1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
/* Header: //Mercury/Projects/archives/XFree86/4.0/smi_driver.c-arc 1.42 03 Jan 2001 13:52:16 Frido $ */
/*
Copyright (C) 1994-1999 The XFree86 Project, Inc. All Rights Reserved.
Copyright (C) 2000 Silicon Motion, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
XFREE86 PROJECT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of The XFree86 Project and
Silicon Motion shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written
authorization from The XFree86 Project or Silicon Motion.
*/
/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/siliconmotion/smi_driver.c,v 1.30 2003/04/23 21:51:44 tsi Exp $ */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "xf86Resources.h"
#include "xf86RAC.h"
#include "xf86DDC.h"
#include "xf86int10.h"
#include "vbe.h"
#include "shadowfb.h"
#include "smi.h"
#include "smi_501.h"
#include "regsmi.h"
#include "globals.h"
#define DPMS_SERVER
#include <X11/extensions/dpms.h>
/*
* Forward definitions for the functions that make up the driver.
*/
static int roundDiv(int num, int denom);
static int findClock(int requested_clock, clock_select_t *clock,
display_t display);
static mode_table_t *findMode(mode_table_t *mode_table, int width, int height,
int refresh_rate);
static void adjustMode(mode_table_t *vesaMode, mode_table_t *mode,
display_t display);
static void setModeRegisters(reg_table_t *register_table, mode_table_t *mode,
display_t display, int bpp, int fbPitch);
static void programMode(SMIPtr pSmi, reg_table_t *register_table);
static void SetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, display_t display,
int fbPitch, int bpp);
static void panelSetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, int fbPitch,
int bpp);
static void crtSetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, int fbPitch,
int bpp);
static void setPower(SMIPtr pSmi, unsigned int nGates, unsigned int Clock);
static void panelWaitVSync(SMIPtr pSmi, int vsync_count);
static void panelPowerSequence(SMIPtr pSmi, panel_state_t on_off,
int vsync_delay);
static void panelUseCRT(SMIPtr pSmi, BOOL bEnable);
/*
* Add comment here about this module.
*/
/* Mode table. */
mode_table_t mode_table[] = {
/*----------------------------------------------------------------------------------------
* H. H. H. H. H. V. V. V. V. V. Pixel H. V.
* tot. disp. sync sync sync tot. disp. sync sync sinc clock freq. freq.
* end start wdth polarity end start hght polarity
*---------------------------------------------------------------------------------------*/
/* 640 x 480 */
{ 800, 640, 656, 96, NEGATIVE, 525, 480, 490, 2, NEGATIVE, 25175000, 31469, 60 },
{ 832, 640, 664, 40, NEGATIVE, 520, 480, 489, 3, NEGATIVE, 31500000, 37861, 72 },
{ 840, 640, 656, 64, NEGATIVE, 500, 480, 481, 3, NEGATIVE, 31500000, 37500, 75 },
{ 832, 640, 696, 56, NEGATIVE, 509, 480, 481, 3, NEGATIVE, 36000000, 43269, 85 },
/* 800 x 600 */
{ 1024, 800, 824, 72, POSITIVE, 625, 600, 601, 2, POSITIVE, 36000000, 35156, 56 },
{ 1056, 800, 840, 128, POSITIVE, 628, 600, 601, 4, POSITIVE, 40000000, 37879, 60 },
{ 1040, 800, 856, 120, POSITIVE, 666, 600, 637, 6, POSITIVE, 50000000, 48077, 72 },
{ 1056, 800, 816, 80, POSITIVE, 625, 600, 601, 3, POSITIVE, 49500000, 46875, 75 },
{ 1048, 800, 832, 64, POSITIVE, 631, 600, 601, 3, POSITIVE, 56250000, 53674, 85 },
/* 1024 x 768*/
{ 1344, 1024, 1048, 136, NEGATIVE, 806, 768, 771, 6, NEGATIVE, 65000000, 48363, 60 },
{ 1328, 1024, 1048, 136, NEGATIVE, 806, 768, 771, 6, NEGATIVE, 75000000, 56476, 70 },
{ 1312, 1024, 1040, 96, POSITIVE, 800, 768, 769, 3, POSITIVE, 78750000, 60023, 75 },
{ 1376, 1024, 1072, 96, POSITIVE, 808, 768, 769, 3, POSITIVE, 94500000, 68677, 85 },
/* End of table. */
{ 0, 0, 0, 0, NEGATIVE, 0, 0, 0, 0, NEGATIVE, 0, 0, 0 },
};
Bool
SMI501_SetMode(ScrnInfoPtr pScrn, DisplayModePtr mode)
{
SMIPtr pSmi = SMIPTR(pScrn);
ENTER_PROC("SMI501_SetMode");
/* FIXME */
mode->VRefresh = 60;
if (pSmi->IsSecondary)
crtSetMode(pSmi, mode->HDisplay, mode->VDisplay, 0, mode->VRefresh, pSmi->Stride, pScrn->depth);
else
panelSetMode(pSmi, mode->HDisplay, mode->VDisplay, 0, mode->VRefresh, pSmi->Stride, pScrn->depth);
panelUseCRT(pSmi, TRUE); /* Enable both outputs simultaneously */
LEAVE_PROC("SMI501_SetMode");
return TRUE;
}
/**********************************************************************
* regRead32
* Read the value of the 32-bit register specified by nOffset
**********************************************************************/
unsigned int
regRead32(SMIPtr pSmi, unsigned int nOffset)
{
unsigned int result;
result = READ_SCR(pSmi, nOffset);
return (result);
}
/**********************************************************************
* regWrite32
* Write the 32-bit value, nData, to the 32-bit register specified by
* nOffset
**********************************************************************/
void
regWrite32(SMIPtr pSmi, unsigned int nOffset, unsigned int nData)
{
WRITE_SCR(pSmi, nOffset, nData);
}
/* Perform a rounded division. */
static int
roundDiv(int num, int denom)
{
/* n / d + 1 / 2 = (2n + d) / 2d */
return (2 * num + denom) / (2 * denom);
}
/* Finds clock closest to the requested. */
static int
findClock(int requested_clock, clock_select_t *clock, display_t display)
{
int mclk;
int divider, shift;
int best_diff = 999999999;
/* Try 288MHz and 336MHz clocks. */
for (mclk = 288000000; mclk <= 336000000; mclk += 48000000) {
/* For CRT, try dividers 1 and 3, for panel, try divider 5 as well. */
for (divider = 1; divider <= (display == PANEL ? 5 : 3); divider += 2) {
/* Try all 8 shift values. */
for (shift = 0; shift < 8; shift++) {
/* Calculate difference with requested clock. */
int diff = roundDiv(mclk, (divider << shift)) - requested_clock;
if (diff < 0)
diff = -diff;
/* If the difference is less than the current, use it. */
if (diff < best_diff) {
/* Store best difference. */
best_diff = diff;
/* Store clock values. */
clock->mclk = mclk;
clock->divider = divider;
clock->shift = shift;
}
}
}
}
/* Return best clock. */
return clock->mclk / (clock->divider << clock->shift);
}
/* Finds the requested mode in the mode table. */
static mode_table_t *
findMode(mode_table_t *mode_table, int width, int height, int refresh_rate)
{
/* Walk the entire mode table. */
while (mode_table->pixel_clock != 0) {
/* If this mode matches the requested mode, return it! */
if (mode_table->horizontal_display_end == width &&
mode_table->vertical_display_end == height &&
mode_table->vertical_frequency == refresh_rate)
return (mode_table);
/* Next entry in the mode table. */
mode_table++;
}
/* No mode found. */
return (NULL);
}
/* Converts the VESA timing into Voyager timing. */
static void
adjustMode(mode_table_t *vesaMode, mode_table_t *mode, display_t display)
{
int blank_width, sync_start, sync_width;
clock_select_t clock;
/* Calculate the VESA line and screen frequencies. */
vesaMode->horizontal_frequency = roundDiv(vesaMode->pixel_clock,
vesaMode->horizontal_total);
vesaMode->vertical_frequency = roundDiv(vesaMode->horizontal_frequency,
vesaMode->vertical_total);
/* Calculate the sync percentages of the VESA mode. */
blank_width = vesaMode->horizontal_total - vesaMode->horizontal_display_end;
sync_start = roundDiv((vesaMode->horizontal_sync_start -
vesaMode->horizontal_display_end) * 100, blank_width);
sync_width = roundDiv(vesaMode->horizontal_sync_width * 100, blank_width);
/* Copy VESA mode into Voyager mode. */
*mode = *vesaMode;
/* Find the best pixel clock. */
mode->pixel_clock = findClock(vesaMode->pixel_clock * 2,
&clock, display) / 2;
/* Calculate the horizontal total based on the pixel clock and VESA line
* frequency. */
mode->horizontal_total = roundDiv(mode->pixel_clock,
vesaMode->horizontal_frequency);
/* Calculate the sync start and width based on the VESA percentages. */
blank_width = mode->horizontal_total - mode->horizontal_display_end;
mode->horizontal_sync_start = mode->horizontal_display_end +
roundDiv(blank_width * sync_start, 100);
mode->horizontal_sync_width = roundDiv(blank_width * sync_width, 100);
/* Calculate the line and screen frequencies. */
mode->horizontal_frequency = roundDiv(mode->pixel_clock,
mode->horizontal_total);
mode->vertical_frequency = roundDiv(mode->horizontal_frequency,
mode->vertical_total);
}
/* Fill the register structure. */
static void
setModeRegisters(reg_table_t *register_table, mode_table_t *mode,
display_t display, int bpp, int fbPitch)
{
clock_select_t clock;
memset(&clock, 0, sizeof(clock));
/* Calculate the clock register values. */
findClock(mode->pixel_clock * 2, &clock, display);
if (display == PANEL) {
/* Set clock value for panel. */
register_table->clock =
(clock.mclk == 288000000 ?
FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_SELECT, 288) :
FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_SELECT, 336)) |
(clock.divider == 1 ?
FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 1) :
(clock.divider == 3 ?
FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 3) :
FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 5))) |
FIELD_VALUE(0, CURRENT_POWER_CLOCK, P2XCLK_SHIFT, clock.shift);
/* Set control register value. */
register_table->control =
(mode->vertical_sync_polarity == POSITIVE ?
FIELD_SET(0, PANEL_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_HIGH) :
FIELD_SET(0, PANEL_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_LOW)) |
(mode->horizontal_sync_polarity == POSITIVE ?
FIELD_SET(0, PANEL_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_HIGH) :
FIELD_SET(0, PANEL_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_LOW)) |
FIELD_SET(0, PANEL_DISPLAY_CTRL, TIMING, ENABLE) |
FIELD_SET(0, PANEL_DISPLAY_CTRL, PLANE, ENABLE) |
(bpp == 8 ?
FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 8) :
(bpp == 16 ?
FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 16) :
FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 32)));
/* Set timing registers. */
register_table->horizontal_total =
FIELD_VALUE(0, PANEL_HORIZONTAL_TOTAL, TOTAL,
mode->horizontal_total - 1) |
FIELD_VALUE(0, PANEL_HORIZONTAL_TOTAL, DISPLAY_END,
mode->horizontal_display_end - 1);
register_table->horizontal_sync =
FIELD_VALUE(0, PANEL_HORIZONTAL_SYNC, WIDTH,
mode->horizontal_sync_width) |
FIELD_VALUE(0, PANEL_HORIZONTAL_SYNC, START,
mode->horizontal_sync_start - 1);
register_table->vertical_total =
FIELD_VALUE(0, PANEL_VERTICAL_TOTAL, TOTAL,
mode->vertical_total - 1) |
FIELD_VALUE(0, PANEL_VERTICAL_TOTAL, DISPLAY_END,
mode->vertical_display_end - 1);
register_table->vertical_sync =
FIELD_VALUE(0, PANEL_VERTICAL_SYNC, HEIGHT,
mode->vertical_sync_height) |
FIELD_VALUE(0, PANEL_VERTICAL_SYNC, START,
mode->vertical_sync_start - 1);
}
else {
/* Set clock value for CRT. */
register_table->clock =
(clock.mclk == 288000000 ?
FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_SELECT, 288) :
FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_SELECT, 336)) |
(clock.divider == 1 ?
FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_DIVIDER, 1) :
FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_DIVIDER, 3)) |
FIELD_VALUE(0, CURRENT_POWER_CLOCK, V2XCLK_SHIFT, clock.shift);
/* Set control register value.*/
register_table->control =
(mode->vertical_sync_polarity == POSITIVE ?
FIELD_SET(0, CRT_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_HIGH) :
FIELD_SET(0, CRT_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_LOW)) |
(mode->horizontal_sync_polarity == POSITIVE ?
FIELD_SET(0, CRT_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_HIGH) :
FIELD_SET(0, CRT_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_LOW)) |
FIELD_SET(0, CRT_DISPLAY_CTRL, SELECT, CRT) |
FIELD_SET(0, CRT_DISPLAY_CTRL, TIMING, ENABLE) |
FIELD_SET(0, CRT_DISPLAY_CTRL, PLANE, ENABLE) |
(bpp == 8 ?
FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 8) :
(bpp == 16 ?
FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 16) :
FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 32)));
/* Set timing registers. */
register_table->horizontal_total =
FIELD_VALUE(0, CRT_HORIZONTAL_TOTAL, TOTAL,
mode->horizontal_total - 1) |
FIELD_VALUE(0, CRT_HORIZONTAL_TOTAL, DISPLAY_END,
mode->horizontal_display_end - 1);
register_table->horizontal_sync =
FIELD_VALUE(0, CRT_HORIZONTAL_SYNC, WIDTH,
mode->horizontal_sync_width) |
FIELD_VALUE(0, CRT_HORIZONTAL_SYNC, START,
mode->horizontal_sync_start - 1);
register_table->vertical_total =
FIELD_VALUE(0, CRT_VERTICAL_TOTAL, TOTAL,
mode->vertical_total - 1) |
FIELD_VALUE(0, CRT_VERTICAL_TOTAL, DISPLAY_END,
mode->vertical_display_end - 1);
register_table->vertical_sync =
FIELD_VALUE(0, CRT_VERTICAL_SYNC, HEIGHT,
mode->vertical_sync_height) |
FIELD_VALUE(0, CRT_VERTICAL_SYNC, START,
mode->vertical_sync_start - 1);
}
/* Set up framebuffer pitch, from passed in value */
register_table->fb_width = mode->horizontal_display_end * (bpp / 8);
register_table->fb_width = fbPitch;
/* Calculate frame buffer width and height. */
register_table->width = mode->horizontal_display_end;
register_table->height = mode->vertical_display_end;
/* Save display type. */
register_table->display = display;
}
/* Program the mode with the registers specified. */
static void
programMode(SMIPtr pSmi, reg_table_t *register_table)
{
unsigned int value, gate, clock;
unsigned int palette_ram;
unsigned int fb_size, offset;
/* Get current power configuration. */
gate = regRead32(pSmi, CURRENT_POWER_GATE);
gate |= 0x08; /* Enable power to 2D engine */
gate = FIELD_SET(gate, CURRENT_POWER_GATE, CSC, ENABLE);
gate = FIELD_SET(gate, CURRENT_POWER_GATE, ZVPORT, ENABLE);
gate = FIELD_SET(gate, CURRENT_POWER_GATE, GPIO_PWM_I2C, ENABLE);
clock = regRead32(pSmi, CURRENT_POWER_CLOCK);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, MCLK_SELECT, 336);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, MCLK_DIVIDER, 3);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, MCLK_SHIFT, 0);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, M2XCLK_SELECT, 336);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, M2XCLK_DIVIDER, 1);
clock = FIELD_SET(clock, CURRENT_POWER_CLOCK, M2XCLK_SHIFT, 1);
/* Program panel. */
if (register_table->display == PANEL) {
/* Program clock, enable display controller. */
gate = FIELD_SET(gate, CURRENT_POWER_GATE, DISPLAY, ENABLE);
clock &= FIELD_CLEAR(CURRENT_POWER_CLOCK, P2XCLK_SELECT) &
FIELD_CLEAR(CURRENT_POWER_CLOCK, P2XCLK_DIVIDER) &
FIELD_CLEAR(CURRENT_POWER_CLOCK, P2XCLK_SHIFT);
setPower(pSmi, gate, clock | register_table->clock);
/* Calculate frame buffer address. */
value = 0;
fb_size = register_table->fb_width * register_table->height;
if (FIELD_GET(regRead32(pSmi, CRT_DISPLAY_CTRL),
CRT_DISPLAY_CTRL,
PLANE) == CRT_DISPLAY_CTRL_PLANE_ENABLE) {
value = FIELD_GET(regRead32(pSmi, CRT_FB_ADDRESS),
CRT_FB_ADDRESS, ADDRESS);
if (fb_size < value)
value = 0;
else
value += FIELD_GET(regRead32(pSmi, CRT_FB_WIDTH),
CRT_FB_WIDTH, OFFSET) *
(FIELD_GET(regRead32(pSmi, CRT_VERTICAL_TOTAL),
CRT_VERTICAL_TOTAL, DISPLAY_END) + 1);
}
/* Program panel registers. */
regWrite32(pSmi, PANEL_FB_ADDRESS,
FIELD_SET(0, PANEL_FB_ADDRESS, STATUS, PENDING) |
FIELD_SET(0, PANEL_FB_ADDRESS, EXT, LOCAL) |
FIELD_VALUE(0, PANEL_FB_ADDRESS, ADDRESS, value));
regWrite32(pSmi, PANEL_FB_WIDTH,
FIELD_VALUE(0, PANEL_FB_WIDTH, WIDTH,
register_table->fb_width) |
FIELD_VALUE(0, PANEL_FB_WIDTH, OFFSET,
register_table->fb_width));
regWrite32(pSmi, PANEL_WINDOW_WIDTH,
FIELD_VALUE(0, PANEL_WINDOW_WIDTH, WIDTH,
register_table->width) |
FIELD_VALUE(0, PANEL_WINDOW_WIDTH, X, 0));
regWrite32(pSmi, PANEL_WINDOW_HEIGHT,
FIELD_VALUE(0, PANEL_WINDOW_HEIGHT, HEIGHT,
register_table->height) |
FIELD_VALUE(0, PANEL_WINDOW_HEIGHT, Y, 0));
regWrite32(pSmi, PANEL_PLANE_TL,
FIELD_VALUE(0, PANEL_PLANE_TL, TOP, 0) |
FIELD_VALUE(0, PANEL_PLANE_TL, LEFT, 0));
regWrite32(pSmi, PANEL_PLANE_BR,
FIELD_VALUE(0, PANEL_PLANE_BR, BOTTOM,
register_table->height - 1) |
FIELD_VALUE(0, PANEL_PLANE_BR, RIGHT,
register_table->width - 1));
regWrite32(pSmi, PANEL_HORIZONTAL_TOTAL,
register_table->horizontal_total);
regWrite32(pSmi, PANEL_HORIZONTAL_SYNC,
register_table->horizontal_sync);
regWrite32(pSmi, PANEL_VERTICAL_TOTAL,
register_table->vertical_total);
regWrite32(pSmi, PANEL_VERTICAL_SYNC,
register_table->vertical_sync);
/* Program panel display control register. */
value = regRead32(pSmi, PANEL_DISPLAY_CTRL) &
FIELD_CLEAR(PANEL_DISPLAY_CTRL, VSYNC_PHASE) &
FIELD_CLEAR(PANEL_DISPLAY_CTRL, HSYNC_PHASE) &
FIELD_CLEAR(PANEL_DISPLAY_CTRL, TIMING) &
FIELD_CLEAR(PANEL_DISPLAY_CTRL, PLANE) &
FIELD_CLEAR(PANEL_DISPLAY_CTRL, FORMAT);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, value | register_table->control);
/* Palette RAM. */
palette_ram = PANEL_PALETTE_RAM;
/* Turn on panel. */
panelPowerSequence(pSmi, PANEL_ON, 4);
regWrite32(pSmi, MISC_CTRL,
FIELD_SET (regRead32 (pSmi, MISC_CTRL), MISC_CTRL,
DAC_POWER, ENABLE));
regWrite32(pSmi, CRT_DISPLAY_CTRL,
FIELD_SET (regRead32 (pSmi, CRT_DISPLAY_CTRL),
CRT_DISPLAY_CTRL, SELECT, PANEL));
}
/* Program CRT. */
else {
/* Program clock, enable display controller. */
gate = FIELD_SET(gate, CURRENT_POWER_GATE, DISPLAY, ENABLE);
clock &= FIELD_CLEAR(CURRENT_POWER_CLOCK, V2XCLK_SELECT) &
FIELD_CLEAR(CURRENT_POWER_CLOCK, V2XCLK_DIVIDER) &
FIELD_CLEAR(CURRENT_POWER_CLOCK, V2XCLK_SHIFT);
setPower(pSmi, gate, clock | register_table->clock);
/* Turn on DAC. */
regWrite32(pSmi, MISC_CTRL, FIELD_SET(regRead32(pSmi, MISC_CTRL),
MISC_CTRL, DAC_POWER, ENABLE));
/* Calculate frame buffer address. */
value = 0;
fb_size = register_table->fb_width * register_table->height;
if (FIELD_GET(regRead32(pSmi, PANEL_DISPLAY_CTRL),
PANEL_DISPLAY_CTRL,
PLANE) == PANEL_DISPLAY_CTRL_PLANE_ENABLE) {
value = FIELD_GET(regRead32(pSmi, PANEL_FB_ADDRESS),
PANEL_FB_ADDRESS, ADDRESS);
if (fb_size < value)
value = 0;
else
value += FIELD_GET(regRead32(pSmi, PANEL_FB_WIDTH),
PANEL_FB_WIDTH, OFFSET) *
FIELD_GET(regRead32(pSmi, PANEL_WINDOW_HEIGHT),
PANEL_WINDOW_HEIGHT, HEIGHT);
}
/* Program CRT registers. */
regWrite32(pSmi, CRT_FB_ADDRESS,
FIELD_SET(0, CRT_FB_ADDRESS, STATUS, PENDING) |
FIELD_SET(0, CRT_FB_ADDRESS, EXT, LOCAL) |
FIELD_VALUE(0, CRT_FB_ADDRESS, ADDRESS, value));
regWrite32(pSmi, CRT_FB_WIDTH,
FIELD_VALUE(0, CRT_FB_WIDTH, WIDTH,
register_table->fb_width) |
FIELD_VALUE(0, CRT_FB_WIDTH, OFFSET,
register_table->fb_width));
regWrite32(pSmi, CRT_HORIZONTAL_TOTAL,
register_table->horizontal_total);
regWrite32(pSmi, CRT_HORIZONTAL_SYNC,
register_table->horizontal_sync);
regWrite32(pSmi, CRT_VERTICAL_TOTAL,
register_table->vertical_total);
regWrite32(pSmi, CRT_VERTICAL_SYNC,
register_table->vertical_sync);
/* Program CRT display control register. */
value = regRead32(pSmi, CRT_DISPLAY_CTRL) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, VSYNC_PHASE) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, HSYNC_PHASE) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, SELECT) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, TIMING) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, PLANE) &
FIELD_CLEAR(CRT_DISPLAY_CTRL, FORMAT);
regWrite32(pSmi, CRT_DISPLAY_CTRL, value | register_table->control);
/* Palette RAM. */
palette_ram = CRT_PALETTE_RAM;
/* Turn on CRT. */
setDPMS(pSmi, DPMS_ON);
}
/* In case of 8-bpp, fill palette. */
if (FIELD_GET(register_table->control,
PANEL_DISPLAY_CTRL,
FORMAT) == PANEL_DISPLAY_CTRL_FORMAT_8) {
/* Start with RGB = 0,0,0. */
BYTE red = 0, green = 0, blue = 0;
unsigned int gray = 0;
for (offset = 0; offset < 256 * 4; offset += 4) {
/* Store current RGB value. */
/* ERROR!!!!! IGX RGB should be a function, maybe RGB16?
regWrite32(pSmi, (palette_ram + offset),
(gray ? (RGB((gray + 50) / 100,
(gray + 50) / 100,
(gray + 50) / 100))
: (RGB(red, green, blue))));
*/
if (gray) /* Walk through grays (40 in total). */
gray += 654;
else { /* Walk through colors (6 per base color). */
if (blue != 255)
blue += 51;
else if (green != 255) {
blue = 0;
green += 51;
}
else if (red != 255) {
green = blue = 0;
red += 51;
}
else
gray = 1;
}
}
}
/* For 16- and 32-bpp, fill palette with gamma values. */
else {
/* Start with RGB = 0,0,0. */
value = 0x000000;
for (offset = 0; offset < 256 * 4; offset += 4) {
regWrite32(pSmi, palette_ram + offset, value);
/* Advance RGB by 1,1,1. */
value += 0x010101;
}
}
}
static void
SetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, display_t display,
int fbPitch, int bpp)
{
mode_table_t mode;
pmode_table_t vesaMode;
reg_table_t register_table;
/* Locate the mode */
vesaMode = findMode(mode_table, nWidth, nHeight, nHertz);
if (vesaMode != NULL) {
/* Convert VESA timing into Voyager timing */
adjustMode(vesaMode, &mode, display);
/* Fill the register structure */
setModeRegisters(®ister_table, &mode, display, bpp, fbPitch);
/* Program the registers */
programMode(pSmi, ®ister_table);
}
}
static void
panelSetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, int fbPitch, int bpp)
{
SetMode(pSmi, nWidth, nHeight, fMode, 60 /* was nHertz */, PANEL,
fbPitch, bpp);
}
static void
crtSetMode(SMIPtr pSmi, unsigned int nWidth, unsigned int nHeight,
unsigned int fMode, unsigned int nHertz, int fbPitch, int bpp)
{
SetMode(pSmi, nWidth, nHeight, fMode, nHertz, CRT,
fbPitch, bpp);
}
/*
*
*
* From POWER.C
*
*
*/
/* Program new power mode. */
static void
setPower(SMIPtr pSmi, unsigned int nGates, unsigned int Clock)
{
unsigned int gate_reg, clock_reg;
unsigned int control_value;
/* Get current power mode. */
control_value = FIELD_GET(regRead32(pSmi, POWER_MODE_CTRL),
POWER_MODE_CTRL, MODE);
switch (control_value) {
case POWER_MODE_CTRL_MODE_MODE0:
/* Switch from mode 0 to mode 1. */
gate_reg = POWER_MODE1_GATE;
clock_reg = POWER_MODE1_CLOCK;
control_value = FIELD_SET(control_value,
POWER_MODE_CTRL, MODE, MODE1);
break;
case POWER_MODE_CTRL_MODE_MODE1:
case POWER_MODE_CTRL_MODE_SLEEP:
/* Switch from mode 1 or sleep to mode 0. */
gate_reg = POWER_MODE0_GATE;
clock_reg = POWER_MODE0_CLOCK;
control_value = FIELD_SET(control_value,
POWER_MODE_CTRL, MODE, MODE0);
break;
default:
/* Invalid mode */
return;
}
/* Program new power mode. */
regWrite32(pSmi, gate_reg, nGates);
regWrite32(pSmi, clock_reg, Clock);
regWrite32(pSmi, POWER_MODE_CTRL, control_value);
/* When returning from sleep, wait until finished. */
/* IGX -- comment out for now, gets us in an infinite loop!
while (FIELD_GET(regRead32(pSmi, POWER_MODE_CTRL),
POWER_MODE_CTRL,
SLEEP_STATUS) == POWER_MODE_CTRL_SLEEP_STATUS_ACTIVE) ;
*/
}
/* Set DPMS state. */
void
setDPMS(SMIPtr pSmi, DPMS_t state)
{
unsigned int value;
value = regRead32(pSmi, SYSTEM_CTRL);
switch (state) {
case DPMS_ON:
value = FIELD_SET(value, SYSTEM_CTRL, DPMS, VPHP);
break;
case DPMS_STANDBY:
value = FIELD_SET(value, SYSTEM_CTRL, DPMS, VPHN);
break;
case DPMS_SUSPEND:
value = FIELD_SET(value, SYSTEM_CTRL, DPMS, VNHP);
break;
case DPMS_OFF:
value = FIELD_SET(value, SYSTEM_CTRL, DPMS, VNHN);
break;
}
regWrite32(pSmi, SYSTEM_CTRL, value);
}
/* Panel Code */
/**********************************************************************
*
* panelWaitVSync
*
* Purpose
* Wait for the specified number of panel Vsyncs
*
* Parameters
* [in]
* vsync_count - Number of Vsyncs to wait
*
* [out]
* None
*
* Returns
* Nothing
*
**********************************************************************/
static void
panelWaitVSync(SMIPtr pSmi, int vsync_count)
{
unsigned int status;
unsigned int timeout;
while (vsync_count-- > 0) {
/* Wait for end of vsync */
timeout = 0;
do {
status = FIELD_GET(regRead32(pSmi, CMD_INTPR_STATUS),
CMD_INTPR_STATUS, PANEL_SYNC);
if (++timeout == VSYNCTIMEOUT)
break;
} while (status == CMD_INTPR_STATUS_PANEL_SYNC_ACTIVE);
/* Wait for start of vsync */
timeout = 0;
do {
status = FIELD_GET(regRead32(pSmi, CMD_INTPR_STATUS),
CMD_INTPR_STATUS, PANEL_SYNC);
if (++timeout == VSYNCTIMEOUT)
break;
} while (status == CMD_INTPR_STATUS_PANEL_SYNC_INACTIVE);
}
}
/**********************************************************************
*
* panelPowerSequence
*
* Purpose
* Turn the panel On/Off
*
* Parameters
* [in]
* on_off - Turn panel On/Off. Can be:
* PANEL_ON
* PANEL_OFF
* vsync_delay - Number of Vsyncs to wait after each signal is
* turned on/off
*
* [out]
* None
*
* Returns
* Nothing
*
**********************************************************************/
static void
panelPowerSequence(SMIPtr pSmi, panel_state_t on_off, int vsync_delay)
{
unsigned int panelControl = regRead32(pSmi, PANEL_DISPLAY_CTRL);
if (on_off == PANEL_ON) {
/* Turn on FPVDDEN. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, FPVDDEN, HIGH);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn on FPDATA. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, DATA, ENABLE);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn on FPVBIAS. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, VBIASEN, HIGH);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn on FPEN. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, FPEN, HIGH);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
}
else {
/* Turn off FPEN. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, FPEN, LOW);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn off FPVBIASEN. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, VBIASEN, LOW);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn off FPDATA. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, DATA, DISABLE);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
panelWaitVSync(pSmi, vsync_delay);
/* Turn off FPVDDEN. */
panelControl = FIELD_SET(panelControl,
PANEL_DISPLAY_CTRL, FPVDDEN, LOW);
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panelControl);
}
}
/**********************************************************************
*
* panelUseCRT
*
* Purpose
* Enable/disable routing of panel output to CRT monitor
*
* Parameters
* [in]
* bEnable - TRUE enables routing of panel output to CRT monitor
* FALSE disables routing of panel output to CRT monitor
*
* [out]
* None
*
* Returns
* Nothing
*
**********************************************************************/
static void
panelUseCRT(SMIPtr pSmi, BOOL bEnable)
{
unsigned int panel_ctrl = 0;
unsigned int crt_ctrl = 0;
panel_ctrl = regRead32(pSmi, PANEL_DISPLAY_CTRL);
crt_ctrl = regRead32(pSmi, CRT_DISPLAY_CTRL);
if (bEnable) {
/* Enable panel graphics plane */
panel_ctrl = FIELD_SET(panel_ctrl, PANEL_DISPLAY_CTRL, PLANE, ENABLE);
/* Disable CRT graphics plane */
crt_ctrl = FIELD_SET(crt_ctrl, CRT_DISPLAY_CTRL, PLANE, DISABLE);
/* Route panel data to CRT monitor */
crt_ctrl = FIELD_SET(crt_ctrl, CRT_DISPLAY_CTRL, SELECT, PANEL);
}
else {
/* Disable panel graphics plane */
panel_ctrl = FIELD_SET(panel_ctrl, PANEL_DISPLAY_CTRL, PLANE, DISABLE);
/* Enable CRT graphics plane */
crt_ctrl = FIELD_SET(crt_ctrl, CRT_DISPLAY_CTRL, PLANE, ENABLE);
/* Do not route panel data to CRT monitor */
crt_ctrl = FIELD_SET(crt_ctrl, CRT_DISPLAY_CTRL, SELECT, CRT);
}
regWrite32(pSmi, PANEL_DISPLAY_CTRL, panel_ctrl);
regWrite32(pSmi, CRT_DISPLAY_CTRL, crt_ctrl);
}
void
DisableOverlay(SMIPtr pSmi)
{
int dwVal = READ_VPR(pSmi, 0x00);
WRITE_VPR(pSmi, 0x00, dwVal & 0xfffffffb);
}
void
EnableOverlay(SMIPtr pSmi)
{
int dwVal = READ_VPR(pSmi, 0x00);
WRITE_VPR(pSmi, 0x00, dwVal | 0x00000004);
}
|