/************************************************************************** Copyright 2001 VA Linux Systems Inc., Fremont, California. Copyright © 2002 by David Dawes All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation on the rights to use, copy, modify, merge, publish, distribute, sub license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************/ /* * Authors: Jeff Hartmann * Abraham van der Merwe * David Dawes * Alan Hourihane */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include "compiler.h" #include "sna.h" #include "sna_module.h" #include "sna_video.h" #include "intel_driver.h" #include #include #include #include "i915_drm.h" #if HAVE_DOT_GIT #include "git_version.h" #endif #if DEBUG_DRIVER #undef DBG #define DBG(x) ErrorF x #endif DevPrivateKeyRec sna_private_index; DevPrivateKeyRec sna_pixmap_index; DevPrivateKeyRec sna_gc_index; DevPrivateKeyRec sna_glyph_key; DevPrivateKeyRec sna_glyph_image_key; static OptionInfoRec sna_options[] = { {OPTION_TILING_FB, "LinearFramebuffer", OPTV_BOOLEAN, {0}, FALSE}, {OPTION_TILING_2D, "Tiling", OPTV_BOOLEAN, {0}, TRUE}, {OPTION_PREFER_OVERLAY, "XvPreferOverlay", OPTV_BOOLEAN, {0}, FALSE}, {OPTION_COLOR_KEY, "ColorKey", OPTV_INTEGER, {0}, FALSE}, {OPTION_VIDEO_KEY, "VideoKey", OPTV_INTEGER, {0}, FALSE}, {OPTION_HOTPLUG, "HotPlug", OPTV_BOOLEAN, {0}, TRUE}, {OPTION_THROTTLE, "Throttle", OPTV_BOOLEAN, {0}, TRUE}, {OPTION_RELAXED_FENCING, "UseRelaxedFencing", OPTV_BOOLEAN, {0}, TRUE}, {OPTION_VMAP, "UseVmap", OPTV_BOOLEAN, {0}, TRUE}, {OPTION_ZAPHOD, "ZaphodHeads", OPTV_STRING, {0}, FALSE}, {OPTION_DELAYED_FLUSH, "DelayedFlush", OPTV_BOOLEAN, {0}, TRUE}, {-1, NULL, OPTV_NONE, {0}, FALSE} }; static Bool sna_enter_vt(int scrnIndex, int flags); /* temporary */ extern void xf86SetCursor(ScreenPtr screen, CursorPtr pCurs, int x, int y); const OptionInfoRec *sna_available_options(int chipid, int busid) { return sna_options; } static void sna_load_palette(ScrnInfoPtr scrn, int numColors, int *indices, LOCO * colors, VisualPtr pVisual) { xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(scrn); int i, j, index; int p; uint16_t lut_r[256], lut_g[256], lut_b[256]; DBG(("%s\n", __FUNCTION__)); for (p = 0; p < xf86_config->num_crtc; p++) { xf86CrtcPtr crtc = xf86_config->crtc[p]; switch (scrn->depth) { case 15: for (i = 0; i < numColors; i++) { index = indices[i]; for (j = 0; j < 8; j++) { lut_r[index * 8 + j] = colors[index].red << 8; lut_g[index * 8 + j] = colors[index].green << 8; lut_b[index * 8 + j] = colors[index].blue << 8; } } break; case 16: for (i = 0; i < numColors; i++) { index = indices[i]; if (index <= 31) { for (j = 0; j < 8; j++) { lut_r[index * 8 + j] = colors[index].red << 8; lut_b[index * 8 + j] = colors[index].blue << 8; } } for (j = 0; j < 4; j++) { lut_g[index * 4 + j] = colors[index].green << 8; } } break; default: for (i = 0; i < numColors; i++) { index = indices[i]; lut_r[index] = colors[index].red << 8; lut_g[index] = colors[index].green << 8; lut_b[index] = colors[index].blue << 8; } break; } /* Make the change through RandR */ #ifdef RANDR_12_INTERFACE RRCrtcGammaSet(crtc->randr_crtc, lut_r, lut_g, lut_b); #else crtc->funcs->gamma_set(crtc, lut_r, lut_g, lut_b, 256); #endif } } /** * Adjust the screen pixmap for the current location of the front buffer. * This is done at EnterVT when buffers are bound as long as the resources * have already been created, but the first EnterVT happens before * CreateScreenResources. */ static Bool sna_create_screen_resources(ScreenPtr screen) { struct sna *sna = to_sna_from_screen(screen); DBG(("%s(%dx%d@%d)\n", __FUNCTION__, screen->width, screen->height, screen->rootDepth)); free(screen->devPrivate); screen->devPrivate = NULL; sna->front = screen->CreatePixmap(screen, screen->width, screen->height, screen->rootDepth, SNA_CREATE_FB); if (!sna->front) { xf86DrvMsg(screen->myNum, X_ERROR, "[intel] Unable to create front buffer %dx%d at depth %d\n", screen->width, screen->height, screen->rootDepth); return FALSE; } if (!sna_pixmap_force_to_gpu(sna->front)) { xf86DrvMsg(screen->myNum, X_ERROR, "[intel] Failed to allocate video resources for front buffer %dx%d at depth %d\n", screen->width, screen->height, screen->rootDepth); goto cleanup_front; } screen->SetScreenPixmap(sna->front); if (!sna_accel_create(sna)) { xf86DrvMsg(screen->myNum, X_ERROR, "[intel] Failed to initialise acceleration routines\n"); goto cleanup_front; } sna_copy_fbcon(sna); if (!sna_enter_vt(screen->myNum, 0)) { xf86DrvMsg(screen->myNum, X_ERROR, "[intel] Failed to become DRM master\n"); goto cleanup_front; } return TRUE; cleanup_front: screen->DestroyPixmap(sna->front); sna->front = NULL; return FALSE; } static void PreInitCleanup(ScrnInfoPtr scrn) { if (!scrn || !scrn->driverPrivate) return; free(scrn->driverPrivate); scrn->driverPrivate = NULL; } static void sna_check_chipset_option(ScrnInfoPtr scrn) { struct sna *sna = to_sna(scrn); MessageType from = X_PROBED; intel_detect_chipset(scrn, sna->PciInfo, &sna->chipset); /* Set the Chipset and ChipRev, allowing config file entries to override. */ if (sna->pEnt->device->chipset && *sna->pEnt->device->chipset) { scrn->chipset = sna->pEnt->device->chipset; from = X_CONFIG; } else if (sna->pEnt->device->chipID >= 0) { scrn->chipset = (char *)xf86TokenToString(intel_chipsets, sna->pEnt->device->chipID); from = X_CONFIG; xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "ChipID override: 0x%04X\n", sna->pEnt->device->chipID); DEVICE_ID(sna->PciInfo) = sna->pEnt->device->chipID; } else { from = X_PROBED; scrn->chipset = (char *)xf86TokenToString(intel_chipsets, DEVICE_ID(sna->PciInfo)); } if (sna->pEnt->device->chipRev >= 0) { xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "ChipRev override: %d\n", sna->pEnt->device->chipRev); } xf86DrvMsg(scrn->scrnIndex, from, "Chipset: \"%s\"\n", (scrn->chipset != NULL) ? scrn->chipset : "Unknown i8xx"); } static Bool sna_get_early_options(ScrnInfoPtr scrn) { struct sna *sna = to_sna(scrn); /* Process the options */ xf86CollectOptions(scrn, NULL); if (!(sna->Options = malloc(sizeof(sna_options)))) return FALSE; memcpy(sna->Options, sna_options, sizeof(sna_options)); xf86ProcessOptions(scrn->scrnIndex, scrn->options, sna->Options); return TRUE; } struct sna_device { int fd; int open_count; }; static int sna_device_key; static inline struct sna_device *sna_device(ScrnInfoPtr scrn) { return xf86GetEntityPrivate(scrn->entityList[0], sna_device_key)->ptr; } static inline void sna_set_device(ScrnInfoPtr scrn, struct sna_device *dev) { xf86GetEntityPrivate(scrn->entityList[0], sna_device_key)->ptr = dev; } static int sna_open_drm_master(ScrnInfoPtr scrn) { struct sna_device *dev; struct sna *sna = to_sna(scrn); struct pci_device *pci = sna->PciInfo; drmSetVersion sv; struct drm_i915_getparam gp; int err, val; char busid[20]; int fd; DBG(("%s\n", __FUNCTION__)); dev = sna_device(scrn); if (dev) { dev->open_count++; return dev->fd; } snprintf(busid, sizeof(busid), "pci:%04x:%02x:%02x.%d", pci->domain, pci->bus, pci->dev, pci->func); fd = drmOpen("i915", busid); if (fd == -1) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "[drm] Failed to open DRM device for %s: %s\n", busid, strerror(errno)); return -1; } /* Check that what we opened was a master or a master-capable FD, * by setting the version of the interface we'll use to talk to it. * (see DRIOpenDRMMaster() in DRI1) */ sv.drm_di_major = 1; sv.drm_di_minor = 1; sv.drm_dd_major = -1; sv.drm_dd_minor = -1; err = drmSetInterfaceVersion(fd, &sv); if (err != 0) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "[drm] failed to set drm interface version.\n"); drmClose(fd); return -1; } val = FALSE; gp.param = I915_PARAM_HAS_BLT; gp.value = &val; if (drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp))) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "Failed to detect BLT. Kernel 2.6.37 required.\n"); drmClose(fd); return -1; } dev = malloc(sizeof(*dev)); if (dev) { int flags; /* make the fd nonblocking to handle event loops */ flags = fcntl(fd, F_GETFL, 0); if (flags != -1) fcntl(fd, F_SETFL, flags | O_NONBLOCK); dev->fd = fd; dev->open_count = 1; sna_set_device(scrn, dev); } return fd; } static void sna_close_drm_master(ScrnInfoPtr scrn) { struct sna_device *dev = sna_device(scrn); DBG(("%s(open_count=%d)\n", __FUNCTION__, dev->open_count)); if (--dev->open_count) return; drmClose(dev->fd); sna_set_device(scrn, NULL); free(dev); } static void sna_selftest(void) { sna_damage_selftest(); } /** * This is called before ScreenInit to do any require probing of screen * configuration. * * This code generally covers probing, module loading, option handling * card mapping, and RandR setup. * * Since xf86InitialConfiguration ends up requiring that we set video modes * in order to detect configuration, we end up having to do a lot of driver * setup (talking to the DRM, mapping the device, etc.) in this function. * As a result, we want to set up that server initialization once rather * that doing it per generation. */ static Bool sna_pre_init(ScrnInfoPtr scrn, int flags) { struct sna *sna; rgb defaultWeight = { 0, 0, 0 }; EntityInfoPtr pEnt; int flags24; Gamma zeros = { 0.0, 0.0, 0.0 }; int fd; DBG(("%s\n", __FUNCTION__)); sna_selftest(); if (scrn->numEntities != 1) return FALSE; pEnt = xf86GetEntityInfo(scrn->entityList[0]); if (flags & PROBE_DETECT) return TRUE; sna = to_sna(scrn); if (sna == NULL) { sna = xnfcalloc(sizeof(struct sna), 1); if (sna == NULL) return FALSE; scrn->driverPrivate = sna; } sna->scrn = scrn; sna->pEnt = pEnt; scrn->displayWidth = 640; /* default it */ if (sna->pEnt->location.type != BUS_PCI) return FALSE; sna->PciInfo = xf86GetPciInfoForEntity(sna->pEnt->index); fd = sna_open_drm_master(scrn); if (fd == -1) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "Failed to become DRM master.\n"); return FALSE; } scrn->monitor = scrn->confScreen->monitor; scrn->progClock = TRUE; scrn->rgbBits = 8; flags24 = Support32bppFb | PreferConvert24to32 | SupportConvert24to32; if (!xf86SetDepthBpp(scrn, 0, 0, 0, flags24)) return FALSE; switch (scrn->depth) { case 8: case 15: case 16: case 24: case 30: break; default: xf86DrvMsg(scrn->scrnIndex, X_ERROR, "Given depth (%d) is not supported by Intel driver\n", scrn->depth); return FALSE; } xf86PrintDepthBpp(scrn); if (!xf86SetWeight(scrn, defaultWeight, defaultWeight)) return FALSE; if (!xf86SetDefaultVisual(scrn, -1)) return FALSE; sna->mode.cpp = scrn->bitsPerPixel / 8; if (!sna_get_early_options(scrn)) return FALSE; sna_check_chipset_option(scrn); kgem_init(&sna->kgem, fd, sna->PciInfo, sna->chipset.info->gen); if (!xf86ReturnOptValBool(sna->Options, OPTION_RELAXED_FENCING, sna->kgem.has_relaxed_fencing)) { xf86DrvMsg(scrn->scrnIndex, sna->kgem.has_relaxed_fencing ? X_CONFIG : X_PROBED, "Disabling use of relaxed fencing\n"); sna->kgem.has_relaxed_fencing = 0; } if (!xf86ReturnOptValBool(sna->Options, OPTION_VMAP, sna->kgem.has_vmap)) { xf86DrvMsg(scrn->scrnIndex, sna->kgem.has_vmap ? X_CONFIG : X_PROBED, "Disabling use of vmap\n"); sna->kgem.has_vmap = 0; } /* Enable tiling by default */ sna->tiling = SNA_TILING_ALL; /* Allow user override if they set a value */ if (!xf86ReturnOptValBool(sna->Options, OPTION_TILING_2D, TRUE)) sna->tiling &= ~SNA_TILING_2D; if (xf86ReturnOptValBool(sna->Options, OPTION_TILING_FB, FALSE)) sna->tiling &= ~SNA_TILING_FB; /* Default fail-safe value of 75 Hz */ sna->vblank_interval = 1000 * 1000 * 1000 / 75; sna->flags = 0; if (!xf86ReturnOptValBool(sna->Options, OPTION_THROTTLE, TRUE)) sna->flags |= SNA_NO_THROTTLE; if (!xf86ReturnOptValBool(sna->Options, OPTION_DELAYED_FLUSH, TRUE)) sna->flags |= SNA_NO_DELAYED_FLUSH; xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "Framebuffer %s\n", sna->tiling & SNA_TILING_FB ? "tiled" : "linear"); xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "Pixmaps %s\n", sna->tiling & SNA_TILING_2D ? "tiled" : "linear"); xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "3D buffers %s\n", sna->tiling & SNA_TILING_3D ? "tiled" : "linear"); xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "Throttling %sabled\n", sna->flags & SNA_NO_THROTTLE ? "dis" : "en"); xf86DrvMsg(scrn->scrnIndex, X_CONFIG, "Delayed flush %sabled\n", sna->flags & SNA_NO_DELAYED_FLUSH ? "dis" : "en"); if (!sna_mode_pre_init(scrn, sna)) { PreInitCleanup(scrn); return FALSE; } if (!xf86SetGamma(scrn, zeros)) { PreInitCleanup(scrn); return FALSE; } if (scrn->modes == NULL) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "No modes.\n"); PreInitCleanup(scrn); return FALSE; } scrn->currentMode = scrn->modes; /* Set display resolution */ xf86SetDpi(scrn, 0, 0); /* Load the required sub modules */ if (!xf86LoadSubModule(scrn, "fb")) { PreInitCleanup(scrn); return FALSE; } /* Load the dri2 module if requested. */ xf86LoadSubModule(scrn, "dri2"); return sna_accel_pre_init(sna); } /** * Intialiazes the hardware for the 3D pipeline use in the 2D driver. * * Some state caching is performed to avoid redundant state emits. This * function is also responsible for marking the state as clobbered for DRI * clients. */ static void sna_block_handler(int i, pointer data, pointer timeout, pointer read_mask) { struct sna *sna = data; struct timeval **tv = timeout; DBG(("%s (tv=%ld.%06ld)\n", __FUNCTION__, *tv ? (*tv)->tv_sec : -1, *tv ? (*tv)->tv_usec : 0)); sna->BlockHandler(i, sna->BlockData, timeout, read_mask); if (*tv == NULL || ((*tv)->tv_usec | (*tv)->tv_sec)) sna_accel_block_handler(sna); } static void sna_wakeup_handler(int i, pointer data, unsigned long result, pointer read_mask) { struct sna *sna = data; DBG(("%s\n", __FUNCTION__)); /* despite all appearances, result is just a signed int */ if ((int)result < 0) return; sna->WakeupHandler(i, sna->WakeupData, result, read_mask); sna_accel_wakeup_handler(sna); if (FD_ISSET(sna->kgem.fd, (fd_set*)read_mask)) sna_dri_wakeup(sna); } #if HAVE_UDEV static void sna_handle_uevents(int fd, void *closure) { ScrnInfoPtr scrn = closure; struct sna *sna = to_sna(scrn); struct udev_device *dev; const char *hotplug; struct stat s; dev_t udev_devnum; DBG(("%s\n", __FUNCTION__)); dev = udev_monitor_receive_device(sna->uevent_monitor); if (!dev) return; udev_devnum = udev_device_get_devnum(dev); fstat(sna->kgem.fd, &s); /* * Check to make sure this event is directed at our * device (by comparing dev_t values), then make * sure it's a hotplug event (HOTPLUG=1) */ hotplug = udev_device_get_property_value(dev, "HOTPLUG"); if (memcmp(&s.st_rdev, &udev_devnum, sizeof (dev_t)) == 0 && hotplug && atoi(hotplug) == 1) RRGetInfo(screenInfo.screens[scrn->scrnIndex], TRUE); udev_device_unref(dev); } static void sna_uevent_init(ScrnInfoPtr scrn) { struct sna *sna = to_sna(scrn); struct udev *u; struct udev_monitor *mon; Bool hotplug; MessageType from = X_CONFIG; DBG(("%s\n", __FUNCTION__)); if (!xf86GetOptValBool(sna->Options, OPTION_HOTPLUG, &hotplug)) { from = X_DEFAULT; hotplug = TRUE; } xf86DrvMsg(scrn->scrnIndex, from, "hotplug detection: \"%s\"\n", hotplug ? "enabled" : "disabled"); if (!hotplug) return; u = udev_new(); if (!u) return; mon = udev_monitor_new_from_netlink(u, "udev"); if (!mon) { udev_unref(u); return; } if (udev_monitor_filter_add_match_subsystem_devtype(mon, "drm", "drm_minor") < 0 || udev_monitor_enable_receiving(mon) < 0) { udev_monitor_unref(mon); udev_unref(u); return; } sna->uevent_handler = xf86AddGeneralHandler(udev_monitor_get_fd(mon), sna_handle_uevents, scrn); if (!sna->uevent_handler) { udev_monitor_unref(mon); udev_unref(u); return; } sna->uevent_monitor = mon; } static void sna_uevent_fini(ScrnInfoPtr scrn) { struct sna *sna = to_sna(scrn); if (sna->uevent_handler) { struct udev *u = udev_monitor_get_udev(sna->uevent_monitor); xf86RemoveGeneralHandler(sna->uevent_handler); udev_monitor_unref(sna->uevent_monitor); udev_unref(u); sna->uevent_handler = NULL; sna->uevent_monitor = NULL; } } #endif /* HAVE_UDEV */ static void sna_leave_vt(int scrnIndex, int flags) { ScrnInfoPtr scrn = xf86Screens[scrnIndex]; struct sna *sna = to_sna(scrn); int ret; DBG(("%s\n", __FUNCTION__)); xf86RotateFreeShadow(scrn); xf86_hide_cursors(scrn); ret = drmDropMaster(sna->kgem.fd); if (ret) xf86DrvMsg(scrn->scrnIndex, X_WARNING, "drmDropMaster failed: %s\n", strerror(errno)); } /* In order to workaround a kernel bug in not honouring O_NONBLOCK, * check that the fd is readable before attempting to read the next * event from drm. */ static Bool sna_dri_has_pending_events(struct sna *sna) { struct pollfd pfd; pfd.fd = sna->kgem.fd; pfd.events = POLLIN; return poll(&pfd, 1, 0) == 1; } static Bool sna_close_screen(int scrnIndex, ScreenPtr screen) { ScrnInfoPtr scrn = xf86Screens[scrnIndex]; struct sna *sna = to_sna(scrn); DBG(("%s\n", __FUNCTION__)); #if HAVE_UDEV sna_uevent_fini(scrn); #endif /* drain the event queues */ sna_accel_wakeup_handler(sna); if (sna_dri_has_pending_events(sna)) sna_dri_wakeup(sna); if (scrn->vtSema == TRUE) sna_leave_vt(scrnIndex, 0); sna_accel_close(sna); xf86_cursors_fini(screen); /* XXX unhook devPrivate otherwise fbCloseScreen frees it! */ screen->devPrivate = NULL; screen->CloseScreen = sna->CloseScreen; (*screen->CloseScreen) (scrnIndex, screen); if (sna->directRenderingOpen) { sna_dri_close(sna, screen); sna->directRenderingOpen = FALSE; } sna_mode_remove_fb(sna); if (sna->front) { screen->DestroyPixmap(sna->front); sna->front = NULL; } xf86GARTCloseScreen(scrnIndex); scrn->vtSema = FALSE; return TRUE; } static Bool sna_register_all_privates(void) { if (!dixRegisterPrivateKey(&sna_private_index, PRIVATE_PIXMAP, 0)) return FALSE; assert(sna_private_index.offset == 0); if (!dixRegisterPrivateKey(&sna_pixmap_index, PRIVATE_PIXMAP, 0)) return FALSE; assert(sna_pixmap_index.offset == sizeof(void*)); if (!dixRegisterPrivateKey(&sna_gc_index, PRIVATE_GC, sizeof(struct sna_gc))) return FALSE; assert(sna_gc_index.offset == 0); if (!dixRegisterPrivateKey(&sna_glyph_key, PRIVATE_GLYPH, sizeof(struct sna_glyph))) return FALSE; assert(sna_glyph_key.offset == 0); return TRUE; } static Bool sna_screen_init(int scrnIndex, ScreenPtr screen, int argc, char **argv) { ScrnInfoPtr scrn = xf86Screens[screen->myNum]; struct sna *sna = to_sna(scrn); VisualPtr visual; struct pci_device *const device = sna->PciInfo; DBG(("%s\n", __FUNCTION__)); if (!sna_register_all_privates()) return FALSE; scrn->videoRam = device->regions[2].size / 1024; miClearVisualTypes(); if (!miSetVisualTypes(scrn->depth, miGetDefaultVisualMask(scrn->depth), scrn->rgbBits, scrn->defaultVisual)) return FALSE; if (!miSetPixmapDepths()) return FALSE; if (!fbScreenInit(screen, NULL, scrn->virtualX, scrn->virtualY, scrn->xDpi, scrn->yDpi, scrn->displayWidth, scrn->bitsPerPixel)) return FALSE; assert(fbGetWinPrivateKey()->offset == 0); if (scrn->bitsPerPixel > 8) { /* Fixup RGB ordering */ visual = screen->visuals + screen->numVisuals; while (--visual >= screen->visuals) { if ((visual->class | DynamicClass) == DirectColor) { visual->offsetRed = scrn->offset.red; visual->offsetGreen = scrn->offset.green; visual->offsetBlue = scrn->offset.blue; visual->redMask = scrn->mask.red; visual->greenMask = scrn->mask.green; visual->blueMask = scrn->mask.blue; } } } fbPictureInit(screen, NULL, 0); xf86SetBlackWhitePixels(screen); if (!sna_accel_init(screen, sna)) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "Hardware acceleration initialization failed\n"); return FALSE; } miInitializeBackingStore(screen); xf86SetBackingStore(screen); xf86SetSilkenMouse(screen); miDCInitialize(screen, xf86GetPointerScreenFuncs()); xf86DrvMsg(scrn->scrnIndex, X_INFO, "Initializing HW Cursor\n"); if (!xf86_cursors_init(screen, SNA_CURSOR_X, SNA_CURSOR_Y, HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | HARDWARE_CURSOR_BIT_ORDER_MSBFIRST | HARDWARE_CURSOR_INVERT_MASK | HARDWARE_CURSOR_SWAP_SOURCE_AND_MASK | HARDWARE_CURSOR_AND_SOURCE_WITH_MASK | HARDWARE_CURSOR_SOURCE_MASK_INTERLEAVE_64 | HARDWARE_CURSOR_UPDATE_UNHIDDEN | HARDWARE_CURSOR_ARGB)) { xf86DrvMsg(scrn->scrnIndex, X_ERROR, "Hardware cursor initialization failed\n"); } /* Must force it before EnterVT, so we are in control of VT and * later memory should be bound when allocating, e.g rotate_mem */ scrn->vtSema = TRUE; sna->BlockHandler = screen->BlockHandler; sna->BlockData = screen->blockData; screen->BlockHandler = sna_block_handler; screen->blockData = sna; sna->WakeupHandler = screen->WakeupHandler; sna->WakeupData = screen->wakeupData; screen->WakeupHandler = sna_wakeup_handler; screen->wakeupData = sna; screen->SaveScreen = xf86SaveScreen; sna->CloseScreen = screen->CloseScreen; screen->CloseScreen = sna_close_screen; screen->CreateScreenResources = sna_create_screen_resources; if (!xf86CrtcScreenInit(screen)) return FALSE; if (!miCreateDefColormap(screen)) return FALSE; if (!xf86HandleColormaps(screen, 256, 8, sna_load_palette, NULL, CMAP_RELOAD_ON_MODE_SWITCH | CMAP_PALETTED_TRUECOLOR)) { return FALSE; } xf86DPMSInit(screen, xf86DPMSSet, 0); sna_video_init(sna, screen); #if USE_DRI2 sna->directRenderingOpen = sna_dri_open(sna, screen); if (sna->directRenderingOpen) xf86DrvMsg(scrn->scrnIndex, X_INFO, "direct rendering: DRI2 Enabled\n"); #endif if (serverGeneration == 1) xf86ShowUnusedOptions(scrn->scrnIndex, scrn->options); sna->suspended = FALSE; #if HAVE_UDEV sna_uevent_init(scrn); #endif return TRUE; } static void sna_adjust_frame(int scrnIndex, int x, int y, int flags) { } static void sna_free_screen(int scrnIndex, int flags) { ScrnInfoPtr scrn = xf86Screens[scrnIndex]; struct sna *sna = to_sna(scrn); DBG(("%s\n", __FUNCTION__)); if (sna) { sna_mode_fini(sna); free(sna); scrn->driverPrivate = NULL; } sna_close_drm_master(scrn); } /* * This gets called when gaining control of the VT, and from ScreenInit(). */ static Bool sna_enter_vt(int scrnIndex, int flags) { ScrnInfoPtr scrn = xf86Screens[scrnIndex]; struct sna *sna = to_sna(scrn); DBG(("%s\n", __FUNCTION__)); if (drmSetMaster(sna->kgem.fd)) { xf86DrvMsg(scrn->scrnIndex, X_WARNING, "drmSetMaster failed: %s\n", strerror(errno)); } return xf86SetDesiredModes(scrn); } static Bool sna_switch_mode(int scrnIndex, DisplayModePtr mode, int flags) { DBG(("%s\n", __FUNCTION__)); return xf86SetSingleMode(xf86Screens[scrnIndex], mode, RR_Rotate_0); } static ModeStatus sna_valid_mode(int scrnIndex, DisplayModePtr mode, Bool verbose, int flags) { return MODE_OK; } #ifndef SUSPEND_SLEEP #define SUSPEND_SLEEP 0 #endif #ifndef RESUME_SLEEP #define RESUME_SLEEP 0 #endif /* * This function is only required if we need to do anything differently from * DoApmEvent() in common/xf86PM.c, including if we want to see events other * than suspend/resume. */ static Bool sna_pm_event(int scrnIndex, pmEvent event, Bool undo) { ScrnInfoPtr scrn = xf86Screens[scrnIndex]; struct sna *sna = to_sna(scrn); DBG(("%s\n", __FUNCTION__)); switch (event) { case XF86_APM_SYS_SUSPEND: case XF86_APM_CRITICAL_SUSPEND: /*do we want to delay a critical suspend? */ case XF86_APM_USER_SUSPEND: case XF86_APM_SYS_STANDBY: case XF86_APM_USER_STANDBY: if (!undo && !sna->suspended) { scrn->LeaveVT(scrnIndex, 0); sna->suspended = TRUE; sleep(SUSPEND_SLEEP); } else if (undo && sna->suspended) { sleep(RESUME_SLEEP); scrn->EnterVT(scrnIndex, 0); sna->suspended = FALSE; } break; case XF86_APM_STANDBY_RESUME: case XF86_APM_NORMAL_RESUME: case XF86_APM_CRITICAL_RESUME: if (sna->suspended) { sleep(RESUME_SLEEP); scrn->EnterVT(scrnIndex, 0); sna->suspended = FALSE; /* * Turn the screen saver off when resuming. This seems to be * needed to stop xscreensaver kicking in (when used). * * XXX DoApmEvent() should probably call this just like * xf86VTSwitch() does. Maybe do it here only in 4.2 * compatibility mode. */ SaveScreens(SCREEN_SAVER_FORCER, ScreenSaverReset); } break; /* This is currently used for ACPI */ case XF86_APM_CAPABILITY_CHANGED: SaveScreens(SCREEN_SAVER_FORCER, ScreenSaverReset); break; default: ErrorF("sna_pm_event: received APM event %d\n", event); } return TRUE; } void sna_init_scrn(ScrnInfoPtr scrn, int entity_num) { EntityInfoPtr entity; #if defined(USE_GIT_DESCRIBE) xf86DrvMsg(scrn->scrnIndex, X_INFO, "SNA compiled from %s\n", git_version); #elif BUILDER_DESCRIPTION xf86DrvMsg(scrn->scrnIndex, X_INFO, "SNA compiled: %s\n", BUILDER_DESCRIPTION); #endif DBG(("%s\n", __FUNCTION__)); DBG(("pixman version: %s\n", pixman_version_string())); sna_device_key = xf86AllocateEntityPrivateIndex(); scrn->PreInit = sna_pre_init; scrn->ScreenInit = sna_screen_init; scrn->SwitchMode = sna_switch_mode; scrn->AdjustFrame = sna_adjust_frame; scrn->EnterVT = sna_enter_vt; scrn->LeaveVT = sna_leave_vt; scrn->FreeScreen = sna_free_screen; scrn->ValidMode = sna_valid_mode; scrn->PMEvent = sna_pm_event; xf86SetEntitySharable(scrn->entityList[0]); entity = xf86GetEntityInfo(entity_num); xf86SetEntityInstanceForScreen(scrn, entity->index, xf86GetNumEntityInstances(entity->index)-1); free(entity); }