/* $XdotOrg$ */ /* $XConsortium: nv_driver.c /main/3 1996/10/28 05:13:37 kaleb $ */ /* * Copyright 1996-1997 David J. McKay * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * DAVID J. MCKAY BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* Hacked together from mga driver and 3.3.4 NVIDIA driver by Jarno Paananen */ /* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/nv_driver.c,v 1.130 2004/12/09 00:21:04 mvojkovi Exp $ */ #include "nv_include.h" #include "xf86int10.h" const OptionInfoRec * RivaAvailableOptions(int chipid, int busid); Bool RivaGetScrnInfoRec(PciChipsets *chips, int chip); /* * Forward definitions for the functions that make up the driver. */ /* Mandatory functions */ static const OptionInfoRec * NVAvailableOptions(int chipid, int busid); static void NVIdentify(int flags); static Bool NVProbe(DriverPtr drv, int flags); static Bool NVPreInit(ScrnInfoPtr pScrn, int flags); static Bool NVScreenInit(int Index, ScreenPtr pScreen, int argc, char **argv); static Bool NVEnterVT(int scrnIndex, int flags); static Bool NVEnterVTFBDev(int scrnIndex, int flags); static void NVLeaveVT(int scrnIndex, int flags); static Bool NVCloseScreen(int scrnIndex, ScreenPtr pScreen); static Bool NVSaveScreen(ScreenPtr pScreen, int mode); /* Optional functions */ static void NVFreeScreen(int scrnIndex, int flags); static ModeStatus NVValidMode(int scrnIndex, DisplayModePtr mode, Bool verbose, int flags); /* Internally used functions */ static Bool NVMapMem(ScrnInfoPtr pScrn); static Bool NVMapMemFBDev(ScrnInfoPtr pScrn); static Bool NVUnmapMem(ScrnInfoPtr pScrn); static void NVSave(ScrnInfoPtr pScrn); static void NVRestore(ScrnInfoPtr pScrn); static Bool NVModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode); /* * This contains the functions needed by the server after loading the * driver module. It must be supplied, and gets added the driver list by * the Module Setup funtion in the dynamic case. In the static case a * reference to this is compiled in, and this requires that the name of * this DriverRec be an upper-case version of the driver name. */ DriverRec NV = { NV_VERSION, NV_DRIVER_NAME, NVIdentify, NVProbe, NVAvailableOptions, NULL, 0 }; static SymTabRec NVKnownChipsets[] = { { 0x12D20018, "RIVA 128" }, { 0x10DE0020, "RIVA TNT" }, { 0x10DE0028, "RIVA TNT2" }, { 0x10DE002A, "Unknown TNT2" }, { 0x10DE002C, "Vanta" }, { 0x10DE0029, "RIVA TNT2 Ultra" }, { 0x10DE002D, "RIVA TNT2 Model 64" }, { 0x10DE00A0, "Aladdin TNT2" }, { 0x10DE0100, "GeForce 256" }, { 0x10DE0101, "GeForce DDR" }, { 0x10DE0103, "Quadro" }, { 0x10DE0110, "GeForce2 MX/MX 400" }, { 0x10DE0111, "GeForce2 MX 100/200" }, { 0x10DE0112, "GeForce2 Go" }, { 0x10DE0113, "Quadro2 MXR/EX/Go" }, { 0x10DE01A0, "GeForce2 Integrated GPU" }, { 0x10DE0150, "GeForce2 GTS" }, { 0x10DE0151, "GeForce2 Ti" }, { 0x10DE0152, "GeForce2 Ultra" }, { 0x10DE0153, "Quadro2 Pro" }, { 0x10DE0170, "GeForce4 MX 460" }, { 0x10DE0171, "GeForce4 MX 440" }, { 0x10DE0172, "GeForce4 MX 420" }, { 0x10DE0173, "GeForce4 MX 440-SE" }, { 0x10DE0174, "GeForce4 440 Go" }, { 0x10DE0175, "GeForce4 420 Go" }, { 0x10DE0176, "GeForce4 420 Go 32M" }, { 0x10DE0177, "GeForce4 460 Go" }, { 0x10DE0178, "Quadro4 550 XGL" }, #if defined(__powerpc__) { 0x10DE0179, "GeForce4 MX (Mac)" }, #else { 0x10DE0179, "GeForce4 440 Go 64M" }, #endif { 0x10DE017A, "Quadro4 NVS" }, { 0x10DE017C, "Quadro4 500 GoGL" }, { 0x10DE017D, "GeForce4 410 Go 16M" }, { 0x10DE0181, "GeForce4 MX 440 with AGP8X" }, { 0x10DE0182, "GeForce4 MX 440SE with AGP8X" }, { 0x10DE0183, "GeForce4 MX 420 with AGP8X" }, { 0x10DE0185, "GeForce4 MX 4000" }, { 0x10DE0186, "GeForce4 448 Go" }, { 0x10DE0187, "GeForce4 488 Go" }, { 0x10DE0188, "Quadro4 580 XGL" }, #if defined(__powerpc__) { 0x10DE0189, "GeForce4 MX with AGP8X (Mac)" }, #endif { 0x10DE018A, "Quadro4 280 NVS" }, { 0x10DE018B, "Quadro4 380 XGL" }, { 0x10DE018C, "Quadro NVS 50 PCI" }, { 0x10DE018D, "GeForce4 448 Go" }, { 0x10DE01F0, "GeForce4 MX Integrated GPU" }, { 0x10DE0200, "GeForce3" }, { 0x10DE0201, "GeForce3 Ti 200" }, { 0x10DE0202, "GeForce3 Ti 500" }, { 0x10DE0203, "Quadro DCC" }, { 0x10DE0250, "GeForce4 Ti 4600" }, { 0x10DE0251, "GeForce4 Ti 4400" }, { 0x10DE0252, "0x0252" }, { 0x10DE0253, "GeForce4 Ti 4200" }, { 0x10DE0258, "Quadro4 900 XGL" }, { 0x10DE0259, "Quadro4 750 XGL" }, { 0x10DE025B, "Quadro4 700 XGL" }, { 0x10DE0280, "GeForce4 Ti 4800" }, { 0x10DE0281, "GeForce4 Ti 4200 with AGP8X" }, { 0x10DE0282, "GeForce4 Ti 4800 SE" }, { 0x10DE0286, "GeForce4 4200 Go" }, { 0x10DE028C, "Quadro4 700 GoGL" }, { 0x10DE0288, "Quadro4 980 XGL" }, { 0x10DE0289, "Quadro4 780 XGL" }, { 0x10DE0301, "GeForce FX 5800 Ultra" }, { 0x10DE0302, "GeForce FX 5800" }, { 0x10DE0308, "Quadro FX 2000" }, { 0x10DE0309, "Quadro FX 1000" }, { 0x10DE0311, "GeForce FX 5600 Ultra" }, { 0x10DE0312, "GeForce FX 5600" }, { 0x10DE0313, "0x0313"}, { 0x10DE0314, "GeForce FX 5600SE" }, { 0x10DE0316, "0x0316" }, { 0x10DE0317, "0x0317" }, { 0x10DE031A, "GeForce FX Go5600" }, { 0x10DE031B, "GeForce FX Go5650" }, { 0x10DE031C, "Quadro FX Go700" }, { 0x10DE031D, "0x031D" }, { 0x10DE031E, "0x031E" }, { 0x10DE031F, "0x031F" }, { 0x10DE0320, "GeForce FX 5200" }, { 0x10DE0321, "GeForce FX 5200 Ultra" }, { 0x10DE0322, "GeForce FX 5200" }, { 0x10DE0323, "GeForce FX 5200SE" }, { 0x10DE0324, "GeForce FX Go5200" }, { 0x10DE0325, "GeForce FX Go5250" }, { 0x10DE0326, "GeForce FX 5500" }, { 0x10DE0327, "GeForce FX 5100" }, { 0x10DE0328, "GeForce FX Go5200 32M/64M" }, #if defined(__powerpc__) { 0x10DE0329, "GeForce FX 5200 (Mac)" }, #else { 0x10DE0329, "0x0329" }, #endif { 0x10DE032A, "Quadro NVS 280 PCI" }, { 0x10DE032B, "Quadro FX 500/600 PCI" }, { 0x10DE032C, "GeForce FX Go53xx Series" }, { 0x10DE032D, "GeForce FX Go5100" }, { 0x10DE032F, "0x032F" }, { 0x10DE0330, "GeForce FX 5900 Ultra" }, { 0x10DE0331, "GeForce FX 5900" }, { 0x10DE0332, "GeForce FX 5900XT" }, { 0x10DE0333, "GeForce FX 5950 Ultra" }, { 0x10DE033F, "Quadro FX 700" }, { 0x10DE0334, "GeForce FX 5900ZT" }, { 0x10DE0338, "Quadro FX 3000" }, { 0x10DE0341, "GeForce FX 5700 Ultra" }, { 0x10DE0342, "GeForce FX 5700" }, { 0x10DE0343, "GeForce FX 5700LE" }, { 0x10DE0344, "GeForce FX 5700VE" }, { 0x10DE0345, "0x0345" }, { 0x10DE0347, "GeForce FX Go5700" }, { 0x10DE0348, "GeForce FX Go5700" }, { 0x10DE0349, "0x0349" }, { 0x10DE034B, "0x034B" }, { 0x10DE034C, "Quadro FX Go1000" }, { 0x10DE034E, "Quadro FX 1100" }, { 0x10DE034F, "0x034F" }, { 0x10DE0040, "GeForce 6800 Ultra" }, { 0x10DE0041, "GeForce 6800" }, { 0x10DE0042, "GeForce 6800 LE" }, { 0x10DE0043, "0x0043" }, { 0x10DE0045, "GeForce 6800 GT" }, { 0x10DE0049, "0x0049" }, { 0x10DE004E, "Quadro FX 4000" }, { 0x10DE004D, "Quadro FX 4400" }, { 0x10DE00C0, "0x00C0" }, { 0x10DE00C1, "0x00C1" }, { 0x10DE00C2, "GeForce 6800 LE" }, { 0x10DE00C8, "0x00C8" }, { 0x10DE00C9, "0x00C9" }, { 0x10DE00CC, "0x00CC" }, { 0x10DE00CE, "0x00CE" }, { 0x10DE0140, "GeForce 6600 GT" }, { 0x10DE0141, "GeForce 6600" }, { 0x10DE0142, "0x0142" }, { 0x10DE0143, "0x0143" }, { 0x10DE0144, "GeForce Go 6600" }, { 0x10DE0145, "GeForce 6610 XL" }, { 0x10DE0146, "GeForce Go 6600 TE/6200 TE" }, { 0x10DE0147, "0x0147" }, { 0x10DE0148, "GeForce Go 6600" }, { 0x10DE0149, "0x0149" }, { 0x10DE014B, "0x014B" }, { 0x10DE014C, "0x014C" }, { 0x10DE014D, "0x014D" }, { 0x10DE014E, "Quadro FX 540" }, { 0x10DE014F, "GeForce 6200" }, { 0x10DE0160, "0x0160" }, { 0x10DE0166, "0x0166" }, { 0x10DE0210, "0x0210" }, { 0x10DE0211, "0x0211" }, { 0x10DE021D, "0x021D" }, { 0x10DE021E, "0x021E" }, {-1, NULL} }; /* * List of symbols from other modules that this module references. This * list is used to tell the loader that it is OK for symbols here to be * unresolved providing that it hasn't been told that they haven't been * told that they are essential via a call to xf86LoaderReqSymbols() or * xf86LoaderReqSymLists(). The purpose is this is to avoid warnings about * unresolved symbols that are not required. */ static const char *vgahwSymbols[] = { "vgaHWUnmapMem", "vgaHWDPMSSet", "vgaHWFreeHWRec", "vgaHWGetHWRec", "vgaHWGetIndex", "vgaHWInit", "vgaHWMapMem", "vgaHWProtect", "vgaHWRestore", "vgaHWSave", "vgaHWSaveScreen", NULL }; static const char *fbSymbols[] = { "fbPictureInit", "fbScreenInit", NULL }; static const char *xaaSymbols[] = { "XAACopyROP", "XAACreateInfoRec", "XAADestroyInfoRec", "XAAFallbackOps", "XAAInit", "XAAPatternROP", NULL }; static const char *ramdacSymbols[] = { "xf86CreateCursorInfoRec", "xf86DestroyCursorInfoRec", "xf86InitCursor", NULL }; static const char *ddcSymbols[] = { "xf86PrintEDID", "xf86DoEDID_DDC2", "xf86SetDDCproperties", NULL }; #ifdef XFree86LOADER static const char *vbeSymbols[] = { "VBEInit", "vbeFree", "vbeDoEDID", NULL }; #endif static const char *i2cSymbols[] = { "xf86CreateI2CBusRec", "xf86I2CBusInit", NULL }; static const char *shadowSymbols[] = { "ShadowFBInit", NULL }; static const char *fbdevHWSymbols[] = { "fbdevHWInit", "fbdevHWUseBuildinMode", "fbdevHWGetVidmem", /* colormap */ "fbdevHWLoadPaletteWeak", /* ScrnInfo hooks */ "fbdevHWAdjustFrameWeak", "fbdevHWEnterVT", "fbdevHWLeaveVTWeak", "fbdevHWModeInit", "fbdevHWSave", "fbdevHWSwitchModeWeak", "fbdevHWValidModeWeak", "fbdevHWMapMMIO", "fbdevHWMapVidmem", NULL }; static const char *int10Symbols[] = { "xf86FreeInt10", "xf86InitInt10", NULL }; static const char *rivaSymbols[] = { "RivaGetScrnInfoRec", "RivaAvailableOptions", NULL }; #ifdef XFree86LOADER static MODULESETUPPROTO(nvSetup); static XF86ModuleVersionInfo nvVersRec = { "nv", MODULEVENDORSTRING, MODINFOSTRING1, MODINFOSTRING2, XORG_VERSION_CURRENT, NV_MAJOR_VERSION, NV_MINOR_VERSION, NV_PATCHLEVEL, ABI_CLASS_VIDEODRV, /* This is a video driver */ ABI_VIDEODRV_VERSION, MOD_CLASS_VIDEODRV, {0,0,0,0} }; XF86ModuleData nvModuleData = { &nvVersRec, nvSetup, NULL }; #endif typedef enum { OPTION_SW_CURSOR, OPTION_HW_CURSOR, OPTION_NOACCEL, OPTION_SHADOW_FB, OPTION_FBDEV, OPTION_ROTATE, OPTION_VIDEO_KEY, OPTION_FLAT_PANEL, OPTION_FP_DITHER, OPTION_CRTC_NUMBER, OPTION_FP_SCALE, OPTION_FP_TWEAK } NVOpts; static const OptionInfoRec NVOptions[] = { { OPTION_SW_CURSOR, "SWcursor", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_HW_CURSOR, "HWcursor", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_SHADOW_FB, "ShadowFB", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_FBDEV, "UseFBDev", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_ROTATE, "Rotate", OPTV_ANYSTR, {0}, FALSE }, { OPTION_VIDEO_KEY, "VideoKey", OPTV_INTEGER, {0}, FALSE }, { OPTION_FLAT_PANEL, "FlatPanel", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_FP_DITHER, "FPDither", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_CRTC_NUMBER, "CrtcNumber", OPTV_INTEGER, {0}, FALSE }, { OPTION_FP_SCALE, "FPScale", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_FP_TWEAK, "FPTweak", OPTV_INTEGER, {0}, FALSE }, { -1, NULL, OPTV_NONE, {0}, FALSE } }; /* * This is intentionally screen-independent. It indicates the binding * choice made in the first PreInit. */ static int pix24bpp = 0; static Bool NVGetRec(ScrnInfoPtr pScrn) { /* * Allocate an NVRec, and hook it into pScrn->driverPrivate. * pScrn->driverPrivate is initialised to NULL, so we can check if * the allocation has already been done. */ if (pScrn->driverPrivate != NULL) return TRUE; pScrn->driverPrivate = xnfcalloc(sizeof(NVRec), 1); /* Initialise it */ return TRUE; } static void NVFreeRec(ScrnInfoPtr pScrn) { if (pScrn->driverPrivate == NULL) return; xfree(pScrn->driverPrivate); pScrn->driverPrivate = NULL; } #ifdef XFree86LOADER static pointer nvSetup(pointer module, pointer opts, int *errmaj, int *errmin) { static Bool setupDone = FALSE; /* This module should be loaded only once, but check to be sure. */ if (!setupDone) { setupDone = TRUE; xf86AddDriver(&NV, module, 0); /* * Modules that this driver always requires may be loaded here * by calling LoadSubModule(). */ /* * Tell the loader about symbols from other modules that this module * might refer to. */ LoaderRefSymLists(vgahwSymbols, xaaSymbols, fbSymbols, ramdacSymbols, shadowSymbols, rivaSymbols, i2cSymbols, ddcSymbols, vbeSymbols, fbdevHWSymbols, int10Symbols, NULL); /* * The return value must be non-NULL on success even though there * is no TearDownProc. */ return (pointer)1; } else { if (errmaj) *errmaj = LDR_ONCEONLY; return NULL; } } #endif /* XFree86LOADER */ static const OptionInfoRec * NVAvailableOptions(int chipid, int busid) { if(chipid == 0x12D20018) { if (!xf86LoadOneModule("riva128", NULL)) { return NULL; } else return RivaAvailableOptions(chipid, busid); } return NVOptions; } /* Mandatory */ static void NVIdentify(int flags) { xf86PrintChipsets(NV_NAME, "driver for NVIDIA chipsets", NVKnownChipsets); } static Bool NVGetScrnInfoRec(PciChipsets *chips, int chip) { ScrnInfoPtr pScrn; pScrn = xf86ConfigPciEntity(NULL, 0, chip, chips, NULL, NULL, NULL, NULL, NULL); if(!pScrn) return FALSE; pScrn->driverVersion = NV_VERSION; pScrn->driverName = NV_DRIVER_NAME; pScrn->name = NV_NAME; pScrn->Probe = NVProbe; pScrn->PreInit = NVPreInit; pScrn->ScreenInit = NVScreenInit; pScrn->SwitchMode = NVSwitchMode; pScrn->AdjustFrame = NVAdjustFrame; pScrn->EnterVT = NVEnterVT; pScrn->LeaveVT = NVLeaveVT; pScrn->FreeScreen = NVFreeScreen; pScrn->ValidMode = NVValidMode; return TRUE; } #define MAX_CHIPS MAXSCREENS static CARD32 NVGetPCIXpressChip (pciVideoPtr pVideo) { volatile CARD32 *regs; CARD32 pciid, pcicmd; PCITAG Tag = ((pciConfigPtr)(pVideo->thisCard))->tag; pcicmd = pciReadLong(Tag, PCI_CMD_STAT_REG); pciWriteLong(Tag, PCI_CMD_STAT_REG, pcicmd | PCI_CMD_MEM_ENABLE); regs = xf86MapPciMem(-1, VIDMEM_MMIO, Tag, pVideo->memBase[0], 0x2000); pciid = regs[0x1800/4]; xf86UnMapVidMem(-1, (pointer)regs, 0x2000); pciWriteLong(Tag, PCI_CMD_STAT_REG, pcicmd); if((pciid & 0x0000ffff) == 0x000010DE) pciid = 0x10DE0000 | (pciid >> 16); else if((pciid & 0xffff0000) == 0xDE100000) /* wrong endian */ pciid = 0x10DE0000 | ((pciid << 8) & 0x0000ff00) | ((pciid >> 8) & 0x000000ff); return pciid; } /* Mandatory */ static Bool NVProbe(DriverPtr drv, int flags) { int i; GDevPtr *devSections; int *usedChips; SymTabRec NVChipsets[MAX_CHIPS + 1]; PciChipsets NVPciChipsets[MAX_CHIPS + 1]; pciVideoPtr *ppPci; int numDevSections; int numUsed; Bool foundScreen = FALSE; if ((numDevSections = xf86MatchDevice(NV_DRIVER_NAME, &devSections)) <= 0) return FALSE; /* no matching device section */ if (!(ppPci = xf86GetPciVideoInfo())) return FALSE; /* no PCI cards found */ numUsed = 0; /* Create the NVChipsets and NVPciChipsets from found devices */ while (*ppPci && (numUsed < MAX_CHIPS)) { if(((*ppPci)->vendor == PCI_VENDOR_NVIDIA_SGS) || ((*ppPci)->vendor == PCI_VENDOR_NVIDIA)) { SymTabRec *nvchips = NVKnownChipsets; int pciid = ((*ppPci)->vendor << 16) | (*ppPci)->chipType; int token = pciid; if((token & 0xfff0) == 0x00F0) token = NVGetPCIXpressChip(*ppPci); while(nvchips->name) { if(token == nvchips->token) break; nvchips++; } if(nvchips->name) { /* found one */ NVChipsets[numUsed].token = pciid; NVChipsets[numUsed].name = nvchips->name; NVPciChipsets[numUsed].numChipset = pciid; NVPciChipsets[numUsed].PCIid = pciid; NVPciChipsets[numUsed].resList = RES_SHARED_VGA; numUsed++; } else if ((*ppPci)->vendor == PCI_VENDOR_NVIDIA) { /* look for a compatible devices which may be newer than the NVKnownChipsets list above. */ switch(token & 0xfff0) { case 0x0170: case 0x0180: case 0x0250: case 0x0280: case 0x0300: case 0x0310: case 0x0320: case 0x0330: case 0x0340: case 0x0040: case 0x00C0: case 0x0120: case 0x0140: case 0x0160: case 0x0130: case 0x01D0: case 0x0090: case 0x0210: NVChipsets[numUsed].token = pciid; NVChipsets[numUsed].name = "Unknown NVIDIA chip"; NVPciChipsets[numUsed].numChipset = pciid; NVPciChipsets[numUsed].PCIid = pciid; NVPciChipsets[numUsed].resList = RES_SHARED_VGA; numUsed++; break; default: break; /* we don't recognize it */ } } } ppPci++; } /* terminate the list */ NVChipsets[numUsed].token = -1; NVChipsets[numUsed].name = NULL; NVPciChipsets[numUsed].numChipset = -1; NVPciChipsets[numUsed].PCIid = -1; NVPciChipsets[numUsed].resList = RES_UNDEFINED; numUsed = xf86MatchPciInstances(NV_NAME, 0, NVChipsets, NVPciChipsets, devSections, numDevSections, drv, &usedChips); if (numUsed <= 0) return FALSE; if (flags & PROBE_DETECT) foundScreen = TRUE; else for (i = 0; i < numUsed; i++) { pciVideoPtr pPci; pPci = xf86GetPciInfoForEntity(usedChips[i]); if(pPci->vendor == PCI_VENDOR_NVIDIA_SGS) { if (!xf86LoadDrvSubModule(drv, "riva128")) { continue; } xf86LoaderReqSymLists(rivaSymbols, NULL); if(RivaGetScrnInfoRec(NVPciChipsets, usedChips[i])) foundScreen = TRUE; } else { if(NVGetScrnInfoRec(NVPciChipsets, usedChips[i])) foundScreen = TRUE; } } xfree(devSections); xfree(usedChips); return foundScreen; } /* Usually mandatory */ Bool NVSwitchMode(int scrnIndex, DisplayModePtr mode, int flags) { return NVModeInit(xf86Screens[scrnIndex], mode); } /* * This function is used to initialize the Start Address - the first * displayed location in the video memory. */ /* Usually mandatory */ void NVAdjustFrame(int scrnIndex, int x, int y, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; int startAddr; NVPtr pNv = NVPTR(pScrn); NVFBLayout *pLayout = &pNv->CurrentLayout; startAddr = (((y*pLayout->displayWidth)+x)*(pLayout->bitsPerPixel/8)); NVSetStartAddress(pNv, startAddr); } /* * This is called when VT switching back to the X server. Its job is * to reinitialise the video mode. * * We may wish to unmap video/MMIO memory too. */ /* Mandatory */ static Bool NVEnterVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; NVPtr pNv = NVPTR(pScrn); if (!NVModeInit(pScrn, pScrn->currentMode)) return FALSE; NVAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0); if(pNv->overlayAdaptor) NVResetVideo(pScrn); return TRUE; } static Bool NVEnterVTFBDev(int scrnIndex, int flags) { fbdevHWEnterVT(scrnIndex,flags); return TRUE; } /* * This is called when VT switching away from the X server. Its job is * to restore the previous (text) mode. * * We may wish to remap video/MMIO memory too. */ /* Mandatory */ static void NVLeaveVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; NVPtr pNv = NVPTR(pScrn); NVSync(pScrn); NVRestore(pScrn); NVLockUnlock(pNv, 1); } static void NVBlockHandler ( int i, pointer blockData, pointer pTimeout, pointer pReadmask ) { ScreenPtr pScreen = screenInfo.screens[i]; ScrnInfoPtr pScrnInfo = xf86Screens[i]; NVPtr pNv = NVPTR(pScrnInfo); if (pNv->DMAKickoffCallback) (*pNv->DMAKickoffCallback)(pScrnInfo); pScreen->BlockHandler = pNv->BlockHandler; (*pScreen->BlockHandler) (i, blockData, pTimeout, pReadmask); pScreen->BlockHandler = NVBlockHandler; if (pNv->VideoTimerCallback) (*pNv->VideoTimerCallback)(pScrnInfo, currentTime.milliseconds); } /* * This is called at the end of each server generation. It restores the * original (text) mode. It should also unmap the video memory, and free * any per-generation data allocated by the driver. It should finish * by unwrapping and calling the saved CloseScreen function. */ /* Mandatory */ static Bool NVCloseScreen(int scrnIndex, ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; NVPtr pNv = NVPTR(pScrn); if (pScrn->vtSema) { NVSync(pScrn); NVRestore(pScrn); NVLockUnlock(pNv, 1); } NVUnmapMem(pScrn); vgaHWUnmapMem(pScrn); if (pNv->AccelInfoRec) XAADestroyInfoRec(pNv->AccelInfoRec); if (pNv->CursorInfoRec) xf86DestroyCursorInfoRec(pNv->CursorInfoRec); if (pNv->ShadowPtr) xfree(pNv->ShadowPtr); if (pNv->DGAModes) xfree(pNv->DGAModes); if (pNv->overlayAdaptor) xfree(pNv->overlayAdaptor); if (pNv->blitAdaptor) xfree(pNv->blitAdaptor); pScrn->vtSema = FALSE; pScreen->CloseScreen = pNv->CloseScreen; pScreen->BlockHandler = pNv->BlockHandler; return (*pScreen->CloseScreen)(scrnIndex, pScreen); } /* Free up any persistent data structures */ /* Optional */ static void NVFreeScreen(int scrnIndex, int flags) { /* * This only gets called when a screen is being deleted. It does not * get called routinely at the end of a server generation. */ if (xf86LoaderCheckSymbol("vgaHWFreeHWRec")) vgaHWFreeHWRec(xf86Screens[scrnIndex]); NVFreeRec(xf86Screens[scrnIndex]); } /* Checks if a mode is suitable for the selected chipset. */ /* Optional */ static ModeStatus NVValidMode(int scrnIndex, DisplayModePtr mode, Bool verbose, int flags) { NVPtr pNv = NVPTR(xf86Screens[scrnIndex]); if(pNv->fpWidth && pNv->fpHeight) { if((pNv->fpWidth < mode->HDisplay) || (pNv->fpHeight < mode->VDisplay)) { xf86DrvMsg(scrnIndex, X_INFO, "Mode \"%s\" is larger than " "BIOS programmed panel size of %d x %d. Removing.\n", mode->name, pNv->fpWidth, pNv->fpHeight); return (MODE_BAD); } } return (MODE_OK); } static void nvProbeDDC(ScrnInfoPtr pScrn, int index) { vbeInfoPtr pVbe; if (xf86LoadSubModule(pScrn, "vbe")) { pVbe = VBEInit(NULL,index); ConfiguredMonitor = vbeDoEDID(pVbe, NULL); vbeFree(pVbe); } } Bool NVI2CInit(ScrnInfoPtr pScrn) { char *mod = "i2c"; if (xf86LoadSubModule(pScrn, mod)) { xf86LoaderReqSymLists(i2cSymbols,NULL); mod = "ddc"; if(xf86LoadSubModule(pScrn, mod)) { xf86LoaderReqSymLists(ddcSymbols, NULL); return NVDACi2cInit(pScrn); } } xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Couldn't load %s module. DDC probing can't be done\n", mod); return FALSE; } /* Mandatory */ Bool NVPreInit(ScrnInfoPtr pScrn, int flags) { NVPtr pNv; MessageType from; int i, max_width, max_height; ClockRangePtr clockRanges; const char *s; if (flags & PROBE_DETECT) { nvProbeDDC( pScrn, xf86GetEntityInfo(pScrn->entityList[0])->index ); return TRUE; } /* * Note: This function is only called once at server startup, and * not at the start of each server generation. This means that * only things that are persistent across server generations can * be initialised here. xf86Screens[] is (pScrn is a pointer to one * of these). Privates allocated using xf86AllocateScrnInfoPrivateIndex() * are too, and should be used for data that must persist across * server generations. * * Per-generation data should be allocated with * AllocateScreenPrivateIndex() from the ScreenInit() function. */ /* Check the number of entities, and fail if it isn't one. */ if (pScrn->numEntities != 1) return FALSE; /* Allocate the NVRec driverPrivate */ if (!NVGetRec(pScrn)) { return FALSE; } pNv = NVPTR(pScrn); /* Get the entity, and make sure it is PCI. */ pNv->pEnt = xf86GetEntityInfo(pScrn->entityList[0]); if (pNv->pEnt->location.type != BUS_PCI) return FALSE; /* Find the PCI info for this screen */ pNv->PciInfo = xf86GetPciInfoForEntity(pNv->pEnt->index); pNv->PciTag = pciTag(pNv->PciInfo->bus, pNv->PciInfo->device, pNv->PciInfo->func); pNv->Primary = xf86IsPrimaryPci(pNv->PciInfo); /* Initialize the card through int10 interface if needed */ if (xf86LoadSubModule(pScrn, "int10")) { xf86LoaderReqSymLists(int10Symbols, NULL); #if !defined(__alpha__) && !defined(__powerpc__) xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Initializing int10\n"); pNv->pInt = xf86InitInt10(pNv->pEnt->index); #endif } xf86SetOperatingState(resVgaIo, pNv->pEnt->index, ResUnusedOpr); xf86SetOperatingState(resVgaMem, pNv->pEnt->index, ResDisableOpr); /* Set pScrn->monitor */ pScrn->monitor = pScrn->confScreen->monitor; /* * Set the Chipset and ChipRev, allowing config file entries to * override. */ if (pNv->pEnt->device->chipset && *pNv->pEnt->device->chipset) { pScrn->chipset = pNv->pEnt->device->chipset; pNv->Chipset = xf86StringToToken(NVKnownChipsets, pScrn->chipset); from = X_CONFIG; } else if (pNv->pEnt->device->chipID >= 0) { pNv->Chipset = pNv->pEnt->device->chipID; pScrn->chipset = (char *)xf86TokenToString(NVKnownChipsets, pNv->Chipset); from = X_CONFIG; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipID override: 0x%04X\n", pNv->Chipset); } else { from = X_PROBED; pNv->Chipset = (pNv->PciInfo->vendor << 16) | pNv->PciInfo->chipType; if((pNv->Chipset & 0xfff0) == 0x00F0) pNv->Chipset = NVGetPCIXpressChip(pNv->PciInfo); pScrn->chipset = (char *)xf86TokenToString(NVKnownChipsets, pNv->Chipset); if(!pScrn->chipset) pScrn->chipset = "Unknown NVIDIA chipset"; } if (pNv->pEnt->device->chipRev >= 0) { pNv->ChipRev = pNv->pEnt->device->chipRev; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipRev override: %d\n", pNv->ChipRev); } else { pNv->ChipRev = pNv->PciInfo->chipRev; } /* * This shouldn't happen because such problems should be caught in * NVProbe(), but check it just in case. */ if (pScrn->chipset == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "ChipID 0x%04X is not recognised\n", pNv->Chipset); xf86FreeInt10(pNv->pInt); return FALSE; } if (pNv->Chipset < 0) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Chipset \"%s\" is not recognised\n", pScrn->chipset); xf86FreeInt10(pNv->pInt); return FALSE; } xf86DrvMsg(pScrn->scrnIndex, from, "Chipset: \"%s\"\n", pScrn->chipset); /* * The first thing we should figure out is the depth, bpp, etc. */ if (!xf86SetDepthBpp(pScrn, 0, 0, 0, Support32bppFb)) { xf86FreeInt10(pNv->pInt); return FALSE; } else { /* Check that the returned depth is one we support */ switch (pScrn->depth) { case 8: case 15: case 16: case 24: /* OK */ break; default: xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given depth (%d) is not supported by this driver\n", pScrn->depth); xf86FreeInt10(pNv->pInt); return FALSE; } } xf86PrintDepthBpp(pScrn); /* Get the depth24 pixmap format */ if (pScrn->depth == 24 && pix24bpp == 0) pix24bpp = xf86GetBppFromDepth(pScrn, 24); /* * This must happen after pScrn->display has been set because * xf86SetWeight references it. */ if (pScrn->depth > 8) { /* The defaults are OK for us */ rgb zeros = {0, 0, 0}; if (!xf86SetWeight(pScrn, zeros, zeros)) { xf86FreeInt10(pNv->pInt); return FALSE; } } if (!xf86SetDefaultVisual(pScrn, -1)) { xf86FreeInt10(pNv->pInt); return FALSE; } else { /* We don't currently support DirectColor at > 8bpp */ if (pScrn->depth > 8 && (pScrn->defaultVisual != TrueColor)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given default visual" " (%s) is not supported at depth %d\n", xf86GetVisualName(pScrn->defaultVisual), pScrn->depth); xf86FreeInt10(pNv->pInt); return FALSE; } } /* The vgahw module should be loaded here when needed */ if (!xf86LoadSubModule(pScrn, "vgahw")) { xf86FreeInt10(pNv->pInt); return FALSE; } xf86LoaderReqSymLists(vgahwSymbols, NULL); /* * Allocate a vgaHWRec */ if (!vgaHWGetHWRec(pScrn)) { xf86FreeInt10(pNv->pInt); return FALSE; } /* We use a programmable clock */ pScrn->progClock = TRUE; /* Collect all of the relevant option flags (fill in pScrn->options) */ xf86CollectOptions(pScrn, NULL); /* Process the options */ if (!(pNv->Options = xalloc(sizeof(NVOptions)))) return FALSE; memcpy(pNv->Options, NVOptions, sizeof(NVOptions)); xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, pNv->Options); /* Set the bits per RGB for 8bpp mode */ if (pScrn->depth == 8) pScrn->rgbBits = 8; from = X_DEFAULT; pNv->HWCursor = TRUE; /* * The preferred method is to use the "hw cursor" option as a tri-state * option, with the default set above. */ if (xf86GetOptValBool(pNv->Options, OPTION_HW_CURSOR, &pNv->HWCursor)) { from = X_CONFIG; } /* For compatibility, accept this too (as an override) */ if (xf86ReturnOptValBool(pNv->Options, OPTION_SW_CURSOR, FALSE)) { from = X_CONFIG; pNv->HWCursor = FALSE; } xf86DrvMsg(pScrn->scrnIndex, from, "Using %s cursor\n", pNv->HWCursor ? "HW" : "SW"); pNv->FpScale = TRUE; if (xf86GetOptValBool(pNv->Options, OPTION_FP_SCALE, &pNv->FpScale)) { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Flat panel scaling %s\n", pNv->FpScale ? "on" : "off"); } if (xf86ReturnOptValBool(pNv->Options, OPTION_NOACCEL, FALSE)) { pNv->NoAccel = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Acceleration disabled\n"); } if (xf86ReturnOptValBool(pNv->Options, OPTION_SHADOW_FB, FALSE)) { pNv->ShadowFB = TRUE; pNv->NoAccel = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Using \"Shadow Framebuffer\" - acceleration disabled\n"); } if (xf86ReturnOptValBool(pNv->Options, OPTION_FBDEV, FALSE)) { pNv->FBDev = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Using framebuffer device\n"); } if (pNv->FBDev) { /* check for linux framebuffer device */ if (!xf86LoadSubModule(pScrn, "fbdevhw")) { xf86FreeInt10(pNv->pInt); return FALSE; } xf86LoaderReqSymLists(fbdevHWSymbols, NULL); if (!fbdevHWInit(pScrn, pNv->PciInfo, NULL)) { xf86FreeInt10(pNv->pInt); return FALSE; } pScrn->SwitchMode = fbdevHWSwitchModeWeak(); pScrn->AdjustFrame = fbdevHWAdjustFrameWeak(); pScrn->EnterVT = NVEnterVTFBDev; pScrn->LeaveVT = fbdevHWLeaveVTWeak(); pScrn->ValidMode = fbdevHWValidModeWeak(); } pNv->Rotate = 0; if ((s = xf86GetOptValString(pNv->Options, OPTION_ROTATE))) { if(!xf86NameCmp(s, "CW")) { pNv->ShadowFB = TRUE; pNv->NoAccel = TRUE; pNv->HWCursor = FALSE; pNv->Rotate = 1; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Rotating screen clockwise - acceleration disabled\n"); } else if(!xf86NameCmp(s, "CCW")) { pNv->ShadowFB = TRUE; pNv->NoAccel = TRUE; pNv->HWCursor = FALSE; pNv->Rotate = -1; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Rotating screen counter clockwise - acceleration disabled\n"); } else { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "\"%s\" is not a valid value for Option \"Rotate\"\n", s); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Valid options are \"CW\" or \"CCW\"\n"); } } if(xf86GetOptValInteger(pNv->Options, OPTION_VIDEO_KEY, &(pNv->videoKey))) { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "video key set to 0x%x\n", pNv->videoKey); } else { pNv->videoKey = (1 << pScrn->offset.red) | (1 << pScrn->offset.green) | (((pScrn->mask.blue >> pScrn->offset.blue) - 1) << pScrn->offset.blue); } if (xf86GetOptValBool(pNv->Options, OPTION_FLAT_PANEL, &(pNv->FlatPanel))) { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "forcing %s usage\n", pNv->FlatPanel ? "DFP" : "CRTC"); } else { pNv->FlatPanel = -1; /* autodetect later */ } pNv->FPDither = FALSE; if (xf86GetOptValBool(pNv->Options, OPTION_FP_DITHER, &(pNv->FPDither))) xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "enabling flat panel dither\n"); if (xf86GetOptValInteger(pNv->Options, OPTION_CRTC_NUMBER, &pNv->CRTCnumber)) { if((pNv->CRTCnumber < 0) || (pNv->CRTCnumber > 1)) { pNv->CRTCnumber = -1; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Invalid CRTC number. Must be 0 or 1\n"); } } else { pNv->CRTCnumber = -1; /* autodetect later */ } if (xf86GetOptValInteger(pNv->Options, OPTION_FP_TWEAK, &pNv->PanelTweak)) { pNv->usePanelTweak = TRUE; } else { pNv->usePanelTweak = FALSE; } if (pNv->pEnt->device->MemBase != 0) { /* Require that the config file value matches one of the PCI values. */ if (!xf86CheckPciMemBase(pNv->PciInfo, pNv->pEnt->device->MemBase)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "MemBase 0x%08lX doesn't match any PCI base register.\n", pNv->pEnt->device->MemBase); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } pNv->FbAddress = pNv->pEnt->device->MemBase; from = X_CONFIG; } else { if (pNv->PciInfo->memBase[1] != 0) { pNv->FbAddress = pNv->PciInfo->memBase[1] & 0xff800000; from = X_PROBED; } else { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "No valid FB address in PCI config space\n"); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } } xf86DrvMsg(pScrn->scrnIndex, from, "Linear framebuffer at 0x%lX\n", (unsigned long)pNv->FbAddress); if (pNv->pEnt->device->IOBase != 0) { /* Require that the config file value matches one of the PCI values. */ if (!xf86CheckPciMemBase(pNv->PciInfo, pNv->pEnt->device->IOBase)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "IOBase 0x%08lX doesn't match any PCI base register.\n", pNv->pEnt->device->IOBase); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } pNv->IOAddress = pNv->pEnt->device->IOBase; from = X_CONFIG; } else { if (pNv->PciInfo->memBase[0] != 0) { pNv->IOAddress = pNv->PciInfo->memBase[0] & 0xffffc000; from = X_PROBED; } else { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "No valid MMIO address in PCI config space\n"); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } } xf86DrvMsg(pScrn->scrnIndex, from, "MMIO registers at 0x%lX\n", (unsigned long)pNv->IOAddress); if (xf86RegisterResources(pNv->pEnt->index, NULL, ResExclusive)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "xf86RegisterResources() found resource conflicts\n"); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } switch (pNv->Chipset & 0x0ff0) { case 0x0100: /* GeForce 256 */ case 0x0110: /* GeForce2 MX */ case 0x0150: /* GeForce2 */ case 0x0170: /* GeForce4 MX */ case 0x0180: /* GeForce4 MX (8x AGP) */ case 0x01A0: /* nForce */ case 0x01F0: /* nForce2 */ pNv->Architecture = NV_ARCH_10; break; case 0x0200: /* GeForce3 */ case 0x0250: /* GeForce4 Ti */ case 0x0280: /* GeForce4 Ti (8x AGP) */ pNv->Architecture = NV_ARCH_20; break; case 0x0300: /* GeForceFX 5800 */ case 0x0310: /* GeForceFX 5600 */ case 0x0320: /* GeForceFX 5200 */ case 0x0330: /* GeForceFX 5900 */ case 0x0340: /* GeForceFX 5700 */ pNv->Architecture = NV_ARCH_30; break; case 0x0040: case 0x00C0: case 0x0120: case 0x0130: case 0x0140: case 0x0160: case 0x01D0: case 0x0090: case 0x0210: pNv->Architecture = NV_ARCH_40; break; default: pNv->Architecture = NV_ARCH_04; break; } pNv->alphaCursor = (pNv->Architecture >= NV_ARCH_10) && ((pNv->Chipset & 0x0ff0) != 0x0100); NVCommonSetup(pScrn); if (pNv->FBDev) { pScrn->videoRam = fbdevHWGetVidmem(pScrn)/1024; } else { pScrn->videoRam = pNv->RamAmountKBytes; } xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "VideoRAM: %d kBytes\n", pScrn->videoRam); pNv->FbMapSize = pScrn->videoRam * 1024; /* * If the driver can do gamma correction, it should call xf86SetGamma() * here. */ { Gamma zeros = {0.0, 0.0, 0.0}; if (!xf86SetGamma(pScrn, zeros)) { xf86FreeInt10(pNv->pInt); return FALSE; } } pNv->FbUsableSize = pNv->FbMapSize - (128 * 1024); pNv->ScratchBufferSize = (pNv->Architecture < NV_ARCH_10) ? 8192 : 16384; pNv->ScratchBufferStart = pNv->FbUsableSize - pNv->ScratchBufferSize; /* * Setup the ClockRanges, which describe what clock ranges are available, * and what sort of modes they can be used for. */ clockRanges = xnfcalloc(sizeof(ClockRange), 1); clockRanges->next = NULL; clockRanges->minClock = pNv->MinVClockFreqKHz; clockRanges->maxClock = pNv->MaxVClockFreqKHz; clockRanges->clockIndex = -1; /* programmable */ clockRanges->doubleScanAllowed = TRUE; if((pNv->Architecture == NV_ARCH_20) || ((pNv->Architecture == NV_ARCH_10) && ((pNv->Chipset & 0x0ff0) != 0x0100) && ((pNv->Chipset & 0x0ff0) != 0x0150))) { /* HW is broken */ clockRanges->interlaceAllowed = FALSE; } else { clockRanges->interlaceAllowed = TRUE; } if(pNv->FlatPanel == 1) { clockRanges->interlaceAllowed = FALSE; clockRanges->doubleScanAllowed = FALSE; } if(pNv->Architecture < NV_ARCH_10) { max_width = (pScrn->bitsPerPixel > 16) ? 2032 : 2048; max_height = 2048; } else { max_width = (pScrn->bitsPerPixel > 16) ? 4080 : 4096; max_height = 4096; } /* * xf86ValidateModes will check that the mode HTotal and VTotal values * don't exceed the chipset's limit if pScrn->maxHValue and * pScrn->maxVValue are set. Since our NVValidMode() already takes * care of this, we don't worry about setting them here. */ i = xf86ValidateModes(pScrn, pScrn->monitor->Modes, pScrn->display->modes, clockRanges, NULL, 256, max_width, 512, 128, max_height, pScrn->display->virtualX, pScrn->display->virtualY, pNv->ScratchBufferStart, LOOKUP_BEST_REFRESH); if (i < 1 && pNv->FBDev) { fbdevHWUseBuildinMode(pScrn); pScrn->displayWidth = pScrn->virtualX; /* FIXME: might be wrong */ i = 1; } if (i == -1) { xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } /* Prune the modes marked as invalid */ xf86PruneDriverModes(pScrn); if (i == 0 || pScrn->modes == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "No valid modes found\n"); xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } /* * Set the CRTC parameters for all of the modes based on the type * of mode, and the chipset's interlace requirements. * * Calling this is required if the mode->Crtc* values are used by the * driver and if the driver doesn't provide code to set them. They * are not pre-initialised at all. */ xf86SetCrtcForModes(pScrn, 0); /* Set the current mode to the first in the list */ pScrn->currentMode = pScrn->modes; /* Print the list of modes being used */ xf86PrintModes(pScrn); /* Set display resolution */ xf86SetDpi(pScrn, 0, 0); /* * XXX This should be taken into account in some way in the mode valdation * section. */ if (xf86LoadSubModule(pScrn, "fb") == NULL) { xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } xf86LoaderReqSymLists(fbSymbols, NULL); /* Load XAA if needed */ if (!pNv->NoAccel) { if (!xf86LoadSubModule(pScrn, "xaa")) { xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } xf86LoaderReqSymLists(xaaSymbols, NULL); } /* Load ramdac if needed */ if (pNv->HWCursor) { if (!xf86LoadSubModule(pScrn, "ramdac")) { xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } xf86LoaderReqSymLists(ramdacSymbols, NULL); } /* Load shadowfb if needed */ if (pNv->ShadowFB) { if (!xf86LoadSubModule(pScrn, "shadowfb")) { xf86FreeInt10(pNv->pInt); NVFreeRec(pScrn); return FALSE; } xf86LoaderReqSymLists(shadowSymbols, NULL); } pNv->CurrentLayout.bitsPerPixel = pScrn->bitsPerPixel; pNv->CurrentLayout.depth = pScrn->depth; pNv->CurrentLayout.displayWidth = pScrn->displayWidth; pNv->CurrentLayout.weight.red = pScrn->weight.red; pNv->CurrentLayout.weight.green = pScrn->weight.green; pNv->CurrentLayout.weight.blue = pScrn->weight.blue; pNv->CurrentLayout.mode = pScrn->currentMode; xf86FreeInt10(pNv->pInt); pNv->pInt = NULL; return TRUE; } /* * Map the framebuffer and MMIO memory. */ static Bool NVMapMem(ScrnInfoPtr pScrn) { NVPtr pNv; pNv = NVPTR(pScrn); pNv->FbBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_FRAMEBUFFER, pNv->PciTag, pNv->FbAddress, pNv->FbMapSize); if (pNv->FbBase == NULL) return FALSE; pNv->FbStart = pNv->FbBase; return TRUE; } Bool NVMapMemFBDev(ScrnInfoPtr pScrn) { NVPtr pNv; pNv = NVPTR(pScrn); pNv->FbBase = fbdevHWMapVidmem(pScrn); if (pNv->FbBase == NULL) return FALSE; pNv->FbStart = pNv->FbBase; return TRUE; } /* * Unmap the framebuffer and MMIO memory. */ static Bool NVUnmapMem(ScrnInfoPtr pScrn) { NVPtr pNv; pNv = NVPTR(pScrn); xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pNv->FbBase, pNv->FbMapSize); pNv->FbBase = NULL; pNv->FbStart = NULL; return TRUE; } /* * Initialise a new mode. */ static Bool NVModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode) { vgaHWPtr hwp = VGAHWPTR(pScrn); vgaRegPtr vgaReg; NVPtr pNv = NVPTR(pScrn); NVRegPtr nvReg; /* Initialise the ModeReg values */ if (!vgaHWInit(pScrn, mode)) return FALSE; pScrn->vtSema = TRUE; vgaReg = &hwp->ModeReg; nvReg = &pNv->ModeReg; if(!NVDACInit(pScrn, mode)) return FALSE; NVLockUnlock(pNv, 0); if(pNv->twoHeads) { VGA_WR08(pNv->PCIO, 0x03D4, 0x44); VGA_WR08(pNv->PCIO, 0x03D5, nvReg->crtcOwner); NVLockUnlock(pNv, 0); } /* Program the registers */ vgaHWProtect(pScrn, TRUE); NVDACRestore(pScrn, vgaReg, nvReg, FALSE); #if X_BYTE_ORDER == X_BIG_ENDIAN /* turn on LFB swapping */ { unsigned char tmp; VGA_WR08(pNv->PCIO, 0x3d4, 0x46); tmp = VGA_RD08(pNv->PCIO, 0x3d5); tmp |= (1 << 7); VGA_WR08(pNv->PCIO, 0x3d5, tmp); } #endif NVResetGraphics(pScrn); vgaHWProtect(pScrn, FALSE); pNv->CurrentLayout.mode = mode; return TRUE; } /* * Restore the initial (text) mode. */ static void NVRestore(ScrnInfoPtr pScrn) { vgaHWPtr hwp = VGAHWPTR(pScrn); vgaRegPtr vgaReg = &hwp->SavedReg; NVPtr pNv = NVPTR(pScrn); NVRegPtr nvReg = &pNv->SavedReg; NVLockUnlock(pNv, 0); if(pNv->twoHeads) { VGA_WR08(pNv->PCIO, 0x03D4, 0x44); VGA_WR08(pNv->PCIO, 0x03D5, pNv->CRTCnumber * 0x3); NVLockUnlock(pNv, 0); } /* Only restore text mode fonts/text for the primary card */ vgaHWProtect(pScrn, TRUE); NVDACRestore(pScrn, vgaReg, nvReg, pNv->Primary); if(pNv->twoHeads) { VGA_WR08(pNv->PCIO, 0x03D4, 0x44); VGA_WR08(pNv->PCIO, 0x03D5, nvReg->crtcOwner); } vgaHWProtect(pScrn, FALSE); } static void NVBacklightEnable(NVPtr pNv, Bool on) { CARD32 fpcontrol = pNv->PRAMDAC[0x0848/4] & 0xCfffffCC; /* This is done differently on each laptop. Here we define the ones we know for sure. */ #if defined(__powerpc__) if((pNv->Chipset == 0x10DE0179) || (pNv->Chipset == 0x10DE0189) || (pNv->Chipset == 0x10DE0329)) { /* NV17,18,34 Apple iMac, iBook, PowerBook */ CARD32 tmp_pmc, tmp_pcrt; tmp_pmc = pNv->PMC[0x10F0/4] & 0x7FFFFFFF; tmp_pcrt = pNv->PCRTC0[0x081C/4] & 0xFFFFFFFC; if(on) { tmp_pmc |= (1 << 31); tmp_pcrt |= 0x1; } pNv->PMC[0x10F0/4] = tmp_pmc; pNv->PCRTC0[0x081C/4] = tmp_pcrt; } #endif /* cut the TMDS output */ if(on) fpcontrol |= pNv->fpSyncs; else fpcontrol |= 0x20000022; pNv->PRAMDAC[0x0848/4] = fpcontrol; } static void NVDPMSSetLCD(ScrnInfoPtr pScrn, int PowerManagementMode, int flags) { NVPtr pNv = NVPTR(pScrn); if (!pScrn->vtSema) return; vgaHWDPMSSet(pScrn, PowerManagementMode, flags); switch (PowerManagementMode) { case DPMSModeStandby: /* HSync: Off, VSync: On */ case DPMSModeSuspend: /* HSync: On, VSync: Off */ case DPMSModeOff: /* HSync: Off, VSync: Off */ NVBacklightEnable(pNv, 0); break; case DPMSModeOn: /* HSync: On, VSync: On */ NVBacklightEnable(pNv, 1); default: break; } } static void NVDPMSSet(ScrnInfoPtr pScrn, int PowerManagementMode, int flags) { unsigned char crtc1A; vgaHWPtr hwp = VGAHWPTR(pScrn); if (!pScrn->vtSema) return; crtc1A = hwp->readCrtc(hwp, 0x1A) & ~0xC0; switch (PowerManagementMode) { case DPMSModeStandby: /* HSync: Off, VSync: On */ crtc1A |= 0x80; break; case DPMSModeSuspend: /* HSync: On, VSync: Off */ crtc1A |= 0x40; break; case DPMSModeOff: /* HSync: Off, VSync: Off */ crtc1A |= 0xC0; break; case DPMSModeOn: /* HSync: On, VSync: On */ default: break; } /* vgaHWDPMSSet will merely cut the dac output */ vgaHWDPMSSet(pScrn, PowerManagementMode, flags); hwp->writeCrtc(hwp, 0x1A, crtc1A); } /* Mandatory */ /* This gets called at the start of each server generation */ static Bool NVScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv) { ScrnInfoPtr pScrn; vgaHWPtr hwp; NVPtr pNv; int ret; VisualPtr visual; unsigned char *FBStart; int width, height, displayWidth, offscreenHeight; BoxRec AvailFBArea; /* * First get the ScrnInfoRec */ pScrn = xf86Screens[pScreen->myNum]; hwp = VGAHWPTR(pScrn); pNv = NVPTR(pScrn); /* Map the NV memory and MMIO areas */ if (pNv->FBDev) { if (!NVMapMemFBDev(pScrn)) { return FALSE; } } else { if (!NVMapMem(pScrn)) { return FALSE; } } /* Map the VGA memory when the primary video */ if (pNv->Primary && !pNv->FBDev) { hwp->MapSize = 0x10000; if (!vgaHWMapMem(pScrn)) return FALSE; } if (pNv->FBDev) { fbdevHWSave(pScrn); if (!fbdevHWModeInit(pScrn, pScrn->currentMode)) return FALSE; } else { /* Save the current state */ NVSave(pScrn); /* Initialise the first mode */ if (!NVModeInit(pScrn, pScrn->currentMode)) return FALSE; } /* Darken the screen for aesthetic reasons and set the viewport */ NVSaveScreen(pScreen, SCREEN_SAVER_ON); pScrn->AdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0); /* * The next step is to setup the screen's visuals, and initialise the * framebuffer code. In cases where the framebuffer's default * choices for things like visual layouts and bits per RGB are OK, * this may be as simple as calling the framebuffer's ScreenInit() * function. If not, the visuals will need to be setup before calling * a fb ScreenInit() function and fixed up after. * * For most PC hardware at depths >= 8, the defaults that fb uses * are not appropriate. In this driver, we fixup the visuals after. */ /* * Reset the visual list. */ miClearVisualTypes(); /* Setup the visuals we support. */ if (!miSetVisualTypes(pScrn->depth, miGetDefaultVisualMask(pScrn->depth), 8, pScrn->defaultVisual)) return FALSE; if (!miSetPixmapDepths ()) return FALSE; /* * Call the framebuffer layer's ScreenInit function, and fill in other * pScreen fields. */ width = pScrn->virtualX; height = pScrn->virtualY; displayWidth = pScrn->displayWidth; if(pNv->Rotate) { height = pScrn->virtualX; width = pScrn->virtualY; } if(pNv->ShadowFB) { pNv->ShadowPitch = BitmapBytePad(pScrn->bitsPerPixel * width); pNv->ShadowPtr = xalloc(pNv->ShadowPitch * height); displayWidth = pNv->ShadowPitch / (pScrn->bitsPerPixel >> 3); FBStart = pNv->ShadowPtr; } else { pNv->ShadowPtr = NULL; FBStart = pNv->FbStart; } switch (pScrn->bitsPerPixel) { case 8: case 16: case 32: ret = fbScreenInit(pScreen, FBStart, width, height, pScrn->xDpi, pScrn->yDpi, displayWidth, pScrn->bitsPerPixel); break; default: xf86DrvMsg(scrnIndex, X_ERROR, "Internal error: invalid bpp (%d) in NVScreenInit\n", pScrn->bitsPerPixel); ret = FALSE; break; } if (!ret) return FALSE; if (pScrn->bitsPerPixel > 8) { /* Fixup RGB ordering */ visual = pScreen->visuals + pScreen->numVisuals; while (--visual >= pScreen->visuals) { if ((visual->class | DynamicClass) == DirectColor) { visual->offsetRed = pScrn->offset.red; visual->offsetGreen = pScrn->offset.green; visual->offsetBlue = pScrn->offset.blue; visual->redMask = pScrn->mask.red; visual->greenMask = pScrn->mask.green; visual->blueMask = pScrn->mask.blue; } } } fbPictureInit (pScreen, 0, 0); xf86SetBlackWhitePixels(pScreen); if(!pNv->ShadowFB) /* hardware cursor needs to wrap this layer */ NVDGAInit(pScreen); offscreenHeight = pNv->ScratchBufferStart / (pScrn->displayWidth * pScrn->bitsPerPixel >> 3); if(offscreenHeight > 32767) offscreenHeight = 32767; AvailFBArea.x1 = 0; AvailFBArea.y1 = 0; AvailFBArea.x2 = pScrn->displayWidth; AvailFBArea.y2 = offscreenHeight; xf86InitFBManager(pScreen, &AvailFBArea); if (!pNv->NoAccel) NVAccelInit(pScreen); miInitializeBackingStore(pScreen); xf86SetBackingStore(pScreen); xf86SetSilkenMouse(pScreen); /* Initialize software cursor. Must precede creation of the default colormap */ miDCInitialize(pScreen, xf86GetPointerScreenFuncs()); /* Initialize HW cursor layer. Must follow software cursor initialization*/ if (pNv->HWCursor) { if(!NVCursorInit(pScreen)) xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Hardware cursor initialization failed\n"); } /* Initialise default colourmap */ if (!miCreateDefColormap(pScreen)) return FALSE; /* Initialize colormap layer. Must follow initialization of the default colormap */ if(!xf86HandleColormaps(pScreen, 256, 8, (pNv->FBDev ? fbdevHWLoadPaletteWeak() : NVDACLoadPalette), NULL, CMAP_RELOAD_ON_MODE_SWITCH | CMAP_PALETTED_TRUECOLOR)) return FALSE; if(pNv->ShadowFB) { RefreshAreaFuncPtr refreshArea = NVRefreshArea; if(pNv->Rotate) { pNv->PointerMoved = pScrn->PointerMoved; pScrn->PointerMoved = NVPointerMoved; switch(pScrn->bitsPerPixel) { case 8: refreshArea = NVRefreshArea8; break; case 16: refreshArea = NVRefreshArea16; break; case 32: refreshArea = NVRefreshArea32; break; } xf86DisableRandR(); xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Driver rotation enabled, RandR disabled\n"); } ShadowFBInit(pScreen, refreshArea); } if(pNv->FlatPanel) xf86DPMSInit(pScreen, NVDPMSSetLCD, 0); else xf86DPMSInit(pScreen, NVDPMSSet, 0); pScrn->memPhysBase = pNv->FbAddress; pScrn->fbOffset = 0; if(pNv->Rotate == 0) NVInitVideo(pScreen); pScreen->SaveScreen = NVSaveScreen; /* Wrap the current CloseScreen function */ pNv->CloseScreen = pScreen->CloseScreen; pScreen->CloseScreen = NVCloseScreen; pNv->BlockHandler = pScreen->BlockHandler; pScreen->BlockHandler = NVBlockHandler; /* Report any unused options (only for the first generation) */ if (serverGeneration == 1) { xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options); } return TRUE; } static Bool NVSaveScreen(ScreenPtr pScreen, int mode) { return vgaHWSaveScreen(pScreen, mode); } static void NVSave(ScrnInfoPtr pScrn) { NVPtr pNv = NVPTR(pScrn); NVRegPtr nvReg = &pNv->SavedReg; vgaHWPtr pVga = VGAHWPTR(pScrn); vgaRegPtr vgaReg = &pVga->SavedReg; NVLockUnlock(pNv, 0); if(pNv->twoHeads) { VGA_WR08(pNv->PCIO, 0x03D4, 0x44); VGA_WR08(pNv->PCIO, 0x03D5, pNv->CRTCnumber * 0x3); NVLockUnlock(pNv, 0); } NVDACSave(pScrn, vgaReg, nvReg, pNv->Primary); }