1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
/*
Copyright (C) 1994-1999 The XFree86 Project, Inc. All Rights Reserved.
Copyright (C) 2000 Silicon Motion, Inc. All Rights Reserved.
Copyright (C) 2008 Mandriva Linux. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of The XFree86 Project and
Silicon Motion shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written
authorization from The XFree86 Project or Silicon Motion.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "smi.h"
#include "smi_crtc.h"
#include "smi_501.h"
#include "regsmi.h"
#ifdef HAVE_XEXTPROTO_71
#include <X11/extensions/dpmsconst.h>
#else
#define DPMS_SERVER
#include <X11/extensions/dpms.h>
#endif
/* Want to see register dumps for now */
#undef VERBLEV
#define VERBLEV 1
/*
* Prototypes
*/
static char *format_integer_base2(int32_t word);
static void SMI501_SetClock(SMIPtr pSmi, int32_t port,
int32_t pll, int32_t value);
/*
* Implementation
*/
void
SMI501_Save(ScrnInfoPtr pScrn)
{
SMIPtr pSmi = SMIPTR(pScrn);
MSOCRegPtr save = pSmi->save;
xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV,
"Register dump (Before Save)\n");
SMI501_PrintRegs(pScrn);
/* Used mainly for DPMS info */
save->system_ctl.value = READ_SCR(pSmi, SYSTEM_CTL);
/* Used basically to enable dac */
save->misc_ctl.value = READ_SCR(pSmi, MISC_CTL);
/* Read it first to know if current power mode */
save->power_ctl.value = READ_SCR(pSmi, POWER_CTL);
switch (save->power_ctl.f.mode) {
case 0:
save->current_gate = POWER0_GATE;
save->current_clock = POWER0_CLOCK;
break;
case 1:
save->current_gate = POWER1_GATE;
save->current_clock = POWER1_CLOCK;
break;
default:
/* FIXME
* Should be in sleep mode
* TODO
* select mode0 by default
*/
save->current_gate = POWER0_GATE;
save->current_clock = POWER0_CLOCK;
break;
}
save->gate.value = READ_SCR(pSmi, save->current_gate);
save->clock.value = READ_SCR(pSmi, save->current_clock);
/* FIXME Never changed */
save->timing_ctl.value = READ_SCR(pSmi, TIMING_CTL);
save->pll_ctl.value = READ_SCR(pSmi, PLL_CTL);
save->device_id.value = READ_SCR(pSmi, DEVICE_ID);
save->sleep_gate.value = READ_SCR(pSmi, SLEEP_GATE);
save->panel_display_ctl.value = READ_SCR(pSmi, PANEL_DISPLAY_CTL);
save->panel_fb_address.value = READ_SCR(pSmi, PANEL_FB_ADDRESS);
save->panel_fb_width.value = READ_SCR(pSmi, PANEL_FB_WIDTH);
save->panel_wwidth.value = READ_SCR(pSmi, PANEL_WWIDTH);
save->panel_wheight.value = READ_SCR(pSmi, PANEL_WHEIGHT);
save->panel_plane_tl.value = READ_SCR(pSmi, PANEL_PLANE_TL);
save->panel_plane_br.value = READ_SCR(pSmi, PANEL_PLANE_BR);
save->panel_htotal.value = READ_SCR(pSmi, PANEL_HTOTAL);
save->panel_hsync.value = READ_SCR(pSmi, PANEL_HSYNC);
save->panel_vtotal.value = READ_SCR(pSmi, PANEL_VTOTAL);
save->panel_vsync.value = READ_SCR(pSmi, PANEL_VSYNC);
save->crt_display_ctl.value = READ_SCR(pSmi, CRT_DISPLAY_CTL);
save->crt_fb_address.value = READ_SCR(pSmi, CRT_FB_ADDRESS);
save->crt_fb_width.value = READ_SCR(pSmi, CRT_FB_WIDTH);
save->crt_htotal.value = READ_SCR(pSmi, CRT_HTOTAL);
save->crt_hsync.value = READ_SCR(pSmi, CRT_HSYNC);
save->crt_vtotal.value = READ_SCR(pSmi, CRT_VTOTAL);
save->crt_vsync.value = READ_SCR(pSmi, CRT_VSYNC);
save->alpha_display_ctl.value = READ_SCR(pSmi, ALPHA_DISPLAY_CTL);
save->alpha_fb_address.value = READ_SCR(pSmi, ALPHA_FB_ADDRESS);
save->alpha_fb_width.value = READ_SCR(pSmi, ALPHA_FB_WIDTH);
save->alpha_plane_tl.value = READ_SCR(pSmi, ALPHA_PLANE_TL);
save->alpha_plane_br.value = READ_SCR(pSmi, ALPHA_PLANE_BR);
save->alpha_chroma_key.value = READ_SCR(pSmi, ALPHA_CHROMA_KEY);
/* Also save accel state to properly restore kernel framebuffer */
save->accel_src = READ_SCR(pSmi, ACCEL_SRC);
save->accel_dst = READ_SCR(pSmi, ACCEL_DST);
save->accel_dim = READ_SCR(pSmi, ACCEL_DIM);
save->accel_ctl = READ_SCR(pSmi, ACCEL_CTL);
save->accel_pitch = READ_SCR(pSmi, ACCEL_PITCH);
save->accel_fmt = READ_SCR(pSmi, ACCEL_FMT);
save->accel_clip_tl = READ_SCR(pSmi, ACCEL_CLIP_TL);
save->accel_clip_br = READ_SCR(pSmi, ACCEL_CLIP_BR);
save->accel_pat_lo = READ_SCR(pSmi, ACCEL_PAT_LO);
save->accel_pat_hi = READ_SCR(pSmi, ACCEL_PAT_HI);
save->accel_wwidth = READ_SCR(pSmi, ACCEL_WWIDTH);
save->accel_src_base = READ_SCR(pSmi, ACCEL_SRC_BASE);
save->accel_dst_base = READ_SCR(pSmi, ACCEL_DST_BASE);
}
void
SMI501_DisplayPowerManagementSet(ScrnInfoPtr pScrn,
int PowerManagementMode, int flags)
{
SMIPtr pSmi = SMIPTR(pScrn);
if (pSmi->CurrentDPMS != PowerManagementMode) {
/* Set the DPMS mode to every output and CRTC */
xf86DPMSSet(pScrn, PowerManagementMode, flags);
pSmi->CurrentDPMS = PowerManagementMode;
}
}
Bool
SMI501_HWInit(ScrnInfoPtr pScrn)
{
MSOCRegPtr save;
MSOCRegPtr mode;
SMIPtr pSmi = SMIPTR(pScrn);
int32_t x_select, x_divider, x_shift;
save = pSmi->save;
mode = pSmi->mode;
/* Start with a fresh copy of registers before any mode change */
memcpy(mode, save, sizeof(MSOCRegRec));
if (pSmi->UseFBDev)
return (TRUE);
/* Enable DAC -- 0: enable - 1: disable */
mode->misc_ctl.f.dac = 0;
/* Enable 2D engine */
mode->gate.f.engine = 1;
/* Color space conversion */
mode->gate.f.csc = 1;
/* ZV port */
mode->gate.f.zv = 1;
/* Gpio, Pwm, and I2c */
mode->gate.f.gpio = 1;
/* FIXME fixed at power mode 0 as in the smi sources */
mode->power_ctl.f.status = 0;
mode->power_ctl.f.mode = 0;
if (pSmi->MCLK) {
xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV,
"MCLK request %d\n", pSmi->MCLK);
(void)SMI501_FindMemClock(pSmi->MCLK, &x_select, &x_divider, &x_shift);
mode->clock.f.m_select = x_select;
mode->clock.f.m_divider = x_divider;
mode->clock.f.m_shift = x_shift;
}
/* Else use what was configured by the kernel. */
if (pSmi->MXCLK) {
xf86DrvMsgVerb(pScrn->scrnIndex, X_INFO, VERBLEV,
"MXCLK request %d\n", pSmi->MXCLK);
(void)SMI501_FindMemClock(pSmi->MXCLK, &x_select, &x_divider, &x_shift);
mode->clock.f.m1_select = x_select;
mode->clock.f.m1_divider = x_divider;
mode->clock.f.m1_shift = x_shift;
}
/* Else use what was configured by the kernel. */
if (!pSmi->Dualhead) {
/* crt clones panel */
mode->crt_display_ctl.f.enable = 0;
/* 0: select panel - 1: select crt */
mode->crt_display_ctl.f.select = 0;
mode->crt_display_ctl.f.timing = 0;
}
SMI501_WriteMode_common(pScrn, mode);
return (TRUE);
}
void
SMI501_WriteMode_common(ScrnInfoPtr pScrn, MSOCRegPtr mode)
{
int32_t pll;
MSOCClockRec clock;
SMIPtr pSmi = SMIPTR(pScrn);
if (!pSmi->UseFBDev) {
/* Update gate first */
WRITE_SCR(pSmi, mode->current_gate, mode->gate.value);
clock.value = READ_SCR(pSmi, mode->current_clock);
if (pSmi->MCLK) {
clock.f.m_select = mode->clock.f.m_select;
pll = clock.value;
clock.f.m_divider = mode->clock.f.m_divider;
clock.f.m_shift = mode->clock.f.m_shift;
SMI501_SetClock(pSmi, mode->current_clock, pll, clock.value);
}
if (pSmi->MXCLK) {
clock.f.m1_select = mode->clock.f.m1_select;
pll = clock.value;
clock.f.m1_divider = mode->clock.f.m1_divider;
clock.f.m1_shift = mode->clock.f.m1_shift;
SMI501_SetClock(pSmi, mode->current_clock, pll, clock.value);
}
WRITE_SCR(pSmi, MISC_CTL, mode->misc_ctl.value);
WRITE_SCR(pSmi, POWER_CTL, mode->power_ctl.value);
}
/* Match configuration */
/* FIXME some other fields should also be set, otherwise, since
* neither kernel nor driver change it, a reboot is required to
* modify or reset to default */
mode->system_ctl.f.burst = mode->system_ctl.f.burst_read =
pSmi->PCIBurst != FALSE;
mode->system_ctl.f.retry = pSmi->PCIRetry != FALSE;
WRITE_SCR(pSmi, SYSTEM_CTL, mode->system_ctl.value);
if (!pSmi->Dualhead)
WRITE_SCR(pSmi, CRT_DISPLAY_CTL, mode->crt_display_ctl.value);
}
void
SMI501_WriteMode_lcd(ScrnInfoPtr pScrn, MSOCRegPtr mode)
{
int32_t pll;
MSOCClockRec clock;
SMIPtr pSmi = SMIPTR(pScrn);
if (!pSmi->UseFBDev) {
clock.value = READ_SCR(pSmi, mode->current_clock);
/* Alternate pll_select is only available for the SMI 502,
* and the bit should be only set in that case. */
if (mode->clock.f.pll_select)
WRITE_SCR(pSmi, PLL_CTL, mode->pll_ctl.value);
clock.f.p2_select = mode->clock.f.p2_select;
pll = clock.value;
clock.f.p2_divider = mode->clock.f.p2_divider;
clock.f.p2_shift = mode->clock.f.p2_shift;
clock.f.pll_select = mode->clock.f.pll_select;
clock.f.p2_1xclck = mode->clock.f.p2_1xclck;
SMI501_SetClock(pSmi, mode->current_clock, pll, clock.value);
WRITE_SCR(pSmi, PANEL_FB_ADDRESS, mode->panel_fb_address.value);
WRITE_SCR(pSmi, PANEL_FB_WIDTH, mode->panel_fb_width.value);
WRITE_SCR(pSmi, PANEL_WWIDTH, mode->panel_wwidth.value);
WRITE_SCR(pSmi, PANEL_WHEIGHT, mode->panel_wheight.value);
WRITE_SCR(pSmi, PANEL_PLANE_TL, mode->panel_plane_tl.value);
WRITE_SCR(pSmi, PANEL_PLANE_BR, mode->panel_plane_br.value);
WRITE_SCR(pSmi, PANEL_HTOTAL, mode->panel_htotal.value);
WRITE_SCR(pSmi, PANEL_HSYNC, mode->panel_hsync.value);
WRITE_SCR(pSmi, PANEL_VTOTAL, mode->panel_vtotal.value);
WRITE_SCR(pSmi, PANEL_VSYNC, mode->panel_vsync.value);
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
}
}
void
SMI501_WriteMode_crt(ScrnInfoPtr pScrn, MSOCRegPtr mode)
{
int32_t pll;
MSOCClockRec clock;
SMIPtr pSmi = SMIPTR(pScrn);
if (!pSmi->UseFBDev) {
clock.value = READ_SCR(pSmi, mode->current_clock);
clock.f.v2_select = mode->clock.f.v2_select;
pll = clock.value;
clock.f.v2_divider = mode->clock.f.v2_divider;
clock.f.v2_shift = mode->clock.f.v2_shift;
clock.f.v2_1xclck = mode->clock.f.v2_1xclck;
SMI501_SetClock(pSmi, mode->current_clock, pll, clock.value);
WRITE_SCR(pSmi, CRT_FB_ADDRESS, mode->crt_fb_address.value);
WRITE_SCR(pSmi, CRT_FB_WIDTH, mode->crt_fb_width.value);
WRITE_SCR(pSmi, CRT_HTOTAL, mode->crt_htotal.value);
WRITE_SCR(pSmi, CRT_HSYNC, mode->crt_hsync.value);
WRITE_SCR(pSmi, CRT_VTOTAL, mode->crt_vtotal.value);
WRITE_SCR(pSmi, CRT_VSYNC, mode->crt_vsync.value);
WRITE_SCR(pSmi, CRT_DISPLAY_CTL, mode->crt_display_ctl.value);
}
}
void
SMI501_WriteMode_alpha(ScrnInfoPtr pScrn, MSOCRegPtr mode)
{
SMIPtr pSmi = SMIPTR(pScrn);
WRITE_SCR(pSmi, ALPHA_FB_ADDRESS, mode->alpha_fb_address.value);
WRITE_SCR(pSmi, ALPHA_FB_WIDTH, mode->alpha_fb_width.value);
WRITE_SCR(pSmi, ALPHA_PLANE_TL, mode->alpha_plane_tl.value);
WRITE_SCR(pSmi, ALPHA_PLANE_BR, mode->alpha_plane_br.value);
WRITE_SCR(pSmi, ALPHA_CHROMA_KEY, mode->alpha_chroma_key.value);
WRITE_SCR(pSmi, ALPHA_DISPLAY_CTL, mode->alpha_display_ctl.value);
}
void
SMI501_WriteMode(ScrnInfoPtr pScrn, MSOCRegPtr restore)
{
SMIPtr pSmi = SMIPTR(pScrn);
SMI501_WriteMode_common(pScrn, restore);
SMI501_WriteMode_lcd(pScrn, restore);
SMI501_WriteMode_crt(pScrn, restore);
#if SMI_CURSOR_ALPHA_PLANE
SMI501_WriteMode_alpha(pScrn, restore);
#endif
/* This function should be called when switching to virtual console */
WRITE_SCR(pSmi, ACCEL_SRC, restore->accel_src);
WRITE_SCR(pSmi, ACCEL_DST, restore->accel_dst);
WRITE_SCR(pSmi, ACCEL_DIM, restore->accel_dim);
WRITE_SCR(pSmi, ACCEL_CTL, restore->accel_ctl);
WRITE_SCR(pSmi, ACCEL_PITCH, restore->accel_pitch);
WRITE_SCR(pSmi, ACCEL_FMT, restore->accel_fmt);
WRITE_SCR(pSmi, ACCEL_CLIP_TL, restore->accel_clip_tl);
WRITE_SCR(pSmi, ACCEL_CLIP_BR, restore->accel_clip_br);
WRITE_SCR(pSmi, ACCEL_PAT_LO, restore->accel_pat_lo);
WRITE_SCR(pSmi, ACCEL_PAT_HI, restore->accel_pat_hi);
WRITE_SCR(pSmi, ACCEL_WWIDTH, restore->accel_wwidth);
WRITE_SCR(pSmi, ACCEL_SRC_BASE, restore->accel_src_base);
WRITE_SCR(pSmi, ACCEL_DST_BASE, restore->accel_dst_base);
}
void
SMI501_PowerPanel(ScrnInfoPtr pScrn, MSOCRegPtr mode, Bool on)
{
SMIPtr pSmi = SMIPTR(pScrn);
if (on != FALSE) {
mode->panel_display_ctl.f.vdd = 1;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.signal = 1;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.bias = 1;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.fp = 1;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
}
else {
mode->panel_display_ctl.f.fp = 0;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.bias = 0;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.signal = 0;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
mode->panel_display_ctl.f.vdd = 0;
WRITE_SCR(pSmi, PANEL_DISPLAY_CTL, mode->panel_display_ctl.value);
SMI501_WaitVSync(pSmi, 4);
}
}
static char *
format_integer_base2(int32_t word)
{
int i;
static char buffer[33];
for (i = 0; i < 32; i++) {
if (word & (1 << i))
buffer[31 - i] = '1';
else
buffer[31 - i] = '0';
}
return (buffer);
}
double
SMI501_FindClock(double clock, int32_t max_divider, Bool has1xclck,
int32_t *x2_1xclck,
int32_t *x2_select, int32_t *x2_divider, int32_t *x2_shift)
{
double diff, best, mclk;
int32_t multiplier, divider, shift, xclck;
/* The Crystal input frequency is 24Mhz, and can be multiplied
* by 12 or 14 (actually, there are other values, see TIMING_CTL,
* MMIO 0x068) */
/* Find clock best matching mode */
best = 0x7fffffff;
for (multiplier = 12, mclk = multiplier * 24 * 1000.0;
mclk <= 14 * 24 * 1000.0;
multiplier += 2, mclk = multiplier * 24 * 1000.0) {
for (divider = 1; divider <= max_divider; divider += 2) {
for (shift = 0; shift < 8; shift++) {
/* Divider 1 not in specs for cards older then 502 */
for (xclck = 1; xclck >= !has1xclck; xclck--) {
diff = (mclk / (divider << shift << xclck)) - clock;
if (fabs(diff) < best) {
*x2_shift = shift;
*x2_divider = divider == 1 ? 0 : divider == 3 ? 1 : 2;
*x2_select = mclk == 12 * 24 * 1000.0 ? 0 : 1;
*x2_1xclck = xclck == 0;
/* Remember best diff */
best = fabs(diff);
}
}
}
}
}
xf86ErrorFVerb(VERBLEV,
"\tMatching clock %5.2f, diff %5.2f (%d/%d/%d/%d)\n",
((*x2_select ? 14 : 12) * 24 * 1000.0) /
((*x2_divider == 0 ? 1 : *x2_divider == 1 ? 3 : 5) <<
*x2_shift << (*x2_1xclck ? 0 : 1)),
best, *x2_shift, *x2_divider, *x2_select, *x2_1xclck);
return (best);
}
double
SMI501_FindMemClock(double clock, int32_t *x1_select,
int32_t *x1_divider, int32_t *x1_shift)
{
double diff, best, mclk;
int32_t multiplier, divider, shift;
best = 0x7fffffff;
for (multiplier = 12, mclk = multiplier * 24 * 1000.0;
mclk <= 14 * 24 * 1000.0;
multiplier += 2, mclk = multiplier * 24 * 1000.0) {
for (divider = 1; divider <= 3; divider += 2) {
for (shift = 0; shift < 8; shift++) {
diff = (mclk / (divider << shift)) - clock;
if (fabs(diff) < best) {
*x1_shift = shift;
*x1_divider = divider == 1 ? 0 : 1;
*x1_select = mclk == 12 * 24 * 1000.0 ? 0 : 1;
/* Remember best diff */
best = fabs(diff);
}
}
}
}
xf86ErrorFVerb(VERBLEV,
"\tMatching clock %5.2f, diff %5.2f (%d/%d/%d)\n",
((*x1_select ? 14 : 12) * 24 * 1000.0) /
((*x1_divider == 0 ? 1 : 3) << *x1_shift),
best, *x1_shift, *x1_divider, *x1_select);
return (best);
}
double
SMI501_FindPLLClock(double clock, int32_t *m, int32_t *n, int32_t *xclck)
{
int32_t M, N, K;
double diff, best;
double frequency;
/* This method, available only on the 502 is intended to cover the
* disadvantage of the other method where certain modes cannot be
* displayed correctly due to the big difference on the requested
* pixel clock, with the actual pixel clock that can be achieved by
* those divisions. In this method, N can be any integer between 2
* and 24, M can be any positive, 8 bits integer, and K is either 1
* or 2.
* To calculate the programmable PLL, the following formula is
* used:
*
* Requested Pixel Clock = Input Frequency * M / N
*
* Input Frequency is the crystal input frequency value (24 MHz in
* the SMI VGX Demo Board).
*
* K is a divisor, used by setting bit 15 of the PLL_CTL
* (PLL Output Divided by 2).
*
* So, it should be requested_clock = input_frequency * M / N / K
*/
/* That said, use what actually works, that is:
* requested_clock = input_frequency * K * M / N
*
* where requested_clock is modeline pixel clock,
* input_frequency is 12, K is either 1 or 2 (and sets bit15 accordingly),
* M is a non zero 8 bits unsigned integer, and N is a value from 2 to 24.
*/
best = 0x7fffffff;
frequency = 12 * 1000.0;
for (N = 2; N <= 24; N++) {
for (K = 1; K <= 2; K++) {
M = clock / frequency * K * N;
diff = ((int32_t)(frequency / K * M) / N) - clock;
/* Ensure M is larger then 0 and fits in 8 bits */
if (M > 0 && M < 0x100 && fabs(diff) < best) {
*m = M;
*n = N;
*xclck = K == 1;
/* Remember best diff */
best = fabs(diff);
}
}
}
xf86ErrorFVerb(VERBLEV,
"\tMatching alternate clock %5.2f, diff %5.2f (%d/%d/%d)\n",
frequency / (*xclck ? 1 : 2) * *m / *n, best,
*m, *n, *xclck);
return (best);
}
void
SMI501_PrintRegs(ScrnInfoPtr pScrn)
{
int i;
SMIPtr pSmi = SMIPTR(pScrn);
xf86ErrorFVerb(VERBLEV, " SMI501 System Setup:\n");
for (i = 0x00; i <= 0x74; i += 4)
xf86ErrorFVerb(VERBLEV, "\t%08x: %s\n", i,
format_integer_base2(READ_SCR(pSmi, i)));
xf86ErrorFVerb(VERBLEV, " SMI501 Display Setup:\n");
for (i = 0x80000; i < 0x80400; i += 4)
xf86ErrorFVerb(VERBLEV, "\t%08x: %s\n", i,
format_integer_base2(READ_SCR(pSmi, i)));
}
void
SMI501_WaitVSync(SMIPtr pSmi, int vsync_count)
{
MSOCCmdStatusRec status;
int32_t timeout;
while (vsync_count-- > 0) {
/* Wait for end of vsync */
timeout = 0;
do {
/* bit 11: vsync active *if set* */
status.value = READ_SCR(pSmi, CMD_STATUS);
if (++timeout == 10000)
break;
} while (status.f.pvsync);
/* Wait for start of vsync */
timeout = 0;
do {
status.value = READ_SCR(pSmi, CMD_STATUS);
if (++timeout == 10000)
break;
} while (!status.f.pvsync);
}
}
static void
SMI501_SetClock(SMIPtr pSmi, int32_t port, int32_t pll, int32_t value)
{
/*
* Rules to Program the Power Mode Clock Registers for Clock Selection
*
* 1. There should be only one clock source changed at a time.
* To change clock source for P2XCLK, V2XCLK, MCLK, M2XCLK
* simultaneously may cause the internal logic normal operation
* to be disrupted. There should be a minimum of 16mS wait from
* change one clock source to another.
* 2. When adjusting the clock rate, the PLL selection bit should
* be programmed first before changing the divider value for each
* clock source. For example, to change the P2XCLK clock rate:
* . bit 29 should be set first
* . wait for a minimum of 16ms (about one Vsync time)
* . adjust bits [28:24].
* The minimum 16 ms wait is necessary for logic to settle down
* before the clock rate is changed.
* 3. There should be a minimum 16 ms wait after a clock source is
* changed before any operation that could result in a bus
* transaction.
*/
/* register contents selecting clock */
WRITE_SCR(pSmi, port, pll);
SMI501_WaitVSync(pSmi, 1);
/* full register contents */
WRITE_SCR(pSmi, port, value);
SMI501_WaitVSync(pSmi, 1);
}
|