1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
/* -*- c-basic-offset: 4 -*- */
/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/* MASK_* are the unshifted bitmasks of the destination mask in arithmetic
* operations
*/
#define MASK_X 0x1
#define MASK_Y 0x2
#define MASK_Z 0x4
#define MASK_W 0x8
#define MASK_XYZ (MASK_X | MASK_Y | MASK_Z)
#define MASK_XYZW (MASK_XYZ | MASK_W)
#define MASK_SATURATE 0x10
/* Temporary, undeclared regs. Preserved between phases */
#define FS_R0 ((REG_TYPE_R << 8) | 0)
#define FS_R1 ((REG_TYPE_R << 8) | 1)
#define FS_R2 ((REG_TYPE_R << 8) | 2)
#define FS_R3 ((REG_TYPE_R << 8) | 3)
/* Texture coordinate regs. Must be declared. */
#define FS_T0 ((REG_TYPE_T << 8) | 0)
#define FS_T1 ((REG_TYPE_T << 8) | 1)
#define FS_T2 ((REG_TYPE_T << 8) | 2)
#define FS_T3 ((REG_TYPE_T << 8) | 3)
#define FS_T4 ((REG_TYPE_T << 8) | 4)
#define FS_T5 ((REG_TYPE_T << 8) | 5)
#define FS_T6 ((REG_TYPE_T << 8) | 6)
#define FS_T7 ((REG_TYPE_T << 8) | 7)
#define FS_T8 ((REG_TYPE_T << 8) | 8)
#define FS_T9 ((REG_TYPE_T << 8) | 9)
#define FS_T10 ((REG_TYPE_T << 8) | 10)
/* Constant values */
#define FS_C0 ((REG_TYPE_CONST << 8) | 0)
#define FS_C1 ((REG_TYPE_CONST << 8) | 1)
#define FS_C2 ((REG_TYPE_CONST << 8) | 2)
#define FS_C3 ((REG_TYPE_CONST << 8) | 3)
#define FS_C4 ((REG_TYPE_CONST << 8) | 4)
#define FS_C5 ((REG_TYPE_CONST << 8) | 5)
#define FS_C6 ((REG_TYPE_CONST << 8) | 6)
#define FS_C7 ((REG_TYPE_CONST << 8) | 7)
/* Sampler regs */
#define FS_S0 ((REG_TYPE_S << 8) | 0)
#define FS_S1 ((REG_TYPE_S << 8) | 1)
#define FS_S2 ((REG_TYPE_S << 8) | 2)
#define FS_S3 ((REG_TYPE_S << 8) | 3)
/* Output color */
#define FS_OC ((REG_TYPE_OC << 8) | 0)
/* Output depth */
#define FS_OD ((REG_TYPE_OD << 8) | 0)
/* Unpreserved temporary regs */
#define FS_U0 ((REG_TYPE_U << 8) | 0)
#define FS_U1 ((REG_TYPE_U << 8) | 1)
#define FS_U2 ((REG_TYPE_U << 8) | 2)
#define FS_U3 ((REG_TYPE_U << 8) | 3)
#define REG_TYPE(reg) ((reg) >> 8)
#define REG_NR(reg) ((reg) & 0xff)
struct i915_fs_op {
uint32_t ui[3];
};
#define X_CHANNEL_VAL 1
#define Y_CHANNEL_VAL 2
#define Z_CHANNEL_VAL 3
#define W_CHANNEL_VAL 4
#define ZERO_CHANNEL_VAL 5
#define ONE_CHANNEL_VAL 6
/**
* This structure represents the contents of an operand to an i915 fragment
* shader.
*
* It is not a hardware representation, though closely related.
*/
struct i915_fs_operand {
/**< REG_TYPE_* register type */
int reg;
/**< *_CHANNEL_VAL swizzle value, with optional negation */
int x;
/**< *_CHANNEL_VAL swizzle value, with optional negation */
int y;
/**< *_CHANNEL_VAL swizzle value, with optional negation */
int z;
/**< *_CHANNEL_VAL swizzle value, with optional negation */
int w;
};
/**
* Construct an operand description for the fragment shader.
*
* \param regtype FS_* register used as the source value for X/Y/Z/W sources.
* \param x *_CHANNEL_VAL swizzle value prefix for operand X channel, with
* optional negation.
* \param y *_CHANNEL_VAL swizzle value prefix for operand Y channel, with
* optional negation.
* \param z *_CHANNEL_VAL swizzle value prefix for operand Z channel, with
* optional negation.
* \param w *_CHANNEL_VAL swizzle value prefix for operand W channel, with
* optional negation.
*/
#define i915_fs_operand(reg, x, y, z, w) \
_i915_fs_operand(reg, \
x##_CHANNEL_VAL, y##_CHANNEL_VAL, \
z##_CHANNEL_VAL, w##_CHANNEL_VAL)
/**
* Construct an oeprand description for using a register with no swizzling
*/
#define i915_fs_operand_reg(reg) \
i915_fs_operand(reg, X, Y, Z, W)
static inline struct i915_fs_operand
_i915_fs_operand(int reg, int x, int y, int z, int w)
{
struct i915_fs_operand operand;
operand.reg = reg;
operand.x = x;
operand.y = y;
operand.z = z;
operand.w = w;
return operand;
}
/**
* Returns an operand containing (0.0, 0.0, 0.0, 0.0).
*/
static inline struct i915_fs_operand i915_fs_operand_zero(void)
{
return i915_fs_operand(FS_R0, ZERO, ZERO, ZERO, ZERO);
}
/**
* Returns an unused operand
*/
#define i915_fs_operand_none() i915_fs_operand_zero()
/**
* Returns an operand containing (1.0, 1.0, 1.0, 1.0).
*/
static inline struct i915_fs_operand i915_fs_operand_one(void)
{
return i915_fs_operand(FS_R0, ONE, ONE, ONE, ONE);
}
static inline int i915_get_hardware_channel_val(int channel_val)
{
if (channel_val < 0)
channel_val = -channel_val;
switch (channel_val) {
case X_CHANNEL_VAL:
return SRC_X;
case Y_CHANNEL_VAL:
return SRC_Y;
case Z_CHANNEL_VAL:
return SRC_Z;
case W_CHANNEL_VAL:
return SRC_W;
case ZERO_CHANNEL_VAL:
return SRC_ZERO;
case ONE_CHANNEL_VAL:
return SRC_ONE;
}
FatalError("Bad channel value %d\n", channel_val);
}
/**
* Outputs a fragment shader command to declare a sampler or texture register.
*/
#define i915_fs_dcl(reg) \
do { \
FS_OUT(_i915_fs_dcl(reg)); \
} while (0)
/**
* Constructs a fragment shader command to declare a sampler or texture
* register.
*/
static inline struct i915_fs_op _i915_fs_dcl(int reg)
{
struct i915_fs_op op;
op.ui[0] = D0_DCL | (REG_TYPE(reg) << D0_TYPE_SHIFT) |
(REG_NR(reg) << D0_NR_SHIFT);
op.ui[1] = 0;
op.ui[2] = 0;
if (REG_TYPE(reg) != REG_TYPE_S)
op.ui[0] |= D0_CHANNEL_ALL;
return op;
}
/**
* Constructs a fragment shader command to load from a texture sampler.
*/
#define i915_fs_texld(dest_reg, sampler_reg, address_reg) \
do { \
FS_OUT(_i915_fs_texld(T0_TEXLD, dest_reg, sampler_reg, address_reg)); \
} while (0)
#define i915_fs_texldp(dest_reg, sampler_reg, address_reg) \
do { \
FS_OUT(_i915_fs_texld(T0_TEXLDP, dest_reg, sampler_reg, address_reg)); \
} while (0)
static inline struct i915_fs_op
_i915_fs_texld(int load_op, int dest_reg, int sampler_reg, int address_reg)
{
struct i915_fs_op op;
op.ui[0] = 0;
op.ui[1] = 0;
op.ui[2] = 0;
if (REG_TYPE(sampler_reg) != REG_TYPE_S)
FatalError("Bad sampler reg type\n");
op.ui[0] |= load_op;
op.ui[0] |= REG_TYPE(dest_reg) << T0_DEST_TYPE_SHIFT;
op.ui[0] |= REG_NR(dest_reg) << T0_DEST_NR_SHIFT;
op.ui[0] |= REG_NR(sampler_reg) << T0_SAMPLER_NR_SHIFT;
op.ui[1] |= REG_TYPE(address_reg) << T1_ADDRESS_REG_TYPE_SHIFT;
op.ui[1] |= REG_NR(address_reg) << T1_ADDRESS_REG_NR_SHIFT;
return op;
}
#define i915_fs_arith(op, dest_reg, operand0, operand1, operand2) \
_i915_fs_arith(A0_##op, dest_reg, operand0, operand1, operand2)
static inline struct i915_fs_op
_i915_fs_arith(int cmd, int dest_reg,
struct i915_fs_operand operand0,
struct i915_fs_operand operand1, struct i915_fs_operand operand2)
{
struct i915_fs_op op;
op.ui[0] = 0;
op.ui[1] = 0;
op.ui[2] = 0;
/* Set up destination register and write mask */
op.ui[0] |= cmd;
op.ui[0] |= REG_TYPE(dest_reg) << A0_DEST_TYPE_SHIFT;
op.ui[0] |= REG_NR(dest_reg) << A0_DEST_NR_SHIFT;
op.ui[0] |= A0_DEST_CHANNEL_ALL;
/* Set up operand 0 */
op.ui[0] |= REG_TYPE(operand0.reg) << A0_SRC0_TYPE_SHIFT;
op.ui[0] |= REG_NR(operand0.reg) << A0_SRC0_NR_SHIFT;
op.ui[1] |= i915_get_hardware_channel_val(operand0.x) <<
A1_SRC0_CHANNEL_X_SHIFT;
if (operand0.x < 0)
op.ui[1] |= A1_SRC0_CHANNEL_X_NEGATE;
op.ui[1] |= i915_get_hardware_channel_val(operand0.y) <<
A1_SRC0_CHANNEL_Y_SHIFT;
if (operand0.y < 0)
op.ui[1] |= A1_SRC0_CHANNEL_Y_NEGATE;
op.ui[1] |= i915_get_hardware_channel_val(operand0.z) <<
A1_SRC0_CHANNEL_Z_SHIFT;
if (operand0.z < 0)
op.ui[1] |= A1_SRC0_CHANNEL_Z_NEGATE;
op.ui[1] |= i915_get_hardware_channel_val(operand0.w) <<
A1_SRC0_CHANNEL_W_SHIFT;
if (operand0.w < 0)
op.ui[1] |= A1_SRC0_CHANNEL_W_NEGATE;
/* Set up operand 1 */
op.ui[1] |= REG_TYPE(operand1.reg) << A1_SRC1_TYPE_SHIFT;
op.ui[1] |= REG_NR(operand1.reg) << A1_SRC1_NR_SHIFT;
op.ui[1] |= i915_get_hardware_channel_val(operand1.x) <<
A1_SRC1_CHANNEL_X_SHIFT;
if (operand1.x < 0)
op.ui[1] |= A1_SRC1_CHANNEL_X_NEGATE;
op.ui[1] |= i915_get_hardware_channel_val(operand1.y) <<
A1_SRC1_CHANNEL_Y_SHIFT;
if (operand1.y < 0)
op.ui[1] |= A1_SRC1_CHANNEL_Y_NEGATE;
op.ui[2] |= i915_get_hardware_channel_val(operand1.z) <<
A2_SRC1_CHANNEL_Z_SHIFT;
if (operand1.z < 0)
op.ui[2] |= A2_SRC1_CHANNEL_Z_NEGATE;
op.ui[2] |= i915_get_hardware_channel_val(operand1.w) <<
A2_SRC1_CHANNEL_W_SHIFT;
if (operand1.w < 0)
op.ui[2] |= A2_SRC1_CHANNEL_W_NEGATE;
/* Set up operand 2 */
op.ui[2] |= REG_TYPE(operand2.reg) << A2_SRC2_TYPE_SHIFT;
op.ui[2] |= REG_NR(operand2.reg) << A2_SRC2_NR_SHIFT;
op.ui[2] |= i915_get_hardware_channel_val(operand2.x) <<
A2_SRC2_CHANNEL_X_SHIFT;
if (operand2.x < 0)
op.ui[2] |= A2_SRC2_CHANNEL_X_NEGATE;
op.ui[2] |= i915_get_hardware_channel_val(operand2.y) <<
A2_SRC2_CHANNEL_Y_SHIFT;
if (operand2.y < 0)
op.ui[2] |= A2_SRC2_CHANNEL_Y_NEGATE;
op.ui[2] |= i915_get_hardware_channel_val(operand2.z) <<
A2_SRC2_CHANNEL_Z_SHIFT;
if (operand2.z < 0)
op.ui[2] |= A2_SRC2_CHANNEL_Z_NEGATE;
op.ui[2] |= i915_get_hardware_channel_val(operand2.w) <<
A2_SRC2_CHANNEL_W_SHIFT;
if (operand2.w < 0)
op.ui[2] |= A2_SRC2_CHANNEL_W_NEGATE;
return op;
}
/** Move operand0 to dest_reg */
#define i915_fs_mov(dest_reg, operand0) \
do { \
FS_OUT(i915_fs_arith(MOV, dest_reg, operand0, \
i915_fs_operand_none(), \
i915_fs_operand_none())); \
} while (0)
/**
* Move the value in operand0 to the dest reg with the masking/saturation
* specified.
*/
#define i915_fs_mov_masked(dest_reg, dest_mask, operand0) \
do { \
struct i915_fs_op op; \
\
op = i915_fs_arith(MOV, dest_reg, operand0, i915_fs_operand_none(), \
i915_fs_operand_none()); \
op.ui[0] &= ~A0_DEST_CHANNEL_ALL; \
op.ui[0] |= ((dest_mask) & ~MASK_SATURATE) << A0_DEST_CHANNEL_SHIFT; \
if ((dest_mask) & MASK_SATURATE) \
op.ui[0] |= A0_DEST_SATURATE; \
\
FS_OUT(op); \
} while (0)
/** Add operand0 and operand1 and put the result in dest_reg */
#define i915_fs_add(dest_reg, operand0, operand1) \
do { \
FS_OUT(i915_fs_arith(ADD, dest_reg, operand0, operand1, \
i915_fs_operand_none())); \
} while (0)
/** Add operand0 and operand1 and put the result in dest_reg */
#define i915_fs_mul(dest_reg, operand0, operand1) \
do { \
FS_OUT(i915_fs_arith(MUL, dest_reg, operand0, operand1, \
i915_fs_operand_none())); \
} while (0)
/**
* Perform a 3-component dot-product of operand0 and operand1 and put the
* resulting scalar in the channels of dest_reg specified by the dest_mask.
*/
#define i915_fs_dp3_masked(dest_reg, dest_mask, operand0, operand1) \
do { \
struct i915_fs_op op; \
\
op = i915_fs_arith(DP3, dest_reg, operand0, operand1, \
i915_fs_operand_none()); \
op.ui[0] &= ~A0_DEST_CHANNEL_ALL; \
op.ui[0] |= ((dest_mask) & ~MASK_SATURATE) << A0_DEST_CHANNEL_SHIFT; \
if ((dest_mask) & MASK_SATURATE) \
op.ui[0] |= A0_DEST_SATURATE; \
\
FS_OUT(op); \
} while (0)
/**
* Sets up local state for accumulating a fragment shader buffer.
*
* \param x maximum number of shader commands that may be used between
* a FS_START and FS_END
*/
#define FS_LOCALS(x) \
uint32_t _shader_buf[(x) * 3]; \
int _max_shader_commands = x; \
int _cur_shader_commands
#define FS_BEGIN() \
do { \
_cur_shader_commands = 0; \
} while (0)
#define FS_OUT(_shaderop) \
do { \
_shader_buf[_cur_shader_commands * 3 + 0] = _shaderop.ui[0]; \
_shader_buf[_cur_shader_commands * 3 + 1] = _shaderop.ui[1]; \
_shader_buf[_cur_shader_commands * 3 + 2] = _shaderop.ui[2]; \
if (++_cur_shader_commands > _max_shader_commands) \
FatalError("fragment shader command buffer exceeded (%d)\n", \
_cur_shader_commands); \
} while (0)
#define FS_END() \
do { \
int _i, _pad = (_cur_shader_commands & 0x1) ? 0 : 1; \
ATOMIC_BATCH(_cur_shader_commands * 3 + 1 + _pad); \
OUT_BATCH(_3DSTATE_PIXEL_SHADER_PROGRAM | \
(_cur_shader_commands * 3 - 1)); \
for (_i = 0; _i < _cur_shader_commands * 3; _i++) \
OUT_BATCH(_shader_buf[_i]); \
if (_pad != 0) \
OUT_BATCH(MI_NOOP); \
ADVANCE_BATCH(); \
} while (0);
|