1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
#ifndef SNA_RENDER_INLINE_H
#define SNA_RENDER_INLINE_H
static inline bool need_tiling(struct sna *sna, int16_t width, int16_t height)
{
/* Is the damage area too large to fit in 3D pipeline,
* and so do we need to split the operation up into tiles?
*/
return (width > sna->render.max_3d_size ||
height > sna->render.max_3d_size);
}
static inline bool need_redirect(struct sna *sna, PixmapPtr dst)
{
/* Is the pixmap too large to render to? */
return (dst->drawable.width > sna->render.max_3d_size ||
dst->drawable.height > sna->render.max_3d_size);
}
static inline int vertex_space(struct sna *sna)
{
return ARRAY_SIZE(sna->render.vertex_data) - sna->render.vertex_used;
}
static inline void vertex_emit(struct sna *sna, float v)
{
assert(sna->render.vertex_used < ARRAY_SIZE(sna->render.vertex_data));
sna->render.vertex_data[sna->render.vertex_used++] = v;
}
static inline void vertex_emit_2s(struct sna *sna, int16_t x, int16_t y)
{
int16_t *v = (int16_t *)&sna->render.vertex_data[sna->render.vertex_used++];
assert(sna->render.vertex_used <= ARRAY_SIZE(sna->render.vertex_data));
v[0] = x;
v[1] = y;
}
static inline float pack_2s(int16_t x, int16_t y)
{
union {
struct sna_coordinate p;
float f;
} u;
u.p.x = x;
u.p.y = y;
return u.f;
}
static inline int batch_space(struct sna *sna)
{
return sna->kgem.surface - sna->kgem.nbatch - KGEM_BATCH_RESERVED;
}
static inline void batch_emit(struct sna *sna, uint32_t dword)
{
assert(sna->kgem.nbatch + KGEM_BATCH_RESERVED < sna->kgem.surface);
sna->kgem.batch[sna->kgem.nbatch++] = dword;
}
static inline void batch_emit_float(struct sna *sna, float f)
{
union {
uint32_t dw;
float f;
} u;
u.f = f;
batch_emit(sna, u.dw);
}
static inline Bool
is_gpu(DrawablePtr drawable)
{
struct sna_pixmap *priv = sna_pixmap_from_drawable(drawable);
if (priv == NULL)
return false;
if (priv->gpu_damage)
return true;
return priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo);
}
static inline Bool
is_cpu(DrawablePtr drawable)
{
struct sna_pixmap *priv = sna_pixmap_from_drawable(drawable);
return !priv || priv->cpu_damage != NULL;
}
static inline Bool
too_small(DrawablePtr drawable)
{
return ((uint32_t)drawable->width * drawable->height * drawable->bitsPerPixel <= 8*4096) && !is_gpu(drawable);
}
static inline Bool
picture_is_gpu(PicturePtr picture)
{
if (!picture || !picture->pDrawable)
return FALSE;
return is_gpu(picture->pDrawable);
}
static inline Bool sna_blt_compare_depth(DrawablePtr src, DrawablePtr dst)
{
if (src->depth == dst->depth)
return TRUE;
/* Also allow for the alpha to be discarded on a copy */
if (src->bitsPerPixel != dst->bitsPerPixel)
return FALSE;
if (dst->depth == 24 && src->depth == 32)
return TRUE;
/* Note that a depth-16 pixmap is r5g6b5, not x1r5g5b5. */
return FALSE;
}
static inline struct kgem_bo *
sna_render_get_alpha_gradient(struct sna *sna)
{
return kgem_bo_reference(sna->render.alpha_cache.cache_bo);
}
static inline void
sna_render_reduce_damage(struct sna_composite_op *op,
int dst_x, int dst_y,
int width, int height)
{
BoxRec r;
if (op->damage == NULL || *op->damage == NULL)
return;
if ((*op->damage)->mode == DAMAGE_ALL) {
op->damage = NULL;
return;
}
if (width == 0 || height == 0)
return;
r.x1 = dst_x + op->dst.x;
r.x2 = r.x1 + width;
r.y1 = dst_y + op->dst.y;
r.y2 = r.y1 + height;
if (sna_damage_contains_box__no_reduce(*op->damage, &r))
op->damage = NULL;
}
#endif /* SNA_RENDER_INLINE_H */
|