1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "xf86.h"
#include "xf86_OSproc.h"
#include "xf86xv.h"
#include "fourcc.h"
#include "i830.h"
#include "i830_video.h"
#include "brw_defines.h"
#include "brw_structs.h"
#include <string.h>
/* Make assert() work. */
#undef NDEBUG
#include <assert.h>
static const uint32_t sip_kernel_static[][4] = {
/* wait (1) a0<1>UW a145<0,1,0>UW { align1 + } */
{ 0x00000030, 0x20000108, 0x00001220, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
/* nop (4) g0<1>UD { align1 + } */
{ 0x0040007e, 0x20000c21, 0x00690000, 0x00000000 },
};
/*
* this program computes dA/dx and dA/dy for the texture coordinates along
* with the base texture coordinate. It was extracted from the Mesa driver.
* It uses about 10 GRF registers.
*/
#define SF_KERNEL_NUM_GRF 16
#define SF_MAX_THREADS 1
static const uint32_t sf_kernel_static[][4] = {
#include "exa_sf.g4b"
};
/*
* Ok, this kernel picks up the required data flow values in g0 and g1
* and passes those along in m0 and m1. In m2-m9, it sticks constant
* values (bright pink).
*/
/* Our PS kernel uses less than 32 GRF registers (about 20) */
#define PS_KERNEL_NUM_GRF 32
#define PS_MAX_THREADS 32
#define BRW_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1)
static const uint32_t ps_kernel_packed_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_yuv_rgb.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_planar_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_planar.g4b"
#include "exa_wm_yuv_rgb.g4b"
#include "exa_wm_write.g4b"
};
#define ALIGN(i,m) (((i) + (m) - 1) & ~((m) - 1))
#define MIN(a,b) ((a) < (b) ? (a) : (b))
static uint32_t float_to_uint (float f) {
union {uint32_t i; float f;} x;
x.f = f;
return x.i;
}
#if 0
static struct {
uint32_t svg_ctl;
char *name;
} svg_ctl_bits[] = {
{ BRW_SVG_CTL_GS_BA, "General State Base Address" },
{ BRW_SVG_CTL_SS_BA, "Surface State Base Address" },
{ BRW_SVG_CTL_IO_BA, "Indirect Object Base Address" },
{ BRW_SVG_CTL_GS_AUB, "Generate State Access Upper Bound" },
{ BRW_SVG_CTL_IO_AUB, "Indirect Object Access Upper Bound" },
{ BRW_SVG_CTL_SIP, "System Instruction Pointer" },
{ 0, 0 },
};
static void
brw_debug (ScrnInfoPtr pScrn, char *when)
{
I830Ptr pI830 = I830PTR(pScrn);
int i;
uint32_t v;
I830Sync (pScrn);
ErrorF("brw_debug: %s\n", when);
for (i = 0; svg_ctl_bits[i].name; i++) {
OUTREG(BRW_SVG_CTL, svg_ctl_bits[i].svg_ctl);
v = INREG(BRW_SVG_RDATA);
ErrorF("\t%34.34s: 0x%08x\n", svg_ctl_bits[i].name, v);
}
}
#endif
#define WATCH_SF 0
#define WATCH_WIZ 0
#define WATCH_STATS 0
void
I965DisplayVideoTextured(ScrnInfoPtr pScrn, I830PortPrivPtr pPriv, int id,
RegionPtr dstRegion,
short width, short height, int video_pitch,
int x1, int y1, int x2, int y2,
short src_w, short src_h,
short drw_w, short drw_h,
PixmapPtr pPixmap)
{
I830Ptr pI830 = I830PTR(pScrn);
BoxPtr pbox;
int nbox, dxo, dyo, pix_xoff, pix_yoff;
int urb_vs_start, urb_vs_size;
int urb_gs_start, urb_gs_size;
int urb_clip_start, urb_clip_size;
int urb_sf_start, urb_sf_size;
int urb_cs_start, urb_cs_size;
struct brw_surface_state *dest_surf_state;
struct brw_surface_state *src_surf_state[6];
struct brw_sampler_state *src_sampler_state[6];
struct brw_vs_unit_state *vs_state;
struct brw_sf_unit_state *sf_state;
struct brw_wm_unit_state *wm_state;
struct brw_cc_unit_state *cc_state;
struct brw_cc_viewport *cc_viewport;
struct brw_instruction *sf_kernel;
struct brw_instruction *ps_kernel;
struct brw_instruction *sip_kernel;
float *vb;
float src_scale_x, src_scale_y;
uint32_t *binding_table;
Bool first_output = TRUE;
int dest_surf_offset, src_surf_offset[6], src_sampler_offset[6], vs_offset;
int sf_offset, wm_offset, cc_offset, vb_offset, cc_viewport_offset;
int wm_scratch_offset;
int sf_kernel_offset, ps_kernel_offset, sip_kernel_offset;
int binding_table_offset;
int next_offset, total_state_size;
int vb_size = (4 * 4) * 4; /* 4 DWORDS per vertex */
char *state_base;
int state_base_offset;
int src_surf;
int n_src_surf;
uint32_t src_surf_format;
uint32_t src_surf_base[6];
int src_width[6];
int src_height[6];
int src_pitch[6];
int wm_binding_table_entries;
const uint32_t *ps_kernel_static;
int ps_kernel_static_size;
#if 0
ErrorF("BroadwaterDisplayVideoTextured: %dx%d (pitch %d)\n", width, height,
video_pitch);
#endif
/* enable debug */
OUTREG (INST_PM,
(1 << (16 + 4)) |
(1 << 4));
#if 0
ErrorF ("INST_PM 0x%08x\n", INREG(INST_PM));
#endif
src_surf_base[0] = pPriv->YBuf0offset;
src_surf_base[1] = pPriv->YBuf0offset;
src_surf_base[2] = pPriv->VBuf0offset;
src_surf_base[3] = pPriv->VBuf0offset;
src_surf_base[4] = pPriv->UBuf0offset;
src_surf_base[5] = pPriv->UBuf0offset;
#if 0
ErrorF ("base 0 0x%x base 1 0x%x base 2 0x%x\n",
src_surf_base[0], src_surf_base[1], src_surf_base[2]);
#endif
switch (id) {
case FOURCC_UYVY:
src_surf_format = BRW_SURFACEFORMAT_YCRCB_SWAPY;
n_src_surf = 1;
ps_kernel_static = &ps_kernel_packed_static[0][0];
ps_kernel_static_size = sizeof (ps_kernel_packed_static);
src_width[0] = width;
src_height[0] = height;
src_pitch[0] = video_pitch;
break;
case FOURCC_YUY2:
src_surf_format = BRW_SURFACEFORMAT_YCRCB_NORMAL;
ps_kernel_static = &ps_kernel_packed_static[0][0];
ps_kernel_static_size = sizeof (ps_kernel_packed_static);
src_width[0] = width;
src_height[0] = height;
src_pitch[0] = video_pitch;
n_src_surf = 1;
break;
case FOURCC_I420:
case FOURCC_YV12:
src_surf_format = BRW_SURFACEFORMAT_R8_UNORM;
ps_kernel_static = &ps_kernel_planar_static[0][0];
ps_kernel_static_size = sizeof (ps_kernel_planar_static);
src_width[1] = src_width[0] = width;
src_width[1] = src_height[0] = height;
src_pitch[1] = src_pitch[0] = video_pitch * 2;
src_width[4] = src_width[5] = src_width[2] = src_width[3] = width / 2;
src_height[4] = src_height[5] = src_height[2] = src_height[3] = height / 2;
src_pitch[4] = src_pitch[5] = src_pitch[2] = src_pitch[3] = video_pitch;
n_src_surf = 6;
break;
default:
return;
}
wm_binding_table_entries = 1 + n_src_surf;
IntelEmitInvarientState(pScrn);
*pI830->last_3d = LAST_3D_VIDEO;
next_offset = 0;
/* Set up our layout of state in framebuffer. First the general state: */
vs_offset = ALIGN(next_offset, 64);
next_offset = vs_offset + sizeof(*vs_state);
sf_offset = ALIGN(next_offset, 32);
next_offset = sf_offset + sizeof(*sf_state);
wm_offset = ALIGN(next_offset, 32);
next_offset = wm_offset + sizeof(*wm_state);
wm_scratch_offset = ALIGN(next_offset, 1024);
next_offset = wm_scratch_offset + 1024 * PS_MAX_THREADS;
cc_offset = ALIGN(next_offset, 32);
next_offset = cc_offset + sizeof(*cc_state);
sf_kernel_offset = ALIGN(next_offset, 64);
next_offset = sf_kernel_offset + sizeof (sf_kernel_static);
ps_kernel_offset = ALIGN(next_offset, 64);
next_offset = ps_kernel_offset + ps_kernel_static_size;
sip_kernel_offset = ALIGN(next_offset, 64);
next_offset = sip_kernel_offset + sizeof (sip_kernel_static);
cc_viewport_offset = ALIGN(next_offset, 32);
next_offset = cc_viewport_offset + sizeof(*cc_viewport);
for (src_surf = 0; src_surf < n_src_surf; src_surf++) {
src_sampler_offset[src_surf] = ALIGN(next_offset, 32);
next_offset = src_sampler_offset[src_surf] + sizeof(struct brw_sampler_state);
}
/* Align VB to native size of elements, for safety */
vb_offset = ALIGN(next_offset, 8);
next_offset = vb_offset + vb_size;
/* And then the general state: */
dest_surf_offset = ALIGN(next_offset, 32);
next_offset = dest_surf_offset + sizeof(*dest_surf_state);
for (src_surf = 0; src_surf < n_src_surf; src_surf++) {
src_surf_offset[src_surf] = ALIGN(next_offset, 32);
next_offset = src_surf_offset[src_surf] + sizeof(struct brw_surface_state);
}
binding_table_offset = ALIGN(next_offset, 32);
next_offset = binding_table_offset + (wm_binding_table_entries * 4);
/* Allocate an area in framebuffer for our state layout we just set up */
total_state_size = next_offset;
assert (total_state_size < BRW_LINEAR_EXTRA);
/*
* Use the extra space allocated at the end of the Xv buffer
*/
state_base_offset = pPriv->extra_offset;
state_base_offset = ALIGN(state_base_offset, 64);
state_base = (char *)(pI830->FbBase + state_base_offset);
/* Set up our pointers to state structures in framebuffer. It would
* probably be a good idea to fill these structures out in system memory
* and then dump them there, instead.
*/
vs_state = (void *)(state_base + vs_offset);
sf_state = (void *)(state_base + sf_offset);
wm_state = (void *)(state_base + wm_offset);
cc_state = (void *)(state_base + cc_offset);
sf_kernel = (void *)(state_base + sf_kernel_offset);
ps_kernel = (void *)(state_base + ps_kernel_offset);
sip_kernel = (void *)(state_base + sip_kernel_offset);
cc_viewport = (void *)(state_base + cc_viewport_offset);
dest_surf_state = (void *)(state_base + dest_surf_offset);
for (src_surf = 0; src_surf < n_src_surf; src_surf++)
{
src_surf_state[src_surf] = (void *)(state_base + src_surf_offset[src_surf]);
src_sampler_state[src_surf] = (void *)(state_base + src_sampler_offset[src_surf]);
}
binding_table = (void *)(state_base + binding_table_offset);
vb = (void *)(state_base + vb_offset);
#if 0
ErrorF("vs: 0x%08x\n", state_base_offset + vs_offset);
ErrorF("wm: 0x%08x\n", state_base_offset + wm_offset);
ErrorF("sf: 0x%08x\n", state_base_offset + sf_offset);
ErrorF("cc: 0x%08x\n", state_base_offset + cc_offset);
ErrorF("sf kernel: 0x%08x\n", state_base_offset + sf_kernel_offset);
ErrorF("ps kernel: 0x%08x\n", state_base_offset + ps_kernel_offset);
ErrorF("sip kernel: 0x%08x\n", state_base_offset + sip_kernel_offset);
ErrorF("cc_vp: 0x%08x\n", state_base_offset + cc_viewport_offset);
ErrorF("src sampler: 0x%08x\n", state_base_offset + src_sampler_offset);
ErrorF("vb: 0x%08x\n", state_base_offset + vb_offset);
ErrorF("dst surf: 0x%08x\n", state_base_offset + dest_surf_offset);
ErrorF("src surf: 0x%08x\n", state_base_offset + src_surf_offset);
ErrorF("binding table: 0x%08x\n", state_base_offset + binding_table_offset);
#endif
/* For 3D, the VS must have 8, 12, 16, 24, or 32 VUEs allocated to it.
* A VUE consists of a 256-bit vertex header followed by the vertex data,
* which in our case is 4 floats (128 bits), thus a single 512-bit URB
* entry.
*/
#define URB_VS_ENTRIES 8
#define URB_VS_ENTRY_SIZE 1
#define URB_GS_ENTRIES 0
#define URB_GS_ENTRY_SIZE 0
#define URB_CLIP_ENTRIES 0
#define URB_CLIP_ENTRY_SIZE 0
/* The SF kernel we use outputs only 4 256-bit registers, leading to an
* entry size of 2 512-bit URBs. We don't need to have many entries to
* output as we're generally working on large rectangles and don't care
* about having WM threads running on different rectangles simultaneously.
*/
#define URB_SF_ENTRIES 1
#define URB_SF_ENTRY_SIZE 2
#define URB_CS_ENTRIES 0
#define URB_CS_ENTRY_SIZE 0
urb_vs_start = 0;
urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE;
urb_gs_start = urb_vs_start + urb_vs_size;
urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE;
urb_clip_start = urb_gs_start + urb_gs_size;
urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE;
urb_sf_start = urb_clip_start + urb_clip_size;
urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE;
urb_cs_start = urb_sf_start + urb_sf_size;
urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE;
/* We'll be poking the state buffers that could be in use by the 3d
* hardware here, but we should have synced the 3D engine already in
* I830PutImage.
*/
memset (cc_viewport, 0, sizeof (*cc_viewport));
cc_viewport->min_depth = -1.e35;
cc_viewport->max_depth = 1.e35;
/* Color calculator state */
memset(cc_state, 0, sizeof(*cc_state));
cc_state->cc0.stencil_enable = 0; /* disable stencil */
cc_state->cc2.depth_test = 0; /* disable depth test */
cc_state->cc2.logicop_enable = 1; /* enable logic op */
cc_state->cc3.ia_blend_enable = 1; /* blend alpha just like colors */
cc_state->cc3.blend_enable = 0; /* disable color blend */
cc_state->cc3.alpha_test = 0; /* disable alpha test */
cc_state->cc4.cc_viewport_state_offset = (state_base_offset +
cc_viewport_offset) >> 5;
cc_state->cc5.dither_enable = 0; /* disable dither */
cc_state->cc5.logicop_func = 0xc; /* WHITE */
cc_state->cc5.statistics_enable = 1;
cc_state->cc5.ia_blend_function = BRW_BLENDFUNCTION_ADD;
cc_state->cc5.ia_src_blend_factor = BRW_BLENDFACTOR_ONE;
cc_state->cc5.ia_dest_blend_factor = BRW_BLENDFACTOR_ONE;
/* Upload system kernel */
memcpy (sip_kernel, sip_kernel_static, sizeof (sip_kernel_static));
/* Set up the state buffer for the destination surface */
memset(dest_surf_state, 0, sizeof(*dest_surf_state));
dest_surf_state->ss0.surface_type = BRW_SURFACE_2D;
dest_surf_state->ss0.data_return_format = BRW_SURFACERETURNFORMAT_FLOAT32;
if (pI830->cpp == 2) {
dest_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_B5G6R5_UNORM;
} else {
dest_surf_state->ss0.surface_format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
}
dest_surf_state->ss0.writedisable_alpha = 0;
dest_surf_state->ss0.writedisable_red = 0;
dest_surf_state->ss0.writedisable_green = 0;
dest_surf_state->ss0.writedisable_blue = 0;
dest_surf_state->ss0.color_blend = 1;
dest_surf_state->ss0.vert_line_stride = 0;
dest_surf_state->ss0.vert_line_stride_ofs = 0;
dest_surf_state->ss0.mipmap_layout_mode = 0;
dest_surf_state->ss0.render_cache_read_mode = 0;
dest_surf_state->ss1.base_addr = intel_get_pixmap_offset(pPixmap);
dest_surf_state->ss2.height = pScrn->virtualY - 1;
dest_surf_state->ss2.width = pScrn->virtualX - 1;
dest_surf_state->ss2.mip_count = 0;
dest_surf_state->ss2.render_target_rotation = 0;
dest_surf_state->ss3.pitch = intel_get_pixmap_pitch(pPixmap) - 1;
dest_surf_state->ss3.tiled_surface = i830_pixmap_tiled(pPixmap);
dest_surf_state->ss3.tile_walk = 0; /* TileX */
for (src_surf = 0; src_surf < n_src_surf; src_surf++)
{
/* Set up the source surface state buffer */
memset(src_surf_state[src_surf], 0, sizeof(struct brw_surface_state));
src_surf_state[src_surf]->ss0.surface_type = BRW_SURFACE_2D;
src_surf_state[src_surf]->ss0.surface_format = src_surf_format;
src_surf_state[src_surf]->ss0.writedisable_alpha = 0;
src_surf_state[src_surf]->ss0.writedisable_red = 0;
src_surf_state[src_surf]->ss0.writedisable_green = 0;
src_surf_state[src_surf]->ss0.writedisable_blue = 0;
src_surf_state[src_surf]->ss0.color_blend = 1;
src_surf_state[src_surf]->ss0.vert_line_stride = 0;
src_surf_state[src_surf]->ss0.vert_line_stride_ofs = 0;
src_surf_state[src_surf]->ss0.mipmap_layout_mode = 0;
src_surf_state[src_surf]->ss0.render_cache_read_mode = 0;
src_surf_state[src_surf]->ss1.base_addr = src_surf_base[src_surf];
src_surf_state[src_surf]->ss2.width = src_width[src_surf] - 1;
src_surf_state[src_surf]->ss2.height = src_height[src_surf] - 1;
src_surf_state[src_surf]->ss2.mip_count = 0;
src_surf_state[src_surf]->ss2.render_target_rotation = 0;
src_surf_state[src_surf]->ss3.pitch = src_pitch[src_surf] - 1;
}
/* FIXME: account for tiling if we ever do it */
/* Set up a binding table for our two surfaces. Only the PS will use it */
/* XXX: are these offset from the right place? */
binding_table[0] = state_base_offset + dest_surf_offset;
for (src_surf = 0; src_surf < n_src_surf; src_surf++)
binding_table[1 + src_surf] = state_base_offset + src_surf_offset[src_surf];
/* Set up the packed YUV source sampler. Doesn't do colorspace conversion.
*/
for (src_surf = 0; src_surf < n_src_surf; src_surf++)
{
memset(src_sampler_state[src_surf], 0, sizeof(struct brw_sampler_state));
src_sampler_state[src_surf]->ss0.min_filter = BRW_MAPFILTER_LINEAR;
src_sampler_state[src_surf]->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
src_sampler_state[src_surf]->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
src_sampler_state[src_surf]->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
src_sampler_state[src_surf]->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
}
/* Set up the vertex shader to be disabled (passthrough) */
memset(vs_state, 0, sizeof(*vs_state));
vs_state->thread4.nr_urb_entries = URB_VS_ENTRIES;
vs_state->thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1;
vs_state->vs6.vs_enable = 0;
vs_state->vs6.vert_cache_disable = 1;
/* Set up the SF kernel to do coord interp: for each attribute,
* calculate dA/dx and dA/dy. Hand these interpolation coefficients
* back to SF which then hands pixels off to WM.
*/
memcpy (sf_kernel, sf_kernel_static, sizeof (sf_kernel_static));
memset(sf_state, 0, sizeof(*sf_state));
sf_state->thread0.kernel_start_pointer =
(state_base_offset + sf_kernel_offset) >> 6;
sf_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(SF_KERNEL_NUM_GRF);
sf_state->sf1.single_program_flow = 1; /* XXX */
sf_state->sf1.binding_table_entry_count = 0;
sf_state->sf1.thread_priority = 0;
sf_state->sf1.floating_point_mode = 0; /* Mesa does this */
sf_state->sf1.illegal_op_exception_enable = 1;
sf_state->sf1.mask_stack_exception_enable = 1;
sf_state->sf1.sw_exception_enable = 1;
sf_state->thread2.per_thread_scratch_space = 0;
/* scratch space is not used in our kernel */
sf_state->thread2.scratch_space_base_pointer = 0;
sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */
sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */
sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */
sf_state->thread3.urb_entry_read_offset = 0;
sf_state->thread3.dispatch_grf_start_reg = 3;
sf_state->thread4.max_threads = SF_MAX_THREADS - 1;
sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1;
sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES;
sf_state->thread4.stats_enable = 1;
sf_state->sf5.viewport_transform = FALSE; /* skip viewport */
sf_state->sf6.cull_mode = BRW_CULLMODE_NONE;
sf_state->sf6.scissor = 0;
sf_state->sf7.trifan_pv = 2;
sf_state->sf6.dest_org_vbias = 0x8;
sf_state->sf6.dest_org_hbias = 0x8;
memcpy (ps_kernel, ps_kernel_static, ps_kernel_static_size);
memset (wm_state, 0, sizeof (*wm_state));
wm_state->thread0.kernel_start_pointer =
(state_base_offset + ps_kernel_offset) >> 6;
wm_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(PS_KERNEL_NUM_GRF);
wm_state->thread1.single_program_flow = 1; /* XXX */
wm_state->thread1.binding_table_entry_count = 1 + n_src_surf;
/* Though we never use the scratch space in our WM kernel, it has to be
* set, and the minimum allocation is 1024 bytes.
*/
wm_state->thread2.scratch_space_base_pointer = (state_base_offset +
wm_scratch_offset) >> 10;
wm_state->thread2.per_thread_scratch_space = 0; /* 1024 bytes */
wm_state->thread3.dispatch_grf_start_reg = 3; /* XXX */
wm_state->thread3.const_urb_entry_read_length = 0;
wm_state->thread3.const_urb_entry_read_offset = 0;
wm_state->thread3.urb_entry_read_length = 1; /* XXX */
wm_state->thread3.urb_entry_read_offset = 0; /* XXX */
wm_state->wm4.stats_enable = 1;
wm_state->wm4.sampler_state_pointer = (state_base_offset +
src_sampler_offset[0]) >> 5;
wm_state->wm4.sampler_count = 1; /* 1-4 samplers used */
wm_state->wm5.max_threads = PS_MAX_THREADS - 1;
wm_state->wm5.thread_dispatch_enable = 1;
wm_state->wm5.enable_16_pix = 1;
wm_state->wm5.enable_8_pix = 0;
wm_state->wm5.early_depth_test = 1;
{
BEGIN_BATCH(2);
OUT_BATCH(MI_FLUSH |
MI_STATE_INSTRUCTION_CACHE_FLUSH |
BRW_MI_GLOBAL_SNAPSHOT_RESET);
OUT_BATCH(MI_NOOP);
ADVANCE_BATCH();
}
/* brw_debug (pScrn, "before base address modify"); */
{
BEGIN_BATCH(12);
/* Match Mesa driver setup */
if (IS_IGD_GM(pI830) || IS_G4X(pI830))
OUT_BATCH(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D);
else
OUT_BATCH(BRW_PIPELINE_SELECT | PIPELINE_SELECT_3D);
/* Mesa does this. Who knows... */
OUT_BATCH(BRW_CS_URB_STATE | 0);
OUT_BATCH((0 << 4) | /* URB Entry Allocation Size */
(0 << 0)); /* Number of URB Entries */
/* Zero out the two base address registers so all offsets are
* absolute
*/
OUT_BATCH(BRW_STATE_BASE_ADDRESS | 4);
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Generate state base address */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Surface state base address */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* media base addr, don't care */
/* general state max addr, disabled */
OUT_BATCH(0x10000000 | BASE_ADDRESS_MODIFY);
/* media object state max addr, disabled */
OUT_BATCH(0x10000000 | BASE_ADDRESS_MODIFY);
/* Set system instruction pointer */
OUT_BATCH(BRW_STATE_SIP | 0);
/* system instruction pointer */
OUT_BATCH(state_base_offset + sip_kernel_offset);
OUT_BATCH(MI_NOOP);
ADVANCE_BATCH();
}
/* brw_debug (pScrn, "after base address modify"); */
{
BEGIN_BATCH(42);
/* Enable VF statistics */
OUT_BATCH(BRW_3DSTATE_VF_STATISTICS | 1);
/* Pipe control */
OUT_BATCH(BRW_PIPE_CONTROL |
BRW_PIPE_CONTROL_NOWRITE |
BRW_PIPE_CONTROL_IS_FLUSH |
2);
OUT_BATCH(0); /* Destination address */
OUT_BATCH(0); /* Immediate data low DW */
OUT_BATCH(0); /* Immediate data high DW */
/* Binding table pointers */
OUT_BATCH(BRW_3DSTATE_BINDING_TABLE_POINTERS | 4);
OUT_BATCH(0); /* vs */
OUT_BATCH(0); /* gs */
OUT_BATCH(0); /* clip */
OUT_BATCH(0); /* sf */
/* Only the PS uses the binding table */
OUT_BATCH(state_base_offset + binding_table_offset); /* ps */
/* Blend constant color (magenta is fun) */
OUT_BATCH(BRW_3DSTATE_CONSTANT_COLOR | 3);
OUT_BATCH(float_to_uint (1.0));
OUT_BATCH(float_to_uint (0.0));
OUT_BATCH(float_to_uint (1.0));
OUT_BATCH(float_to_uint (1.0));
/* The drawing rectangle clipping is always on. Set it to values that
* shouldn't do any clipping.
*/
OUT_BATCH(BRW_3DSTATE_DRAWING_RECTANGLE | 2); /* XXX 3 for BLC or CTG */
OUT_BATCH(0x00000000); /* ymin, xmin */
OUT_BATCH((pScrn->virtualX - 1) |
(pScrn->virtualY - 1) << 16); /* ymax, xmax */
OUT_BATCH(0x00000000); /* yorigin, xorigin */
/* skip the depth buffer */
/* skip the polygon stipple */
/* skip the polygon stipple offset */
/* skip the line stipple */
/* Set the pointers to the 3d pipeline state */
OUT_BATCH(BRW_3DSTATE_PIPELINED_POINTERS | 5);
OUT_BATCH(state_base_offset + vs_offset); /* 32 byte aligned */
/* disable GS, resulting in passthrough */
OUT_BATCH(BRW_GS_DISABLE);
/* disable CLIP, resulting in passthrough */
OUT_BATCH(BRW_CLIP_DISABLE);
OUT_BATCH(state_base_offset + sf_offset); /* 32 byte aligned */
OUT_BATCH(state_base_offset + wm_offset); /* 32 byte aligned */
OUT_BATCH(state_base_offset + cc_offset); /* 64 byte aligned */
/* URB fence */
OUT_BATCH(BRW_URB_FENCE |
UF0_CS_REALLOC |
UF0_SF_REALLOC |
UF0_CLIP_REALLOC |
UF0_GS_REALLOC |
UF0_VS_REALLOC |
1);
OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) |
((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) |
((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT));
OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) |
((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT));
/* Constant buffer state */
OUT_BATCH(BRW_CS_URB_STATE | 0);
OUT_BATCH(((URB_CS_ENTRY_SIZE - 1) << 4) |
(URB_CS_ENTRIES << 0));
/* Set up the pointer to our vertex buffer */
OUT_BATCH(BRW_3DSTATE_VERTEX_BUFFERS | 2);
/* four 32-bit floats per vertex */
OUT_BATCH((0 << VB0_BUFFER_INDEX_SHIFT) |
VB0_VERTEXDATA |
((4 * 4) << VB0_BUFFER_PITCH_SHIFT));
OUT_BATCH(state_base_offset + vb_offset);
OUT_BATCH(3); /* four corners to our rectangle */
/* Set up our vertex elements, sourced from the single vertex buffer. */
OUT_BATCH(BRW_3DSTATE_VERTEX_ELEMENTS | 3);
/* offset 0: X,Y -> {X, Y, 1.0, 1.0} */
OUT_BATCH((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) |
VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT));
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) |
(0 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT));
/* offset 8: S0, T0 -> {S0, T0, 1.0, 1.0} */
OUT_BATCH((0 << VE0_VERTEX_BUFFER_INDEX_SHIFT) |
VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(8 << VE0_OFFSET_SHIFT));
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) |
(4 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT));
OUT_BATCH(MI_NOOP); /* pad to quadword */
ADVANCE_BATCH();
}
/* Set up the offset for translating from the given region (in screen
* coordinates) to the backing pixmap.
*/
#ifdef COMPOSITE
pix_xoff = -pPixmap->screen_x + pPixmap->drawable.x;
pix_yoff = -pPixmap->screen_y + pPixmap->drawable.y;
#else
pix_xoff = 0;
pix_yoff = 0;
#endif
dxo = dstRegion->extents.x1;
dyo = dstRegion->extents.y1;
/* Use normalized texture coordinates */
src_scale_x = ((float)src_w / width) / (float)drw_w;
src_scale_y = ((float)src_h / height) / (float)drw_h;
pbox = REGION_RECTS(dstRegion);
nbox = REGION_NUM_RECTS(dstRegion);
while (nbox--) {
int box_x1 = pbox->x1;
int box_y1 = pbox->y1;
int box_x2 = pbox->x2;
int box_y2 = pbox->y2;
int i;
if (!first_output) {
/* Since we use the same little vertex buffer over and over, sync
* for subsequent rectangles.
*/
i830WaitSync(pScrn);
}
pbox++;
i = 0;
vb[i++] = (box_x2 - dxo) * src_scale_x;
vb[i++] = (box_y2 - dyo) * src_scale_y;
vb[i++] = (float) box_x2 + pix_xoff;
vb[i++] = (float) box_y2 + pix_yoff;
vb[i++] = (box_x1 - dxo) * src_scale_x;
vb[i++] = (box_y2 - dyo) * src_scale_y;
vb[i++] = (float) box_x1 + pix_xoff;
vb[i++] = (float) box_y2 + pix_yoff;
vb[i++] = (box_x1 - dxo) * src_scale_x;
vb[i++] = (box_y1 - dyo) * src_scale_y;
vb[i++] = (float) box_x1 + pix_xoff;
vb[i++] = (float) box_y1 + pix_yoff;
#if 0
ErrorF ("before EU_ATT 0x%08x%08x EU_ATT_DATA 0x%08x%08x\n",
INREG(BRW_EU_ATT_1), INREG(BRW_EU_ATT_0),
INREG(BRW_EU_ATT_DATA_1), INREG(BRW_EU_ATT_DATA_0));
OUTREG(BRW_VF_CTL,
BRW_VF_CTL_SNAPSHOT_MUX_SELECT_THREADID |
BRW_VF_CTL_SNAPSHOT_TYPE_VERTEX_INDEX |
BRW_VF_CTL_SNAPSHOT_ENABLE);
OUTREG(BRW_VF_STRG_VAL, 0);
#endif
#if 0
OUTREG(BRW_VS_CTL,
BRW_VS_CTL_SNAPSHOT_ALL_THREADS |
BRW_VS_CTL_SNAPSHOT_MUX_VALID_COUNT |
BRW_VS_CTL_THREAD_SNAPSHOT_ENABLE);
OUTREG(BRW_VS_STRG_VAL, 0);
#endif
#if WATCH_SF
OUTREG(BRW_SF_CTL,
BRW_SF_CTL_SNAPSHOT_MUX_VERTEX_COUNT |
BRW_SF_CTL_SNAPSHOT_ALL_THREADS |
BRW_SF_CTL_THREAD_SNAPSHOT_ENABLE);
OUTREG(BRW_SF_STRG_VAL, 0);
#endif
#if WATCH_WIZ
OUTREG(BRW_WIZ_CTL,
BRW_WIZ_CTL_SNAPSHOT_MUX_SUBSPAN_INSTANCE |
BRW_WIZ_CTL_SNAPSHOT_ALL_THREADS |
BRW_WIZ_CTL_SNAPSHOT_ENABLE);
OUTREG(BRW_WIZ_STRG_VAL,
(box_x1) | (box_y1 << 16));
#endif
#if 0
OUTREG(BRW_TS_CTL,
BRW_TS_CTL_SNAPSHOT_MESSAGE_ERROR |
BRW_TS_CTL_SNAPSHOT_ALL_CHILD_THREADS |
BRW_TS_CTL_SNAPSHOT_ALL_ROOT_THREADS |
BRW_TS_CTL_SNAPSHOT_ENABLE);
#endif
BEGIN_BATCH(6);
OUT_BATCH(BRW_3DPRIMITIVE |
BRW_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << BRW_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) | /* CTG - indirect vertex count */
4);
OUT_BATCH(3); /* vertex count per instance */
OUT_BATCH(0); /* start vertex offset */
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
ADVANCE_BATCH();
#if 0
for (j = 0; j < 100000; j++) {
ctl = INREG(BRW_VF_CTL);
if (ctl & BRW_VF_CTL_SNAPSHOT_COMPLETE)
break;
}
rdata = INREG(BRW_VF_RDATA);
OUTREG(BRW_VF_CTL, 0);
ErrorF ("VF_CTL: 0x%08x VF_RDATA: 0x%08x\n", ctl, rdata);
#endif
#if 0
for (j = 0; j < 1000000; j++) {
ctl = INREG(BRW_VS_CTL);
if (ctl & BRW_VS_CTL_SNAPSHOT_COMPLETE)
break;
}
rdata = INREG(BRW_VS_RDATA);
for (k = 0; k <= 3; k++) {
OUTREG(BRW_VS_CTL,
BRW_VS_CTL_SNAPSHOT_COMPLETE |
(k << 8));
rdata = INREG(BRW_VS_RDATA);
ErrorF ("VS_CTL: 0x%08x VS_RDATA(%d): 0x%08x\n", ctl, k, rdata);
}
OUTREG(BRW_VS_CTL, 0);
#endif
#if WATCH_SF
for (j = 0; j < 1000000; j++) {
ctl = INREG(BRW_SF_CTL);
if (ctl & BRW_SF_CTL_SNAPSHOT_COMPLETE)
break;
}
for (k = 0; k <= 7; k++) {
OUTREG(BRW_SF_CTL,
BRW_SF_CTL_SNAPSHOT_COMPLETE |
(k << 8));
rdata = INREG(BRW_SF_RDATA);
ErrorF("SF_CTL: 0x%08x SF_RDATA(%d): 0x%08x\n", ctl, k, rdata);
}
OUTREG(BRW_SF_CTL, 0);
#endif
#if WATCH_WIZ
for (j = 0; j < 100000; j++) {
ctl = INREG(BRW_WIZ_CTL);
if (ctl & BRW_WIZ_CTL_SNAPSHOT_COMPLETE)
break;
}
rdata = INREG(BRW_WIZ_RDATA);
OUTREG(BRW_WIZ_CTL, 0);
ErrorF("WIZ_CTL: 0x%08x WIZ_RDATA: 0x%08x\n", ctl, rdata);
#endif
#if 0
for (j = 0; j < 100000; j++) {
ctl = INREG(BRW_TS_CTL);
if (ctl & BRW_TS_CTL_SNAPSHOT_COMPLETE)
break;
}
rdata = INREG(BRW_TS_RDATA);
OUTREG(BRW_TS_CTL, 0);
ErrorF("TS_CTL: 0x%08x TS_RDATA: 0x%08x\n", ctl, rdata);
ErrorF("after EU_ATT 0x%08x%08x EU_ATT_DATA 0x%08x%08x\n",
INREG(BRW_EU_ATT_1), INREG(BRW_EU_ATT_0),
INREG(BRW_EU_ATT_DATA_1), INREG(BRW_EU_ATT_DATA_0));
#endif
#if 0
for (j = 0; j < 256; j++) {
OUTREG(BRW_TD_CTL, j << BRW_TD_CTL_MUX_SHIFT);
rdata = INREG(BRW_TD_RDATA);
ErrorF ("TD_RDATA(%d): 0x%08x\n", j, rdata);
}
#endif
first_output = FALSE;
i830MarkSync(pScrn);
}
#if WATCH_STATS
i830_dump_error_state(pScrn);
#endif
}
|