1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
|
/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/mga/mga_dac3026.c,v 1.58tsi Exp $ */
/*
* Copyright 1994 by Robin Cutshaw <robin@XFree86.org>
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Robin Cutshaw not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Robin Cutshaw makes no representations
* about the suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
*
* ROBIN CUTSHAW DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL ROBIN CUTSHAW BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
*
* Modified for TVP3026 by Harald Koenig <koenig@tat.physik.uni-tuebingen.de>
*
* Modified for MGA Millennium by Xavier Ducoin <xavier@rd.lectra.fr>
*
* Doug Merritt <doug@netcom.com>
* 24bpp: fixed high res stripe glitches, clock glitches on all res
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/*
* This is a first cut at a non-accelerated version to work with the
* new server design (DHD).
*/
/* All drivers should typically include these */
#include "xf86.h"
#include "xf86_OSproc.h"
/* Drivers for PCI hardware need this */
#include "xf86PciInfo.h"
/* Drivers that need to access the PCI config space directly need this */
#include "xf86Pci.h"
#include "mga_reg.h"
#include "mga.h"
#include "mga_macros.h"
#include "xf86DDC.h"
/*
* Only change these bits in the Option register. Make sure that the
* vgaioen bit is never in this mask because it is controlled elsewhere
*/
#define OPTION_MASK 0xFFEFFEFF /* ~(eepromwt | vgaioen) */
static void MGA3026LoadPalette(ScrnInfoPtr, int, int*, LOCO*, VisualPtr);
static void MGA3026SavePalette(ScrnInfoPtr, unsigned char*);
static void MGA3026RestorePalette(ScrnInfoPtr, unsigned char*);
static void MGA3026RamdacInit(ScrnInfoPtr);
static void MGA3026Save(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool);
static void MGA3026Restore(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool);
static Bool MGA3026Init(ScrnInfoPtr, DisplayModePtr);
static Bool MGA3026_i2cInit(ScrnInfoPtr pScrn);
/*
* implementation
*/
/*
* indexes to ti3026 registers (the order is important)
*/
const static unsigned char MGADACregs[] = {
0x0F, 0x18, 0x19, 0x1A, 0x1C, 0x1D, 0x1E, 0x2A, 0x2B, 0x30,
0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,
0x06
};
/* note: to fix a cursor hw glitch, register 0x37 (blue color key) needs
to be set to magic numbers, even though they are "never" used because
blue keying disabled in 0x38.
Matrox sez:
...The more precise statement of the software workaround is to insure
that bits 7-5 of register 0x37 (Blue Color Key High) and bits 7-5 of
register 0x38 (HZOOM)are the same...
*/
/* also note: the values of the MUX control register 0x19 (index [2]) can be
found in table 2-17 of the 3026 manual. If interlace is set, the values
listed here are incremented by one.
*/
#define DACREGSIZE sizeof(MGADACregs)
/*
* initial values of ti3026 registers
*/
const static unsigned char MGADACbpp8[DACREGSIZE] = {
0x06, 0x80, 0x4b, 0x25, 0x00, 0x00, 0x0C, 0x00, 0x1E, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0, 0x00,
0x00
};
const static unsigned char MGADACbpp16[DACREGSIZE] = {
0x07, 0x45, 0x53, 0x15, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00,
0x00
};
/*
* [0] value was 0x07, but changed to 0x06 by Doug Merrit to fix high res
* stripe glitches and clock glitches at 24bpp.
*/
/* [0] value is now set inside of MGA3026Init, based on the silicon revision
It is still set to 7 or 6 based on the revision, though, since setting to
8 as in the documentation makes (some?) revB chips get the colors wrong...
maybe BGR instead of RGB? This only applies to 24bpp, since it is the only
one documented as depending on revision.
*/
const static unsigned char MGADACbpp24[DACREGSIZE] = {
0x06, 0x56, 0x5b, 0x25, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00,
0x00
};
const static unsigned char MGADACbpp32[DACREGSIZE] = {
0x07, 0x46, 0x5b, 0x05, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00,
0x00
};
/* on at least some 2064Ws, the PSEL line flips at 4MB or so, so PSEL keying
has to be off in register 0x1e -> bit4 clear */
const static unsigned char MGADACbpp8plus24[DACREGSIZE] = {
0x07, 0x06, 0x5b, 0x05, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0x00, 0x00,
0x00
};
/*
* Read/write to the DAC via MMIO
*/
/*
* These were functions. Use macros instead to avoid the need to
* pass pMga to them.
*/
#define inTi3026dreg(reg) INREG8(RAMDAC_OFFSET + (reg))
#define outTi3026dreg(reg, val) OUTREG8(RAMDAC_OFFSET + (reg), val)
#define inTi3026(reg) \
(outTi3026dreg(TVP3026_INDEX, reg), inTi3026dreg(TVP3026_DATA))
#define outTi3026(reg, mask, val) \
do { /* note: mask and reg may get evaluated twice */ \
unsigned char tmp = (mask) ? (inTi3026(reg) & (mask)) : 0; \
outTi3026dreg(TVP3026_INDEX, reg); \
outTi3026dreg(TVP3026_DATA, tmp | (val)); \
} while (0)
/*
* MGATi3026CalcClock - Calculate the PLL settings (m, n, p).
*
* DESCRIPTION
* For more information, refer to the Texas Instruments
* "TVP3026 Data Manual" (document SLAS098B).
* Section 2.4 "PLL Clock Generators"
* Appendix A "Frequency Synthesis PLL Register Settings"
* Appendix B "PLL Programming Examples"
*
* PARAMETERS
* f_out IN Desired clock frequency.
* f_max IN Maximum allowed clock frequency.
* m OUT Value of PLL 'm' register.
* n OUT Value of PLL 'n' register.
* p OUT Value of PLL 'p' register.
*
* HISTORY
* January 11, 1997 - [aem] Andrew E. Mileski
* Split off from MGATi3026SetClock.
*/
/* The following values are in kHz */
#define TI_MIN_VCO_FREQ 110000
#define TI_MAX_VCO_FREQ 220000
#define TI_MAX_MCLK_FREQ 100000
#define TI_REF_FREQ 14318.18
static double
MGATi3026CalcClock (
long f_out, long f_max,
int *m, int *n, int *p
){
int best_m = 0, best_n = 0;
double f_pll, f_vco;
double m_err, inc_m, calc_m;
/* Make sure that f_min <= f_out <= f_max */
if ( f_out < ( TI_MIN_VCO_FREQ / 8 ))
f_out = TI_MIN_VCO_FREQ / 8;
if ( f_out > f_max )
f_out = f_max;
/*
* f_pll = f_vco / 2 ^ p
* Choose p so that TI_MIN_VCO_FREQ <= f_vco <= TI_MAX_VCO_FREQ
* Note that since TI_MAX_VCO_FREQ = 2 * TI_MIN_VCO_FREQ
* we don't have to bother checking for this maximum limit.
*/
f_vco = ( double ) f_out;
for ( *p = 0; *p < 3 && f_vco < TI_MIN_VCO_FREQ; ( *p )++ )
f_vco *= 2.0;
/*
* We avoid doing multiplications by ( 65 - n ),
* and add an increment instead - this keeps any error small.
*/
inc_m = f_vco / ( TI_REF_FREQ * 8.0 );
/* Initial value of calc_m for the loop */
calc_m = inc_m + inc_m + inc_m;
/* Initial amount of error for an integer - impossibly large */
m_err = 2.0;
/* Search for the closest INTEGER value of ( 65 - m ) */
for ( *n = 3; *n <= 25; ( *n )++, calc_m += inc_m ) {
/* Ignore values of ( 65 - m ) which we can't use */
if ( calc_m < 3.0 || calc_m > 64.0 )
continue;
/*
* Pick the closest INTEGER (has smallest fractional part).
* The optimizer should clean this up for us.
*/
if (( calc_m - ( int ) calc_m ) < m_err ) {
m_err = calc_m - ( int ) calc_m;
best_m = ( int ) calc_m;
best_n = *n;
}
}
/* 65 - ( 65 - x ) = x */
*m = 65 - best_m;
*n = 65 - best_n;
/* Now all the calculations can be completed */
f_vco = 8.0 * TI_REF_FREQ * best_m / best_n;
f_pll = f_vco / ( 1 << *p );
#ifdef DEBUG
ErrorF( "f_out=%ld f_pll=%.1f f_vco=%.1f n=%d m=%d p=%d\n",
f_out, f_pll, f_vco, *n, *m, *p );
#endif
return f_pll;
}
/*
* MGATi3026SetMCLK - Set the memory clock (MCLK) PLL.
*
* HISTORY
* January 11, 1997 - [aem] Andrew E. Mileski
* Written and tested.
*/
static void
MGATi3026SetMCLK( ScrnInfoPtr pScrn, long f_out )
{
int mclk_m, mclk_n, mclk_p;
int pclk_m, pclk_n, pclk_p;
int mclk_ctl;
MGAPtr pMga = MGAPTR(pScrn);
MGATi3026CalcClock(f_out, TI_MAX_MCLK_FREQ, &mclk_m, &mclk_n, &mclk_p);
/* Save PCLK settings */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfc );
pclk_n = inTi3026( TVP3026_PIX_CLK_DATA );
outTi3026( TVP3026_PLL_ADDR, 0, 0xfd );
pclk_m = inTi3026( TVP3026_PIX_CLK_DATA );
outTi3026( TVP3026_PLL_ADDR, 0, 0xfe );
pclk_p = inTi3026( TVP3026_PIX_CLK_DATA );
/* Stop PCLK (PLLEN = 0, PCLKEN = 0) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfe );
outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 );
/* Set PCLK to the new MCLK frequency (PLLEN = 1, PCLKEN = 0 ) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfc );
outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 );
outTi3026( TVP3026_PIX_CLK_DATA, 0, mclk_m & 0x3f );
outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 );
/* Wait for PCLK PLL to lock on frequency */
while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) {
;
}
/* Output PCLK on MCLK pin */
mclk_ctl = inTi3026( TVP3026_MCLK_CTL );
outTi3026( TVP3026_MCLK_CTL, 0, mclk_ctl & 0xe7 );
outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x08 );
/* Stop MCLK (PLLEN = 0 ) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfb );
outTi3026( TVP3026_MEM_CLK_DATA, 0, 0x00 );
/* Set MCLK to the new frequency (PLLEN = 1) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xf3 );
outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 );
outTi3026( TVP3026_MEM_CLK_DATA, 0, mclk_m & 0x3f );
outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 );
/* Wait for MCLK PLL to lock on frequency */
while (( inTi3026( TVP3026_MEM_CLK_DATA ) & 0x40 ) == 0 ) {
;
}
/* Output MCLK PLL on MCLK pin */
outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x10 );
outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x18 );
/* Stop PCLK (PLLEN = 0, PCLKEN = 0 ) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfe );
outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 );
/* Restore PCLK (PLLEN = ?, PCLKEN = ?) */
outTi3026( TVP3026_PLL_ADDR, 0, 0xfc );
outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_n );
outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_m );
outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_p );
/* Wait for PCLK PLL to lock on frequency */
while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) {
;
}
}
/*
* MGATi3026SetPCLK - Set the pixel (PCLK) and loop (LCLK) clocks.
*
* PARAMETERS
* f_pll IN Pixel clock PLL frequencly in kHz.
* bpp IN Bytes per pixel.
*
* HISTORY
* January 11, 1997 - [aem] Andrew E. Mileski
* Split to simplify code for MCLK (=GCLK) setting.
*
* December 14, 1996 - [aem] Andrew E. Mileski
* Fixed loop clock to be based on the calculated, not requested,
* pixel clock. Added f_max = maximum f_vco frequency.
*
* October 19, 1996 - [aem] Andrew E. Mileski
* Commented the loop clock code (wow, I understand everything now),
* and simplified it a bit. This should really be two separate functions.
*
* October 1, 1996 - [aem] Andrew E. Mileski
* Optimized the m & n picking algorithm. Added maxClock detection.
* Low speed pixel clock fix (per the docs). Documented what I understand.
*
* ?????, ??, ???? - [???] ????????????
* Based on the TVP3026 code in the S3 driver.
*/
static void
MGATi3026SetPCLK( ScrnInfoPtr pScrn, long f_out, int bpp )
{
/* Pixel clock values */
int m, n, p;
/* Loop clock values */
int lm, ln, lp, lq;
double z;
/* The actual frequency output by the clock */
double f_pll;
long f_max = TI_MAX_VCO_FREQ;
MGAPtr pMga = MGAPTR(pScrn);
MGARegPtr pReg = &pMga->ModeReg;
/* Get the maximum pixel clock frequency */
if ( pMga->MaxClock > TI_MAX_VCO_FREQ )
f_max = pMga->MaxClock;
/* Do the calculations for m, n, and p */
f_pll = MGATi3026CalcClock( f_out, f_max, & m, & n, & p );
/* Values for the pixel clock PLL registers */
pReg->DacClk[ 0 ] = ( n & 0x3f ) | 0xc0;
pReg->DacClk[ 1 ] = ( m & 0x3f );
pReg->DacClk[ 2 ] = ( p & 0x03 ) | 0xb0;
/*
* Now that the pixel clock PLL is setup,
* the loop clock PLL must be setup.
*/
/*
* First we figure out lm, ln, and z.
* Things are different in packed pixel mode (24bpp) though.
*/
if ( pMga->CurrentLayout.bitsPerPixel == 24 ) {
/* ln:lm = ln:3 */
lm = 65 - 3;
/* Check for interleaved mode */
if ( bpp == 2 )
/* ln:lm = 4:3 */
ln = 65 - 4;
else
/* ln:lm = 8:3 */
ln = 65 - 8;
/* Note: this is actually 100 * z for more precision */
z = ( 11000 * ( 65 - ln )) / (( f_pll / 1000 ) * ( 65 - lm ));
}
else {
/* ln:lm = ln:4 */
lm = 65 - 4;
/* Note: bpp = bytes per pixel */
ln = 65 - 4 * ( 64 / 8 ) / bpp;
/* Note: this is actually 100 * z for more precision */
z = (( 11000 / 4 ) * ( 65 - ln )) / ( f_pll / 1000 );
}
/*
* Now we choose dividers lp and lq so that the VCO frequency
* is within the operating range of 110 MHz to 220 MHz.
*/
/* Assume no lq divider */
lq = 0;
/* Note: z is actually 100 * z for more precision */
if ( z <= 200.0 )
lp = 0;
else if ( z <= 400.0 )
lp = 1;
else if ( z <= 800.0 )
lp = 2;
else if ( z <= 1600.0 )
lp = 3;
else {
lp = 3;
lq = ( int )( z / 1600.0 );
}
/* Values for the loop clock PLL registers */
if ( pMga->CurrentLayout.bitsPerPixel == 24 ) {
/* Packed pixel mode values */
pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0x80;
pReg->DacClk[ 4 ] = ( lm & 0x3f ) | 0x80;
pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf8;
} else {
/* Non-packed pixel mode values */
pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0xc0;
pReg->DacClk[ 4 ] = ( lm & 0x3f );
pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf0;
}
pReg->DacRegs[ 18 ] = lq | 0x38;
#ifdef DEBUG
ErrorF( "bpp=%d z=%.1f ln=%d lm=%d lp=%d lq=%d\n",
bpp, z, ln, lm, lp, lq );
#endif
}
/*
* MGA3026Init -- for mga2064 with ti3026
*
* The 'mode' parameter describes the video mode. The 'mode' structure
* as well as the 'vga256InfoRec' structure can be dereferenced for
* information that is needed to initialize the mode. The 'new' macro
* (see definition above) is used to simply fill in the structure.
*/
static Bool
MGA3026Init(ScrnInfoPtr pScrn, DisplayModePtr mode)
{
int hd, hs, he, ht, vd, vs, ve, vt, wd;
int i, BppShift, index_1d = 0;
const unsigned char* initDAC;
MGAPtr pMga = MGAPTR(pScrn);
MGARamdacPtr MGAdac = &pMga->Dac;
MGAFBLayout *pLayout = &pMga->CurrentLayout;
MGARegPtr pReg = &pMga->ModeReg;
vgaRegPtr pVga = &VGAHWPTR(pScrn)->ModeReg;
BppShift = pMga->BppShifts[(pLayout->bitsPerPixel >> 3) - 1];
switch(pLayout->bitsPerPixel)
{
case 8:
initDAC = MGADACbpp8;
break;
case 16:
initDAC = MGADACbpp16;
break;
case 24:
initDAC = MGADACbpp24;
break;
case 32:
if(pLayout->Overlay8Plus24)
initDAC = MGADACbpp8plus24;
else
initDAC = MGADACbpp32;
break;
default:
FatalError("MGA: unsupported bits per pixel\n");
}
/* Allocate the DacRegs space if not done already */
if (pReg->DacRegs == NULL) {
pReg->DacRegs = xnfcalloc(DACREGSIZE, 1);
}
for (i = 0; i < DACREGSIZE; i++) {
pReg->DacRegs[i] = initDAC[i];
if (MGADACregs[i] == 0x1D)
index_1d = i;
}
if((pLayout->bitsPerPixel == 32) && pLayout->Overlay8Plus24) {
pReg->DacRegs[9] = pMga->colorKey;
pReg->DacRegs[10] = pMga->colorKey;
}
if ( (pLayout->bitsPerPixel == 16) && (pLayout->weight.red == 5)
&& (pLayout->weight.green == 5) && (pLayout->weight.blue == 5) ) {
pReg->DacRegs[1] &= ~0x01;
}
if (pMga->Interleave ) pReg->DacRegs[2] += 1;
if ( pLayout->bitsPerPixel == 24 ) {
int silicon_rev;
/* we need to set DacRegs[0] differently based on the silicon
* revision of the 3026 RAMDAC, as per page 2-14 of tvp3026.pdf.
* If we have rev A silicon, we want 0x07; rev B silicon wants
* 0x06.
*/
silicon_rev = inTi3026(TVP3026_SILICON_REV);
#ifdef DEBUG
ErrorF("TVP3026 revision 0x%x (rev %s)\n",
silicon_rev, (silicon_rev <= 0x20) ? "A" : "B");
#endif
if(silicon_rev <= 0x20) {
/* rev A */
pReg->DacRegs[0] = 0x07;
} else {
/* rev B */
pReg->DacRegs[0] = 0x06;
}
}
/*
* This will initialize all of the generic VGA registers.
*/
if (!vgaHWInit(pScrn, mode))
return(FALSE);
/*
* Here all of the MGA registers get filled in.
*/
hd = (mode->CrtcHDisplay >> 3) - 1;
hs = (mode->CrtcHSyncStart >> 3) - 1;
he = (mode->CrtcHSyncEnd >> 3) - 1;
ht = (mode->CrtcHTotal >> 3) - 1;
vd = mode->CrtcVDisplay - 1;
vs = mode->CrtcVSyncStart - 1;
ve = mode->CrtcVSyncEnd - 1;
vt = mode->CrtcVTotal - 2;
/* HTOTAL & 0x7 equal to 0x6 in 8bpp or 0x4 in 24bpp causes strange
* vertical stripes
*/
if((ht & 0x07) == 0x06 || (ht & 0x07) == 0x04)
ht++;
if (pLayout->bitsPerPixel == 24)
wd = (pLayout->displayWidth * 3) >> (4 - BppShift);
else
wd = pLayout->displayWidth >> (4 - BppShift);
pReg->ExtVga[0] = 0;
pReg->ExtVga[5] = 0;
if (mode->Flags & V_INTERLACE)
{
pReg->ExtVga[0] = 0x80;
pReg->ExtVga[5] = (hs + he - ht) >> 1;
wd <<= 1;
vt &= 0xFFFE;
/* enable interlaced cursor */
pReg->DacRegs[20] |= 0x20;
}
pReg->ExtVga[0] |= (wd & 0x300) >> 4;
pReg->ExtVga[1] = (((ht - 4) & 0x100) >> 8) |
((hd & 0x100) >> 7) |
((hs & 0x100) >> 6) |
(ht & 0x40);
pReg->ExtVga[2] = ((vt & 0xc00) >> 10) |
((vd & 0x400) >> 8) |
((vd & 0xc00) >> 7) |
((vs & 0xc00) >> 5);
if (pLayout->bitsPerPixel == 24)
pReg->ExtVga[3] = (((1 << BppShift) * 3) - 1) | 0x80;
else
pReg->ExtVga[3] = ((1 << BppShift) - 1) | 0x80;
/* Set viddelay (CRTCEXT3 Bits 3-4). */
pReg->ExtVga[3] |= (pScrn->videoRam == 8192 ? 0x10
: pScrn->videoRam == 2048 ? 0x08 : 0x00);
pReg->ExtVga[4] = 0;
pVga->CRTC[0] = ht - 4;
pVga->CRTC[1] = hd;
pVga->CRTC[2] = hd;
pVga->CRTC[3] = (ht & 0x1F) | 0x80;
pVga->CRTC[4] = hs;
pVga->CRTC[5] = ((ht & 0x20) << 2) | (he & 0x1F);
pVga->CRTC[6] = vt & 0xFF;
pVga->CRTC[7] = ((vt & 0x100) >> 8 ) |
((vd & 0x100) >> 7 ) |
((vs & 0x100) >> 6 ) |
((vd & 0x100) >> 5 ) |
0x10 |
((vt & 0x200) >> 4 ) |
((vd & 0x200) >> 3 ) |
((vs & 0x200) >> 2 );
pVga->CRTC[9] = ((vd & 0x200) >> 4) | 0x40;
pVga->CRTC[16] = vs & 0xFF;
pVga->CRTC[17] = (ve & 0x0F) | 0x20;
pVga->CRTC[18] = vd & 0xFF;
pVga->CRTC[19] = wd & 0xFF;
pVga->CRTC[21] = vd & 0xFF;
pVga->CRTC[22] = (vt + 1) & 0xFF;
if (mode->Flags & V_DBLSCAN)
pVga->CRTC[9] |= 0x80;
/* Per DDK vid.c line 75, sync polarity should be controlled
* via the TVP3026 RAMDAC register 1D and so MISC Output Register
* should always have bits 6 and 7 set. */
pVga->MiscOutReg |= 0xC0;
if ((mode->Flags & (V_PHSYNC | V_NHSYNC)) &&
(mode->Flags & (V_PVSYNC | V_NVSYNC)))
{
if (mode->Flags & V_PHSYNC)
pReg->DacRegs[index_1d] |= 0x01;
if (mode->Flags & V_PVSYNC)
pReg->DacRegs[index_1d] |= 0x02;
}
else
{
int VDisplay = mode->VDisplay;
if (mode->Flags & V_DBLSCAN)
VDisplay *= 2;
if (VDisplay < 400)
pReg->DacRegs[index_1d] |= 0x01; /* +hsync -vsync */
else if (VDisplay < 480)
pReg->DacRegs[index_1d] |= 0x02; /* -hsync +vsync */
else if (VDisplay < 768)
pReg->DacRegs[index_1d] |= 0x00; /* -hsync -vsync */
else
pReg->DacRegs[index_1d] |= 0x03; /* +hsync +vsync */
}
if (pMga->SyncOnGreen)
pReg->DacRegs[index_1d] |= 0x20;
pReg->Option = 0x402C0100; /* fine for 2064 and 2164 */
if (pMga->Interleave)
pReg->Option |= 0x1000;
else
pReg->Option &= ~0x1000;
/* must always have the pci retries on but rely on
polling to keep them from occuring */
pReg->Option &= ~0x20000000;
pVga->MiscOutReg |= 0x0C;
/* XXX Need to check the first argument */
MGATi3026SetPCLK( pScrn, mode->Clock, 1 << BppShift );
/* this one writes registers rather than writing to the
mgaReg->ModeReg and letting Restore write to the hardware
but that's no big deal since we will Restore right after
this function */
MGA_NOT_HAL(MGATi3026SetMCLK(pScrn, MGAdac->MemoryClock));
#ifdef DEBUG
ErrorF("%6ld: %02X %02X %02X %02X %02X %02X %08lX\n", mode->Clock,
pReg->DacClk[0], pReg->DacClk[1], pReg->DacClk[2], pReg->DacClk[3], pReg->DacClk[4], pReg->DacClk[5], pReg->Option);
for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", pReg->DacRegs[i]);
for (i=0; i<6; i++) ErrorF(" %02X", pReg->ExtVga[i]);
ErrorF("\n");
#endif
/* This disables the VGA memory aperture */
pVga->MiscOutReg &= ~0x02;
return(TRUE);
}
/*
* MGA3026Restore -- for mga2064 with ti3026
*
* This function restores a video mode. It basically writes out all of
* the registers that have previously been saved in the vgaMGARec data
* structure.
*/
static void
MGA3026Restore(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg,
Bool restoreFonts)
{
int i;
MGAPtr pMga = MGAPTR(pScrn);
/*
* Code is needed to get things back to bank zero.
*/
for (i = 0; i < 6; i++)
OUTREG16(0x1FDE, (mgaReg->ExtVga[i] << 8) | i);
pci_device_cfg_write_bits(pMga->PciInfo, OPTION_MASK, mgaReg->Option,
PCI_OPTION_REG);
MGA_NOT_HAL(
/* select pixel clock PLL as clock source */
outTi3026(TVP3026_CLK_SEL, 0, mgaReg->DacRegs[3]);
/* set loop and pixel clock PLL PLLEN bits to 0 */
outTi3026(TVP3026_PLL_ADDR, 0, 0x2A);
outTi3026(TVP3026_LOAD_CLK_DATA, 0, 0);
outTi3026(TVP3026_PIX_CLK_DATA, 0, 0);
); /* MGA_NOT_HAL */
/*
* This function handles restoring the generic VGA registers.
*/
vgaHWRestore(pScrn, vgaReg,
VGA_SR_MODE | (restoreFonts ? VGA_SR_FONTS : 0));
MGA3026RestorePalette(pScrn, vgaReg->DAC);
/*
* Code to restore SVGA registers that have been saved/modified
* goes here.
*/
MGA_NOT_HAL(
/* program pixel clock PLL */
outTi3026(TVP3026_PLL_ADDR, 0, 0x00);
for (i = 0; i < 3; i++)
outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i]);
if (vgaReg->MiscOutReg & 0x08) {
/* poll until pixel clock PLL LOCK bit is set */
outTi3026(TVP3026_PLL_ADDR, 0, 0x3F);
while ( ! (inTi3026(TVP3026_PIX_CLK_DATA) & 0x40) );
}
/* set Q divider for loop clock PLL */
outTi3026(TVP3026_MCLK_CTL, 0, mgaReg->DacRegs[18]);
); /* MGA_NOT_HAL */
/* program loop PLL */
outTi3026(TVP3026_PLL_ADDR, 0, 0x00);
for (i = 3; i < 6; i++)
outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i]);
MGA_NOT_HAL(
if ((vgaReg->MiscOutReg & 0x08) && ((mgaReg->DacClk[3] & 0xC0) == 0xC0) ) {
/* poll until loop PLL LOCK bit is set */
outTi3026(TVP3026_PLL_ADDR, 0, 0x3F);
while ( ! (inTi3026(TVP3026_LOAD_CLK_DATA) & 0x40) );
}
); /* MGA_NOT_HAL */
/*
* restore other DAC registers
*/
for (i = 0; i < DACREGSIZE; i++)
outTi3026(MGADACregs[i], 0, mgaReg->DacRegs[i]);
#ifdef DEBUG
ErrorF("PCI retry (0-enabled / 1-disabled): %d\n",
!!(mgaReg->Option & 0x20000000));
#endif
}
/*
* MGA3026Save -- for mga2064 with ti3026
*
* This function saves the video state.
*/
static void
MGA3026Save(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg,
Bool saveFonts)
{
int i;
MGAPtr pMga = MGAPTR(pScrn);
/* Allocate the DacRegs space if not done already */
if (mgaReg->DacRegs == NULL) {
mgaReg->DacRegs = xnfcalloc(DACREGSIZE, 1);
}
/*
* Code is needed to get back to bank zero.
*/
OUTREG16(0x1FDE, 0x0004);
/*
* This function will handle creating the data structure and filling
* in the generic VGA portion.
*/
vgaHWSave(pScrn, vgaReg, VGA_SR_MODE | (saveFonts ? VGA_SR_FONTS : 0));
MGA3026SavePalette(pScrn, vgaReg->DAC);
/*
* The port I/O code necessary to read in the extended registers
* into the fields of the vgaMGARec structure.
*/
for (i = 0; i < 6; i++)
{
OUTREG8(0x1FDE, i);
mgaReg->ExtVga[i] = INREG8(0x1FDF);
}
MGA_NOT_HAL(
outTi3026(TVP3026_PLL_ADDR, 0, 0x00);
for (i = 0; i < 3; i++)
outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i] =
inTi3026(TVP3026_PIX_CLK_DATA));
outTi3026(TVP3026_PLL_ADDR, 0, 0x00);
for (i = 3; i < 6; i++)
outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i] =
inTi3026(TVP3026_LOAD_CLK_DATA));
); /* MGA_NOT_HAL */
for (i = 0; i < DACREGSIZE; i++)
mgaReg->DacRegs[i] = inTi3026(MGADACregs[i]);
pci_device_cfg_read_u32(pMga->PciInfo, & mgaReg->Option,
PCI_OPTION_REG);
#ifdef DEBUG
ErrorF("read: %02X %02X %02X %02X %02X %02X %08lX\n",
mgaReg->DacClk[0], mgaReg->DacClk[1], mgaReg->DacClk[2], mgaReg->DacClk[3], mgaReg->DacClk[4], mgaReg->DacClk[5], mgaReg->Option);
for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", mgaReg->DacRegs[i]);
for (i=0; i<6; i++) ErrorF(" %02X", mgaReg->ExtVga[i]);
ErrorF("\n");
#endif
}
static void
MGA3026LoadCursorImage(
ScrnInfoPtr pScrn,
unsigned char *src
)
{
MGAPtr pMga = MGAPTR(pScrn);
int i = 1024;
outTi3026(TVP3026_CURSOR_CTL, 0xf3, 0x00); /* reset A9,A8 */
/* reset cursor RAM load address A7..A0 */
outTi3026dreg(TVP3026_WADR_PAL, 0x00);
while(i--) {
while (INREG8(0x1FDA) & 0x01);
while (!(INREG8(0x1FDA) & 0x01));
outTi3026dreg(TVP3026_CUR_RAM, *(src++));
}
}
static void
MGA3026ShowCursor(ScrnInfoPtr pScrn)
{
MGAPtr pMga = MGAPTR(pScrn);
/* Enable cursor - X11 mode */
outTi3026(TVP3026_CURSOR_CTL, 0x6c, 0x13);
}
static void
MGA3026HideCursor(ScrnInfoPtr pScrn)
{
MGAPtr pMga = MGAPTR(pScrn);
/* Disable cursor */
outTi3026(TVP3026_CURSOR_CTL, 0xfc, 0x00);
}
static void
MGA3026SetCursorPosition(
ScrnInfoPtr pScrn,
int x, int y
)
{
MGAPtr pMga = MGAPTR(pScrn);
x += 64;
y += 64;
/* Output position - "only" 12 bits of location documented */
outTi3026dreg(TVP3026_CUR_XLOW, x & 0xFF);
outTi3026dreg(TVP3026_CUR_XHI, (x >> 8) & 0x0F);
outTi3026dreg(TVP3026_CUR_YLOW, y & 0xFF);
outTi3026dreg(TVP3026_CUR_YHI, (y >> 8) & 0x0F);
}
static void
MGA3026SetCursorColors(
ScrnInfoPtr pScrn,
int bg, int fg
)
{
MGAPtr pMga = MGAPTR(pScrn);
/* The TI 3026 cursor is always 8 bits so shift 8, not 10 */
/* Background color */
outTi3026dreg(TVP3026_CUR_COL_ADDR, 1);
outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x00FF0000) >> 16);
outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x0000FF00) >> 8);
outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x000000FF));
/* Foreground color */
outTi3026dreg(TVP3026_CUR_COL_ADDR, 2);
outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x00FF0000) >> 16);
outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x0000FF00) >> 8);
outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x000000FF));
}
static Bool
MGA3026UseHWCursor(ScreenPtr pScrn, CursorPtr pCurs)
{
if( XF86SCRNINFO(pScrn)->currentMode->Flags & V_DBLSCAN )
return FALSE;
return TRUE;
}
static const int DDC_SDA_MASK = 1 << 2;
static const int DDC_SCL_MASK = 1 << 4;
static unsigned int
MGA3026_ddc1Read(ScrnInfoPtr pScrn)
{
MGAPtr pMga = MGAPTR(pScrn);
/* Define the SDA as an input */
outTi3026(TVP3026_GEN_IO_CTL, 0xfb, 0);
/* wait for Vsync */
while( INREG( MGAREG_Status ) & 0x08 );
while( ! (INREG( MGAREG_Status ) & 0x08) );
/* Get the result */
return (inTi3026(TVP3026_GEN_IO_DATA) & DDC_SDA_MASK) >> 2 ;
}
static void
MGA3026_I2CGetBits(I2CBusPtr b, int *clock, int *data)
{
ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex];
MGAPtr pMga = MGAPTR(pScrn);
unsigned char val;
/* Get the result. */
val = inTi3026(TVP3026_GEN_IO_DATA);
*clock = (val & DDC_SCL_MASK) != 0;
*data = (val & DDC_SDA_MASK) != 0;
#ifdef DEBUG
ErrorF("MGA3026_I2CGetBits(%p,...) val=0x%x, returns clock %d, data %d\n", b, val, *clock, *data);
#endif
}
/*
* ATTENTION! - the DATA and CLOCK lines need to be tri-stated when
* high. Therefore turn off output driver for the line to set line
* to high. High signal is maintained by a 15k Ohm pll-up resistor.
*/
static void
MGA3026_I2CPutBits(I2CBusPtr b, int clock, int data)
{
ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex];
MGAPtr pMga = MGAPTR(pScrn);
unsigned char val,drv;
/* Write the values */
val = (clock ? DDC_SCL_MASK : 0) | (data ? DDC_SDA_MASK : 0);
drv = ((!clock) ? DDC_SCL_MASK : 0) | ((!data) ? DDC_SDA_MASK : 0);
/* Define the SDA (Data) and SCL (clock) as outputs */
outTi3026(TVP3026_GEN_IO_CTL, ~(DDC_SDA_MASK | DDC_SCL_MASK), drv);
outTi3026(TVP3026_GEN_IO_DATA, ~(DDC_SDA_MASK | DDC_SCL_MASK), val);
#ifdef DEBUG
ErrorF("MGA3026_I2CPutBits(%p, %d, %d) val=0x%x\n", b, clock, data, val);
#endif
}
Bool
MGA3026_i2cInit(ScrnInfoPtr pScrn)
{
MGAPtr pMga = MGAPTR(pScrn);
I2CBusPtr I2CPtr;
I2CPtr = xf86CreateI2CBusRec();
if(!I2CPtr) return FALSE;
pMga->DDC_Bus1 = I2CPtr;
I2CPtr->BusName = "DDC";
I2CPtr->scrnIndex = pScrn->scrnIndex;
I2CPtr->I2CPutBits = MGA3026_I2CPutBits;
I2CPtr->I2CGetBits = MGA3026_I2CGetBits;
/* I2CPutByte is timing out, experimenting with AcknTimeout
* default is 2CPtr->AcknTimeout = 5;
*/
/* I2CPtr->AcknTimeout = 10; */
if (!xf86I2CBusInit(I2CPtr)) {
return FALSE;
}
return TRUE;
}
static void
MGA3026RamdacInit(ScrnInfoPtr pScrn)
{
MGAPtr pMga;
MGARamdacPtr MGAdac;
pMga = MGAPTR(pScrn);
MGAdac = &pMga->Dac;
MGAdac->isHwCursor = TRUE;
MGAdac->CursorMaxWidth = 64;
MGAdac->CursorMaxHeight = 64;
MGAdac->SetCursorColors = MGA3026SetCursorColors;
MGAdac->SetCursorPosition = MGA3026SetCursorPosition;
MGAdac->LoadCursorImage = MGA3026LoadCursorImage;
MGAdac->HideCursor = MGA3026HideCursor;
MGAdac->ShowCursor = MGA3026ShowCursor;
MGAdac->UseHWCursor = MGA3026UseHWCursor;
MGAdac->CursorFlags =
#if X_BYTE_ORDER == X_LITTLE_ENDIAN
HARDWARE_CURSOR_BIT_ORDER_MSBFIRST |
#endif
HARDWARE_CURSOR_TRUECOLOR_AT_8BPP |
HARDWARE_CURSOR_SOURCE_MASK_NOT_INTERLEAVED;
MGAdac->LoadPalette = MGA3026LoadPalette;
MGAdac->RestorePalette = MGA3026RestorePalette;
MGAdac->maxPixelClock = pMga->bios.pixel.max_freq;
MGAdac->ClockFrom = X_PROBED;
MGAdac->MemoryClock = pMga->bios.mem_clock;
MGAdac->MemClkFrom = X_PROBED;
MGAdac->SetMemClk = TRUE;
/* safety check */
if ( (MGAdac->MemoryClock < 40000) ||
(MGAdac->MemoryClock > 70000) )
MGAdac->MemoryClock = 50000;
/*
* Should initialise a sane default when the probed value is
* obviously garbage.
*/
/* Check if interleaving can be used and set the rounding value */
if (pScrn->videoRam > 2048)
pMga->Interleave = TRUE;
else {
pMga->Interleave = FALSE;
pMga->BppShifts[0]++;
pMga->BppShifts[1]++;
pMga->BppShifts[2]++;
pMga->BppShifts[3]++;
}
pMga->Roundings[0] = 128 >> pMga->BppShifts[0];
pMga->Roundings[1] = 128 >> pMga->BppShifts[1];
pMga->Roundings[2] = 128 >> pMga->BppShifts[2];
pMga->Roundings[3] = 128 >> pMga->BppShifts[3];
/* Set Fast bitblt flag */
pMga->HasFBitBlt = pMga->bios.fast_bitblt;
}
void MGA3026LoadPalette(
ScrnInfoPtr pScrn,
int numColors,
int *indices,
LOCO *colors,
VisualPtr pVisual
){
MGAPtr pMga = MGAPTR(pScrn);
int i, index;
if(pMga->CurrentLayout.Overlay8Plus24 && (pVisual->nplanes != 8))
return;
if (pVisual->nplanes == 16) {
for(i = 0; i < numColors; i++) {
index = indices[i];
outTi3026dreg(MGA1064_WADR_PAL, index << 2);
outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].red);
outTi3026dreg(MGA1064_COL_PAL, colors[index].green);
outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].blue);
/* we have to write 2 indices since the pixel X on the
TVP3026 has green colors at different locations from
the red and blue colors */
if(index <= 31) {
outTi3026dreg(MGA1064_WADR_PAL, index << 3);
outTi3026dreg(MGA1064_COL_PAL, colors[index].red);
outTi3026dreg(MGA1064_COL_PAL, colors[(index << 1) + 1].green);
outTi3026dreg(MGA1064_COL_PAL, colors[index].blue);
}
}
} else {
int shift = (pVisual->nplanes == 15) ? 3 : 0;
for(i = 0; i < numColors; i++) {
index = indices[i];
outTi3026dreg(MGA1064_WADR_PAL, index << shift);
outTi3026dreg(MGA1064_COL_PAL, colors[index].red);
outTi3026dreg(MGA1064_COL_PAL, colors[index].green);
outTi3026dreg(MGA1064_COL_PAL, colors[index].blue);
}
}
}
static void
MGA3026SavePalette(ScrnInfoPtr pScrn, unsigned char* pntr)
{
MGAPtr pMga = MGAPTR(pScrn);
int i = 768;
outTi3026dreg(TVP3026_RADR_PAL, 0x00);
while(i--)
*(pntr++) = inTi3026dreg(TVP3026_COL_PAL);
}
static void
MGA3026RestorePalette(ScrnInfoPtr pScrn, unsigned char* pntr)
{
MGAPtr pMga = MGAPTR(pScrn);
int i = 768;
outTi3026dreg(TVP3026_WADR_PAL, 0x00);
while(i--)
outTi3026dreg(TVP3026_COL_PAL, *(pntr++));
}
void MGA2064SetupFuncs(ScrnInfoPtr pScrn)
{
MGAPtr pMga = MGAPTR(pScrn);
pMga->PreInit = MGA3026RamdacInit;
pMga->Save = MGA3026Save;
pMga->Restore = MGA3026Restore;
pMga->ModeInit = MGA3026Init;
pMga->ddc1Read = MGA3026_ddc1Read;
/* vgaHWddc1SetSpeed will only work if the card is in VGA mode */
pMga->DDC1SetSpeed = vgaHWddc1SetSpeedWeak();
pMga->i2cInit = MGA3026_i2cInit;
}
|