->y1 >= r->y2) return false; return true; } static int sna_box_area(const BoxRec *box) { return (int)(box->x2 - box->x1) * (int)(box->y2 - box->y1); } /* * Return the crtc covering 'box'. If two crtcs cover a portion of * 'box', then prefer 'desired'. If 'desired' is NULL, then prefer the crtc * with greater coverage */ xf86CrtcPtr sna_covering_crtc(struct sna *sna, const BoxRec *box, xf86CrtcPtr desired) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); xf86CrtcPtr best_crtc = NULL; int best_coverage = -1, c; if (sna->flags & SNA_IS_HOSTED) return NULL; /* If we do not own the VT, we do not own the CRTC either */ if (!sna->scrn->vtSema) { DBG(("%s: none, VT switched\n", __FUNCTION__)); return NULL; } if (sna->mode.hidden) { DBG(("%s: none, hidden outputs\n", __FUNCTION__)); return NULL; } DBG(("%s for box=(%d, %d), (%d, %d)\n", __FUNCTION__, box->x1, box->y1, box->x2, box->y2)); if (desired == NULL) { rrScrPrivPtr rr = rrGetScrPriv(xf86ScrnToScreen(sna->scrn)); if (rr && rr->primaryOutput) { xf86OutputPtr output = rr->primaryOutput->devPrivate; DBG(("%s: have PrimaryOutput? %d marking as desired\n", __FUNCTION__, output->crtc != NULL)); desired = output->crtc; } } if (desired && to_sna_crtc(desired) && to_sna_crtc(desired)->bo) { BoxRec cover_box; if (sna_box_intersect(&cover_box, &desired->bounds, box)) { DBG(("%s: box overlaps desired crtc: (%d, %d), (%d, %d)\n", __FUNCTION__, cover_box.x1, cover_box.y1, cover_box.x2, cover_box.y2)); return desired; } best_crtc = desired; best_coverage = 0; } for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; BoxRec cover_box; int coverage; assert(to_sna_crtc(crtc)); /* If the CRTC is off, treat it as not covering */ if (to_sna_crtc(crtc)->bo == NULL) { DBG(("%s: crtc %d off, skipping\n", __FUNCTION__, c)); continue; } DBG(("%s: crtc %d: (%d, %d), (%d, %d)\n", __FUNCTION__, c, crtc->bounds.x1, crtc->bounds.y1, crtc->bounds.x2, crtc->bounds.y2)); if (*(const uint64_t *)box == *(uint64_t *)&crtc->bounds) { DBG(("%s: box exactly matches crtc [%d]\n", __FUNCTION__, c)); return crtc; } if (!sna_box_intersect(&cover_box, &crtc->bounds, box)) continue; DBG(("%s: box instersects (%d, %d), (%d, %d) of crtc %d\n", __FUNCTION__, cover_box.x1, cover_box.y1, cover_box.x2, cover_box.y2, c)); coverage = sna_box_area(&cover_box); DBG(("%s: box covers %d of crtc %d\n", __FUNCTION__, coverage, c)); if (coverage > best_coverage) { best_crtc = crtc; best_coverage = coverage; } } DBG(("%s: best crtc = %p, coverage = %d\n", __FUNCTION__, best_crtc, best_coverage)); return best_crtc; } xf86CrtcPtr sna_primary_crtc(struct sna *sna) { rrScrPrivPtr rr = rrGetScrPriv(xf86ScrnToScreen(sna->scrn)); if (rr && rr->primaryOutput) { xf86OutputPtr output = rr->primaryOutput->devPrivate; if (output->crtc && to_sna_crtc(output->crtc)) return output->crtc; } if (sna->mode.num_real_crtc) return XF86_CRTC_CONFIG_PTR(sna->scrn)->crtc[0]; return NULL; } #define MI_LOAD_REGISTER_IMM (0x22<<23) static bool sna_emit_wait_for_scanline_hsw(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event; uint32_t *b; if (!sna->kgem.has_secure_batches) return false; b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 17; switch (pipe) { default: assert(0); case 0: event = 1 << 0; break; case 1: event = 1 << 8; break; case 2: event = 1 << 14; break; } b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0xa188; /* FORCEWAKE_MT */ b[5] = 2 << 16 | 2; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ switch (pipe) { default: assert(0); case 0: event = 0 << 19; break; case 1: event = 1 << 19; break; case 2: event = 4 << 19; break; } b[8] = b[6] = MI_LOAD_SCAN_LINES_INCL | event; b[9] = b[7] = (y1 << 16) | (y2-1); switch (pipe) { default: assert(0); case 0: event = 1 << 0; break; case 1: event = 1 << 8; break; case 2: event = 1 << 14; break; } b[10] = MI_WAIT_FOR_EVENT | event; b[11] = MI_LOAD_REGISTER_IMM | 1; b[12] = 0xa188; /* FORCEWAKE_MT */ b[13] = 2 << 16; b[14] = MI_LOAD_REGISTER_IMM | 1; b[15] = 0x44050; /* DERRMR */ b[16] = ~0; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_ivb(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event, *b; if (!sna->kgem.has_secure_batches) return false; assert(y1 >= 0); assert(y2 > y1); assert(sna->kgem.mode); /* Always program one less than the desired value */ if (--y1 < 0) y1 = crtc->bounds.y2; y2--; switch (pipe) { default: assert(0); case 0: event = 1 << (full_height ? 3 : 0); break; case 1: event = 1 << (full_height ? 11 : 8); break; case 2: event = 1 << (full_height ? 21 : 14); break; } b = kgem_get_batch(&sna->kgem); /* Both the LRI and WAIT_FOR_EVENT must be in the same cacheline */ if (((sna->kgem.nbatch + 6) >> 4) != (sna->kgem.nbatch + 10) >> 4) { int dw = sna->kgem.nbatch + 6; dw = ALIGN(dw, 16) - dw; while (dw--) *b++ = MI_NOOP; } b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0xa188; /* FORCEWAKE_MT */ b[5] = 2 << 16 | 2; b[6] = MI_LOAD_REGISTER_IMM | 1; b[7] = 0x70068 + 0x1000 * pipe; b[8] = (1 << 31) | (1 << 30) | (y1 << 16) | y2; b[9] = MI_WAIT_FOR_EVENT | event; b[10] = MI_LOAD_REGISTER_IMM | 1; b[11] = 0xa188; /* FORCEWAKE_MT */ b[12] = 2 << 16; b[13] = MI_LOAD_REGISTER_IMM | 1; b[14] = 0x44050; /* DERRMR */ b[15] = ~0; sna->kgem.nbatch = b - sna->kgem.batch + 16; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_gen6(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t *b; uint32_t event; if (!sna->kgem.has_secure_batches) return false; assert(y1 >= 0); assert(y2 > y1); assert(sna->kgem.mode == KGEM_RENDER); /* Always program one less than the desired value */ if (--y1 < 0) y1 = crtc->bounds.y2; y2--; /* The scanline granularity is 3 bits */ y1 &= ~7; y2 &= ~7; if (y2 == y1) return false; event = 1 << (3*full_height + pipe*8); b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 16; b[0] = MI_LOAD_REGISTER_IMM | 1; b[1] = 0x44050; /* DERRMR */ b[2] = ~event; b[3] = MI_LOAD_REGISTER_IMM | 1; b[4] = 0x4f100; /* magic */ b[5] = (1 << 31) | (1 << 30) | pipe << 29 | (y1 << 16) | y2; b[6] = MI_LOAD_REGISTER_IMM | 1; b[7] = 0x2050; /* PSMI_CTL(rcs) */ b[8] = 1 << 16 | 1; b[9] = MI_WAIT_FOR_EVENT | event; b[10] = MI_LOAD_REGISTER_IMM | 1; b[11] = 0x2050; /* PSMI_CTL(rcs) */ b[12] = 1 << 16; b[13] = MI_LOAD_REGISTER_IMM | 1; b[14] = 0x44050; /* DERRMR */ b[15] = ~0; sna->kgem.batch_flags |= I915_EXEC_SECURE; return true; } static bool sna_emit_wait_for_scanline_gen4(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t event; uint32_t *b; if (pipe == 0) { if (full_height) event = MI_WAIT_FOR_PIPEA_SVBLANK; else event = MI_WAIT_FOR_PIPEA_SCAN_LINE_WINDOW; } else { if (full_height) event = MI_WAIT_FOR_PIPEB_SVBLANK; else event = MI_WAIT_FOR_PIPEB_SCAN_LINE_WINDOW; } b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 5; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ b[2] = b[0] = MI_LOAD_SCAN_LINES_INCL | pipe << 20; b[3] = b[1] = (y1 << 16) | (y2-1); b[4] = MI_WAIT_FOR_EVENT | event; return true; } static bool sna_emit_wait_for_scanline_gen2(struct sna *sna, xf86CrtcPtr crtc, int pipe, int y1, int y2, bool full_height) { uint32_t *b; /* * Pre-965 doesn't have SVBLANK, so we need a bit * of extra time for the blitter to start up and * do its job for a full height blit */ if (full_height) y2 -= 2; b = kgem_get_batch(&sna->kgem); sna->kgem.nbatch += 5; /* The documentation says that the LOAD_SCAN_LINES command * always comes in pairs. Don't ask me why. */ b[2] = b[0] = MI_LOAD_SCAN_LINES_INCL | pipe << 20; b[3] = b[1] = (y1 << 16) | (y2-1); b[4] = MI_WAIT_FOR_EVENT | 1 << (1 + 4*pipe); return true; } bool sna_wait_for_scanline(struct sna *sna, PixmapPtr pixmap, xf86CrtcPtr crtc, const BoxRec *clip) { bool full_height; int y1, y2, pipe; bool ret; assert(crtc != NULL); assert(to_sna_crtc(crtc) != NULL); assert(to_sna_crtc(crtc)->bo != NULL); assert(pixmap == sna->front); if (sna->flags & SNA_NO_VSYNC) return false; /* * Make sure we don't wait for a scanline that will * never occur */ y1 = clip->y1 - crtc->bounds.y1; if (y1 < 0) y1 = 0; y2 = clip->y2 - crtc->bounds.y1; if (y2 > crtc->bounds.y2 - crtc->bounds.y1) y2 = crtc->bounds.y2 - crtc->bounds.y1; DBG(("%s: clipped range = %d, %d\n", __FUNCTION__, y1, y2)); if (y2 <= y1 + 4) return false; full_height = y1 == 0 && y2 == crtc->bounds.y2 - crtc->bounds.y1; if (crtc->mode.Flags & V_INTERLACE) { /* DSL count field lines */ y1 /= 2; y2 /= 2; } pipe = sna_crtc_pipe(crtc); DBG(("%s: pipe=%d, y1=%d, y2=%d, full_height?=%d\n", __FUNCTION__, pipe, y1, y2, full_height)); if (sna->kgem.gen >= 0110) ret = false; else if (sna->kgem.gen == 0101) ret = false; /* chv, vsync method unknown */ else if (sna->kgem.gen >= 075) ret = sna_emit_wait_for_scanline_hsw(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen == 071) ret = false; /* vlv, vsync method unknown */ else if (sna->kgem.gen >= 070) ret = sna_emit_wait_for_scanline_ivb(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen >= 060) ret =sna_emit_wait_for_scanline_gen6(sna, crtc, pipe, y1, y2, full_height); else if (sna->kgem.gen >= 040) ret = sna_emit_wait_for_scanline_gen4(sna, crtc, pipe, y1, y2, full_height); else ret = sna_emit_wait_for_scanline_gen2(sna, crtc, pipe, y1, y2, full_height); return ret; } static bool sna_mode_shutdown_crtc(xf86CrtcPtr crtc) { struct sna *sna = to_sna(crtc->scrn); xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(crtc->scrn); bool disabled = false; int o; xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "%s: invalid state found on pipe %d, disabling CRTC:%d\n", __FUNCTION__, __sna_crtc_pipe(to_sna_crtc(crtc)), __sna_crtc_id(to_sna_crtc(crtc))); sna_crtc_disable(crtc, true); #if XF86_CRTC_VERSION >= 3 crtc->active = FALSE; #endif if (crtc->enabled) { crtc->enabled = FALSE; disabled = true; } for (o = 0; o < sna->mode.num_real_output; o++) { xf86OutputPtr output = config->output[o]; if (output->crtc != crtc) continue; output->funcs->dpms(output, DPMSModeOff); output->crtc = NULL; } return disabled; } static bool sna_mode_disable_secondary_planes(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool disabled = false; int c; /* Disable all secondary planes on our CRTCs, just in case * other userspace left garbage in them. */ for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct plane *plane; list_for_each_entry(plane, &sna_crtc->sprites, link) { struct local_mode_get_plane p; struct local_mode_set_plane s; VG_CLEAR(p); p.plane_id = plane->id; p.count_format_types = 0; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_GETPLANE, &p)) continue; if (p.fb_id == 0 || p.crtc_id == 0) continue; memset(&s, 0, sizeof(s)); s.plane_id = p.plane_id; s.crtc_id = p.crtc_id; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_SETPLANE, &s)) disabled |= sna_mode_shutdown_crtc(crtc); } } return disabled; } void sna_mode_check(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); bool disabled; int c, o; if (sna->flags & SNA_IS_HOSTED) return; DBG(("%s: hidden?=%d\n", __FUNCTION__, sna->mode.hidden)); if (sna->mode.hidden) return; disabled = sna_mode_disable_secondary_planes(sna); /* Validate CRTC attachments and force consistency upon the kernel */ for (c = 0; c < sna->mode.num_real_crtc; c++) { xf86CrtcPtr crtc = config->crtc[c]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct drm_mode_crtc mode; uint32_t expected[2]; assert(sna_crtc); #if XF86_CRTC_VERSION >= 3 assert(sna_crtc->bo == NULL || crtc->active); #endif expected[0] = sna_crtc->bo ? fb_id(sna_crtc->bo) : 0; expected[1] = sna_crtc->flip_bo ? fb_id(sna_crtc->flip_bo) : -1; VG_CLEAR(mode); mode.crtc_id = __sna_crtc_id(sna_crtc); if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_GETCRTC, &mode)) continue; DBG(("%s: crtc=%d, valid?=%d, fb attached?=%d, expected=(%d or %d)\n", __FUNCTION__, mode.crtc_id, mode.mode_valid, mode.fb_id, expected[0], expected[1])); if (mode.fb_id != expected[0] && mode.fb_id != expected[1]) disabled |= sna_mode_shutdown_crtc(crtc); } for (o = 0; o < config->num_output; o++) { xf86OutputPtr output = config->output[o]; struct sna_output *sna_output; if (output->crtc) continue; sna_output = to_sna_output(output); if (sna_output == NULL) continue; sna_output->dpms_mode = DPMSModeOff; } update_flush_interval(sna); if (disabled) xf86RandR12TellChanged(xf86ScrnToScreen(sna->scrn)); } static bool sna_crtc_hide_planes(struct sna *sna, struct sna_crtc *crtc) { struct local_mode_set_plane s; struct plane *plane; if (crtc->primary.id == 0) return false; memset(&s, 0, sizeof(s)); s.plane_id = crtc->primary.id; if (drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_SETPLANE, &s)) return false; list_for_each_entry(plane, &crtc->sprites, link) { s.plane_id = plane->id; (void)drmIoctl(sna->kgem.fd, LOCAL_IOCTL_MODE_SETPLANE, &s); } __sna_crtc_disable(sna, crtc); return true; } void sna_mode_reset(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; if (sna->flags & SNA_IS_HOSTED) return; DBG(("%s\n", __FUNCTION__)); sna_disable_cursors(sna->scrn); for (i = 0; i < sna->mode.num_real_crtc; i++) if (!sna_crtc_hide_planes(sna, to_sna_crtc(config->crtc[i]))) sna_crtc_disable(config->crtc[i], true); assert(sna->mode.front_active == 0); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *sna_crtc = to_sna_crtc(config->crtc[i]); struct plane *plane; assert(sna_crtc != NULL); /* Force the rotation property to be reset on next use */ rotation_reset(&sna_crtc->primary); list_for_each_entry(plane, &sna_crtc->sprites, link) rotation_reset(plane); } /* VT switching, likely to be fbcon so make the backlight usable */ for (i = 0; i < sna->mode.num_real_output; i++) { struct sna_output *sna_output = to_sna_output(config->output[i]); assert(sna_output != NULL); if (sna_output->dpms_mode != DPMSModeOff) continue; if (!sna_output->backlight.iface) continue; sna_output_backlight_set(sna_output, sna_output->backlight_active_level); } /* drain the event queue */ sna_mode_wakeup(sna); } static void transformed_box(BoxRec *box, xf86CrtcPtr crtc) { box->x1 -= crtc->filter_width >> 1; box->x2 += crtc->filter_width >> 1; box->y1 -= crtc->filter_height >> 1; box->y2 += crtc->filter_height >> 1; pixman_f_transform_bounds(&crtc->f_framebuffer_to_crtc, box); if (box->x1 < 0) box->x1 = 0; if (box->y1 < 0) box->y1 = 0; if (box->x2 > crtc->mode.HDisplay) box->x2 = crtc->mode.HDisplay; if (box->y2 > crtc->mode.VDisplay) box->y2 = crtc->mode.VDisplay; } inline static DrawablePtr crtc_source(xf86CrtcPtr crtc, int16_t *sx, int16_t *sy) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); if (sna_crtc->slave_pixmap) { DBG(("%s: using slave pixmap=%ld, offset (%d, %d)\n", __FUNCTION__, sna_crtc->slave_pixmap->drawable.serialNumber, -crtc->x, -crtc->y)); *sx = -crtc->x; *sy = -crtc->y; return &sna_crtc->slave_pixmap->drawable; } else { DBG(("%s: using Screen pixmap=%ld\n", __FUNCTION__, to_sna(crtc->scrn)->front->drawable.serialNumber)); *sx = *sy = 0; return &to_sna(crtc->scrn)->front->drawable; } } static void sna_crtc_redisplay__fallback(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t sx, sy; struct sna *sna = to_sna(crtc->scrn); ScreenPtr screen = xf86ScrnToScreen(crtc->scrn); DrawablePtr draw = crtc_source(crtc, &sx, &sy); PictFormatPtr format; PictTransform T; PicturePtr src, dst; PixmapPtr pixmap; int depth, error; void *ptr; DBG(("%s: compositing transformed damage boxes, target handle=%d\n", __FUNCTION__, bo->handle)); error = sna_render_format_for_depth(draw->depth); depth = PIXMAN_FORMAT_DEPTH(error); format = PictureMatchFormat(screen, depth, error); if (format == NULL) { DBG(("%s: can't find format for depth=%d [%08x]\n", __FUNCTION__, depth, error)); return; } DBG(("%s: dst format=%08x, depth=%d, bpp=%d, pitch=%d, size=%dx%d\n", __FUNCTION__, format->format, depth, draw->bitsPerPixel, bo->pitch, crtc->mode.HDisplay, crtc->mode.VDisplay)); if (sx | sy) RegionTranslate(region, sx, sy); error = !sna_drawable_move_region_to_cpu(draw, region, MOVE_READ); if (sx | sy) RegionTranslate(region, -sx, -sy); if (error) return; ptr = kgem_bo_map__gtt(&sna->kgem, bo); if (ptr == NULL) return; pixmap = sna_pixmap_create_unattached(screen, 0, 0, depth); if (pixmap == NullPixmap) return; if (!screen->ModifyPixmapHeader(pixmap, crtc->mode.HDisplay, crtc->mode.VDisplay, depth, draw->bitsPerPixel, bo->pitch, ptr)) goto free_pixmap; src = CreatePicture(None, draw, format, 0, NULL, serverClient, &error); if (!src) goto free_pixmap; pixman_transform_init_translate(&T, sx << 16, sy << 16); pixman_transform_multiply(&T, &T, &crtc->crtc_to_framebuffer); if (!sna_transform_is_integer_translation(&T, &sx, &sy)) { #define f2d(x) (((double)(x))/65536.) DBG(("%s: transform=[[%f %f %f], [%f %f %f], [%f %f %f]] (raw [[%x %x %x], [%x %x %x], [%x %x %x]])\n", __FUNCTION__, f2d(T.matrix[0][0]), f2d(T.matrix[0][1]), f2d(T.matrix[0][2]), f2d(T.matrix[1][0]), f2d(T.matrix[1][1]), f2d(T.matrix[1][2]), f2d(T.matrix[2][0]), f2d(T.matrix[2][1]), f2d(T.matrix[2][2]), T.matrix[0][0], T.matrix[0][1], T.matrix[0][2], T.matrix[1][0], T.matrix[1][1], T.matrix[1][2], T.matrix[2][0], T.matrix[2][1], T.matrix[2][2])); #undef f2d error = SetPictureTransform(src, &T); if (error) goto free_src; sx = sy = 0; } if (crtc->filter && crtc->transform_in_use) SetPicturePictFilter(src, crtc->filter, crtc->params, crtc->nparams); dst = CreatePicture(None, &pixmap->drawable, format, 0, NULL, serverClient, &error); if (!dst) goto free_src; kgem_bo_sync__gtt(&sna->kgem, bo); if (sigtrap_get() == 0) { /* paranoia */ const BoxRec *b = region_rects(region); int n = region_num_rects(region); do { BoxRec box; box = *b++; transformed_box(&box, crtc); DBG(("%s: (%d, %d)x(%d, %d) -> (%d, %d), (%d, %d)\n", __FUNCTION__, b[-1].x1, b[-1].y1, b[-1].x2-b[-1].x1, b[-1].y2-b[-1].y1, box.x1, box.y1, box.x2, box.y2)); fbComposite(PictOpSrc, src, NULL, dst, box.x1 + sx, box.y1 + sy, 0, 0, box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1); } while (--n); sigtrap_put(); } FreePicture(dst, None); free_src: FreePicture(src, None); free_pixmap: screen->DestroyPixmap(pixmap); } static void sna_crtc_redisplay__composite(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t sx, sy; struct sna *sna = to_sna(crtc->scrn); ScreenPtr screen = xf86ScrnToScreen(crtc->scrn); DrawablePtr draw = crtc_source(crtc, &sx, &sy); struct sna_composite_op tmp; PictFormatPtr format; PictTransform T; PicturePtr src, dst; PixmapPtr pixmap; const BoxRec *b; int n, depth, error; DBG(("%s: compositing transformed damage boxes\n", __FUNCTION__)); error = sna_render_format_for_depth(draw->depth); depth = PIXMAN_FORMAT_DEPTH(error); format = PictureMatchFormat(screen, depth, error); if (format == NULL) { DBG(("%s: can't find format for depth=%d [%08x]\n", __FUNCTION__, depth, error)); return; } DBG(("%s: dst format=%08x, depth=%d, bpp=%d, pitch=%d, size=%dx%d\n", __FUNCTION__, format->format, depth, draw->bitsPerPixel, bo->pitch, crtc->mode.HDisplay, crtc->mode.VDisplay)); pixmap = sna_pixmap_create_unattached(screen, 0, 0, depth); if (pixmap == NullPixmap) return; if (!screen->ModifyPixmapHeader(pixmap, crtc->mode.HDisplay, crtc->mode.VDisplay, depth, draw->bitsPerPixel, bo->pitch, NULL)) goto free_pixmap; if (!sna_pixmap_attach_to_bo(pixmap, kgem_bo_reference(bo))) { kgem_bo_destroy(&sna->kgem, bo); goto free_pixmap; } src = CreatePicture(None, draw, format, 0, NULL, serverClient, &error); if (!src) goto free_pixmap; pixman_transform_init_translate(&T, sx << 16, sy << 16); pixman_transform_multiply(&T, &T, &crtc->crtc_to_framebuffer); if (!sna_transform_is_integer_translation(&T, &sx, &sy)) { error = SetPictureTransform(src, &T); if (error) goto free_src; sx = sy = 0; } if (crtc->filter && crtc->transform_in_use) SetPicturePictFilter(src, crtc->filter, crtc->params, crtc->nparams); dst = CreatePicture(None, &pixmap->drawable, format, 0, NULL, serverClient, &error); if (!dst) goto free_src; ValidatePicture(src); ValidatePicture(dst); /* Composite each box individually as if we are dealing with a rotation * on a large display, we may have to perform intermediate copies. We * can then minimise the overdraw by looking at individual boxes rather * than the bbox. */ n = region_num_rects(region); b = region_rects(region); do { BoxRec box = *b; transformed_box(&box, crtc); DBG(("%s: (%d, %d)x(%d, %d) -> (%d, %d), (%d, %d)\n", __FUNCTION__, b->x1, b->y1, b->x2-b->x1, b->y2-b->y1, box.x1, box.y1, box.x2, box.y2)); if (!sna->render.composite(sna, PictOpSrc, src, NULL, dst, sx + box.x1, sy + box.y1, 0, 0, box.x1, box.y1, box.x2 - box.x1, box.y2 - box.y1, 0, memset(&tmp, 0, sizeof(tmp)))) { DBG(("%s: unsupported operation!\n", __FUNCTION__)); sna_crtc_redisplay__fallback(crtc, region, bo); break; } else { tmp.box(sna, &tmp, &box); tmp.done(sna, &tmp); } } while (b++, --n); FreePicture(dst, None); free_src: FreePicture(src, None); free_pixmap: screen->DestroyPixmap(pixmap); } static void sna_crtc_redisplay(xf86CrtcPtr crtc, RegionPtr region, struct kgem_bo *bo) { int16_t tx, ty, sx, sy; struct sna *sna = to_sna(crtc->scrn); DrawablePtr draw = crtc_source(crtc, &sx, &sy); struct sna_pixmap *priv = sna_pixmap((PixmapPtr)draw); DBG(("%s: crtc %d [pipe=%d], damage (%d, %d), (%d, %d) x %d\n", __FUNCTION__, sna_crtc_id(crtc), sna_crtc_pipe(crtc), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2, region_num_rects(region))); assert(!wedged(sna)); if (priv->clear) { RegionRec whole; DBG(("%s: clear damage boxes\n", __FUNCTION__)); if (sna_transform_is_integer_translation(&crtc->crtc_to_framebuffer, &tx, &ty)) { RegionTranslate(region, -tx, -ty); } else { whole.extents = region->extents; whole.data = NULL; transformed_box(&whole.extents, crtc); region = &whole; } if (sna_blt_fill_boxes(sna, GXcopy, bo, draw->bitsPerPixel, priv->clear_color, region_rects(region), region_num_rects(region))) return; } if (crtc->filter == NULL && priv->gpu_bo && priv->cpu_damage == NULL && sna_transform_is_integer_translation(&crtc->crtc_to_framebuffer, &tx, &ty)) { DrawableRec tmp; DBG(("%s: copy damage boxes\n", __FUNCTION__)); tmp.width = crtc->mode.HDisplay; tmp.height = crtc->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; if (sna->render.copy_boxes(sna, GXcopy, draw, priv->gpu_bo, sx, sy, &tmp, bo, -tx, -ty, region_rects(region), region_num_rects(region), 0)) return; } if (can_render(sna)) sna_crtc_redisplay__composite(crtc, region, bo); else sna_crtc_redisplay__fallback(crtc, region, bo); } static void shadow_flip_handler(struct drm_event_vblank *e, void *data) { struct sna *sna = data; if (!sna->mode.shadow_wait) sna_mode_redisplay(sna); } void sna_shadow_set_crtc(struct sna *sna, xf86CrtcPtr crtc, struct kgem_bo *bo) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); struct sna_pixmap *priv; assert(sna_crtc); DBG(("%s: setting shadow override for CRTC:%d to handle=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), bo->handle)); assert(sna->flags & SNA_TEAR_FREE); assert(!sna_crtc->transform); if (sna_crtc->client_bo != bo) { if (sna_crtc->client_bo) { assert(sna_crtc->client_bo->refcnt >= sna_crtc->client_bo->active_scanout); sna_crtc->client_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, sna_crtc->client_bo); } sna_crtc->client_bo = kgem_bo_reference(bo); sna_crtc->client_bo->active_scanout++; assert(sna_crtc->client_bo->refcnt >= sna_crtc->client_bo->active_scanout); sna_crtc_damage(crtc); } list_move(&sna_crtc->shadow_link, &sna->mode.shadow_crtc); sna->mode.shadow_dirty = true; priv = sna_pixmap(sna->front); assert(priv->gpu_bo); priv->move_to_gpu = wait_for_shadow; priv->move_to_gpu_data = sna; } void sna_shadow_steal_crtcs(struct sna *sna, struct list *list) { list_init(list); while (!list_is_empty(&sna->mode.shadow_crtc)) { RegionRec sub, *damage; struct sna_crtc *crtc = list_first_entry(&sna->mode.shadow_crtc, struct sna_crtc, shadow_link); damage = DamageRegion(sna->mode.shadow_damage); sub.extents = crtc->base->bounds; sub.data = NULL; RegionSubtract(damage, damage, &sub); list_move(&crtc->shadow_link, list); } } void sna_shadow_unsteal_crtcs(struct sna *sna, struct list *list) { while (!list_is_empty(list)) { struct sna_crtc *crtc = list_first_entry(list, struct sna_crtc, shadow_link); assert(crtc->client_bo); sna_shadow_set_crtc(sna, crtc->base, crtc->client_bo); } } void sna_shadow_unset_crtc(struct sna *sna, xf86CrtcPtr crtc) { struct sna_crtc *sna_crtc = to_sna_crtc(crtc); DBG(("%s: clearin shadow override for CRTC:%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc))); if (sna_crtc->client_bo == NULL) return; assert(sna_crtc->client_bo->refcnt >= sna_crtc->client_bo->active_scanout); sna_crtc->client_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, sna_crtc->client_bo); sna_crtc->client_bo = NULL; list_del(&sna_crtc->shadow_link); sna->mode.shadow_dirty = true; sna_crtc_damage(crtc); } static bool move_crtc_to_gpu(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); int i; for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = to_sna_crtc(config->crtc[i]); unsigned hint; assert(crtc); if (crtc->bo == NULL) continue; if (crtc->slave_pixmap) continue; if (crtc->client_bo) continue; if (crtc->shadow_bo) continue; hint = MOVE_READ | MOVE_ASYNC_HINT | __MOVE_SCANOUT; if (sna->flags & SNA_TEAR_FREE) hint |= __MOVE_FORCE; DBG(("%s: CRTC %d [pipe=%d] requires frontbuffer\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc))); return sna_pixmap_move_to_gpu(sna->front, hint); } return true; } void sna_mode_redisplay(struct sna *sna) { xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(sna->scrn); RegionPtr region; int i; if (sna->mode.hidden) { DBG(("%s: hidden outputs, skipping\n", __FUNCTION__)); return; } if (!sna->mode.shadow_enabled) return; assert(sna->mode.shadow_damage); DBG(("%s: posting shadow damage? %d (flips pending? %d, mode reconfiguration pending? %d)\n", __FUNCTION__, !RegionNil(DamageRegion(sna->mode.shadow_damage)), sna->mode.flip_active, sna->mode.dirty)); assert((sna->flags & SNA_IS_HOSTED) == 0); assert(sna->mode.shadow_active); if (sna->mode.dirty) return; region = DamageRegion(sna->mode.shadow_damage); if (RegionNil(region)) return; DBG(("%s: damage: %dx(%d, %d), (%d, %d)\n", __FUNCTION__, region_num_rects(region), region->extents.x1, region->extents.y1, region->extents.x2, region->extents.y2)); if (sna->mode.flip_active) { DBG(("%s: checking for %d outstanding flip completions\n", __FUNCTION__, sna->mode.flip_active)); sna->mode.dirty = true; while (sna->mode.flip_active && sna_mode_wakeup(sna)) ; sna->mode.dirty = false; DBG(("%s: now %d outstanding flip completions (enabled? %d)\n", __FUNCTION__, sna->mode.flip_active, sna->mode.shadow_enabled)); if (sna->mode.flip_active || !sna->mode.shadow_enabled) return; } if (!move_crtc_to_gpu(sna)) { DBG(("%s: forcing scanout update using the CPU\n", __FUNCTION__)); if (!sna_pixmap_move_to_cpu(sna->front, MOVE_READ)) return; for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); RegionRec damage; assert(sna_crtc != NULL); if (!sna_crtc->shadow) continue; assert(crtc->enabled); assert(sna_crtc->transform || sna->flags & SNA_TEAR_FREE); damage.extents = crtc->bounds; damage.data = NULL; RegionIntersect(&damage, &damage, region); if (!box_empty(&damage.extents)) { DBG(("%s: fallback intersects pipe=%d [(%d, %d), (%d, %d)]\n", __FUNCTION__, __sna_crtc_pipe(sna_crtc), damage.extents.x1, damage.extents.y1, damage.extents.x2, damage.extents.y2)); sna_crtc_redisplay__fallback(crtc, &damage, sna_crtc->bo); } RegionUninit(&damage); if (sna_crtc->slave_damage) DamageEmpty(sna_crtc->slave_damage); } RegionEmpty(region); return; } { struct sna_pixmap *priv; priv = sna_pixmap(sna->front); assert(priv != NULL); if (priv->move_to_gpu) { if (priv->move_to_gpu == wait_for_shadow && !sna->mode.shadow_dirty) { /* No damage written to new scanout * (backbuffer), ignore redisplay request * and continue with the current intact * scanout (frontbuffer). */ DBG(("%s: shadow idle, skipping update\n", __FUNCTION__)); RegionEmpty(region); return; } (void)priv->move_to_gpu(sna, priv, 0); } assert(priv->move_to_gpu == NULL); } for (i = 0; i < sna->mode.num_real_crtc; i++) { xf86CrtcPtr crtc = config->crtc[i]; struct sna_crtc *sna_crtc = to_sna_crtc(crtc); RegionRec damage; int sigio; assert(sna_crtc != NULL); DBG(("%s: crtc[%d] transformed? %d\n", __FUNCTION__, i, sna_crtc->transform)); if (!sna_crtc->transform) continue; assert(crtc->enabled); assert(sna_crtc->bo); damage.extents = crtc->bounds; damage.data = NULL; RegionIntersect(&damage, &damage, region); DBG(("%s: crtc[%d] damage? %d[%d]: %dx[(%d, %d), (%d, %d)]\n", __FUNCTION__, i, !box_empty(&damage.extents), RegionNotEmpty(&damage), region_num_rects(&damage), damage.extents.x1, damage.extents.y1, damage.extents.x2, damage.extents.y2)); sigio = sigio_block(); if (!box_empty(&damage.extents)) { if (sna->flags & SNA_TEAR_FREE) { RegionRec new_damage; struct drm_mode_crtc_page_flip arg; struct kgem_bo *bo; RegionNull(&new_damage); RegionCopy(&new_damage, &damage); bo = sna_crtc->cache_bo; if (bo == NULL) { damage.extents = crtc->bounds; damage.data = NULL; bo = kgem_create_2d(&sna->kgem, crtc->mode.HDisplay, crtc->mode.VDisplay, crtc->scrn->bitsPerPixel, sna_crtc->bo->tiling, CREATE_SCANOUT); if (bo == NULL) continue; } else RegionUnion(&damage, &damage, &sna_crtc->crtc_damage); sna_crtc->crtc_damage = new_damage; sna_crtc_redisplay(crtc, &damage, bo); kgem_bo_submit(&sna->kgem, bo); assert_crtc_fb(sna, sna_crtc); arg.crtc_id = __sna_crtc_id(sna_crtc); arg.fb_id = get_fb(sna, bo, crtc->mode.HDisplay, crtc->mode.VDisplay); if (arg.fb_id == 0) goto disable1; arg.user_data = (uintptr_t)sna_crtc; arg.flags = DRM_MODE_PAGE_FLIP_EVENT; arg.reserved = 0; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { if (sna_crtc_flip(sna, sna_crtc, bo, 0, 0)) { DBG(("%s: removing handle=%d [active_scanout=%d] from scanout, installing handle=%d [active_scanout=%d]\n", __FUNCTION__, sna_crtc->bo->handle, sna_crtc->bo->active_scanout - 1, bo->handle, bo->active_scanout)); assert(sna_crtc->bo->active_scanout); assert(sna_crtc->bo->refcnt >= sna_crtc->bo->active_scanout); sna_crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, sna_crtc->bo); sna_crtc->bo = kgem_bo_reference(bo); sna_crtc->bo->active_scanout++; } else { BoxRec box; DrawableRec tmp; DBG(("%s: flip [fb=%d] on crtc %d [%d, pipe=%d] failed - %d\n", __FUNCTION__, arg.fb_id, i, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc), errno)); xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "Page flipping failed, disabling TearFree\n"); sna->flags &= ~SNA_TEAR_FREE; disable1: box.x1 = 0; box.y1 = 0; tmp.width = box.x2 = crtc->mode.HDisplay; tmp.height = box.y2 = crtc->mode.VDisplay; tmp.depth = sna->front->drawable.depth; tmp.bitsPerPixel = sna->front->drawable.bitsPerPixel; if (!sna->render.copy_boxes(sna, GXcopy, &sna->front->drawable, bo, 0, 0, &tmp, sna_crtc->bo, 0, 0, &box, 1, COPY_LAST)) { xf86DrvMsg(crtc->scrn->scrnIndex, X_ERROR, "%s: page flipping failed, disabling CRTC:%d (pipe=%d)\n", __FUNCTION__, __sna_crtc_id(sna_crtc), __sna_crtc_pipe(sna_crtc)); sna_crtc_disable(crtc, false); } } kgem_bo_destroy(&sna->kgem, bo); sna_crtc->cache_bo = NULL; continue; } sna->mode.flip_active++; assert(sna_crtc->flip_bo == NULL); sna_crtc->flip_handler = shadow_flip_handler; sna_crtc->flip_data = sna; sna_crtc->flip_bo = bo; sna_crtc->flip_bo->active_scanout++; sna_crtc->flip_serial = sna_crtc->mode_serial; sna_crtc->flip_pending = true; if (sna_crtc->bo != sna->mode.shadow) { assert_scanout(&sna->kgem, sna_crtc->bo, crtc->mode.HDisplay, crtc->mode.VDisplay); sna_crtc->cache_bo = kgem_bo_reference(sna_crtc->bo); } DBG(("%s: recording flip on CRTC:%d handle=%d, active_scanout=%d, serial=%d\n", __FUNCTION__, __sna_crtc_id(sna_crtc), sna_crtc->flip_bo->handle, sna_crtc->flip_bo->active_scanout, sna_crtc->flip_serial)); } else { sna_crtc_redisplay(crtc, &damage, sna_crtc->bo); kgem_scanout_flush(&sna->kgem, sna_crtc->bo); } } RegionUninit(&damage); sigio_unblock(sigio); if (sna_crtc->slave_damage) DamageEmpty(sna_crtc->slave_damage); } if (sna->mode.shadow) { struct kgem_bo *new = __sna_pixmap_get_bo(sna->front); struct kgem_bo *old = sna->mode.shadow; struct drm_mode_crtc_page_flip arg; uint32_t fb = 0; int sigio; DBG(("%s: flipping TearFree outputs, current scanout handle=%d [active?=%d], new handle=%d [active=%d]\n", __FUNCTION__, old->handle, old->active_scanout, new->handle, new->active_scanout)); assert(new != old); assert(new->refcnt); arg.flags = DRM_MODE_PAGE_FLIP_EVENT; arg.reserved = 0; kgem_bo_submit(&sna->kgem, new); sigio = sigio_block(); for (i = 0; i < sna->mode.num_real_crtc; i++) { struct sna_crtc *crtc = config->crtc[i]->driver_private; struct kgem_bo *flip_bo; int x, y; assert(crtc != NULL); DBG(("%s: crtc %d [%d, pipe=%d] active? %d, transformed? %d\n", __FUNCTION__, i, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), crtc->bo ? crtc->bo->handle : 0, crtc->transform)); if (crtc->bo == NULL || crtc->transform) continue; assert(config->crtc[i]->enabled); assert(crtc->flip_bo == NULL); assert_crtc_fb(sna, crtc); arg.crtc_id = __sna_crtc_id(crtc); arg.user_data = (uintptr_t)crtc; if (crtc->client_bo) { DBG(("%s: apply shadow override bo for CRTC:%d on pipe=%d, handle=%d\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), crtc->client_bo->handle)); arg.fb_id = get_fb(sna, crtc->client_bo, crtc->base->mode.HDisplay, crtc->base->mode.VDisplay); assert(arg.fb_id != fb); flip_bo = crtc->client_bo; x = y = 0; } else { if (fb == 0) fb = get_fb(sna, new, sna->scrn->virtualX, sna->scrn->virtualY); if (fb == 0) { fixup_shadow: if (sna_pixmap_move_to_gpu(sna->front, MOVE_READ | MOVE_ASYNC_HINT)) { BoxRec box; box.x1 = 0; box.y1 = 0; box.x2 = sna->scrn->virtualX; box.y2 = sna->scrn->virtualY; if (sna->render.copy_boxes(sna, GXcopy, &sna->front->drawable, __sna_pixmap_get_bo(sna->front), 0, 0, &sna->front->drawable, old, 0, 0, &box, 1, COPY_LAST)) { kgem_submit(&sna->kgem); RegionEmpty(region); } } sigio_unblock(sigio); return; } arg.fb_id = fb; flip_bo = new; x = crtc->base->x; y = crtc->base->y; } if (crtc->bo == flip_bo) { assert(crtc->bo->refcnt >= crtc->bo->active_scanout); DBG(("%s: flip handle=%d is already on the CRTC\n", __FUNCTION__, flip_bo->handle)); continue; } if (flip_bo->pitch != crtc->bo->pitch || (y << 16 | x) != crtc->offset) { DBG(("%s: changing pitch (new %d =?= old %d) or offset (new %x =?= old %x)\n", __FUNCTION__, flip_bo->pitch, crtc->bo->pitch, y << 16 | x, crtc->offset)); fixup_flip: if (sna_crtc_flip(sna, crtc, flip_bo, x, y)) { DBG(("%s: removing handle=%d [active_scanout=%d] from scanout, installing handle=%d [active_scanout=%d]\n", __FUNCTION__, crtc->bo->handle, crtc->bo->active_scanout-1, flip_bo->handle, flip_bo->active_scanout)); assert(flip_bo != crtc->bo); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); if (crtc->shadow_bo) { kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; } crtc->bo = kgem_bo_reference(flip_bo); crtc->bo->active_scanout++; } else { if (sna->flags & SNA_TEAR_FREE) { xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "Failed to prepare CRTC for page flipping, disabling TearFree\n"); sna->flags &= ~SNA_TEAR_FREE; } if (sna->mode.flip_active == 0) { DBG(("%s: abandoning flip attempt\n", __FUNCTION__)); goto fixup_shadow; } xf86DrvMsg(sna->scrn->scrnIndex, X_ERROR, "%s: page flipping failed, disabling CRTC:%d (pipe=%d)\n", __FUNCTION__, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc)); sna_crtc_disable(crtc->base, false); } continue; } if (drmIoctl(sna->kgem.fd, DRM_IOCTL_MODE_PAGE_FLIP, &arg)) { ERR(("%s: flip [fb=%d] on crtc %d [%d, pipe=%d] failed - %d\n", __FUNCTION__, arg.fb_id, i, __sna_crtc_id(crtc), __sna_crtc_pipe(crtc), errno)); goto fixup_flip; } sna->mode.flip_active++; assert(crtc->flip_bo == NULL); crtc->flip_handler = shadow_flip_handler; crtc->flip_data = sna; crtc->flip_bo = kgem_bo_reference(flip_bo); crtc->flip_bo->active_scanout++; crtc->flip_serial = crtc->mode_serial; crtc->flip_pending = true; DBG(("%s: recording flip on CRTC:%d handle=%d, active_scanout=%d, serial=%d\n", __FUNCTION__, __sna_crtc_id(crtc), crtc->flip_bo->handle, crtc->flip_bo->active_scanout, crtc->flip_serial)); { struct drm_i915_gem_busy busy = { flip_bo->handle }; if (drmIoctl(sna->kgem.fd, DRM_IOCTL_I915_GEM_BUSY, &busy) == 0) { if (busy.busy) { int mode = KGEM_RENDER; if (busy.busy & (0xfffe << 16)) mode = KGEM_BLT; DBG(("%s: marking flip bo as busy [%x -> mode=%d]\n", __FUNCTION__, busy.busy, mode)); kgem_bo_mark_busy(&sna->kgem, flip_bo, mode); } else __kgem_bo_clear_busy(flip_bo); } } } sigio_unblock(sigio); DBG(("%s: flipped %d outputs, shadow active? %d\n", __FUNCTION__, sna->mode.flip_active, sna->mode.shadow ? sna->mode.shadow->handle : 0)); if (sna->mode.flip_active) { assert(old == sna->mode.shadow); assert(old->refcnt >= 1); set_shadow(sna, region); } } else kgem_submit(&sna->kgem); RegionEmpty(region); } int sna_mode_wakeup(struct sna *sna) { char buffer[1024]; int len, i; int ret = 0; again: /* In order to workaround a kernel bug in not honouring O_NONBLOCK, * check that the fd is readable before attempting to read the next * event from drm. */ if (!event_pending(sna->kgem.fd)) return ret; /* The DRM read semantics guarantees that we always get only * complete events. */ len = read(sna->kgem.fd, buffer, sizeof (buffer)); if (len < (int)sizeof(struct drm_event)) return ret; /* Note that we cannot rely on the passed in struct sna matching * the struct sna used for the vblank event (in case it was submitted * by a different ZaphodHead). When processing the event, we must * ensure that we only use the pointer passed along with the event. */ DBG(("%s: len=%d\n", __FUNCTION__, len)); i = 0; while (i < len) { struct drm_event *e = (struct drm_event *)&buffer[i]; switch (e->type) { case DRM_EVENT_VBLANK: if (sna->mode.shadow_wait) defer_event(sna, e); else if (((uintptr_t)((struct drm_event_vblank *)e)->user_data) & 2) sna_present_vblank_handler((struct drm_event_vblank *)e); else sna_dri2_vblank_handler((struct drm_event_vblank *)e); break; case DRM_EVENT_FLIP_COMPLETE: { struct drm_event_vblank *vbl = (struct drm_event_vblank *)e; struct sna_crtc *crtc = (void *)(uintptr_t)vbl->user_data; uint64_t msc; /* Beware Zaphod! */ sna = to_sna(crtc->base->scrn); if (msc64(crtc, vbl->sequence, &msc)) { DBG(("%s: recording last swap on pipe=%d, frame %d [%08llx], time %d.%06d\n", __FUNCTION__, __sna_crtc_pipe(crtc), vbl->sequence, (long long)msc, vbl->tv_sec, vbl->tv_usec)); crtc->swap.tv_sec = vbl->tv_sec; crtc->swap.tv_usec = vbl->tv_usec; crtc->swap.msc = msc; } assert(crtc->flip_pending); crtc->flip_pending = false; assert(crtc->flip_bo); assert(crtc->flip_bo->active_scanout); assert(crtc->flip_bo->refcnt >= crtc->flip_bo->active_scanout); if (crtc->flip_serial == crtc->mode_serial) { DBG(("%s: removing handle=%d [active_scanout=%d] from scanout, installing handle=%d [active_scanout=%d]\n", __FUNCTION__, crtc->bo->handle, crtc->bo->active_scanout - 1, crtc->flip_bo->handle, crtc->flip_bo->active_scanout)); assert(crtc->bo->active_scanout); assert(crtc->bo->refcnt >= crtc->bo->active_scanout); crtc->bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->bo); if (crtc->shadow_bo) { kgem_bo_destroy(&sna->kgem, crtc->shadow_bo); crtc->shadow_bo = NULL; } crtc->bo = crtc->flip_bo; crtc->flip_bo = NULL; assert_crtc_fb(sna, crtc); } else { crtc->flip_bo->active_scanout--; kgem_bo_destroy(&sna->kgem, crtc->flip_bo); crtc->flip_bo = NULL; } DBG(("%s: flip complete, pending? %d\n", __FUNCTION__, sna->mode.flip_active)); assert(sna->mode.flip_active); if (--sna->mode.flip_active == 0) { assert(crtc->flip_handler); crtc->flip_handler(vbl, crtc->flip_data); } } break; default: break; } i += e->length; ret++; } goto again; }