/* Header: //Mercury/Projects/archives/XFree86/4.0/smi_driver.c-arc 1.42 03 Jan 2001 13:52:16 Frido $ */ /* Copyright (C) 1994-1999 The XFree86 Project, Inc. All Rights Reserved. Copyright (C) 2000 Silicon Motion, Inc. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT- NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of The XFree86 Project and Silicon Motion shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The XFree86 Project or Silicon Motion. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "xf86Resources.h" #include "xf86RAC.h" #include "xf86DDC.h" #include "xf86int10.h" #include "vbe.h" #include "smi.h" #include "smi_501.h" #include "smilynx.h" #include "smi_crtc.h" #include "globals.h" #define DPMS_SERVER #include /* * Internals */ static Bool SMI_MapMmio(ScrnInfoPtr pScrn); static Bool SMI_DetectMem(ScrnInfoPtr pScrn); static void SMI_EnableMmio(ScrnInfoPtr pScrn); static void SMI_DisableMmio(ScrnInfoPtr pScrn); static Bool SMI_HWInit(ScrnInfoPtr pScrn); /* * Forward definitions for the functions that make up the driver. */ static const OptionInfoRec * SMI_AvailableOptions(int chipid, int busid); static void SMI_Identify(int flags); static Bool SMI_Probe(DriverPtr drv, int flags); static Bool SMI_PreInit(ScrnInfoPtr pScrn, int flags); static Bool SMI_EnterVT(int scrnIndex, int flags); static void SMI_LeaveVT(int scrnIndex, int flags); static Bool SMI_ScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv); static void SMI_DisableVideo(ScrnInfoPtr pScrn); static void SMI_EnableVideo(ScrnInfoPtr pScrn); static Bool SMI_CloseScreen(int scrnIndex, ScreenPtr pScreen); static Bool SMI_SaveScreen(ScreenPtr pScreen, int mode); static void SMI_FreeScreen(int ScrnIndex, int flags); static void SMI_ProbeDDC(ScrnInfoPtr pScrn, int index); static void SMI_DetectPanelSize(ScrnInfoPtr pScrn); static void SMI_DetectMCLK(ScrnInfoPtr pScrn); /* * xf86VDrvMsgVerb prints up to 14 characters prefix, where prefix has the * format "%s(%d): " so, use name "SMI" instead of "Silicon Motion" */ #define SILICONMOTION_NAME "SMI" #define SILICONMOTION_DRIVER_NAME "siliconmotion" #define SILICONMOTION_VERSION_NAME PACKAGE_VERSION #define SILICONMOTION_VERSION_MAJOR PACKAGE_VERSION_MAJOR #define SILICONMOTION_VERSION_MINOR PACKAGE_VERSION_MINOR #define SILICONMOTION_PATCHLEVEL PACKAGE_VERSION_PATCHLEVEL #define SILICONMOTION_DRIVER_VERSION ((SILICONMOTION_VERSION_MAJOR << 24) | \ (SILICONMOTION_VERSION_MINOR << 16) | \ (SILICONMOTION_PATCHLEVEL)) #if SMI_DEBUG int smi_indent = 1; #endif /* for dualhead */ int gSMIEntityIndex = -1; /* * This contains the functions needed by the server after loading the * driver module. It must be supplied, and gets added the driver list by * the Module Setup funtion in the dynamic case. In the static case a * reference to this is compiled in, and this requires that the name of * this DriverRec be an upper-case version of the driver name. */ _X_EXPORT DriverRec SILICONMOTION = { SILICONMOTION_DRIVER_VERSION, SILICONMOTION_DRIVER_NAME, SMI_Identify, SMI_Probe, SMI_AvailableOptions, NULL, 0 }; /* Supported chipsets */ static SymTabRec SMIChipsets[] = { { PCI_CHIP_SMI910, "Lynx" }, { PCI_CHIP_SMI810, "LynxE" }, { PCI_CHIP_SMI820, "Lynx3D" }, { PCI_CHIP_SMI710, "LynxEM" }, { PCI_CHIP_SMI712, "LynxEM+" }, { PCI_CHIP_SMI720, "Lynx3DM" }, { PCI_CHIP_SMI731, "Cougar3DR" }, { PCI_CHIP_SMI501, "MSOC" }, { -1, NULL } }; static PciChipsets SMIPciChipsets[] = { /* numChipset, PciID, Resource */ { PCI_CHIP_SMI910, PCI_CHIP_SMI910, RES_SHARED_VGA }, { PCI_CHIP_SMI810, PCI_CHIP_SMI810, RES_SHARED_VGA }, { PCI_CHIP_SMI820, PCI_CHIP_SMI820, RES_SHARED_VGA }, { PCI_CHIP_SMI710, PCI_CHIP_SMI710, RES_SHARED_VGA }, { PCI_CHIP_SMI712, PCI_CHIP_SMI712, RES_SHARED_VGA }, { PCI_CHIP_SMI720, PCI_CHIP_SMI720, RES_SHARED_VGA }, { PCI_CHIP_SMI731, PCI_CHIP_SMI731, RES_SHARED_VGA }, { PCI_CHIP_SMI501, PCI_CHIP_SMI501, RES_UNDEFINED }, { -1, -1, RES_UNDEFINED } }; typedef enum { OPTION_PCI_BURST, OPTION_PCI_RETRY, OPTION_NOACCEL, OPTION_MCLK, OPTION_SWCURSOR, OPTION_HWCURSOR, OPTION_VIDEOKEY, OPTION_BYTESWAP, /* CZ 26.10.2001: interlaced video */ OPTION_INTERLACED, /* end CZ */ OPTION_USEBIOS, OPTION_DUALHEAD, OPTION_ACCELMETHOD, OPTION_PANEL_SIZE, OPTION_USE_FBDEV, OPTION_CSCVIDEO, NUMBER_OF_OPTIONS } SMIOpts; static const OptionInfoRec SMIOptions[] = { { OPTION_PCI_BURST, "pci_burst", OPTV_BOOLEAN, {0}, TRUE }, { OPTION_PCI_RETRY, "pci_retry", OPTV_BOOLEAN, {0}, TRUE }, { OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_MCLK, "set_mclk", OPTV_FREQ, {0}, FALSE }, { OPTION_HWCURSOR, "HWCursor", OPTV_BOOLEAN, {0}, TRUE }, { OPTION_SWCURSOR, "SWCursor", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_VIDEOKEY, "VideoKey", OPTV_INTEGER, {0}, FALSE }, { OPTION_BYTESWAP, "ByteSwap", OPTV_BOOLEAN, {0}, FALSE }, /* CZ 26.10.2001: interlaced video */ { OPTION_INTERLACED, "Interlaced", OPTV_BOOLEAN, {0}, FALSE }, /* end CZ */ { OPTION_USEBIOS, "UseBIOS", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_DUALHEAD, "Dualhead", OPTV_BOOLEAN, {0}, TRUE }, { OPTION_ACCELMETHOD, "AccelMethod", OPTV_STRING, {0}, FALSE }, { OPTION_PANEL_SIZE, "PanelSize", OPTV_ANYSTR, {0}, FALSE }, { OPTION_USE_FBDEV, "UseFBDev", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_CSCVIDEO, "CSCVideo", OPTV_BOOLEAN, {0}, TRUE }, { -1, NULL, OPTV_NONE, {0}, FALSE } }; /* * Lists of symbols that may/may not be required by this driver. * This allows the loader to know which ones to issue warnings for. * * Note that vgahwSymbols and xaaSymbols are referenced outside the * XFree86LOADER define in later code, so are defined outside of that * define here also. */ static const char *vgahwSymbols[] = { "vgaHWCopyReg", "vgaHWGetHWRec", "vgaHWGetIOBase", "vgaHWGetIndex", "vgaHWInit", "vgaHWLock", "vgaHWMapMem", "vgaHWProtect", "vgaHWRestore", "vgaHWSave", "vgaHWSaveScreen", "vgaHWSetMmioFuncs", "vgaHWSetStdFuncs", "vgaHWUnmapMem", "vgaHWddc1SetSpeedWeak", NULL }; static const char *xaaSymbols[] = { "XAAGetCopyROP", "XAACreateInfoRec", "XAADestroyInfoRec", "XAAGetFallbackOps", "XAAInit", "XAAGetPatternROP", NULL }; static const char *exaSymbols[] = { "exaDriverAlloc", "exaDriverInit", "exaDriverFini", "exaOffscreenAlloc", "exaOffscreenFree", "exaGetPixmapPitch", "exaGetPixmapOffset", "exaGetPixmapSize", NULL }; static const char *ddcSymbols[] = { "xf86PrintEDID", "xf86DoEDID_DDC1", "xf86DoEDID_DDC2", "xf86SetDDCproperties", NULL }; static const char *i2cSymbols[] = { "xf86CreateI2CBusRec", "xf86CreateI2CDevRec", "xf86DestroyI2CBusRec", "xf86DestroyI2CDevRec", "xf86I2CBusInit", "xf86I2CDevInit", "xf86I2CReadBytes", "xf86I2CWriteByte", NULL }; static const char *int10Symbols[] = { "xf86ExecX86int10", "xf86FreeInt10", "xf86InitInt10", NULL }; static const char *vbeSymbols[] = { "VBEInit", "vbeDoEDID", "vbeFree", NULL }; static const char *fbSymbols[] = { "fbPictureInit", "fbScreenInit", NULL }; #ifdef XFree86LOADER static MODULESETUPPROTO(siliconmotionSetup); static XF86ModuleVersionInfo SMIVersRec = { "siliconmotion", MODULEVENDORSTRING, MODINFOSTRING1, MODINFOSTRING2, XORG_VERSION_CURRENT, SILICONMOTION_VERSION_MAJOR, SILICONMOTION_VERSION_MINOR, SILICONMOTION_PATCHLEVEL, ABI_CLASS_VIDEODRV, ABI_VIDEODRV_VERSION, MOD_CLASS_VIDEODRV, {0, 0, 0, 0} }; /* * This is the module init data for XFree86 modules. * * Its name has to be the driver name followed by ModuleData. */ _X_EXPORT XF86ModuleData siliconmotionModuleData = { &SMIVersRec, siliconmotionSetup, NULL }; static pointer siliconmotionSetup(pointer module, pointer opts, int *errmaj, int *errmin) { static Bool setupDone = FALSE; if (!setupDone) { setupDone = TRUE; xf86AddDriver(&SILICONMOTION, module, 0); /* * Modules that this driver always requires can be loaded here * by calling LoadSubModule(). */ /* * Tell the loader about symbols from other modules that this module * might refer to. */ LoaderRefSymLists(vgahwSymbols, fbSymbols, xaaSymbols, exaSymbols, ddcSymbols, i2cSymbols, int10Symbols, vbeSymbols, NULL); /* * The return value must be non-NULL on success even though there * is no TearDownProc. */ return (pointer) 1; } else { if (errmaj) { *errmaj = LDR_ONCEONLY; } return NULL; } } #endif /* XFree86LOADER */ static Bool SMI_GetRec(ScrnInfoPtr pScrn) { ENTER(); /* * Allocate an 'Chip'Rec, and hook it into pScrn->driverPrivate. * pScrn->driverPrivate is initialised to NULL, so we can check if * the allocation has already been done. */ if (pScrn->driverPrivate == NULL) { pScrn->driverPrivate = xnfcalloc(sizeof(SMIRec), 1); } RETURN(TRUE); } static void SMI_FreeRec(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); ENTER(); if (pSmi) { xfree(pSmi->save); xfree(pSmi->mode); xfree(pScrn->driverPrivate); pScrn->driverPrivate = NULL; } LEAVE(); } static const OptionInfoRec * SMI_AvailableOptions(int chipid, int busid) { ENTER(); RETURN(SMIOptions); } static void SMI_Identify(int flags) { ENTER(); xf86PrintChipsets(SILICONMOTION_NAME, "driver (version " SILICONMOTION_VERSION_NAME ") for Silicon Motion Lynx chipsets", SMIChipsets); LEAVE(); } static Bool SMI_Probe(DriverPtr drv, int flags) { int i; GDevPtr *devSections; int *usedChips; int numDevSections; int numUsed; Bool foundScreen = FALSE; ENTER(); numDevSections = xf86MatchDevice(SILICONMOTION_DRIVER_NAME, &devSections); if (numDevSections <= 0) /* There's no matching device section in the config file, so quit now. */ RETURN(FALSE); #ifndef XSERVER_LIBPCIACCESS if (xf86GetPciVideoInfo() == NULL) RETURN(FALSE); #endif numUsed = xf86MatchPciInstances(SILICONMOTION_NAME, PCI_SMI_VENDOR_ID, SMIChipsets, SMIPciChipsets, devSections, numDevSections, drv, &usedChips); /* Free it since we don't need that list after this */ xfree(devSections); if (numUsed <= 0) RETURN(FALSE); if (flags & PROBE_DETECT) foundScreen = TRUE; else { ScrnInfoPtr pScrn; EntityInfoPtr pEnt; for (i = 0; i < numUsed; i++) { if ((pScrn = xf86ConfigPciEntity(NULL, 0, usedChips[i], SMIPciChipsets, NULL, NULL, NULL, NULL, NULL))) { pScrn->driverVersion = SILICONMOTION_DRIVER_VERSION; pScrn->driverName = SILICONMOTION_DRIVER_NAME; pScrn->name = SILICONMOTION_NAME; pScrn->Probe = SMI_Probe; pScrn->PreInit = SMI_PreInit; pScrn->ScreenInit = SMI_ScreenInit; pScrn->SwitchMode = SMI_SwitchMode; pScrn->AdjustFrame = SMI_AdjustFrame; if ((pEnt = xf86GetEntityInfo(usedChips[i]))) { pScrn->EnterVT = SMI_EnterVT; pScrn->LeaveVT = SMI_LeaveVT; xfree(pEnt); } pScrn->FreeScreen = SMI_FreeScreen; foundScreen = TRUE; } } } xfree(usedChips); RETURN(foundScreen); } static Bool SMI_PreInit(ScrnInfoPtr pScrn, int flags) { EntityInfoPtr pEnt; SMIPtr pSmi; MessageType from; vgaHWPtr hwp; int vgaCRIndex, vgaIOBase; ENTER(); /* Ignoring the Type list for now. It might be needed when multiple cards * are supported. */ if (pScrn->numEntities > 1) RETURN(FALSE); /* Allocate the SMIRec driverPrivate */ if (!SMI_GetRec(pScrn)) RETURN(FALSE); pSmi = SMIPTR(pScrn); /* Find the PCI slot for this screen */ pEnt = xf86GetEntityInfo(pScrn->entityList[0]); pSmi->PciInfo = xf86GetPciInfoForEntity(pEnt->index); pSmi->Chipset = PCI_DEV_DEVICE_ID(pSmi->PciInfo); if (IS_MSOC(pSmi)) { pSmi->Save = SMI501_Save; pSmi->save = xnfcalloc(sizeof(MSOCRegRec), 1); pSmi->mode = xnfcalloc(sizeof(MSOCRegRec), 1); } else { pSmi->Save = SMILynx_Save; pSmi->save = xnfcalloc(sizeof(SMIRegRec), 1); pSmi->mode = xnfcalloc(sizeof(SMIRegRec), 1); } if (flags & PROBE_DETECT) { if (!IS_MSOC(pSmi)) SMI_ProbeDDC(pScrn, xf86GetEntityInfo(pScrn->entityList[0])->index); RETURN(TRUE); } if (pEnt->location.type != BUS_PCI || pEnt->resources) { xfree(pEnt); SMI_FreeRec(pScrn); RETURN(FALSE); } pSmi->PciInfo = xf86GetPciInfoForEntity(pEnt->index); /* Set pScrn->monitor */ pScrn->monitor = pScrn->confScreen->monitor; if (!IS_MSOC(pSmi)) { /* The vgahw module should be loaded here when needed */ if (!xf86LoadSubModule(pScrn, "vgahw")) RETURN(FALSE); xf86LoaderReqSymLists(vgahwSymbols, NULL); /* * Allocate a vgaHWRec */ if (!vgaHWGetHWRec(pScrn)) RETURN(FALSE); } /* * The first thing we should figure out is the depth, bpp, etc. */ if (!xf86SetDepthBpp(pScrn, 0, 0, 0, Support32bppFb)) RETURN(FALSE); /* Check that the returned depth is one we support */ if (pScrn->depth != 8 && pScrn->depth != 16 && pScrn->depth != 24) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given depth (%d) is not supported by this driver\n", pScrn->depth); RETURN(FALSE); } if(pScrn->bitsPerPixel != 8 && pScrn->bitsPerPixel != 16 && pScrn->bitsPerPixel != 24 && pScrn->bitsPerPixel != 32){ xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given bpp (%d) is not supported by this driver\n", pScrn->bitsPerPixel); RETURN(FALSE); } xf86PrintDepthBpp(pScrn); /* * This must happen after pScrn->display has been set because * xf86SetWeight references it. */ if (pScrn->depth > 8) { /* The defaults are OK for us */ rgb zeros = {0, 0, 0}; #if __BYTE_ORDER == __BIG_ENDIAN rgb masks = {0xff00,0xff0000,0xff000000}; #else rgb masks = {0, 0, 0}; #endif if (!xf86SetWeight(pScrn, zeros, masks)) RETURN(FALSE); } if (!xf86SetDefaultVisual(pScrn, -1)) RETURN(FALSE); /* We don't currently support DirectColor at > 8bpp */ if (pScrn->depth > 8 && pScrn->defaultVisual != TrueColor) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given default visual (%s) " "is not supported at depth %d\n", xf86GetVisualName(pScrn->defaultVisual), pScrn->depth); RETURN(FALSE); } /* We use a programmable clock */ pScrn->progClock = TRUE; /* Collect all of the relevant option flags (fill in pScrn->options) */ xf86CollectOptions(pScrn, NULL); /* Set the bits per RGB for 8bpp mode */ if (pScrn->depth == 8){ pScrn->rgbBits = IS_MSOC(pSmi) ? 8 : 6; }else if(pScrn->depth == 16){ /* Use 8 bit LUT for gamma correction*/ pScrn->rgbBits = 8; } /* Process the options */ if (!(pSmi->Options = xalloc(sizeof(SMIOptions)))) RETURN(FALSE); memcpy(pSmi->Options, SMIOptions, sizeof(SMIOptions)); xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, pSmi->Options); /* Enable pci burst by default */ from = X_DEFAULT; pSmi->PCIBurst = TRUE; if (xf86GetOptValBool(pSmi->Options, OPTION_PCI_BURST, &pSmi->PCIBurst)) from = X_CONFIG; xf86DrvMsg(pScrn->scrnIndex, from, "PCI Burst %sabled\n", pSmi->PCIBurst ? "en" : "dis"); /* Pci retry enabled by default if pci burst also enabled */ from = X_DEFAULT; pSmi->PCIRetry = pSmi->PCIBurst ? TRUE : FALSE; if (xf86GetOptValBool(pSmi->Options, OPTION_PCI_RETRY, &pSmi->PCIRetry)) { from = X_CONFIG; if (pSmi->PCIRetry && !pSmi->PCIBurst) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "\"pci_retry\" option requires \"pci_burst\".\n"); pSmi->PCIRetry = FALSE; } } xf86DrvMsg(pScrn->scrnIndex, from, "PCI Retry %sabled\n", pSmi->PCIRetry ? "en" : "dis"); if (xf86ReturnOptValBool(pSmi->Options, OPTION_NOACCEL, FALSE)) { pSmi->NoAccel = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Option: NoAccel - Acceleration " "disabled\n"); } else { pSmi->NoAccel = FALSE; } if (IS_MSOC(pSmi)) { from = X_DEFAULT; if (xf86GetOptValBool(pSmi->Options, OPTION_USE_FBDEV, &pSmi->UseFBDev)) from = X_CONFIG; xf86DrvMsg(pScrn->scrnIndex, from, "UseFBDev %s.\n", pSmi->UseFBDev ? "enabled" : "disabled"); } from = X_CONFIG; pSmi->HwCursor = TRUE; /* SWCursor overrides HWCusor if both specified */ if (xf86ReturnOptValBool(pSmi->Options, OPTION_SWCURSOR, FALSE)) pSmi->HwCursor = FALSE; else if (!xf86GetOptValBool(pSmi->Options, OPTION_HWCURSOR, &pSmi->HwCursor)) from = X_DEFAULT; xf86DrvMsg(pScrn->scrnIndex, from, "Using %sware Cursor\n", pSmi->HwCursor ? "Hard" : "Soft"); if (xf86GetOptValInteger(pSmi->Options, OPTION_VIDEOKEY, &pSmi->videoKey)) { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Option: Video key set to " "0x%08X\n", pSmi->videoKey); } else { pSmi->videoKey = (1 << pScrn->offset.red) | (1 << pScrn->offset.green) | (((pScrn->mask.blue >> pScrn->offset.blue) - 1) << pScrn->offset.blue); } if (xf86ReturnOptValBool(pSmi->Options, OPTION_BYTESWAP, FALSE)) { pSmi->ByteSwap = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Option: ByteSwap enabled.\n"); } else { pSmi->ByteSwap = FALSE; } /* CZ 26.10.2001: interlaced video */ if (xf86ReturnOptValBool(pSmi->Options, OPTION_INTERLACED, FALSE)) { pSmi->interlaced = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Option: Interlaced enabled.\n"); } else { pSmi->interlaced = FALSE; } /* end CZ */ if (IS_MSOC(pSmi)) pSmi->useBIOS = FALSE; else if (xf86GetOptValBool(pSmi->Options, OPTION_USEBIOS, &pSmi->useBIOS)) { xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Option: UseBIOS %s.\n", pSmi->useBIOS ? "enabled" : "disabled"); } else { /* Default to UseBIOS enabled. */ pSmi->useBIOS = TRUE; } if (pSmi->useBIOS) { if (xf86LoadSubModule(pScrn,"int10")) { xf86LoaderReqSymLists(int10Symbols,NULL); pSmi->pInt10 = xf86InitInt10(pEnt->index); } if (pSmi->pInt10 && xf86LoadSubModule(pScrn, "vbe")) { xf86LoaderReqSymLists(vbeSymbols, NULL); pSmi->pVbe = VBEInit(pSmi->pInt10, pEnt->index); } } xf86RegisterResources(pEnt->index, NULL, ResExclusive); /* xf86SetOperatingState(resVgaIo, pEnt->index, ResUnusedOpr); */ /* xf86SetOperatingState(resVgaMem, pEnt->index, ResDisableOpr); */ /* * Set the Chipset and ChipRev, allowing config file entries to * override. */ if (pEnt->device->chipset && *pEnt->device->chipset) { pScrn->chipset = pEnt->device->chipset; pSmi->Chipset = xf86StringToToken(SMIChipsets, pScrn->chipset); from = X_CONFIG; } else if (pEnt->device->chipID >= 0) { pSmi->Chipset = pEnt->device->chipID; pScrn->chipset = (char *) xf86TokenToString(SMIChipsets, pSmi->Chipset); from = X_CONFIG; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipID override: 0x%04X\n", pSmi->Chipset); } else { from = X_PROBED; pSmi->Chipset = PCI_DEV_DEVICE_ID(pSmi->PciInfo); pScrn->chipset = (char *) xf86TokenToString(SMIChipsets, pSmi->Chipset); } if (pEnt->device->chipRev >= 0) { pSmi->ChipRev = pEnt->device->chipRev; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "ChipRev override: %d\n", pSmi->ChipRev); } else pSmi->ChipRev = PCI_DEV_REVISION(pSmi->PciInfo); xfree(pEnt); /* * This shouldn't happen because such problems should be caught in * SMI_Probe(), but check it just in case. */ if (pScrn->chipset == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "ChipID 0x%04X is not " "recognised\n", pSmi->Chipset); RETURN(FALSE); } if (pSmi->Chipset < 0) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Chipset \"%s\" is not " "recognised\n", pScrn->chipset); RETURN(FALSE); } xf86DrvMsg(pScrn->scrnIndex, from, "Chipset: \"%s\"\n", pScrn->chipset); #ifndef XSERVER_LIBPCIACCESS pSmi->PciTag = pciTag(pSmi->PciInfo->bus, pSmi->PciInfo->device, pSmi->PciInfo->func); #endif pSmi->Dualhead = FALSE; from = X_DEFAULT; if (xf86GetOptValBool(pSmi->Options, OPTION_DUALHEAD, &pSmi->Dualhead)) from = X_CONFIG; if (IS_MSOC(pSmi)) { pSmi->lcd = TRUE; if (pSmi->Dualhead && pSmi->UseFBDev) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Dual head disabled in fbdev mode\n"); pSmi->Dualhead = FALSE; } /* FIXME Randr cursor code only works properly when argb cursors * are also supported. * FIXME This probably is a randr cursor bug, and since access to * hw/xfree86/ramdac/xf86CursorPriv.h:xf86CursorScreenRec.SWCursor * field is not available, one cannot easily workaround the problem, * so, just disable it... * TODO Check with a X Server newer then 1.4.0.90 (that is being * used in the 502 OEM image). * */ if (pSmi->Dualhead && pSmi->HwCursor) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "HW Cursor disabled in dual head mode\n"); pSmi->HwCursor = FALSE; } } else if (SMI_LYNXM_SERIES(pSmi->Chipset)) { /* tweak options for dualhead */ if (pSmi->Dualhead) { pSmi->useBIOS = FALSE; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "UseBIOS disabled in dualhead mode\n"); pSmi->HwCursor = FALSE; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "No hardware cursor in dualhead mode\n"); if (pScrn->bitsPerPixel != 16) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Dualhead only supported at " "depth 16\n"); RETURN(FALSE); } } hwp = VGAHWPTR(pScrn); vgaIOBase = hwp->IOBase; vgaCRIndex = vgaIOBase + VGA_CRTC_INDEX_OFFSET; pSmi->PIOBase = hwp->PIOOffset; xf86ErrorFVerb(VERBLEV, "\tSMI_PreInit vgaCRIndex=%x, vgaIOBase=%x, " "MMIOBase=%p\n", vgaCRIndex, vgaIOBase, hwp->MMIOBase); } xf86DrvMsg(pScrn->scrnIndex, from, "Dual head %sabled\n", pSmi->Dualhead ? "en" : "dis"); if (!pSmi->NoAccel) { char *strptr; from = X_DEFAULT; if ((strptr = (char *)xf86GetOptValString(pSmi->Options, OPTION_ACCELMETHOD))) { if (!xf86NameCmp(strptr,"XAA")) { from = X_CONFIG; pSmi->useEXA = FALSE; } else if(!xf86NameCmp(strptr,"EXA")) { from = X_CONFIG; pSmi->useEXA = TRUE; } } xf86DrvMsg(pScrn->scrnIndex, from, "Using %s acceleration architecture\n", pSmi->useEXA ? "EXA" : "XAA"); } if (IS_MSOC(pSmi)) { pSmi->CSCVideo = !pSmi->useEXA || !pSmi->Dualhead; from = X_DEFAULT; if (xf86GetOptValBool(pSmi->Options, OPTION_CSCVIDEO, &pSmi->CSCVideo)) { from = X_CONFIG; /* FIXME */ if (pSmi->CSCVideo && pSmi->useEXA && pSmi->Dualhead) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "CSCVideo requires XAA or EXA in single head mode.\n"); pSmi->CSCVideo = FALSE; } } xf86DrvMsg(pScrn->scrnIndex, from, "CSC Video %sabled\n", pSmi->CSCVideo ? "en" : "dis"); } SMI_MapMmio(pScrn); SMI_DetectMem(pScrn); SMI_MapMem(pScrn); SMI_DisableVideo(pScrn); /* detect the panel size */ SMI_DetectPanelSize(pScrn); if(!IS_MSOC(pSmi)){ if (xf86LoadSubModule(pScrn, "i2c")) { xf86LoaderReqSymLists(i2cSymbols, NULL); SMI_I2CInit(pScrn); } if (xf86LoadSubModule(pScrn, "ddc")) { xf86LoaderReqSymLists(ddcSymbols, NULL); } } /* * If the driver can do gamma correction, it should call xf86SetGamma() */ { Gamma zeros = { 0.0, 0.0, 0.0 }; if (!xf86SetGamma(pScrn, zeros)) { SMI_EnableVideo(pScrn); SMI_UnmapMem(pScrn); RETURN(FALSE); } } SMI_DetectMCLK(pScrn); /* * Setup the ClockRanges, which describe what clock ranges are available, * and what sort of modes they can be used for. */ pSmi->clockRange.next = NULL; pSmi->clockRange.minClock = 20000; if (pSmi->Chipset == SMI_LYNX3DM || pSmi->Chipset == SMI_COUGAR3DR || IS_MSOC(pSmi)) pSmi->clockRange.maxClock = 200000; else pSmi->clockRange.maxClock = 135000; pSmi->clockRange.clockIndex = -1; pSmi->clockRange.interlaceAllowed = FALSE; pSmi->clockRange.doubleScanAllowed = FALSE; if(!SMI_CrtcPreInit(pScrn)) RETURN(FALSE); if(!SMI_OutputPreInit(pScrn)) RETURN(FALSE); /* Only allow growing the screen dimensions if EXA is being used */ if (!xf86InitialConfiguration (pScrn, !pSmi->NoAccel && pSmi->useEXA)){ xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "No valid modes found\n"); RETURN(FALSE); } SMI_EnableVideo(pScrn); SMI_UnmapMem(pScrn); if(pSmi->useBIOS){ vbeFree(pSmi->pVbe); pSmi->pVbe = NULL; xf86FreeInt10(pSmi->pInt10); pSmi->pInt10 = NULL; } /* Set display resolution */ xf86SetDpi(pScrn, 0, 0); if (xf86LoadSubModule(pScrn, "fb") == NULL) { SMI_FreeRec(pScrn); RETURN(FALSE); } xf86LoaderReqSymLists(fbSymbols, NULL); /* Load XAA or EXA if needed */ if (!pSmi->NoAccel) { if (!pSmi->useEXA) { if (!xf86LoadSubModule(pScrn, "xaa")) { SMI_FreeRec(pScrn); RETURN(FALSE); } xf86LoaderReqSymLists(xaaSymbols, NULL); } else { XF86ModReqInfo req; int errmaj, errmin; memset(&req, 0, sizeof(XF86ModReqInfo)); req.majorversion = 2; req.minorversion = 1; if (!LoadSubModule(pScrn->module, "exa", NULL, NULL, NULL, &req, &errmaj, &errmin)) { LoaderErrorMsg(NULL, "exa", errmaj, errmin); SMI_FreeRec(pScrn); RETURN(FALSE); } xf86LoaderReqSymLists(exaSymbols, NULL); } } /* Load ramdac if needed */ if (pSmi->HwCursor) { if (!xf86LoadSubModule(pScrn, "ramdac")) { SMI_FreeRec(pScrn); RETURN(FALSE); } } RETURN(TRUE); } /* * This is called when VT switching back to the X server. Its job is to * reinitialise the video mode. We may wish to unmap video/MMIO memory too. */ static Bool SMI_EnterVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SMIPtr pSmi = SMIPTR(pScrn); ENTER(); /* Enable MMIO and map memory */ SMI_MapMem(pScrn); pSmi->Save(pScrn); /* FBBase may have changed after remapping the memory */ pScrn->pixmapPrivate.ptr=pSmi->FBBase + pSmi->FBOffset; if(pSmi->useEXA) pSmi->EXADriverPtr->memoryBase=pSmi->FBBase; /* Do the CRTC independent initialization */ if(!SMI_HWInit(pScrn)) RETURN(FALSE); /* Initialize the chosen modes */ if (!xf86SetDesiredModes(pScrn)) RETURN(FALSE); /* Initialize the hardware cursor */ if (pSmi->HwCursor) xf86_show_cursors(pScrn); /* Reset the grapics engine */ if (!pSmi->NoAccel) SMI_EngineReset(pScrn); RETURN(TRUE); } /* * This is called when VT switching away from the X server. Its job is to * restore the previous (text) mode. We may wish to remap video/MMIO memory * too. */ static void SMI_LeaveVT(int scrnIndex, int flags) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SMIPtr pSmi = SMIPTR(pScrn); ENTER(); /* Ensure that the rotation BlockHandler is unwrapped, and the shadow pixmaps are deallocated, as the video memory is going to be unmapped. */ xf86RotateCloseScreen(pScrn->pScreen); /* Clear frame buffer */ memset(pSmi->FBBase, 0, pSmi->videoRAMBytes); if (!IS_MSOC(pSmi)) { vgaHWPtr hwp = VGAHWPTR(pScrn); SMILynx_WriteMode(pScrn, &hwp->SavedReg, pSmi->save); } else SMI501_WriteMode(pScrn, pSmi->save); SMI_UnmapMem(pScrn); LEAVE(); } static void SMI_DetectPanelSize(ScrnInfoPtr pScrn) { char *s; int width, height; SMIPtr pSmi = SMIPTR(pScrn); pSmi->lcdWidth = 0; pSmi->lcdHeight = 0; if ((s = xf86GetOptValString(pSmi->Options, OPTION_PANEL_SIZE)) != NULL) { if (sscanf(s, "%dx%d", &width, &height) != 2) xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Invalid PanelSize option: %s\n", s); else { pSmi->lcdWidth = width; pSmi->lcdHeight = height; } } if (pSmi->lcdWidth == 0 || pSmi->lcdHeight == 0) { /* panel size detection ... requires BIOS call on 730 hardware */ if (pSmi->Chipset == SMI_COUGAR3DR) { if (pSmi->pInt10 != NULL) { pSmi->pInt10->num = 0x10; pSmi->pInt10->ax = 0x5F00; pSmi->pInt10->bx = 0; pSmi->pInt10->cx = 0; pSmi->pInt10->dx = 0; xf86ExecX86int10(pSmi->pInt10); if (pSmi->pInt10->ax == 0x005F) { switch (pSmi->pInt10->cx & 0x0F) { case PANEL_640x480: pSmi->lcdWidth = 640; pSmi->lcdHeight = 480; break; case PANEL_800x600: pSmi->lcdWidth = 800; pSmi->lcdHeight = 600; break; case PANEL_1024x768: pSmi->lcdWidth = 1024; pSmi->lcdHeight = 768; break; case PANEL_1280x1024: pSmi->lcdWidth = 1280; pSmi->lcdHeight = 1024; break; case PANEL_1600x1200: pSmi->lcdWidth = 1600; pSmi->lcdHeight = 1200; break; case PANEL_1400x1050: pSmi->lcdWidth = 1400; pSmi->lcdHeight = 1050; break; } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Detected panel size via BIOS: %d x %d\n", pSmi->lcdWidth, pSmi->lcdHeight); } else xf86DrvMsg(pScrn->scrnIndex, X_INFO, "BIOS error during 730 panel detection!\n"); } else { /* int10 support isn't setup on the second call to this function, o if this is the second call, don't do detection again */ if (pSmi->lcd == 0) /* If we get here, int10 support is not loaded or not working */ xf86DrvMsg(pScrn->scrnIndex, X_INFO, "No BIOS support for 730 panel detection!\n"); } /* Set this to indicate that we've done the detection */ pSmi->lcd = 1; } else if (IS_MSOC(pSmi)) { pSmi->lcdWidth = (READ_SCR(pSmi, PANEL_WWIDTH) >> 16) & 2047; pSmi->lcdHeight = (READ_SCR(pSmi, PANEL_WHEIGHT) >> 16) & 2047; } else { /* panel size detection for hardware other than 730 */ pSmi->lcd = VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x31) & 0x01; if (VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x30) & 0x01) { pSmi->lcd <<= 1; } switch (VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x30) & 0x0C) { case 0x00: pSmi->lcdWidth = 640; pSmi->lcdHeight = 480; break; case 0x04: pSmi->lcdWidth = 800; pSmi->lcdHeight = 600; break; case 0x08: if (VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x74) & 0x02) { pSmi->lcdWidth = 1024; pSmi->lcdHeight = 600; } else { pSmi->lcdWidth = 1024; pSmi->lcdHeight = 768; } break; case 0x0C: pSmi->lcdWidth = 1280; pSmi->lcdHeight = 1024; break; } } } if (!pSmi->lcdWidth && (pSmi->lcdWidth = pScrn->virtualX) == 0) pSmi->lcdWidth = 1024; if (!pSmi->lcdHeight && (pSmi->lcdHeight = pScrn->virtualY) == 0) pSmi->lcdHeight = 768; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "%s Panel Size = %dx%d\n", (pSmi->lcd == 0) ? "OFF" : (pSmi->lcd == 1) ? "TFT" : "DSTN", pSmi->lcdWidth, pSmi->lcdHeight); } static void SMI_DetectMCLK(ScrnInfoPtr pScrn) { double real; int mclk; SMIPtr pSmi = SMIPTR(pScrn); pSmi->MCLK = 0; if (xf86GetOptValFreq(pSmi->Options, OPTION_MCLK, OPTUNITS_MHZ, &real)) { pSmi->MCLK = (int)(real * 1000.0); if (!IS_MSOC(pSmi) && pSmi->MCLK > 120000) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "Memory Clock %1.3f MHz larger than limit of 120 MHz\n", real); pSmi->MCLK = 0; } } mclk = pSmi->MCLK; if (pSmi->MCLK == 0) { if (IS_MSOC(pSmi)) { int clock, shift, divider; /* FIXME this should just read smi_501.h's bitfields... */ clock = READ_SCR(pSmi, CURRENT_CLOCK); shift = clock & ((1 << 3) - 1); divider = (clock >> 3) & 1 ? 3 : 1; clock = clock & (1 << 4) ? 336 : 288; mclk = (clock / (divider << shift)) * 1000; } else { unsigned char shift, m, n; m = VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x6A); n = VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x6B); switch (n >> 6) { case 1: shift = 4; break; case 2: shift = 2; break; default: shift = 1; break; } n &= 0x3F; mclk = ((1431818 * m) / n / shift + 50) / 100; } } /* FIXME Don't actually set pSmi->MCLK */ xf86DrvMsg(pScrn->scrnIndex, X_INFO, "MCLK = %1.3f\n", mclk / 1000.0); } static Bool SMI_MapMmio(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); CARD32 memBase; switch (pSmi->Chipset) { case SMI_COUGAR3DR: memBase = PCI_REGION_BASE(pSmi->PciInfo, 1, REGION_MEM); pSmi->MapSize = 0x200000; break; case SMI_LYNX3D: memBase = PCI_REGION_BASE(pSmi->PciInfo, 0, REGION_MEM) + 0x680000; pSmi->MapSize = 0x180000; break; case SMI_LYNXEM: case SMI_LYNXEMplus: memBase = PCI_REGION_BASE(pSmi->PciInfo, 0, REGION_MEM) + 0x400000; pSmi->MapSize = 0x400000; break; case SMI_LYNX3DM: memBase = PCI_REGION_BASE(pSmi->PciInfo, 0, REGION_MEM); pSmi->MapSize = 0x200000; break; case SMI_MSOC: memBase = PCI_REGION_BASE(pSmi->PciInfo, 1, REGION_MEM); pSmi->MapSize = 0x200000; break; default: memBase = PCI_REGION_BASE(pSmi->PciInfo, 0, REGION_MEM) + 0x400000; pSmi->MapSize = 0x10000; break; } #ifndef XSERVER_LIBPCIACCESS pSmi->MapBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_MMIO, pSmi->PciTag, memBase, pSmi->MapSize); #else { void **result = (void**)&pSmi->MapBase; int err = pci_device_map_range(pSmi->PciInfo, memBase, pSmi->MapSize, PCI_DEV_MAP_FLAG_WRITABLE, result); if (err) return (FALSE); } #endif if (pSmi->MapBase == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Internal error: could not map " "MMIO registers.\n"); return (FALSE); } switch (pSmi->Chipset) { case SMI_COUGAR3DR: pSmi->DPRBase = pSmi->MapBase + 0x000000; pSmi->VPRBase = pSmi->MapBase + 0x000800; pSmi->CPRBase = pSmi->MapBase + 0x001000; pSmi->FPRBase = pSmi->MapBase + 0x005800; pSmi->IOBase = pSmi->MapBase + 0x0C0000; pSmi->DataPortBase = pSmi->MapBase + 0x100000; pSmi->DataPortSize = 0x100000; break; case SMI_LYNX3D: pSmi->DPRBase = pSmi->MapBase + 0x000000; pSmi->VPRBase = pSmi->MapBase + 0x000800; pSmi->CPRBase = pSmi->MapBase + 0x001000; pSmi->IOBase = pSmi->MapBase + 0x040000; pSmi->DataPortBase = pSmi->MapBase + 0x080000; pSmi->DataPortSize = 0x100000; break; case SMI_LYNXEM: case SMI_LYNXEMplus: pSmi->DPRBase = pSmi->MapBase + 0x008000; pSmi->VPRBase = pSmi->MapBase + 0x00C000; pSmi->CPRBase = pSmi->MapBase + 0x00E000; pSmi->IOBase = pSmi->MapBase + 0x300000; pSmi->DataPortBase = pSmi->MapBase /*+ 0x100000*/; pSmi->DataPortSize = 0x8000 /*0x200000*/; break; case SMI_LYNX3DM: pSmi->DPRBase = pSmi->MapBase + 0x000000; pSmi->VPRBase = pSmi->MapBase + 0x000800; pSmi->CPRBase = pSmi->MapBase + 0x001000; pSmi->IOBase = pSmi->MapBase + 0x0C0000; pSmi->DataPortBase = pSmi->MapBase + 0x100000; pSmi->DataPortSize = 0x100000; break; case SMI_MSOC: pSmi->DPRBase = pSmi->MapBase + 0x100000; pSmi->VPRBase = pSmi->MapBase + 0x000000; pSmi->CPRBase = pSmi->MapBase + 0x090000; pSmi->DCRBase = pSmi->MapBase + 0x080000; pSmi->SCRBase = pSmi->MapBase + 0x000000; pSmi->IOBase = 0; pSmi->DataPortBase = pSmi->MapBase + 0x110000; pSmi->DataPortSize = 0x10000; break; default: pSmi->DPRBase = pSmi->MapBase + 0x8000; pSmi->VPRBase = pSmi->MapBase + 0xC000; pSmi->CPRBase = pSmi->MapBase + 0xE000; pSmi->IOBase = NULL; pSmi->DataPortBase = pSmi->MapBase; pSmi->DataPortSize = 0x8000; break; } xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "Physical MMIO at 0x%08lX\n", (unsigned long)memBase); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "Logical MMIO at %p - %p\n", pSmi->MapBase, pSmi->MapBase + pSmi->MapSize - 1); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "DPR=%p, VPR=%p, IOBase=%p\n", pSmi->DPRBase, pSmi->VPRBase, pSmi->IOBase); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "DataPort=%p - %p\n", pSmi->DataPortBase, pSmi->DataPortBase + pSmi->DataPortSize - 1); return (TRUE); } static Bool SMI_DetectMem(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); if ((pScrn->videoRam = pScrn->confScreen->device->videoRam)) pSmi->videoRAMKBytes = pScrn->videoRam; else { unsigned char config; static int lynx3d_table[4] = { 0, 2, 4, 6 }; static int lynx3dm_table[4] = { 16, 2, 4, 8 }; static int msoc_table[8] = { 4, 8, 16, 32, 64, 2, 0, 0 }; static int default_table[4] = { 1, 2, 4, 0 }; if (IS_MSOC(pSmi)) { config = (READ_SCR(pSmi, DRAM_CTL) >> 13) & 7; pSmi->videoRAMKBytes = msoc_table[config] * 1024 - FB_RESERVE4USB; } else { config = VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x71); switch (pSmi->Chipset) { case SMI_LYNX3D: pSmi->videoRAMKBytes = lynx3d_table[config >> 6] * 1024 + 512; break; case SMI_LYNX3DM: pSmi->videoRAMKBytes = lynx3dm_table[config >> 6] * 1024; break; case SMI_COUGAR3DR: /* DANGER - Cougar3DR BIOS is broken - hardcode video ram * size per instructions from Silicon Motion engineers */ pSmi->videoRAMKBytes = 16 * 1024; break; default: pSmi->videoRAMKBytes = default_table[config >> 6] * 1024; break; } } } pSmi->videoRAMBytes = pSmi->videoRAMKBytes * 1024; pScrn->videoRam = pSmi->videoRAMKBytes; xf86DrvMsg(pScrn->scrnIndex, X_PROBED, "videoram: %dkB\n", pSmi->videoRAMKBytes); return (TRUE); } Bool SMI_MapMem(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); vgaHWPtr hwp; ENTER(); if (pSmi->MapBase == NULL && SMI_MapMmio(pScrn) == FALSE) RETURN(FALSE); pScrn->memPhysBase = PCI_REGION_BASE(pSmi->PciInfo, 0, REGION_MEM); if (IS_MSOC(pSmi)) { pSmi->fbMapOffset = 0; } else { SMI_EnableMmio(pScrn); if (pSmi->Chipset == SMI_LYNX3DM) pSmi->fbMapOffset = 0x200000; else pSmi->fbMapOffset = 0x0; } #ifndef XSERVER_LIBPCIACCESS pSmi->FBBase = xf86MapPciMem(pScrn->scrnIndex, VIDMEM_FRAMEBUFFER, pSmi->PciTag, pScrn->memPhysBase + pSmi->fbMapOffset, pSmi->videoRAMBytes); #else { void **result = (void**)&pSmi->FBBase; int err = pci_device_map_range(pSmi->PciInfo, pScrn->memPhysBase + pSmi->fbMapOffset, pSmi->videoRAMBytes, PCI_DEV_MAP_FLAG_WRITABLE | PCI_DEV_MAP_FLAG_WRITE_COMBINE, result); if (err) RETURN(FALSE); } #endif if (pSmi->FBBase == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Internal error: could not map framebuffer.\n"); RETURN(FALSE); } xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "Physical frame buffer at 0x%08lX offset: 0x%08lX\n", pScrn->memPhysBase, pSmi->fbMapOffset); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "Logical frame buffer at %p - %p\n", pSmi->FBBase, pSmi->FBBase + pSmi->videoRAMBytes - 1); if (IS_MSOC(pSmi)) { /* Reserve space for panel cursr, and crt if in dual head mode */ #if SMI_CURSOR_ALPHA_PLANE pSmi->FBReserved = pSmi->FBCursorOffset = pSmi->videoRAMBytes - (pSmi->Dualhead ? SMI501_CURSOR_SIZE << 1 : SMI501_ARGB_CURSOR_SIZE); #else pSmi->FBReserved = pSmi->FBCursorOffset = pSmi->videoRAMBytes - (pSmi->Dualhead ? SMI501_CURSOR_SIZE << 1 : SMI501_CURSOR_SIZE); #endif } else { /* Set up offset to hwcursor memory area, at the end of * the frame buffer. */ pSmi->FBCursorOffset = pSmi->videoRAMBytes - SMILYNX_CURSOR_SIZE; /* set up the fifo reserved space */ if (VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x30) & 0x01)/* #1074 */ { CARD32 fifoOffset = 0; fifoOffset |= VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x46) << 3; fifoOffset |= VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x47) << 11; fifoOffset |= (VGAIN8_INDEX(pSmi, VGA_SEQ_INDEX, VGA_SEQ_DATA, 0x49) & 0x1C) << 17; pSmi->FBReserved = fifoOffset; /* PDR#1074 */ } else pSmi->FBReserved = pSmi->videoRAMBytes - 2048; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Cursor Offset: %08lX\n", (unsigned long)pSmi->FBCursorOffset); /* Assign hwp->MemBase & IOBase here */ hwp = VGAHWPTR(pScrn); if (pSmi->IOBase != NULL) vgaHWSetMmioFuncs(hwp, pSmi->MapBase, pSmi->IOBase - pSmi->MapBase); vgaHWGetIOBase(hwp); /* Map the VGA memory when the primary video */ if (xf86IsPrimaryPci(pSmi->PciInfo)) { hwp->MapSize = 0x10000; if (!vgaHWMapMem(pScrn)) RETURN(FALSE); pSmi->PrimaryVidMapped = TRUE; } } xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Reserved: %08lX\n", (unsigned long)pSmi->FBReserved); RETURN(TRUE); } /* UnMapMem - contains half of pre-4.0 EnterLeave function. The EnterLeave * function which en/disable access to IO ports and ext. regs */ void SMI_UnmapMem(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); ENTER(); /* Unmap VGA mem if mapped. */ if (pSmi->PrimaryVidMapped) { vgaHWUnmapMem(pScrn); pSmi->PrimaryVidMapped = FALSE; } SMI_DisableMmio(pScrn); if (pSmi->MapBase) { #ifndef XSERVER_LIBPCIACCESS xf86UnMapVidMem(pScrn->scrnIndex, (pointer)pSmi->MapBase, pSmi->MapSize); #else pci_device_unmap_range(pSmi->PciInfo, (pointer)pSmi->MapBase, pSmi->MapSize); #endif pSmi->MapBase = NULL; } if (pSmi->FBBase) { #ifndef XSERVER_LIBPCIACCESS xf86UnMapVidMem(pScrn->scrnIndex, (pointer) pSmi->FBBase, pSmi->videoRAMBytes); #else pci_device_unmap_range(pSmi->PciInfo, (pointer)pSmi->FBBase, pSmi->videoRAMBytes); #endif pSmi->FBBase = NULL; } LEAVE(); } /* This gets called at the start of each server generation. */ static Bool SMI_ScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; SMIPtr pSmi = SMIPTR(pScrn); EntityInfoPtr pEnt; ENTER(); /* Map MMIO regs and framebuffer */ if (!SMI_MapMem(pScrn)) RETURN(FALSE); pEnt = xf86GetEntityInfo(pScrn->entityList[0]); if (!pSmi->pInt10 && pSmi->useBIOS) { pSmi->pInt10 = xf86InitInt10(pEnt->index); } if (!pSmi->pVbe && pSmi->pInt10 && xf86LoaderCheckSymbol("VBEInit")) { pSmi->pVbe = VBEInit(pSmi->pInt10, pEnt->index); } /* Save the chip/graphics state */ pSmi->Save(pScrn); /* Fill in some needed pScrn fields */ pScrn->vtSema = TRUE; pScrn->pScreen = pScreen; pSmi->Bpp = pScrn->bitsPerPixel >> 3; pScrn->displayWidth = ((pScrn->virtualX * pSmi->Bpp + 15) & ~15) / pSmi->Bpp; pSmi->fbArea = NULL; pSmi->FBOffset = 0; pScrn->fbOffset = pSmi->FBOffset + pSmi->fbMapOffset; /* Clear frame buffer */ memset(pSmi->FBBase, 0, pSmi->videoRAMBytes); /* * The next step is to setup the screen's visuals, and initialise the * framebuffer code. In cases where the framebuffer's default choises for * things like visual layouts and bits per RGB are OK, this may be as simple * as calling the framebuffer's ScreenInit() function. If not, the visuals * will need to be setup before calling a fb ScreenInit() function and fixed * up after. */ /* * Reset the visual list. */ miClearVisualTypes(); /* Setup the visuals we support. */ if (!miSetVisualTypes(pScrn->depth, miGetDefaultVisualMask(pScrn->depth), pScrn->rgbBits, pScrn->defaultVisual)) RETURN(FALSE); if (!miSetPixmapDepths ()) RETURN(FALSE); /* * Call the framebuffer layer's ScreenInit function */ DEBUG("\tInitializing FB @ 0x%08X for %dx%d (%d)\n", pSmi->FBBase, pScrn->virtualX, pScrn->virtualY, pScrn->displayWidth); if(!fbScreenInit(pScreen, pSmi->FBBase, pScrn->virtualX, pScrn->virtualY, pScrn->xDpi, pScrn->yDpi, pScrn->displayWidth, pScrn->bitsPerPixel)) RETURN(FALSE); xf86SetBlackWhitePixels(pScreen); if (pScrn->bitsPerPixel > 8) { VisualPtr visual; /* Fixup RGB ordering */ visual = pScreen->visuals + pScreen->numVisuals; while (--visual >= pScreen->visuals) { if ((visual->class | DynamicClass) == DirectColor) { visual->offsetRed = pScrn->offset.red; visual->offsetGreen = pScrn->offset.green; visual->offsetBlue = pScrn->offset.blue; visual->redMask = pScrn->mask.red; visual->greenMask = pScrn->mask.green; visual->blueMask = pScrn->mask.blue; } } } /* must be after RGB ordering fixed */ fbPictureInit(pScreen, 0, 0); /* Do the CRTC independent initialization */ if(!SMI_HWInit(pScrn)) RETURN(FALSE); /* Unless using EXA, regardless or using XAA or not, needs offscreen * management at least for video. */ if (pSmi->NoAccel || !pSmi->useEXA) { int numLines; BoxRec AvailFBArea; numLines = pSmi->FBReserved / (pScrn->displayWidth * pSmi->Bpp); AvailFBArea.x1 = 0; AvailFBArea.y1 = 0; AvailFBArea.x2 = pScrn->virtualX; AvailFBArea.y2 = numLines; xf86DrvMsg(pScrn->scrnIndex, X_INFO, "FrameBuffer Box: %d,%d - %d,%d\n", AvailFBArea.x1, AvailFBArea.y1, AvailFBArea.x2, AvailFBArea.y2); xf86InitFBManager(pScreen, &AvailFBArea); } /* Initialize acceleration layer */ if (!pSmi->NoAccel) { if (pSmi->useEXA && !SMI_EXAInit(pScreen)) RETURN(FALSE); else if (!pSmi->useEXA && !SMI_XAAInit(pScreen)) RETURN(FALSE); } /* Initialize the chosen modes */ if (!xf86SetDesiredModes(pScrn)) RETURN(FALSE); SMI_PrintRegs(pScrn); miInitializeBackingStore(pScreen); /* hardware cursor needs to wrap this layer */ if(!pSmi->NoAccel && !pSmi->useEXA) SMI_DGAInit(pScreen); /* Initialise cursor functions */ miDCInitialize(pScreen, xf86GetPointerScreenFuncs()); /* Initialize HW cursor layer. Must follow software cursor * initialization. */ if (pSmi->HwCursor) { int size, flags; if (IS_MSOC(pSmi)) { size = SMI501_MAX_CURSOR; flags = (HARDWARE_CURSOR_SOURCE_MASK_INTERLEAVE_1 | HARDWARE_CURSOR_SWAP_SOURCE_AND_MASK); #if SMI_CURSOR_ALPHA_PLANE if (!pSmi->Dualhead) flags |= HARDWARE_CURSOR_ARGB; #endif } else { size = SMILYNX_MAX_CURSOR; flags = (HARDWARE_CURSOR_SOURCE_MASK_INTERLEAVE_8 | HARDWARE_CURSOR_SWAP_SOURCE_AND_MASK | HARDWARE_CURSOR_AND_SOURCE_WITH_MASK | HARDWARE_CURSOR_BIT_ORDER_MSBFIRST | HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | HARDWARE_CURSOR_INVERT_MASK); } if (!xf86_cursors_init(pScreen, size, size, flags)) xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Hardware cursor initialization failed\n"); } /* Initialise default colormap */ if (!miCreateDefColormap(pScreen)) RETURN(FALSE); /* Initialize colormap layer. Must follow initialization of the default * colormap. And SetGamma call, else it will load palette with solid white. */ if (!xf86HandleColormaps(pScreen, 256, pScrn->rgbBits,SMI_LoadPalette, NULL, CMAP_RELOAD_ON_MODE_SWITCH | CMAP_PALETTED_TRUECOLOR)) RETURN(FALSE); pScreen->SaveScreen = SMI_SaveScreen; pSmi->CloseScreen = pScreen->CloseScreen; pScreen->CloseScreen = SMI_CloseScreen; if ((IS_MSOC(pSmi) && !xf86DPMSInit(pScreen, SMI501_DisplayPowerManagementSet, 0)) || (!IS_MSOC(pSmi) && !xf86DPMSInit(pScreen, SMILynx_DisplayPowerManagementSet, 0))) xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "DPMS initialization failed!\n"); SMI_InitVideo(pScreen); if(!xf86CrtcScreenInit(pScreen)) RETURN(FALSE); /* Report any unused options (only for the first generation) */ if (serverGeneration == 1) { xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options); } RETURN(TRUE); } /* * This is called at the end of each server generation. It restores the * original (text) mode. It should also unmap the video memory, and free any * per-generation data allocated by the driver. It should finish by unwrapping * and calling the saved CloseScreen function. */ static Bool SMI_CloseScreen(int scrnIndex, ScreenPtr pScreen) { ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SMIPtr pSmi = SMIPTR(pScrn); Bool ret; ENTER(); if (pSmi->HwCursor) xf86_cursors_fini(pScreen); if (pScrn->vtSema) { if (!IS_MSOC(pSmi)) { vgaHWPtr hwp = VGAHWPTR(pScrn); SMILynx_WriteMode(pScrn, &hwp->SavedReg, pSmi->save); vgaHWLock(hwp); } else SMI501_WriteMode(pScrn, pSmi->save); SMI_UnmapMem(pScrn); } if (pSmi->XAAInfoRec != NULL) { XAADestroyInfoRec(pSmi->XAAInfoRec); } if (pSmi->EXADriverPtr) { exaDriverFini(pScreen); pSmi->EXADriverPtr = NULL; } if (pSmi->DGAModes != NULL) { xfree(pSmi->DGAModes); } if (pSmi->pInt10 != NULL) { xf86FreeInt10(pSmi->pInt10); pSmi->pInt10 = NULL; } if (pSmi->pVbe != NULL) { vbeFree(pSmi->pVbe); pSmi->pVbe = NULL; } if (pSmi->ptrAdaptor != NULL) { xfree(pSmi->ptrAdaptor); } if (pSmi->BlockHandler != NULL) { pScreen->BlockHandler = pSmi->BlockHandler; } pScrn->vtSema = FALSE; pScreen->CloseScreen = pSmi->CloseScreen; ret = (*pScreen->CloseScreen)(scrnIndex, pScreen); RETURN(ret); } static void SMI_FreeScreen(int scrnIndex, int flags) { SMI_FreeRec(xf86Screens[scrnIndex]); } static Bool SMI_SaveScreen(ScreenPtr pScreen, int mode) { ScrnInfoPtr pScrn = xf86Screens[pScreen->myNum]; ENTER(); if(xf86IsUnblank(mode)){ pScrn->DPMSSet(pScrn, DPMSModeOn, 0); }else{ pScrn->DPMSSet(pScrn, DPMSModeOff, 0); } RETURN(TRUE); } void SMI_AdjustFrame(int scrnIndex, int x, int y, int flags) { xf86CrtcConfigPtr crtcConf = XF86_CRTC_CONFIG_PTR(xf86Screens[scrnIndex]); xf86CrtcPtr compat_crtc = crtcConf->output[crtcConf->compat_output]->crtc; ENTER(); SMICRTC(compat_crtc)->adjust_frame(compat_crtc,x,y); LEAVE(); } Bool SMI_SwitchMode(int scrnIndex, DisplayModePtr mode, int flags) { Bool ret; ScrnInfoPtr pScrn = xf86Screens[scrnIndex]; SMIPtr pSmi = SMIPTR(pScrn); ENTER(); ret = xf86SetSingleMode(pScrn, mode, RR_Rotate_0); if (!pSmi->NoAccel) SMI_EngineReset(pScrn); RETURN(ret); } void SMI_LoadPalette(ScrnInfoPtr pScrn, int numColors, int *indicies, LOCO *colors, VisualPtr pVisual) { xf86CrtcConfigPtr crtcConf = XF86_CRTC_CONFIG_PTR(pScrn); int crtc_idx,i,j; ENTER(); if(pScrn->bitsPerPixel == 16){ /* Expand the RGB 565 palette into the 256-elements LUT */ for(crtc_idx=0; crtc_idxnum_crtc; crtc_idx++){ SMICrtcPrivatePtr crtcPriv = SMICRTC(crtcConf->crtc[crtc_idx]); for(i=0; ilut_r[idx*8 + j] = colors[idx].red << 8; crtcPriv->lut_b[idx*8 + j] = colors[idx].blue << 8; } } for(j=0; j<4; j++) crtcPriv->lut_g[idx*4 + j] = colors[idx].green << 8; } crtcPriv->load_lut(crtcConf->crtc[crtc_idx]); } }else{ for(crtc_idx=0; crtc_idxnum_crtc; crtc_idx++){ SMICrtcPrivatePtr crtcPriv = SMICRTC(crtcConf->crtc[crtc_idx]); for(i = 0; i < numColors; i++) { int idx = indicies[i]; crtcPriv->lut_r[idx] = colors[idx].red << 8; crtcPriv->lut_g[idx] = colors[idx].green << 8; crtcPriv->lut_b[idx] = colors[idx].blue << 8; } crtcPriv->load_lut(crtcConf->crtc[crtc_idx]); } } LEAVE(); } static void SMI_DisableVideo(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); CARD8 tmp; if (!IS_MSOC(pSmi)) { if (!(tmp = VGAIN8(pSmi, VGA_DAC_MASK))) return; pSmi->DACmask = tmp; VGAOUT8(pSmi, VGA_DAC_MASK, 0); } } static void SMI_EnableVideo(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); if (!IS_MSOC(pSmi)) { VGAOUT8(pSmi, VGA_DAC_MASK, pSmi->DACmask); } } void SMI_EnableMmio(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); ENTER(); if (!IS_MSOC(pSmi)) { vgaHWPtr hwp = VGAHWPTR(pScrn); CARD8 tmp; /* * Enable chipset (seen on uninitialized secondary cards) might not be * needed once we use the VGA softbooter */ vgaHWSetStdFuncs(hwp); /* Enable linear mode */ outb(pSmi->PIOBase + VGA_SEQ_INDEX, 0x18); tmp = inb(pSmi->PIOBase + VGA_SEQ_DATA); pSmi->SR18Value = tmp; /* PDR#521 */ outb(pSmi->PIOBase + VGA_SEQ_DATA, tmp | 0x11); /* Enable 2D/3D Engine and Video Processor */ outb(pSmi->PIOBase + VGA_SEQ_INDEX, 0x21); tmp = inb(pSmi->PIOBase + VGA_SEQ_DATA); pSmi->SR21Value = tmp; /* PDR#521 */ outb(pSmi->PIOBase + VGA_SEQ_DATA, tmp & ~0x03); } LEAVE(); } void SMI_DisableMmio(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); ENTER(); if (!IS_MSOC(pSmi)) { vgaHWPtr hwp = VGAHWPTR(pScrn); vgaHWSetStdFuncs(hwp); /* Disable 2D/3D Engine and Video Processor */ outb(pSmi->PIOBase + VGA_SEQ_INDEX, 0x21); outb(pSmi->PIOBase + VGA_SEQ_DATA, pSmi->SR21Value); /* PDR#521 */ /* Disable linear mode */ outb(pSmi->PIOBase + VGA_SEQ_INDEX, 0x18); outb(pSmi->PIOBase + VGA_SEQ_DATA, pSmi->SR18Value); /* PDR#521 */ } LEAVE(); } static void SMI_ProbeDDC(ScrnInfoPtr pScrn, int index) { vbeInfoPtr pVbe; if (xf86LoadSubModule(pScrn, "vbe")) { pVbe = VBEInit(NULL, index); ConfiguredMonitor = vbeDoEDID(pVbe, NULL); vbeFree(pVbe); } } static Bool SMI_HWInit(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); ENTER(); if(IS_MSOC(pSmi)) RETURN(SMI501_HWInit(pScrn)); else RETURN(SMILynx_HWInit(pScrn)); } void SMI_PrintRegs(ScrnInfoPtr pScrn) { SMIPtr pSmi = SMIPTR(pScrn); int i; ENTER(); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "START register dump ------------------\n"); if(IS_MSOC(pSmi)) SMI501_PrintRegs(pScrn); else SMILynx_PrintRegs(pScrn); xf86ErrorFVerb(VERBLEV, "\n\nDPR x0 x4 x8 xC"); for (i = 0x00; i <= 0x44; i += 4) { if ((i & 0xF) == 0x0) xf86ErrorFVerb(VERBLEV, "\n%02X|", i); xf86ErrorFVerb(VERBLEV, " %08lX", (unsigned long)READ_DPR(pSmi, i)); } xf86ErrorFVerb(VERBLEV, "\n\nVPR x0 x4 x8 xC"); for (i = 0x00; i <= 0x60; i += 4) { if ((i & 0xF) == 0x0) xf86ErrorFVerb(VERBLEV, "\n%02X|", i); xf86ErrorFVerb(VERBLEV, " %08lX", (unsigned long)READ_VPR(pSmi, i)); } xf86ErrorFVerb(VERBLEV, "\n\nCPR x0 x4 x8 xC"); for (i = 0x00; i <= 0x18; i += 4) { if ((i & 0xF) == 0x0) xf86ErrorFVerb(VERBLEV, "\n%02X|", i); xf86ErrorFVerb(VERBLEV, " %08lX", (unsigned long)READ_CPR(pSmi, i)); } xf86ErrorFVerb(VERBLEV, "\n\n"); xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV, "END register dump --------------------\n"); LEAVE(); }