1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
#ifndef SNA_RENDER_INLINE_H
#define SNA_RENDER_INLINE_H
static inline bool need_tiling(struct sna *sna, int16_t width, int16_t height)
{
/* Is the damage area too large to fit in 3D pipeline,
* and so do we need to split the operation up into tiles?
*/
return (width > sna->render.max_3d_size ||
height > sna->render.max_3d_size);
}
static inline bool need_redirect(struct sna *sna, PixmapPtr dst)
{
/* Is the pixmap too large to render to? */
return (dst->drawable.width > sna->render.max_3d_size ||
dst->drawable.height > sna->render.max_3d_size);
}
static force_inline float pack_2s(int16_t x, int16_t y)
{
union {
struct sna_coordinate p;
float f;
} u;
u.p.x = x;
u.p.y = y;
return u.f;
}
static force_inline int vertex_space(struct sna *sna)
{
return sna->render.vertex_size - sna->render.vertex_used;
}
static force_inline void vertex_emit(struct sna *sna, float v)
{
assert(sna->render.vertex_used < sna->render.vertex_size);
sna->render.vertices[sna->render.vertex_used++] = v;
}
static force_inline void vertex_emit_2s(struct sna *sna, int16_t x, int16_t y)
{
vertex_emit(sna, pack_2s(x, y));
}
static force_inline int batch_space(struct sna *sna)
{
assert(sna->kgem.nbatch <= KGEM_BATCH_SIZE(&sna->kgem));
assert(sna->kgem.nbatch + KGEM_BATCH_RESERVED <= sna->kgem.surface);
return sna->kgem.surface - sna->kgem.nbatch - KGEM_BATCH_RESERVED;
}
static force_inline void batch_emit(struct sna *sna, uint32_t dword)
{
assert(sna->kgem.mode != KGEM_NONE);
assert(sna->kgem.nbatch + KGEM_BATCH_RESERVED < sna->kgem.surface);
sna->kgem.batch[sna->kgem.nbatch++] = dword;
}
static force_inline void batch_emit64(struct sna *sna, uint64_t qword)
{
assert(sna->kgem.mode != KGEM_NONE);
assert(sna->kgem.nbatch + 2 + KGEM_BATCH_RESERVED < sna->kgem.surface);
*(uint64_t *)(sna->kgem.batch+sna->kgem.nbatch) = qword;
sna->kgem.nbatch += 2;
}
static force_inline void batch_emit_float(struct sna *sna, float f)
{
union {
uint32_t dw;
float f;
} u;
u.f = f;
batch_emit(sna, u.dw);
}
static inline bool
is_gpu(struct sna *sna, DrawablePtr drawable, unsigned prefer)
{
struct sna_pixmap *priv = sna_pixmap_from_drawable(drawable);
if (priv == NULL || priv->clear || priv->cpu)
return false;
if (priv->cpu_damage == NULL)
return true;
if (priv->gpu_damage && !priv->gpu_bo->proxy &&
(sna->render.prefer_gpu & prefer))
return true;
if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo))
return true;
return priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo);
}
static inline bool
too_small(struct sna_pixmap *priv)
{
assert(priv);
if (priv->gpu_bo)
return false;
if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo))
return false;
return (priv->create & KGEM_CAN_CREATE_GPU) == 0;
}
static inline bool
unattached(DrawablePtr drawable)
{
struct sna_pixmap *priv = sna_pixmap_from_drawable(drawable);
return priv == NULL || (priv->gpu_damage == NULL && priv->cpu_damage && !priv->cpu_bo);
}
static inline bool
picture_is_gpu(struct sna *sna, PicturePtr picture, unsigned flags)
{
if (!picture)
return false;
if (!picture->pDrawable) {
switch (flags) {
case PREFER_GPU_RENDER:
switch (picture->pSourcePict->type) {
case SourcePictTypeSolidFill:
case SourcePictTypeLinear:
return false;
default:
return true;
}
case PREFER_GPU_SPANS:
return true;
default:
return false;
}
} else {
if (picture->repeat &&
(picture->pDrawable->width | picture->pDrawable->height) == 1)
return flags == PREFER_GPU_SPANS;
}
return is_gpu(sna, picture->pDrawable, flags);
}
static inline bool
picture_is_cpu(struct sna *sna, PicturePtr picture)
{
if (!picture->pDrawable)
return false;
return !is_gpu(sna, picture->pDrawable, PREFER_GPU_RENDER);
}
static inline bool sna_blt_compare_depth(DrawablePtr src, DrawablePtr dst)
{
if (src->depth == dst->depth)
return true;
/* Also allow for the alpha to be discarded on a copy */
if (src->bitsPerPixel != dst->bitsPerPixel)
return false;
if (dst->depth == 24 && src->depth == 32)
return true;
/* Note that a depth-16 pixmap is r5g6b5, not x1r5g5b5. */
return false;
}
static inline struct kgem_bo *
sna_render_get_alpha_gradient(struct sna *sna)
{
return kgem_bo_reference(sna->render.alpha_cache.cache_bo);
}
static inline void
sna_render_picture_extents(PicturePtr p, BoxRec *box)
{
box->x1 = p->pDrawable->x;
box->y1 = p->pDrawable->y;
box->x2 = bound(box->x1, p->pDrawable->width);
box->y2 = bound(box->y1, p->pDrawable->height);
if (box->x1 < p->pCompositeClip->extents.x1)
box->x1 = p->pCompositeClip->extents.x1;
if (box->y1 < p->pCompositeClip->extents.y1)
box->y1 = p->pCompositeClip->extents.y1;
if (box->x2 > p->pCompositeClip->extents.x2)
box->x2 = p->pCompositeClip->extents.x2;
if (box->y2 > p->pCompositeClip->extents.y2)
box->y2 = p->pCompositeClip->extents.y2;
assert(box->x2 > box->x1 && box->y2 > box->y1);
}
static inline void
sna_render_reduce_damage(struct sna_composite_op *op,
int dst_x, int dst_y,
int width, int height)
{
BoxRec r;
if (op->damage == NULL || *op->damage == NULL)
return;
if (DAMAGE_IS_ALL(*op->damage)) {
DBG(("%s: damage-all, dicarding damage\n",
__FUNCTION__));
op->damage = NULL;
return;
}
if (width == 0 || height == 0)
return;
r.x1 = dst_x + op->dst.x;
r.x2 = r.x1 + width;
r.y1 = dst_y + op->dst.y;
r.y2 = r.y1 + height;
if (sna_damage_contains_box__no_reduce(*op->damage, &r)) {
DBG(("%s: damage contains render extents, dicarding damage\n",
__FUNCTION__));
op->damage = NULL;
}
}
inline static uint32_t
color_convert(uint32_t pixel,
uint32_t src_format,
uint32_t dst_format)
{
DBG(("%s: src=%08x [%08x]\n", __FUNCTION__, pixel, src_format));
if (src_format != dst_format) {
uint16_t red, green, blue, alpha;
if (!sna_get_rgba_from_pixel(pixel,
&red, &green, &blue, &alpha,
src_format))
return 0;
if (!sna_get_pixel_from_rgba(&pixel,
red, green, blue, alpha,
dst_format))
return 0;
}
DBG(("%s: dst=%08x [%08x]\n", __FUNCTION__, pixel, dst_format));
return pixel;
}
inline static bool dst_use_gpu(PixmapPtr pixmap)
{
struct sna_pixmap *priv = sna_pixmap(pixmap);
if (priv == NULL)
return false;
if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo))
return true;
if (priv->clear)
return false;
if (priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo))
return true;
return priv->gpu_damage && (!priv->cpu || !priv->cpu_damage);
}
inline static bool dst_use_cpu(PixmapPtr pixmap)
{
struct sna_pixmap *priv = sna_pixmap(pixmap);
if (priv == NULL || priv->shm)
return true;
return priv->cpu_damage && priv->cpu;
}
inline static bool dst_is_cpu(PixmapPtr pixmap)
{
struct sna_pixmap *priv = sna_pixmap(pixmap);
return priv == NULL || DAMAGE_IS_ALL(priv->cpu_damage);
}
inline static bool
untransformed(PicturePtr p)
{
return !p->transform || pixman_transform_is_int_translate(p->transform);
}
#endif /* SNA_RENDER_INLINE_H */
|