/***************************************************************************\ |* *| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |* *| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |* international laws. Users and possessors of this source code are *| |* hereby granted a nonexclusive, royalty-free copyright license to *| |* use this code in individual and commercial software. *| |* *| |* Any use of this source code must include, in the user documenta- *| |* tion and internal comments to the code, notices to the end user *| |* as follows: *| |* *| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |* *| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |* *| |* U.S. Government End Users. This source code is a "commercial *| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |* consisting of "commercial computer software" and "commercial *| |* computer software documentation," as such terms are used in *| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |* all U.S. Government End Users acquire the source code with only *| |* those rights set forth herein. *| |* *| \***************************************************************************/ /* $XFree86$ */ #include "riva_local.h" #include "compiler.h" #include "riva_include.h" #include "riva_hw.h" #include "riva_tbl.h" /* * This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT * operate identically (except TNT has more memory and better 3D quality. */ static int nv3Busy ( RIVA_HW_INST *chip ) { return ((chip->Rop->FifoFree < chip->FifoEmptyCount) || (chip->PGRAPH[0x000006B0/4] & 0x01)); } static void vgaLockUnlock ( RIVA_HW_INST *chip, Bool Lock ) { CARD8 cr11; VGA_WR08(chip->PCIO, 0x3D4, 0x11); cr11 = VGA_RD08(chip->PCIO, 0x3D5); if(Lock) cr11 |= 0x80; else cr11 &= ~0x80; VGA_WR08(chip->PCIO, 0x3D5, cr11); } static void nv3LockUnlock ( RIVA_HW_INST *chip, Bool Lock ) { VGA_WR08(chip->PVIO, 0x3C4, 0x06); VGA_WR08(chip->PVIO, 0x3C5, Lock ? 0x99 : 0x57); vgaLockUnlock(chip, Lock); } static int ShowHideCursor ( RIVA_HW_INST *chip, int ShowHide ) { int current; current = chip->CurrentState->cursor1; chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) | (ShowHide & 0x01); VGA_WR08(chip->PCIO, 0x3D4, 0x31); VGA_WR08(chip->PCIO, 0x3D5, chip->CurrentState->cursor1); return (current & 0x01); } /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ #define DEFAULT_GR_LWM 100 #define DEFAULT_VID_LWM 100 #define DEFAULT_GR_BURST_SIZE 256 #define DEFAULT_VID_BURST_SIZE 128 #define VIDEO 0 #define GRAPHICS 1 #define MPORT 2 #define ENGINE 3 #define GFIFO_SIZE 320 #define GFIFO_SIZE_128 256 #define MFIFO_SIZE 120 #define VFIFO_SIZE 256 #define ABS(a) (a>0?a:-a) typedef struct { int gdrain_rate; int vdrain_rate; int mdrain_rate; int gburst_size; int vburst_size; char vid_en; char gr_en; int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm; int by_gfacc; char vid_only_once; char gr_only_once; char first_vacc; char first_gacc; char first_macc; int vocc; int gocc; int mocc; char cur; char engine_en; char converged; int priority; } nv3_arb_info; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int graphics_hi_priority; int media_hi_priority; int rtl_values; int valid; } nv3_fifo_info; typedef struct { char pix_bpp; char enable_video; char gr_during_vid; char enable_mp; int memory_width; int video_scale; int pclk_khz; int mclk_khz; int mem_page_miss; int mem_latency; char mem_aligned; } nv3_sim_state; static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { int iter = 0; int tmp; int vfsize, mfsize, gfsize; int mburst_size = 32; int mmisses, gmisses, vmisses; int misses; int vlwm, glwm; int last, next, cur; int max_gfsize ; long ns; vlwm = 0; glwm = 0; vfsize = 0; gfsize = 0; cur = ainfo->cur; mmisses = 2; gmisses = 2; vmisses = 2; if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128; else max_gfsize = GFIFO_SIZE; max_gfsize = GFIFO_SIZE; while (1) { if (ainfo->vid_en) { if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc; if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm ; ns = 1000000 * ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; vfsize = ns * ainfo->vdrain_rate / 1000000; vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize; } if (state->enable_mp) { if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc; } if (ainfo->gr_en) { if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm ; if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc; ns = 1000000 * (ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; gfsize = (ns * (long) ainfo->gdrain_rate)/1000000; gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize; } mfsize = 0; if (!state->gr_during_vid && ainfo->vid_en) if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc < 0) next = MPORT; else if (ainfo->gocc< ainfo->by_gfacc) next = GRAPHICS; else return (0); else switch (ainfo->priority) { case VIDEO: if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->mocc<0) next = MPORT; else return (0); break; case GRAPHICS: if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc<0) next = MPORT; else return (0); break; default: if (ainfo->mocc<0) next = MPORT; else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else return (0); break; } last = cur; cur = next; iter++; switch (cur) { case VIDEO: if (last==cur) misses = 0; else if (ainfo->first_vacc) misses = vmisses; else misses = 1; ainfo->first_vacc = 0; if (last!=cur) { ns = 1000000 * (vmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; vlwm = ns * ainfo->vdrain_rate/ 1000000; vlwm = ainfo->vocc - vlwm; } ns = 1000000*(misses*state->mem_page_miss + ainfo->vburst_size)/(state->memory_width/8)/state->mclk_khz; ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc - ns*ainfo->mdrain_rate/1000000; break; case GRAPHICS: if (last==cur) misses = 0; else if (ainfo->first_gacc) misses = gmisses; else misses = 1; ainfo->first_gacc = 0; if (last!=cur) { ns = 1000000*(gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz ; glwm = ns * ainfo->gdrain_rate/1000000; glwm = ainfo->gocc - glwm; } ns = 1000000*(misses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc + 0 - ns*ainfo->mdrain_rate/1000000; break; default: if (last==cur) misses = 0; else if (ainfo->first_macc) misses = mmisses; else misses = 1; ainfo->first_macc = 0; ns = 1000000*(misses*state->mem_page_miss + mburst_size/(state->memory_width/8))/state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc + 0 - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc + mburst_size - ns*ainfo->mdrain_rate/1000000; break; } if (iter>100) { ainfo->converged = 0; return (1); } ns = 1000000*ainfo->gburst_size/(state->memory_width/8)/state->mclk_khz; tmp = ns * ainfo->gdrain_rate/1000000; if (ABS(ainfo->gburst_size) + ((ABS(ainfo->wcglwm) + 16 ) & ~0x7) - tmp > max_gfsize) { ainfo->converged = 0; return (1); } ns = 1000000*ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; tmp = ns * ainfo->vdrain_rate/1000000; if (ABS(ainfo->vburst_size) + (ABS(ainfo->wcvlwm + 32) & ~0xf) - tmp> VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(ainfo->gocc) > max_gfsize) { ainfo->converged = 0; return (1); } if (ABS(ainfo->vocc) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(ainfo->mocc) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(vfsize) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (ABS(gfsize) > max_gfsize) { ainfo->converged = 0; return (1); } if (ABS(mfsize) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } } } static char nv3_arb(nv3_fifo_info * res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { long ens, vns, mns, gns; int mmisses, gmisses, vmisses, eburst_size, mburst_size; int refresh_cycle; refresh_cycle = 0; refresh_cycle = 2*(state->mclk_khz/state->pclk_khz) + 5; mmisses = 2; if (state->mem_aligned) gmisses = 2; else gmisses = 3; vmisses = 2; eburst_size = state->memory_width * 1; mburst_size = 32; gns = 1000000 * (gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; ainfo->by_gfacc = gns*ainfo->gdrain_rate/1000000; ainfo->wcmocc = 0; ainfo->wcgocc = 0; ainfo->wcvocc = 0; ainfo->wcvlwm = 0; ainfo->wcglwm = 0; ainfo->engine_en = 1; ainfo->converged = 1; if (ainfo->engine_en) { ens = 1000000*(state->mem_page_miss + eburst_size/(state->memory_width/8) +refresh_cycle)/state->mclk_khz; ainfo->mocc = state->enable_mp ? 0-ens*ainfo->mdrain_rate/1000000 : 0; ainfo->vocc = ainfo->vid_en ? 0-ens*ainfo->vdrain_rate/1000000 : 0; ainfo->gocc = ainfo->gr_en ? 0-ens*ainfo->gdrain_rate/1000000 : 0; ainfo->cur = ENGINE; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 1; nv3_iterate(res_info, state,ainfo); } if (state->enable_mp) { mns = 1000000 * (mmisses*state->mem_page_miss + mburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns*ainfo->mdrain_rate/1000000; ainfo->vocc = ainfo->vid_en ? 0 : 0- mns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gr_en ? 0: 0- mns*ainfo->gdrain_rate/1000000; ainfo->cur = MPORT; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 0; nv3_iterate(res_info, state,ainfo); } if (ainfo->gr_en) { ainfo->first_vacc = 1; ainfo->first_gacc = 0; ainfo->first_macc = 1; gns = 1000000*(gmisses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->gocc = ainfo->gburst_size - gns*ainfo->gdrain_rate/1000000; ainfo->vocc = ainfo->vid_en? 0-gns*ainfo->vdrain_rate/1000000 : 0; ainfo->mocc = state->enable_mp ? 0-gns*ainfo->mdrain_rate/1000000: 0; ainfo->cur = GRAPHICS; nv3_iterate(res_info, state,ainfo); } if (ainfo->vid_en) { ainfo->first_vacc = 0; ainfo->first_gacc = 1; ainfo->first_macc = 1; vns = 1000000*(vmisses*state->mem_page_miss + ainfo->vburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->vocc = ainfo->vburst_size - vns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gr_en? (0-vns*ainfo->gdrain_rate/1000000) : 0; ainfo->mocc = state->enable_mp? 0-vns*ainfo->mdrain_rate/1000000 :0 ; ainfo->cur = VIDEO; nv3_iterate(res_info, state, ainfo); } if (ainfo->converged) { res_info->graphics_lwm = (int)ABS(ainfo->wcglwm) + 16; res_info->video_lwm = (int)ABS(ainfo->wcvlwm) + 32; res_info->graphics_burst_size = ainfo->gburst_size; res_info->video_burst_size = ainfo->vburst_size; res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS); res_info->media_hi_priority = (ainfo->priority == MPORT); if (res_info->video_lwm > 160) { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; ainfo->converged = 0; return (0); } if (res_info->video_lwm > 128) { res_info->video_lwm = 128; } return (1); } else { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; return (0); } } static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { int done, g,v, p; done = 0; for (p=0; p < 2; p++) { for (g=128 ; g > 32; g= g>> 1) { for (v=128; v >=32; v = v>> 1) { ainfo->priority = p; ainfo->gburst_size = g; ainfo->vburst_size = v; done = nv3_arb(res_info, state,ainfo); if (done && (g==128)) if ((res_info->graphics_lwm + g) > 256) done = 0; if (done) goto Done; } } } Done: return done; } static void nv3CalcArbitration ( nv3_fifo_info * res_info, nv3_sim_state * state ) { nv3_fifo_info save_info; nv3_arb_info ainfo; char res_gr, res_vid; ainfo.gr_en = 1; ainfo.vid_en = state->enable_video; ainfo.vid_only_once = 0; ainfo.gr_only_once = 0; ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); ainfo.vdrain_rate = (int) state->pclk_khz * 2; if (state->video_scale != 0) ainfo.vdrain_rate = ainfo.vdrain_rate/state->video_scale; ainfo.mdrain_rate = 33000; res_info->rtl_values = 0; if (!state->gr_during_vid && state->enable_video) { ainfo.gr_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = 0; res_vid = nv3_get_param(res_info, state, &ainfo); res_vid = ainfo.converged; save_info.video_lwm = res_info->video_lwm; save_info.video_burst_size = res_info->video_burst_size; ainfo.vid_en = 1; ainfo.vid_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_gr = ainfo.converged; res_info->video_lwm = save_info.video_lwm; res_info->video_burst_size = save_info.video_burst_size; res_info->valid = res_gr & res_vid; } else { if (!ainfo.gr_en) ainfo.gdrain_rate = 0; if (!ainfo.vid_en) ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_info->valid = ainfo.converged; } } static void nv3UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip ) { nv3_fifo_info fifo_data; nv3_sim_state sim_data; unsigned int M, N, P, pll, MClk; pll = chip->PRAMDAC[0x00000504/4]; M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.video_scale = 1; sim_data.memory_width = (chip->PEXTDEV[0x00000000/4] & 0x10) ? 128 : 64; sim_data.memory_width = 128; sim_data.mem_latency = 9; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 11; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; nv3CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } else { *lwm = 0x24; *burst = 0x2; } } /****************************************************************************\ * * * RIVA Mode State Routines * * * \****************************************************************************/ /* * Calculate the Video Clock parameters for the PLL. */ static int CalcVClock ( int clockIn, int *clockOut, int *mOut, int *nOut, int *pOut, RIVA_HW_INST *chip ) { unsigned lowM, highM, highP; unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; VClk = (unsigned)clockIn; if (chip->CrystalFreqKHz == 13500) { lowM = 7; highM = 12; } else { lowM = 8; highM = 13; } highP = 3; for (P = 0; P <= highP; P ++) { Freq = VClk << P; if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz)) { for (M = lowM; M <= highM; M++) { N = (VClk << P) * M / chip->CrystalFreqKHz; if(N <= 255) { Freq = (chip->CrystalFreqKHz * N / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *mOut = M; *nOut = N; *pOut = P; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } return (DeltaOld != 0xFFFFFFFF); } /* * Calculate extended mode parameters (SVGA) and save in a * mode state structure. */ static void CalcStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state, int bpp, int width, int hDisplaySize, int height, int dotClock, int flags ) { int pixelDepth, VClk, m, n, p; /* * Save mode parameters. */ state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */ state->width = width; state->height = height; /* * Extended RIVA registers. */ pixelDepth = (bpp + 1)/8; CalcVClock(dotClock, &VClk, &m, &n, &p, chip); nv3UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); state->cursor0 = 0x00; state->cursor1 = 0x78; if (flags & V_DBLSCAN) state->cursor1 |= 2; state->cursor2 = 0x00000000; state->pllsel = 0x10010100; state->config = ((width + 31)/32) | (((pixelDepth > 2) ? 3 : pixelDepth) << 8) | 0x1000; state->general = 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02; state->vpll = (p << 16) | (n << 8) | m; state->repaint0 = (((width/8)*pixelDepth) & 0x700) >> 3; state->pixel = pixelDepth > 2 ? 3 : pixelDepth; state->offset = 0; state->pitch = pixelDepth * width; } /* * Load fixed function state and pre-calculated/stored state. */ #define LOAD_FIXED_STATE(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \ chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1] #define LOAD_FIXED_STATE_8BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \ chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1] #define LOAD_FIXED_STATE_15BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \ chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1] #define LOAD_FIXED_STATE_16BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \ chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1] #define LOAD_FIXED_STATE_32BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \ chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1] static void UpdateFifoState ( RIVA_HW_INST *chip ) { } static void LoadStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state ) { int i; /* * Load HW fixed function state. */ LOAD_FIXED_STATE(Riva,PMC); LOAD_FIXED_STATE(Riva,PTIMER); /* * Make sure frame buffer config gets set before loading PRAMIN. */ chip->PFB[0x00000200/4] = state->config; LOAD_FIXED_STATE(nv3,PFIFO); LOAD_FIXED_STATE(nv3,PRAMIN); LOAD_FIXED_STATE(nv3,PGRAPH); switch (state->bpp) { case 15: case 16: LOAD_FIXED_STATE_15BPP(nv3,PRAMIN); LOAD_FIXED_STATE_15BPP(nv3,PGRAPH); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv3,PRAMIN); LOAD_FIXED_STATE_32BPP(nv3,PGRAPH); break; case 8: default: LOAD_FIXED_STATE_8BPP(nv3,PRAMIN); LOAD_FIXED_STATE_8BPP(nv3,PGRAPH); break; } for (i = 0x00000; i < 0x00800; i++) chip->PRAMIN[0x00000502 + i] = (i << 12) | 0x03; chip->PGRAPH[0x00000630/4] = state->offset; chip->PGRAPH[0x00000634/4] = state->offset; chip->PGRAPH[0x00000638/4] = state->offset; chip->PGRAPH[0x0000063C/4] = state->offset; chip->PGRAPH[0x00000650/4] = state->pitch; chip->PGRAPH[0x00000654/4] = state->pitch; chip->PGRAPH[0x00000658/4] = state->pitch; chip->PGRAPH[0x0000065C/4] = state->pitch; LOAD_FIXED_STATE(Riva,FIFO); UpdateFifoState(chip); /* * Load HW mode state. */ VGA_WR08(chip->PCIO, 0x03D4, 0x19); VGA_WR08(chip->PCIO, 0x03D5, state->repaint0); VGA_WR08(chip->PCIO, 0x03D4, 0x1A); VGA_WR08(chip->PCIO, 0x03D5, state->repaint1); VGA_WR08(chip->PCIO, 0x03D4, 0x25); VGA_WR08(chip->PCIO, 0x03D5, state->screen); VGA_WR08(chip->PCIO, 0x03D4, 0x28); VGA_WR08(chip->PCIO, 0x03D5, state->pixel); VGA_WR08(chip->PCIO, 0x03D4, 0x2D); VGA_WR08(chip->PCIO, 0x03D5, state->horiz); VGA_WR08(chip->PCIO, 0x03D4, 0x1B); VGA_WR08(chip->PCIO, 0x03D5, state->arbitration0); VGA_WR08(chip->PCIO, 0x03D4, 0x20); VGA_WR08(chip->PCIO, 0x03D5, state->arbitration1); VGA_WR08(chip->PCIO, 0x03D4, 0x30); VGA_WR08(chip->PCIO, 0x03D5, state->cursor0); VGA_WR08(chip->PCIO, 0x03D4, 0x31); VGA_WR08(chip->PCIO, 0x03D5, state->cursor1); VGA_WR08(chip->PCIO, 0x03D4, 0x2F); VGA_WR08(chip->PCIO, 0x03D5, state->cursor2); VGA_WR08(chip->PCIO, 0x03D4, 0x39); VGA_WR08(chip->PCIO, 0x03D5, state->interlace); chip->PRAMDAC[0x00000508/4] = state->vpll; chip->PRAMDAC[0x0000050C/4] = state->pllsel; chip->PRAMDAC[0x00000600/4] = state->general; /* * Turn off VBlank enable and reset. */ chip->PCRTC[0x00000140/4] = 0; chip->PCRTC[0x00000100/4] = chip->VBlankBit; /* * Set interrupt enable. */ chip->PMC[0x00000140/4] = chip->EnableIRQ & 0x01; /* * Set current state pointer. */ chip->CurrentState = state; /* * Reset FIFO free and empty counts. */ chip->FifoFreeCount = 0; /* Free count from first subchannel */ chip->FifoEmptyCount = chip->Rop->FifoFree; } static void UnloadStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state ) { /* * Save current HW state. */ VGA_WR08(chip->PCIO, 0x03D4, 0x19); state->repaint0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x1A); state->repaint1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x25); state->screen = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x28); state->pixel = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x2D); state->horiz = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x1B); state->arbitration0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x20); state->arbitration1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x30); state->cursor0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x31); state->cursor1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x2F); state->cursor2 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x39); state->interlace = VGA_RD08(chip->PCIO, 0x03D5); state->vpll = chip->PRAMDAC[0x00000508/4]; state->pllsel = chip->PRAMDAC[0x0000050C/4]; state->general = chip->PRAMDAC[0x00000600/4]; state->config = chip->PFB[0x00000200/4]; state->offset = chip->PGRAPH[0x00000630/4]; state->pitch = chip->PGRAPH[0x00000650/4]; } static void SetStartAddress ( RIVA_HW_INST *chip, unsigned start ) { int offset = start >> 2; int pan = (start & 3) << 1; unsigned char tmp; /* * Unlock extended registers. */ chip->LockUnlock(chip, 0); /* * Set start address. */ VGA_WR08(chip->PCIO, 0x3D4, 0x0D); VGA_WR08(chip->PCIO, 0x3D5, offset); offset >>= 8; VGA_WR08(chip->PCIO, 0x3D4, 0x0C); VGA_WR08(chip->PCIO, 0x3D5, offset); offset >>= 8; VGA_WR08(chip->PCIO, 0x3D4, 0x19); tmp = VGA_RD08(chip->PCIO, 0x3D5); VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x01F) | (tmp & ~0x1F)); VGA_WR08(chip->PCIO, 0x3D4, 0x2D); tmp = VGA_RD08(chip->PCIO, 0x3D5); VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x60) | (tmp & ~0x60)); /* * 4 pixel pan register. */ offset = VGA_RD08(chip->PCIO, chip->IO + 0x0A); VGA_WR08(chip->PCIO, 0x3C0, 0x13); VGA_WR08(chip->PCIO, 0x3C0, pan); } /****************************************************************************\ * * * Probe RIVA Chip Configuration * * * \****************************************************************************/ static void nv3GetConfig ( RIVA_HW_INST *chip ) { /* * Fill in chip configuration. */ if (chip->PFB[0x00000000/4] & 0x00000020) { if (((chip->PMC[0x00000000/4] & 0xF0) == 0x20) && ((chip->PMC[0x00000000/4] & 0x0F) >= 0x02)) { /* * SDRAM 128 ZX. */ chip->RamBandwidthKBytesPerSec = 800000; switch (chip->PFB[0x00000000/4] & 0x03) { case 2: chip->RamAmountKBytes = 1024 * 4; break; case 1: chip->RamAmountKBytes = 1024 * 2; break; default: chip->RamAmountKBytes = 1024 * 8; break; } } else { chip->RamBandwidthKBytesPerSec = 1000000; chip->RamAmountKBytes = 1024 * 8; } } else { /* * SGRAM 128. */ chip->RamBandwidthKBytesPerSec = 1000000; switch (chip->PFB[0x00000000/4] & 0x00000003) { case 0: chip->RamAmountKBytes = 1024 * 8; break; case 2: chip->RamAmountKBytes = 1024 * 4; break; default: chip->RamAmountKBytes = 1024 * 2; break; } } chip->CrystalFreqKHz = (chip->PEXTDEV[0x00000000/4] & 0x00000040) ? 14318 : 13500; chip->CURSOR = &(chip->PRAMIN[0x00008000/4 - 0x0800/4]); chip->VBlankBit = 0x00000100; chip->MaxVClockFreqKHz = 256000; /* * Set chip functions. */ chip->Busy = nv3Busy; chip->ShowHideCursor = ShowHideCursor; chip->CalcStateExt = CalcStateExt; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress; chip->LockUnlock = nv3LockUnlock; } int RivaGetConfig ( RivaPtr pRiva ) { RIVA_HW_INST *chip = &pRiva->riva; nv3GetConfig(chip); /* * Fill in FIFO pointers. */ chip->Rop = (RivaRop *)&(chip->FIFO[0x00000000/4]); chip->Clip = (RivaClip *)&(chip->FIFO[0x00002000/4]); chip->Patt = (RivaPattern *)&(chip->FIFO[0x00004000/4]); chip->Pixmap = (RivaPixmap *)&(chip->FIFO[0x00006000/4]); chip->Blt = (RivaScreenBlt *)&(chip->FIFO[0x00008000/4]); chip->Bitmap = (RivaBitmap *)&(chip->FIFO[0x0000A000/4]); chip->Line = (RivaLine *)&(chip->FIFO[0x0000C000/4]); return (0); }