/***************************************************************************\ |* *| |* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *| |* *| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |* international laws. Users and possessors of this source code are *| |* hereby granted a nonexclusive, royalty-free copyright license to *| |* use this code in individual and commercial software. *| |* *| |* Any use of this source code must include, in the user documenta- *| |* tion and internal comments to the code, notices to the end user *| |* as follows: *| |* *| |* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *| |* *| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |* *| |* U.S. Government End Users. This source code is a "commercial *| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |* consisting of "commercial computer software" and "commercial *| |* computer software documentation," as such terms are used in *| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |* all U.S. Government End Users acquire the source code with only *| |* those rights set forth herein. *| |* *| \***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "nv_local.h" #include "compiler.h" #include "nv_include.h" void NVLockUnlock ( NVPtr pNv, Bool Lock ) { CARD8 cr11; VGA_WR08(pNv->PCIO, 0x3D4, 0x1F); VGA_WR08(pNv->PCIO, 0x3D5, Lock ? 0x99 : 0x57); VGA_WR08(pNv->PCIO, 0x3D4, 0x11); cr11 = VGA_RD08(pNv->PCIO, 0x3D5); if(Lock) cr11 |= 0x80; else cr11 &= ~0x80; VGA_WR08(pNv->PCIO, 0x3D5, cr11); } int NVShowHideCursor ( NVPtr pNv, int ShowHide ) { int current = pNv->CurrentState->cursor1; pNv->CurrentState->cursor1 = (pNv->CurrentState->cursor1 & 0xFE) | (ShowHide & 0x01); VGA_WR08(pNv->PCIO, 0x3D4, 0x31); VGA_WR08(pNv->PCIO, 0x3D5, pNv->CurrentState->cursor1); if(pNv->Architecture == NV_ARCH_40) { /* HW bug */ volatile CARD32 curpos = pNv->PRAMDAC[0x0300/4]; pNv->PRAMDAC[0x0300/4] = curpos; } return (current & 0x01); } /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv4_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv4_sim_state; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv10_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; int memory_type; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv10_sim_state; static void nvGetClocks(NVPtr pNv, unsigned int *MClk, unsigned int *NVClk) { unsigned int pll, N, M, MB, NB, P; if(pNv->Architecture >= NV_ARCH_40) { pll = pNv->PMC[0x4020/4]; P = (pll >> 16) & 0x07; pll = pNv->PMC[0x4024/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; if(((pNv->Chipset & 0xfff0) == 0x0290) || ((pNv->Chipset & 0xfff0) == 0x0390)) { MB = 1; NB = 1; } else { MB = (pll >> 16) & 0xFF; NB = (pll >> 24) & 0xFF; } *MClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; pll = pNv->PMC[0x4000/4]; P = (pll >> 16) & 0x07; pll = pNv->PMC[0x4004/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; MB = (pll >> 16) & 0xFF; NB = (pll >> 24) & 0xFF; *NVClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; } else if(pNv->twoStagePLL) { pll = pNv->PRAMDAC0[0x0504/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; pll = pNv->PRAMDAC0[0x0574/4]; if(pll & 0x80000000) { MB = pll & 0xFF; NB = (pll >> 8) & 0xFF; } else { MB = 1; NB = 1; } *MClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; pll = pNv->PRAMDAC0[0x0500/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; pll = pNv->PRAMDAC0[0x0570/4]; if(pll & 0x80000000) { MB = pll & 0xFF; NB = (pll >> 8) & 0xFF; } else { MB = 1; NB = 1; } *NVClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; } else if(((pNv->Chipset & 0x0ff0) == 0x0300) || ((pNv->Chipset & 0x0ff0) == 0x0330)) { pll = pNv->PRAMDAC0[0x0504/4]; M = pll & 0x0F; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x07; if(pll & 0x00000080) { MB = (pll >> 4) & 0x07; NB = (pll >> 19) & 0x1f; } else { MB = 1; NB = 1; } *MClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; pll = pNv->PRAMDAC0[0x0500/4]; M = pll & 0x0F; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x07; if(pll & 0x00000080) { MB = (pll >> 4) & 0x07; NB = (pll >> 19) & 0x1f; } else { MB = 1; NB = 1; } *NVClk = ((N * NB * pNv->CrystalFreqKHz) / (M * MB)) >> P; } else { pll = pNv->PRAMDAC0[0x0504/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; *MClk = (N * pNv->CrystalFreqKHz / M) >> P; pll = pNv->PRAMDAC0[0x0500/4]; M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; *NVClk = (N * pNv->CrystalFreqKHz / M) >> P; } #if 0 ErrorF("NVClock = %i MHz, MEMClock = %i MHz\n", *NVClk/1000, *MClk/1000); #endif } static void nv4CalcArbitration ( nv4_fifo_info *fifo, nv4_sim_state *arb ) { int data, pagemiss, cas,width, video_enable, bpp; int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate; int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt,clwm; fifo->valid = 1; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; video_enable = arb->enable_video; bpp = arb->pix_bpp; mp_enable = arb->enable_mp; clwm = 0; vlwm = 0; cbs = 128; pclks = 2; nvclks = 2; nvclks += 2; nvclks += 1; mclks = 5; mclks += 3; mclks += 1; mclks += cas; mclks += 1; mclks += 1; mclks += 1; mclks += 1; mclk_extra = 3; nvclks += 2; nvclks += 1; nvclks += 1; nvclks += 1; if (mp_enable) mclks+=4; nvclks += 0; pclks += 0; found = 0; vbs = 0; while (found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks+mclk_extra; us_m = mclk_loop *1000*1000 / mclk_freq; us_n = nvclks*1000*1000 / nvclk_freq; us_p = nvclks*1000*1000 / pclk_freq; if (video_enable) { video_drain_rate = pclk_freq * 2; crtc_drain_rate = pclk_freq * bpp/8; vpagemiss = 2; vpagemiss += 1; crtpagemiss = 2; vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = cbs*1000*1000 / 16 / nvclk_freq ; else video_fill_us = cbs*1000*1000 / (8 * width) / mclk_freq; us_video = vpm_us + us_m + us_n + us_p + video_fill_us; vlwm = us_video * video_drain_rate/(1000*1000); vlwm++; vbs = 128; if (vlwm > 128) vbs = 64; if (vlwm > (256-64)) vbs = 32; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = vbs *1000*1000/ 16 / nvclk_freq ; else video_fill_us = vbs*1000*1000 / (8 * width) / mclk_freq; cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = us_video +video_fill_us +cpm_us +us_m + us_n +us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; } else { crtc_drain_rate = pclk_freq * bpp/8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = cpm_us + us_m + us_n + us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; } m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } else if (video_enable) { if ((clwm > 511) || (vlwm > 255)) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } } else { if (clwm > 519) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } } if (clwm < 384) clwm = 384; if (vlwm < 128) vlwm = 128; data = (int)(clwm); fifo->graphics_lwm = data; fifo->graphics_burst_size = 128; data = (int)((vlwm+15)); fifo->video_lwm = data; fifo->video_burst_size = vbs; } } static void nv4UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, NVPtr pNv ) { nv4_fifo_info fifo_data; nv4_sim_state sim_data; unsigned int MClk, NVClk, cfg1; nvGetClocks(pNv, &MClk, &NVClk); cfg1 = pNv->PFB[0x00000204/4]; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_width = (pNv->PEXTDEV[0x0000/4] & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv4CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nv10CalcArbitration ( nv10_fifo_info *fifo, nv10_sim_state *arb ) { int data, pagemiss, width, video_enable, bpp; int nvclks, mclks, pclks, vpagemiss, crtpagemiss; int nvclk_fill; int found, mclk_extra, mclk_loop, cbs, m1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_m_min, us_n, us_p, crtc_drain_rate; int vus_m; int vpm_us, us_video, cpm_us, us_crt,clwm; int clwm_rnd_down; int m2us, us_pipe_min, p1clk, p2; int min_mclk_extra; int us_min_mclk_extra; fifo->valid = 1; pclk_freq = arb->pclk_khz; /* freq in KHz */ mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; width = arb->memory_width/64; video_enable = arb->enable_video; bpp = arb->pix_bpp; mp_enable = arb->enable_mp; clwm = 0; cbs = 512; pclks = 4; /* lwm detect. */ nvclks = 3; /* lwm -> sync. */ nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */ mclks = 1; /* 2 edge sync. may be very close to edge so just put one. */ mclks += 1; /* arb_hp_req */ mclks += 5; /* ap_hp_req tiling pipeline */ mclks += 2; /* tc_req latency fifo */ mclks += 2; /* fb_cas_n_ memory request to fbio block */ mclks += 7; /* sm_d_rdv data returned from fbio block */ /* fb.rd.d.Put_gc need to accumulate 256 bits for read */ if (arb->memory_type == 0) if (arb->memory_width == 64) /* 64 bit bus */ mclks += 4; else mclks += 2; else if (arb->memory_width == 64) /* 64 bit bus */ mclks += 2; else mclks += 1; if ((!video_enable) && (arb->memory_width == 128)) { mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */ min_mclk_extra = 17; } else { mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */ /* mclk_extra = 4; */ /* Margin of error */ min_mclk_extra = 18; } nvclks += 1; /* 2 edge sync. may be very close to edge so just put one. */ nvclks += 1; /* fbi_d_rdv_n */ nvclks += 1; /* Fbi_d_rdata */ nvclks += 1; /* crtfifo load */ if(mp_enable) mclks+=4; /* Mp can get in with a burst of 8. */ /* Extra clocks determined by heuristics */ nvclks += 0; pclks += 0; found = 0; while(found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks+mclk_extra; us_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ us_m_min = mclks * 1000*1000 / mclk_freq; /* Minimum Mclk latency in us */ us_min_mclk_extra = min_mclk_extra *1000*1000 / mclk_freq; us_n = nvclks*1000*1000 / nvclk_freq;/* nvclk latency in us */ us_p = pclks*1000*1000 / pclk_freq;/* nvclk latency in us */ us_pipe_min = us_m_min + us_n + us_p; vus_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ if(video_enable) { crtc_drain_rate = pclk_freq * bpp/8; /* MB/s */ vpagemiss = 1; /* self generating page miss */ vpagemiss += 1; /* One higher priority before */ crtpagemiss = 2; /* self generating page miss */ if(mp_enable) crtpagemiss += 1; /* if MA0 conflict */ vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; us_video = vpm_us + vus_m; /* Video has separate read return path */ cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = us_video /* Wait for video */ +cpm_us /* CRT Page miss */ +us_m + us_n +us_p /* other latency */ ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; /* fixed point <= float_point - 1. Fixes that */ } else { crtc_drain_rate = pclk_freq * bpp/8; /* bpp * pclk/8 */ crtpagemiss = 1; /* self generating page miss */ crtpagemiss += 1; /* MA0 page miss */ if(mp_enable) crtpagemiss += 1; /* if MA0 conflict */ cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = cpm_us + us_m + us_n + us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; /* fixed point <= float_point - 1. Fixes that */ /* Finally, a heuristic check when width == 64 bits */ if(width == 1){ nvclk_fill = nvclk_freq * 8; if(crtc_drain_rate * 100 >= nvclk_fill * 102) clwm = 0xfff; /*Large number to fail */ else if(crtc_drain_rate * 100 >= nvclk_fill * 98) { clwm = 1024; cbs = 512; } } } /* Overfill check: */ clwm_rnd_down = ((int)clwm/8)*8; if (clwm_rnd_down < clwm) clwm += 8; m1 = clwm + cbs - 1024; /* Amount of overfill */ m2us = us_pipe_min + us_min_mclk_extra; /* pclk cycles to drain */ p1clk = m2us * pclk_freq/(1000*1000); p2 = p1clk * bpp / 8; /* bytes drained. */ if((p2 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if(min_mclk_extra == 0) { if(cbs <= 32) { found = 1; /* Can't adjust anymore! */ } else { cbs = cbs/2; /* reduce the burst size */ } } else { min_mclk_extra--; } } else { if (clwm > 1023){ /* Have some margin */ fifo->valid = 0; found = 0; if(min_mclk_extra == 0) found = 1; /* Can't adjust anymore! */ else min_mclk_extra--; } } if(clwm < (1024-cbs+8)) clwm = 1024-cbs+8; data = (int)(clwm); /* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n", clwm, data ); */ fifo->graphics_lwm = data; fifo->graphics_burst_size = cbs; fifo->video_lwm = 1024; fifo->video_burst_size = 512; } } static void nv10UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, NVPtr pNv ) { nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int MClk, NVClk, cfg1; nvGetClocks(pNv, &MClk, &NVClk); cfg1 = pNv->PFB[0x0204/4]; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 1; sim_data.enable_mp = 0; sim_data.memory_type = (pNv->PFB[0x0200/4] & 0x01) ? 1 : 0; sim_data.memory_width = (pNv->PEXTDEV[0x0000/4] & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1>>4) &0x0F) + ((cfg1>>31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nv30UpdateArbitrationSettings ( NVPtr pNv, unsigned *burst, unsigned *lwm ) { unsigned int MClk, NVClk; unsigned int fifo_size, burst_size, graphics_lwm; fifo_size = 2048; burst_size = 512; graphics_lwm = fifo_size - burst_size; nvGetClocks(pNv, &MClk, &NVClk); *burst = 0; burst_size >>= 5; while(burst_size >>= 1) (*burst)++; *lwm = graphics_lwm >> 3; } static void nForceUpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, NVPtr pNv ) { #if XSERVER_LIBPCIACCESS struct pci_device *const dev1 = pci_device_find_by_slot(0, 0, 0, 1); struct pci_device *const dev2 = pci_device_find_by_slot(0, 0, 0, 2); struct pci_device *const dev3 = pci_device_find_by_slot(0, 0, 0, 3); struct pci_device *const dev5 = pci_device_find_by_slot(0, 0, 0, 5); uint32_t tmp; #define READ_LONG(num, offset) ({ pci_device_cfg_read_u32(dev##num, &tmp, (offset)); tmp; }) #else #define READ_LONG(num, offset) pciReadLong(pciTag(0, 0, num), (offset)) #endif nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk, memctrl; if((pNv->Chipset & 0x0FF0) == 0x01A0) { unsigned int uMClkPostDiv; uMClkPostDiv = (READ_LONG(3, 0x6C) >> 8) & 0xf; if(!uMClkPostDiv) uMClkPostDiv = 4; MClk = 400000 / uMClkPostDiv; } else { MClk = READ_LONG(5, 0x4C) / 1000; } pll = pNv->PRAMDAC0[0x0500/4]; M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * pNv->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_type = (READ_LONG(1, 0x7C) >> 12) & 1; sim_data.memory_width = 64; memctrl = READ_LONG(3, 0x00) >> 16; if((memctrl == 0x1A9) || (memctrl == 0x1AB) || (memctrl == 0x1ED)) { int dimm[3]; dimm[0] = (READ_LONG(2, 0x40) >> 8) & 0x4F; dimm[1] = (READ_LONG(2, 0x44) >> 8) & 0x4F; dimm[2] = (READ_LONG(2, 0x48) >> 8) & 0x4F; if((dimm[0] + dimm[1]) != dimm[2]) { ErrorF("WARNING: " "your nForce DIMMs are not arranged in optimal banks!\n"); } } sim_data.mem_latency = 3; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 10; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } #undef READ_LONG } /****************************************************************************\ * * * RIVA Mode State Routines * * * \****************************************************************************/ /* * Calculate the Video Clock parameters for the PLL. */ static void CalcVClock ( int clockIn, int *clockOut, U032 *pllOut, NVPtr pNv ) { unsigned lowM, highM; unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; VClk = (unsigned)clockIn; if (pNv->CrystalFreqKHz == 13500) { lowM = 7; highM = 13; } else { lowM = 8; highM = 14; } for (P = 0; P <= 4; P++) { Freq = VClk << P; if ((Freq >= 128000) && (Freq <= 350000)) { for (M = lowM; M <= highM; M++) { N = ((VClk << P) * M) / pNv->CrystalFreqKHz; if(N <= 255) { Freq = ((pNv->CrystalFreqKHz * N) / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *pllOut = (P << 16) | (N << 8) | M; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } } static void CalcVClock2Stage ( int clockIn, int *clockOut, U032 *pllOut, U032 *pllBOut, NVPtr pNv ) { unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; *pllBOut = 0x80000401; /* fixed at x4 for now */ VClk = (unsigned)clockIn; for (P = 0; P <= 6; P++) { Freq = VClk << P; if ((Freq >= 400000) && (Freq <= 1000000)) { for (M = 1; M <= 13; M++) { N = ((VClk << P) * M) / (pNv->CrystalFreqKHz << 2); if((N >= 5) && (N <= 255)) { Freq = (((pNv->CrystalFreqKHz << 2) * N) / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *pllOut = (P << 16) | (N << 8) | M; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } } /* * Calculate extended mode parameters (SVGA) and save in a * mode state structure. */ void NVCalcStateExt ( NVPtr pNv, RIVA_HW_STATE *state, int bpp, int width, int hDisplaySize, int height, int dotClock, int flags ) { int pixelDepth, VClk = 0; /* * Save mode parameters. */ state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */ state->width = width; state->height = height; /* * Extended RIVA registers. */ pixelDepth = (bpp + 1)/8; if(pNv->twoStagePLL) CalcVClock2Stage(dotClock, &VClk, &state->pll, &state->pllB, pNv); else CalcVClock(dotClock, &VClk, &state->pll, pNv); switch (pNv->Architecture) { case NV_ARCH_04: nv4UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), pNv); state->cursor0 = 0x00; state->cursor1 = 0xbC; if (flags & V_DBLSCAN) state->cursor1 |= 2; state->cursor2 = 0x00000000; state->pllsel = 0x10000700; state->config = 0x00001114; state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; case NV_ARCH_40: if(!pNv->FlatPanel) state->control = pNv->PRAMDAC0[0x0580/4] & 0xeffffeff; /* fallthrough */ case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: default: if(((pNv->Chipset & 0xfff0) == 0x0240) || ((pNv->Chipset & 0xfff0) == 0x03D0)) { state->arbitration0 = 128; state->arbitration1 = 0x0480; } else if(((pNv->Chipset & 0xffff) == 0x01A0) || ((pNv->Chipset & 0xffff) == 0x01f0)) { nForceUpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), pNv); } else if(pNv->Architecture < NV_ARCH_30) { nv10UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), pNv); } else { nv30UpdateArbitrationSettings(pNv, &(state->arbitration0), &(state->arbitration1)); } state->cursor0 = 0x80 | (pNv->CursorStart >> 17); state->cursor1 = (pNv->CursorStart >> 11) << 2; state->cursor2 = pNv->CursorStart >> 24; if (flags & V_DBLSCAN) state->cursor1 |= 2; state->pllsel = 0x10000700; state->config = pNv->PFB[0x00000200/4]; state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; } if(bpp != 8) /* DirectColor */ state->general |= 0x00000030; state->repaint0 = (((width / 8) * pixelDepth) & 0x700) >> 3; state->pixel = (pixelDepth > 2) ? 3 : pixelDepth; } void NVLoadStateExt ( NVPtr pNv, RIVA_HW_STATE *state ) { int i, j; pNv->PMC[0x0140/4] = 0x00000000; pNv->PMC[0x0200/4] = 0xFFFF00FF; pNv->PMC[0x0200/4] = 0xFFFFFFFF; pNv->PTIMER[0x0200] = 0x00000008; pNv->PTIMER[0x0210] = 0x00000003; pNv->PTIMER[0x0140] = 0x00000000; pNv->PTIMER[0x0100] = 0xFFFFFFFF; if(pNv->Architecture == NV_ARCH_04) { if (state) pNv->PFB[0x0200/4] = state->config; } else if((pNv->Architecture < NV_ARCH_40) || ((pNv->Chipset & 0xfff0) == 0x0040)) { for(i = 0; i < 8; i++) { pNv->PFB[(0x0240 + (i * 0x10))/4] = 0; pNv->PFB[(0x0244 + (i * 0x10))/4] = pNv->FbMapSize - 1; } } else { int regions = 12; if(((pNv->Chipset & 0xfff0) == 0x0090) || ((pNv->Chipset & 0xfff0) == 0x01D0) || ((pNv->Chipset & 0xfff0) == 0x0290) || ((pNv->Chipset & 0xfff0) == 0x0390) || ((pNv->Chipset & 0xfff0) == 0x03D0)) { regions = 15; } for(i = 0; i < regions; i++) { pNv->PFB[(0x0600 + (i * 0x10))/4] = 0; pNv->PFB[(0x0604 + (i * 0x10))/4] = pNv->FbMapSize - 1; } } if(pNv->Architecture >= NV_ARCH_40) { pNv->PRAMIN[0x0000] = 0x80000010; pNv->PRAMIN[0x0001] = 0x00101202; pNv->PRAMIN[0x0002] = 0x80000011; pNv->PRAMIN[0x0003] = 0x00101204; pNv->PRAMIN[0x0004] = 0x80000012; pNv->PRAMIN[0x0005] = 0x00101206; pNv->PRAMIN[0x0006] = 0x80000013; pNv->PRAMIN[0x0007] = 0x00101208; pNv->PRAMIN[0x0008] = 0x80000014; pNv->PRAMIN[0x0009] = 0x0010120A; pNv->PRAMIN[0x000A] = 0x80000015; pNv->PRAMIN[0x000B] = 0x0010120C; pNv->PRAMIN[0x000C] = 0x80000016; pNv->PRAMIN[0x000D] = 0x0010120E; pNv->PRAMIN[0x000E] = 0x80000017; pNv->PRAMIN[0x000F] = 0x00101210; pNv->PRAMIN[0x0800] = 0x00003000; pNv->PRAMIN[0x0801] = pNv->FbMapSize - 1; pNv->PRAMIN[0x0802] = 0x00000002; pNv->PRAMIN[0x0808] = 0x02080062; pNv->PRAMIN[0x0809] = 0x00000000; pNv->PRAMIN[0x080A] = 0x00001200; pNv->PRAMIN[0x080B] = 0x00001200; pNv->PRAMIN[0x080C] = 0x00000000; pNv->PRAMIN[0x080D] = 0x00000000; pNv->PRAMIN[0x0810] = 0x02080043; pNv->PRAMIN[0x0811] = 0x00000000; pNv->PRAMIN[0x0812] = 0x00000000; pNv->PRAMIN[0x0813] = 0x00000000; pNv->PRAMIN[0x0814] = 0x00000000; pNv->PRAMIN[0x0815] = 0x00000000; pNv->PRAMIN[0x0818] = 0x02080044; pNv->PRAMIN[0x0819] = 0x02000000; pNv->PRAMIN[0x081A] = 0x00000000; pNv->PRAMIN[0x081B] = 0x00000000; pNv->PRAMIN[0x081C] = 0x00000000; pNv->PRAMIN[0x081D] = 0x00000000; pNv->PRAMIN[0x0820] = 0x02080019; pNv->PRAMIN[0x0821] = 0x00000000; pNv->PRAMIN[0x0822] = 0x00000000; pNv->PRAMIN[0x0823] = 0x00000000; pNv->PRAMIN[0x0824] = 0x00000000; pNv->PRAMIN[0x0825] = 0x00000000; pNv->PRAMIN[0x0828] = 0x020A005C; pNv->PRAMIN[0x0829] = 0x00000000; pNv->PRAMIN[0x082A] = 0x00000000; pNv->PRAMIN[0x082B] = 0x00000000; pNv->PRAMIN[0x082C] = 0x00000000; pNv->PRAMIN[0x082D] = 0x00000000; pNv->PRAMIN[0x0830] = 0x0208009F; pNv->PRAMIN[0x0831] = 0x00000000; pNv->PRAMIN[0x0832] = 0x00001200; pNv->PRAMIN[0x0833] = 0x00001200; pNv->PRAMIN[0x0834] = 0x00000000; pNv->PRAMIN[0x0835] = 0x00000000; pNv->PRAMIN[0x0838] = 0x0208004A; pNv->PRAMIN[0x0839] = 0x02000000; pNv->PRAMIN[0x083A] = 0x00000000; pNv->PRAMIN[0x083B] = 0x00000000; pNv->PRAMIN[0x083C] = 0x00000000; pNv->PRAMIN[0x083D] = 0x00000000; pNv->PRAMIN[0x0840] = 0x02080077; pNv->PRAMIN[0x0841] = 0x00000000; pNv->PRAMIN[0x0842] = 0x00001200; pNv->PRAMIN[0x0843] = 0x00001200; pNv->PRAMIN[0x0844] = 0x00000000; pNv->PRAMIN[0x0845] = 0x00000000; pNv->PRAMIN[0x084C] = 0x00003002; pNv->PRAMIN[0x084D] = 0x00007FFF; pNv->PRAMIN[0x084E] = pNv->FbUsableSize | 0x00000002; #if X_BYTE_ORDER == X_BIG_ENDIAN pNv->PRAMIN[0x080A] |= 0x01000000; pNv->PRAMIN[0x0812] |= 0x01000000; pNv->PRAMIN[0x081A] |= 0x01000000; pNv->PRAMIN[0x0822] |= 0x01000000; pNv->PRAMIN[0x082A] |= 0x01000000; pNv->PRAMIN[0x0832] |= 0x01000000; pNv->PRAMIN[0x083A] |= 0x01000000; pNv->PRAMIN[0x0842] |= 0x01000000; pNv->PRAMIN[0x0819] = 0x01000000; pNv->PRAMIN[0x0839] = 0x01000000; #endif } else { pNv->PRAMIN[0x0000] = 0x80000010; pNv->PRAMIN[0x0001] = 0x80011201; pNv->PRAMIN[0x0002] = 0x80000011; pNv->PRAMIN[0x0003] = 0x80011202; pNv->PRAMIN[0x0004] = 0x80000012; pNv->PRAMIN[0x0005] = 0x80011203; pNv->PRAMIN[0x0006] = 0x80000013; pNv->PRAMIN[0x0007] = 0x80011204; pNv->PRAMIN[0x0008] = 0x80000014; pNv->PRAMIN[0x0009] = 0x80011205; pNv->PRAMIN[0x000A] = 0x80000015; pNv->PRAMIN[0x000B] = 0x80011206; pNv->PRAMIN[0x000C] = 0x80000016; pNv->PRAMIN[0x000D] = 0x80011207; pNv->PRAMIN[0x000E] = 0x80000017; pNv->PRAMIN[0x000F] = 0x80011208; pNv->PRAMIN[0x0800] = 0x00003000; pNv->PRAMIN[0x0801] = pNv->FbMapSize - 1; pNv->PRAMIN[0x0802] = 0x00000002; pNv->PRAMIN[0x0803] = 0x00000002; if(pNv->Architecture >= NV_ARCH_10) pNv->PRAMIN[0x0804] = 0x01008062; else pNv->PRAMIN[0x0804] = 0x01008042; pNv->PRAMIN[0x0805] = 0x00000000; pNv->PRAMIN[0x0806] = 0x12001200; pNv->PRAMIN[0x0807] = 0x00000000; pNv->PRAMIN[0x0808] = 0x01008043; pNv->PRAMIN[0x0809] = 0x00000000; pNv->PRAMIN[0x080A] = 0x00000000; pNv->PRAMIN[0x080B] = 0x00000000; pNv->PRAMIN[0x080C] = 0x01008044; pNv->PRAMIN[0x080D] = 0x00000002; pNv->PRAMIN[0x080E] = 0x00000000; pNv->PRAMIN[0x080F] = 0x00000000; pNv->PRAMIN[0x0810] = 0x01008019; pNv->PRAMIN[0x0811] = 0x00000000; pNv->PRAMIN[0x0812] = 0x00000000; pNv->PRAMIN[0x0813] = 0x00000000; pNv->PRAMIN[0x0814] = 0x0100A05C; pNv->PRAMIN[0x0815] = 0x00000000; pNv->PRAMIN[0x0816] = 0x00000000; pNv->PRAMIN[0x0817] = 0x00000000; if(pNv->WaitVSyncPossible) pNv->PRAMIN[0x0818] = 0x0100809F; else pNv->PRAMIN[0x0818] = 0x0100805F; pNv->PRAMIN[0x0819] = 0x00000000; pNv->PRAMIN[0x081A] = 0x12001200; pNv->PRAMIN[0x081B] = 0x00000000; pNv->PRAMIN[0x081C] = 0x0100804A; pNv->PRAMIN[0x081D] = 0x00000002; pNv->PRAMIN[0x081E] = 0x00000000; pNv->PRAMIN[0x081F] = 0x00000000; pNv->PRAMIN[0x0820] = 0x01018077; pNv->PRAMIN[0x0821] = 0x00000000; pNv->PRAMIN[0x0822] = 0x12001200; pNv->PRAMIN[0x0823] = 0x00000000; pNv->PRAMIN[0x0824] = 0x00003002; pNv->PRAMIN[0x0825] = 0x00007FFF; pNv->PRAMIN[0x0826] = pNv->FbUsableSize | 0x00000002; pNv->PRAMIN[0x0827] = 0x00000002; #if X_BYTE_ORDER == X_BIG_ENDIAN pNv->PRAMIN[0x0804] |= 0x00080000; pNv->PRAMIN[0x0808] |= 0x00080000; pNv->PRAMIN[0x080C] |= 0x00080000; pNv->PRAMIN[0x0810] |= 0x00080000; pNv->PRAMIN[0x0814] |= 0x00080000; pNv->PRAMIN[0x0818] |= 0x00080000; pNv->PRAMIN[0x081C] |= 0x00080000; pNv->PRAMIN[0x0820] |= 0x00080000; pNv->PRAMIN[0x080D] = 0x00000001; pNv->PRAMIN[0x081D] = 0x00000001; #endif } if(pNv->Architecture < NV_ARCH_10) { if((pNv->Chipset & 0x0fff) == 0x0020) { pNv->PRAMIN[0x0824] |= 0x00020000; pNv->PRAMIN[0x0826] += pNv->FbAddress; } pNv->PGRAPH[0x0080/4] = 0x000001FF; pNv->PGRAPH[0x0080/4] = 0x1230C000; pNv->PGRAPH[0x0084/4] = 0x72111101; pNv->PGRAPH[0x0088/4] = 0x11D5F071; pNv->PGRAPH[0x008C/4] = 0x0004FF31; pNv->PGRAPH[0x008C/4] = 0x4004FF31; pNv->PGRAPH[0x0140/4] = 0x00000000; pNv->PGRAPH[0x0100/4] = 0xFFFFFFFF; pNv->PGRAPH[0x0170/4] = 0x10010100; pNv->PGRAPH[0x0710/4] = 0xFFFFFFFF; pNv->PGRAPH[0x0720/4] = 0x00000001; pNv->PGRAPH[0x0810/4] = 0x00000000; pNv->PGRAPH[0x0608/4] = 0xFFFFFFFF; } else { pNv->PGRAPH[0x0080/4] = 0xFFFFFFFF; pNv->PGRAPH[0x0080/4] = 0x00000000; pNv->PGRAPH[0x0140/4] = 0x00000000; pNv->PGRAPH[0x0100/4] = 0xFFFFFFFF; pNv->PGRAPH[0x0144/4] = 0x10010100; pNv->PGRAPH[0x0714/4] = 0xFFFFFFFF; pNv->PGRAPH[0x0720/4] = 0x00000001; pNv->PGRAPH[0x0710/4] &= 0x0007ff00; pNv->PGRAPH[0x0710/4] |= 0x00020100; if(pNv->Architecture == NV_ARCH_10) { pNv->PGRAPH[0x0084/4] = 0x00118700; pNv->PGRAPH[0x0088/4] = 0x24E00810; pNv->PGRAPH[0x008C/4] = 0x55DE0030; for(i = 0; i < 32; i++) pNv->PGRAPH[(0x0B00/4) + i] = pNv->PFB[(0x0240/4) + i]; pNv->PGRAPH[0x640/4] = 0; pNv->PGRAPH[0x644/4] = 0; pNv->PGRAPH[0x684/4] = pNv->FbMapSize - 1; pNv->PGRAPH[0x688/4] = pNv->FbMapSize - 1; pNv->PGRAPH[0x0810/4] = 0x00000000; pNv->PGRAPH[0x0608/4] = 0xFFFFFFFF; } else { if(pNv->Architecture >= NV_ARCH_40) { pNv->PGRAPH[0x0084/4] = 0x401287c0; pNv->PGRAPH[0x008C/4] = 0x60de8051; pNv->PGRAPH[0x0090/4] = 0x00008000; pNv->PGRAPH[0x0610/4] = 0x00be3c5f; pNv->PGRAPH[0x0bc4/4] |= 0x00008000; j = pNv->REGS[0x1540/4] & 0xff; if(j) { for(i = 0; !(j & 1); j >>= 1, i++); pNv->PGRAPH[0x5000/4] = i; } if((pNv->Chipset & 0xfff0) == 0x0040) { pNv->PGRAPH[0x09b0/4] = 0x83280fff; pNv->PGRAPH[0x09b4/4] = 0x000000a0; } else { pNv->PGRAPH[0x0820/4] = 0x83280eff; pNv->PGRAPH[0x0824/4] = 0x000000a0; } switch(pNv->Chipset & 0xfff0) { case 0x0040: case 0x0210: pNv->PGRAPH[0x09b8/4] = 0x0078e366; pNv->PGRAPH[0x09bc/4] = 0x0000014c; pNv->PFB[0x033C/4] &= 0xffff7fff; break; case 0x00C0: case 0x0120: pNv->PGRAPH[0x0828/4] = 0x007596ff; pNv->PGRAPH[0x082C/4] = 0x00000108; break; case 0x0160: case 0x01D0: case 0x0240: case 0x03D0: pNv->PMC[0x1700/4] = pNv->PFB[0x020C/4]; pNv->PMC[0x1704/4] = 0; pNv->PMC[0x1708/4] = 0; pNv->PMC[0x170C/4] = pNv->PFB[0x020C/4]; pNv->PGRAPH[0x0860/4] = 0; pNv->PGRAPH[0x0864/4] = 0; pNv->PRAMDAC[0x0608/4] |= 0x00100000; break; case 0x0140: pNv->PGRAPH[0x0828/4] = 0x0072cb77; pNv->PGRAPH[0x082C/4] = 0x00000108; break; case 0x0220: pNv->PGRAPH[0x0860/4] = 0; pNv->PGRAPH[0x0864/4] = 0; pNv->PRAMDAC[0x0608/4] |= 0x00100000; break; case 0x0090: case 0x0290: case 0x0390: pNv->PRAMDAC[0x0608/4] |= 0x00100000; pNv->PGRAPH[0x0828/4] = 0x07830610; pNv->PGRAPH[0x082C/4] = 0x0000016A; break; default: break; }; pNv->PGRAPH[0x0b38/4] = 0x2ffff800; pNv->PGRAPH[0x0b3c/4] = 0x00006000; pNv->PGRAPH[0x032C/4] = 0x01000000; pNv->PGRAPH[0x0220/4] = 0x00001200; } else if(pNv->Architecture == NV_ARCH_30) { pNv->PGRAPH[0x0084/4] = 0x40108700; pNv->PGRAPH[0x0890/4] = 0x00140000; pNv->PGRAPH[0x008C/4] = 0xf00e0431; pNv->PGRAPH[0x0090/4] = 0x00008000; pNv->PGRAPH[0x0610/4] = 0xf04b1f36; pNv->PGRAPH[0x0B80/4] = 0x1002d888; pNv->PGRAPH[0x0B88/4] = 0x62ff007f; } else { pNv->PGRAPH[0x0084/4] = 0x00118700; pNv->PGRAPH[0x008C/4] = 0xF20E0431; pNv->PGRAPH[0x0090/4] = 0x00000000; pNv->PGRAPH[0x009C/4] = 0x00000040; if((pNv->Chipset & 0x0ff0) >= 0x0250) { pNv->PGRAPH[0x0890/4] = 0x00080000; pNv->PGRAPH[0x0610/4] = 0x304B1FB6; pNv->PGRAPH[0x0B80/4] = 0x18B82880; pNv->PGRAPH[0x0B84/4] = 0x44000000; pNv->PGRAPH[0x0098/4] = 0x40000080; pNv->PGRAPH[0x0B88/4] = 0x000000ff; } else { pNv->PGRAPH[0x0880/4] = 0x00080000; pNv->PGRAPH[0x0094/4] = 0x00000005; pNv->PGRAPH[0x0B80/4] = 0x45CAA208; pNv->PGRAPH[0x0B84/4] = 0x24000000; pNv->PGRAPH[0x0098/4] = 0x00000040; pNv->PGRAPH[0x0750/4] = 0x00E00038; pNv->PGRAPH[0x0754/4] = 0x00000030; pNv->PGRAPH[0x0750/4] = 0x00E10038; pNv->PGRAPH[0x0754/4] = 0x00000030; } } if((pNv->Architecture < NV_ARCH_40) || ((pNv->Chipset & 0xfff0) == 0x0040)) { for(i = 0; i < 32; i++) { pNv->PGRAPH[(0x0900/4) + i] = pNv->PFB[(0x0240/4) + i]; pNv->PGRAPH[(0x6900/4) + i] = pNv->PFB[(0x0240/4) + i]; } } else { if(((pNv->Chipset & 0xfff0) == 0x0090) || ((pNv->Chipset & 0xfff0) == 0x01D0) || ((pNv->Chipset & 0xfff0) == 0x0290) || ((pNv->Chipset & 0xfff0) == 0x0390) || ((pNv->Chipset & 0xfff0) == 0x03D0)) { for(i = 0; i < 60; i++) { pNv->PGRAPH[(0x0D00/4) + i] = pNv->PFB[(0x0600/4) + i]; pNv->PGRAPH[(0x6900/4) + i] = pNv->PFB[(0x0600/4) + i]; } } else { for(i = 0; i < 48; i++) { pNv->PGRAPH[(0x0900/4) + i] = pNv->PFB[(0x0600/4) + i]; if(((pNv->Chipset & 0xfff0) != 0x0160) && ((pNv->Chipset & 0xfff0) != 0x0220) && ((pNv->Chipset & 0xfff0) != 0x0240)) { pNv->PGRAPH[(0x6900/4) + i] = pNv->PFB[(0x0600/4) + i]; } } } } if(pNv->Architecture >= NV_ARCH_40) { if((pNv->Chipset & 0xfff0) == 0x0040) { pNv->PGRAPH[0x09A4/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x09A8/4] = pNv->PFB[0x0204/4]; pNv->PGRAPH[0x69A4/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x69A8/4] = pNv->PFB[0x0204/4]; pNv->PGRAPH[0x0820/4] = 0; pNv->PGRAPH[0x0824/4] = 0; pNv->PGRAPH[0x0864/4] = pNv->FbMapSize - 1; pNv->PGRAPH[0x0868/4] = pNv->FbMapSize - 1; } else { if(((pNv->Chipset & 0xfff0) == 0x0090) || ((pNv->Chipset & 0xfff0) == 0x01D0) || ((pNv->Chipset & 0xfff0) == 0x0290) || ((pNv->Chipset & 0xfff0) == 0x0390)) { pNv->PGRAPH[0x0DF0/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x0DF4/4] = pNv->PFB[0x0204/4]; } else { pNv->PGRAPH[0x09F0/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x09F4/4] = pNv->PFB[0x0204/4]; } pNv->PGRAPH[0x69F0/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x69F4/4] = pNv->PFB[0x0204/4]; pNv->PGRAPH[0x0840/4] = 0; pNv->PGRAPH[0x0844/4] = 0; pNv->PGRAPH[0x08a0/4] = pNv->FbMapSize - 1; pNv->PGRAPH[0x08a4/4] = pNv->FbMapSize - 1; } } else { pNv->PGRAPH[0x09A4/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x09A8/4] = pNv->PFB[0x0204/4]; pNv->PGRAPH[0x0750/4] = 0x00EA0000; pNv->PGRAPH[0x0754/4] = pNv->PFB[0x0200/4]; pNv->PGRAPH[0x0750/4] = 0x00EA0004; pNv->PGRAPH[0x0754/4] = pNv->PFB[0x0204/4]; pNv->PGRAPH[0x0820/4] = 0; pNv->PGRAPH[0x0824/4] = 0; pNv->PGRAPH[0x0864/4] = pNv->FbMapSize - 1; pNv->PGRAPH[0x0868/4] = pNv->FbMapSize - 1; } pNv->PGRAPH[0x0B20/4] = 0x00000000; pNv->PGRAPH[0x0B04/4] = 0xFFFFFFFF; } } pNv->PGRAPH[0x053C/4] = 0; pNv->PGRAPH[0x0540/4] = 0; pNv->PGRAPH[0x0544/4] = 0x00007FFF; pNv->PGRAPH[0x0548/4] = 0x00007FFF; pNv->PFIFO[0x0140] = 0x00000000; pNv->PFIFO[0x0141] = 0x00000001; pNv->PFIFO[0x0480] = 0x00000000; pNv->PFIFO[0x0494] = 0x00000000; if(pNv->Architecture >= NV_ARCH_40) pNv->PFIFO[0x0481] = 0x00010000; else pNv->PFIFO[0x0481] = 0x00000100; pNv->PFIFO[0x0490] = 0x00000000; pNv->PFIFO[0x0491] = 0x00000000; if(pNv->Architecture >= NV_ARCH_40) pNv->PFIFO[0x048B] = 0x00001213; else pNv->PFIFO[0x048B] = 0x00001209; pNv->PFIFO[0x0400] = 0x00000000; pNv->PFIFO[0x0414] = 0x00000000; pNv->PFIFO[0x0084] = 0x03000100; pNv->PFIFO[0x0085] = 0x00000110; pNv->PFIFO[0x0086] = 0x00000112; pNv->PFIFO[0x0143] = 0x0000FFFF; pNv->PFIFO[0x0496] = 0x0000FFFF; pNv->PFIFO[0x0050] = 0x00000000; pNv->PFIFO[0x0040] = 0xFFFFFFFF; pNv->PFIFO[0x0415] = 0x00000001; pNv->PFIFO[0x048C] = 0x00000000; pNv->PFIFO[0x04A0] = 0x00000000; #if X_BYTE_ORDER == X_BIG_ENDIAN pNv->PFIFO[0x0489] = 0x800F0078; #else pNv->PFIFO[0x0489] = 0x000F0078; #endif pNv->PFIFO[0x0488] = 0x00000001; pNv->PFIFO[0x0480] = 0x00000001; pNv->PFIFO[0x0494] = 0x00000001; pNv->PFIFO[0x0495] = 0x00000001; pNv->PFIFO[0x0140] = 0x00000001; if(!state) { pNv->CurrentState = NULL; return; } if(pNv->Architecture >= NV_ARCH_10) { if(pNv->twoHeads) { pNv->PCRTC0[0x0860/4] = state->head; pNv->PCRTC0[0x2860/4] = state->head2; } pNv->PRAMDAC[0x0404/4] |= (1 << 25); pNv->PMC[0x8704/4] = 1; pNv->PMC[0x8140/4] = 0; pNv->PMC[0x8920/4] = 0; pNv->PMC[0x8924/4] = 0; pNv->PMC[0x8908/4] = pNv->FbMapSize - 1; pNv->PMC[0x890C/4] = pNv->FbMapSize - 1; pNv->PMC[0x1588/4] = 0; pNv->PCRTC[0x0810/4] = state->cursorConfig; pNv->PCRTC[0x0830/4] = state->displayV - 3; pNv->PCRTC[0x0834/4] = state->displayV - 1; if(pNv->FlatPanel) { if((pNv->Chipset & 0x0ff0) == 0x0110) { pNv->PRAMDAC[0x0528/4] = state->dither; } else if(pNv->twoHeads) { pNv->PRAMDAC[0x083C/4] = state->dither; } VGA_WR08(pNv->PCIO, 0x03D4, 0x53); VGA_WR08(pNv->PCIO, 0x03D5, state->timingH); VGA_WR08(pNv->PCIO, 0x03D4, 0x54); VGA_WR08(pNv->PCIO, 0x03D5, state->timingV); VGA_WR08(pNv->PCIO, 0x03D4, 0x21); VGA_WR08(pNv->PCIO, 0x03D5, 0xfa); } VGA_WR08(pNv->PCIO, 0x03D4, 0x41); VGA_WR08(pNv->PCIO, 0x03D5, state->extra); } VGA_WR08(pNv->PCIO, 0x03D4, 0x19); VGA_WR08(pNv->PCIO, 0x03D5, state->repaint0); VGA_WR08(pNv->PCIO, 0x03D4, 0x1A); VGA_WR08(pNv->PCIO, 0x03D5, state->repaint1); VGA_WR08(pNv->PCIO, 0x03D4, 0x25); VGA_WR08(pNv->PCIO, 0x03D5, state->screen); VGA_WR08(pNv->PCIO, 0x03D4, 0x28); VGA_WR08(pNv->PCIO, 0x03D5, state->pixel); VGA_WR08(pNv->PCIO, 0x03D4, 0x2D); VGA_WR08(pNv->PCIO, 0x03D5, state->horiz); VGA_WR08(pNv->PCIO, 0x03D4, 0x1C); VGA_WR08(pNv->PCIO, 0x03D5, state->fifo); VGA_WR08(pNv->PCIO, 0x03D4, 0x1B); VGA_WR08(pNv->PCIO, 0x03D5, state->arbitration0); VGA_WR08(pNv->PCIO, 0x03D4, 0x20); VGA_WR08(pNv->PCIO, 0x03D5, state->arbitration1); if(pNv->Architecture >= NV_ARCH_30) { VGA_WR08(pNv->PCIO, 0x03D4, 0x47); VGA_WR08(pNv->PCIO, 0x03D5, state->arbitration1 >> 8); } VGA_WR08(pNv->PCIO, 0x03D4, 0x30); VGA_WR08(pNv->PCIO, 0x03D5, state->cursor0); VGA_WR08(pNv->PCIO, 0x03D4, 0x31); VGA_WR08(pNv->PCIO, 0x03D5, state->cursor1); VGA_WR08(pNv->PCIO, 0x03D4, 0x2F); VGA_WR08(pNv->PCIO, 0x03D5, state->cursor2); VGA_WR08(pNv->PCIO, 0x03D4, 0x39); VGA_WR08(pNv->PCIO, 0x03D5, state->interlace); if(!pNv->FlatPanel) { if(pNv->Architecture >= NV_ARCH_40) { pNv->PRAMDAC0[0x0580/4] = state->control; } pNv->PRAMDAC0[0x050C/4] = state->pllsel; pNv->PRAMDAC0[0x0508/4] = state->vpll; if(pNv->twoHeads) pNv->PRAMDAC0[0x0520/4] = state->vpll2; if(pNv->twoStagePLL) { pNv->PRAMDAC0[0x0578/4] = state->vpllB; pNv->PRAMDAC0[0x057C/4] = state->vpll2B; } } else { pNv->PRAMDAC[0x0848/4] = state->scale; pNv->PRAMDAC[0x0828/4] = state->crtcSync; pNv->PRAMDAC[0x0808/4] = state->crtcVSync; } pNv->PRAMDAC[0x0600/4] = state->general; pNv->PCRTC[0x0140/4] = 0; pNv->PCRTC[0x0100/4] = 1; pNv->CurrentState = state; } void NVUnloadStateExt ( NVPtr pNv, RIVA_HW_STATE *state ) { VGA_WR08(pNv->PCIO, 0x03D4, 0x19); state->repaint0 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x1A); state->repaint1 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x25); state->screen = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x28); state->pixel = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x2D); state->horiz = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x1C); state->fifo = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x1B); state->arbitration0 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x20); state->arbitration1 = VGA_RD08(pNv->PCIO, 0x03D5); if(pNv->Architecture >= NV_ARCH_30) { VGA_WR08(pNv->PCIO, 0x03D4, 0x47); state->arbitration1 |= (VGA_RD08(pNv->PCIO, 0x03D5) & 1) << 8; } VGA_WR08(pNv->PCIO, 0x03D4, 0x30); state->cursor0 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x31); state->cursor1 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x2F); state->cursor2 = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x39); state->interlace = VGA_RD08(pNv->PCIO, 0x03D5); state->vpll = pNv->PRAMDAC0[0x0508/4]; if(pNv->twoHeads) state->vpll2 = pNv->PRAMDAC0[0x0520/4]; if(pNv->twoStagePLL) { state->vpllB = pNv->PRAMDAC0[0x0578/4]; state->vpll2B = pNv->PRAMDAC0[0x057C/4]; } state->pllsel = pNv->PRAMDAC0[0x050C/4]; state->general = pNv->PRAMDAC[0x0600/4]; state->scale = pNv->PRAMDAC[0x0848/4]; state->config = pNv->PFB[0x0200/4]; if(pNv->Architecture >= NV_ARCH_40 && !pNv->FlatPanel) { state->control = pNv->PRAMDAC0[0x0580/4]; } if(pNv->Architecture >= NV_ARCH_10) { if(pNv->twoHeads) { state->head = pNv->PCRTC0[0x0860/4]; state->head2 = pNv->PCRTC0[0x2860/4]; VGA_WR08(pNv->PCIO, 0x03D4, 0x44); state->crtcOwner = VGA_RD08(pNv->PCIO, 0x03D5); } VGA_WR08(pNv->PCIO, 0x03D4, 0x41); state->extra = VGA_RD08(pNv->PCIO, 0x03D5); state->cursorConfig = pNv->PCRTC[0x0810/4]; if((pNv->Chipset & 0x0ff0) == 0x0110) { state->dither = pNv->PRAMDAC[0x0528/4]; } else if(pNv->twoHeads) { state->dither = pNv->PRAMDAC[0x083C/4]; } if(pNv->FlatPanel) { VGA_WR08(pNv->PCIO, 0x03D4, 0x53); state->timingH = VGA_RD08(pNv->PCIO, 0x03D5); VGA_WR08(pNv->PCIO, 0x03D4, 0x54); state->timingV = VGA_RD08(pNv->PCIO, 0x03D5); } } if(pNv->FlatPanel) { state->crtcSync = pNv->PRAMDAC[0x0828/4]; state->crtcVSync = pNv->PRAMDAC[0x0808/4]; } } void NVSetStartAddress ( NVPtr pNv, CARD32 start ) { if (pNv->VBEDualhead) { pNv->PCRTC0[0x800/4] = start; pNv->PCRTC0[0x2800/4] = start + pNv->vbeCRTC1Offset; } else { pNv->PCRTC[0x800/4] = start; } }