/* * Creator, Creator3D and Elite3D framebuffer driver. * * Copyright (C) 2000 Jakub Jelinek (jakub@redhat.com) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * JAKUB JELINEK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "xf86.h" #include "xf86_OSproc.h" #include "mipointer.h" #include "micmap.h" #include "fb.h" #include "xf86cmap.h" #include "ffb.h" static const OptionInfoRec * FFBAvailableOptions(int chipid, int busid); static void FFBIdentify(int flags); static Bool FFBProbe(DriverPtr drv, int flags); static Bool FFBPreInit(ScrnInfoPtr pScrn, int flags); static Bool FFBScreenInit(SCREEN_INIT_ARGS_DECL); static Bool FFBEnterVT(VT_FUNC_ARGS_DECL); static void FFBLeaveVT(VT_FUNC_ARGS_DECL); static Bool FFBCloseScreen(CLOSE_SCREEN_ARGS_DECL); static Bool FFBSaveScreen(ScreenPtr pScreen, int mode); static void FFBDPMSSet(ScrnInfoPtr pScrn, int mode, int flags); /* Required if the driver supports mode switching */ static Bool FFBSwitchMode(SWITCH_MODE_ARGS_DECL); /* Required if the driver supports moving the viewport */ static void FFBAdjustFrame(ADJUST_FRAME_ARGS_DECL); /* Optional functions */ static void FFBFreeScreen(FREE_SCREEN_ARGS_DECL); static ModeStatus FFBValidMode(SCRN_ARG_TYPE arg, DisplayModePtr mode, Bool verbose, int flags); static void FFBDPMSMode(ScrnInfoPtr pScrn, int DPMSMode, int flags); /* ffb_dga.c */ extern void FFB_InitDGA(ScreenPtr pScreen); void FFBSync(ScrnInfoPtr pScrn); #define FFB_VERSION 4000 #define FFB_NAME "SUNFFB" #define FFB_DRIVER_NAME "sunffb" #define FFB_MAJOR_VERSION PACKAGE_VERSION_MAJOR #define FFB_MINOR_VERSION PACKAGE_VERSION_MINOR #define FFB_PATCHLEVEL PACKAGE_VERSION_PATCHLEVEL /* * This contains the functions needed by the server after loading the driver * module. It must be supplied, and gets passed back by the SetupProc * function in the dynamic case. In the static case, a reference to this * is compiled in, and this requires that the name of this DriverRec be * an upper-case version of the driver name. */ _X_EXPORT DriverRec SUNFFB = { FFB_VERSION, FFB_DRIVER_NAME, FFBIdentify, FFBProbe, FFBAvailableOptions, NULL, 0 }; typedef enum { OPTION_SW_CURSOR, OPTION_HW_CURSOR, OPTION_NOACCEL } FFBOpts; static const OptionInfoRec FFBOptions[] = { { OPTION_SW_CURSOR, "SWcursor", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_HW_CURSOR, "HWcursor", OPTV_BOOLEAN, {0}, FALSE }, { OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE }, { -1, NULL, OPTV_NONE, {0}, FALSE } }; #ifdef XFree86LOADER static MODULESETUPPROTO(ffbSetup); static XF86ModuleVersionInfo sunffbVersRec = { "sunffb", MODULEVENDORSTRING, MODINFOSTRING1, MODINFOSTRING2, XORG_VERSION_CURRENT, FFB_MAJOR_VERSION, FFB_MINOR_VERSION, FFB_PATCHLEVEL, ABI_CLASS_VIDEODRV, ABI_VIDEODRV_VERSION, MOD_CLASS_VIDEODRV, {0,0,0,0} }; _X_EXPORT XF86ModuleData sunffbModuleData = { &sunffbVersRec, ffbSetup, NULL }; pointer ffbSetup(pointer module, pointer opts, int *errmaj, int *errmin) { static Bool setupDone = FALSE; if (!setupDone) { setupDone = TRUE; xf86AddDriver(&SUNFFB, module, 0); /* * Modules that this driver always requires can be loaded here * by calling LoadSubModule(). */ /* * The return value must be non-NULL on success even though there * is no TearDownProc. */ return (pointer)TRUE; } else { if (errmaj) *errmaj = LDR_ONCEONLY; return NULL; } } #endif /* XFree86LOADER */ static Bool FFBGetRec(ScrnInfoPtr pScrn) { /* * Allocate an FFBRec, and hook it into pScrn->driverPrivate. * pScrn->driverPrivate is initialised to NULL, so we can check if * the allocation has already been done. */ if (pScrn->driverPrivate != NULL) return TRUE; pScrn->driverPrivate = xnfcalloc(sizeof(FFBRec), 1); return TRUE; } static void FFBFreeRec(ScrnInfoPtr pScrn) { FFBPtr pFfb; if (pScrn->driverPrivate == NULL) return; pFfb = GET_FFB_FROM_SCRN(pScrn); free(pScrn->driverPrivate); pScrn->driverPrivate = NULL; return; } static const OptionInfoRec * FFBAvailableOptions(int chipid, int busid) { return FFBOptions; } /* Mandatory */ static void FFBIdentify(int flags) { xf86Msg(X_INFO, "%s: driver for Creator, Creator 3D and Elite 3D\n", FFB_NAME); } /* Mandatory */ static Bool FFBProbe(DriverPtr drv, int flags) { int i; GDevPtr *devSections; int *usedChips; int numDevSections; int numUsed; Bool foundScreen = FALSE; EntityInfoPtr pEnt; /* * The aim here is to find all cards that this driver can handle, * and for the ones not already claimed by another driver, claim the * slot, and allocate a ScrnInfoRec. * * This should be a minimal probe, and it should under no circumstances * change the state of the hardware. Because a device is found, don't * assume that it will be used. Don't do any initialisations other than * the required ScrnInfoRec initialisations. Don't allocate any new * data structures. */ /* * Next we check, if there has been a chipset override in the config file. * For this we must find out if there is an active device section which * is relevant, i.e., which has no driver specified or has THIS driver * specified. */ if ((numDevSections = xf86MatchDevice(FFB_DRIVER_NAME, &devSections)) <= 0) { /* * There's no matching device section in the config file, so quit * now. */ return FALSE; } /* * We need to probe the hardware first. We then need to see how this * fits in with what is given in the config file, and allow the config * file info to override any contradictions. */ numUsed = xf86MatchSbusInstances(FFB_NAME, SBUS_DEVICE_FFB, devSections, numDevSections, drv, &usedChips); free(devSections); if (numUsed <= 0) return FALSE; if (flags & PROBE_DETECT) foundScreen = TRUE; else for (i = 0; i < numUsed; i++) { pEnt = xf86GetEntityInfo(usedChips[i]); /* * Check that nothing else has claimed the slots. */ if(pEnt->active) { ScrnInfoPtr pScrn; /* Allocate a ScrnInfoRec and claim the slot */ pScrn = xf86AllocateScreen(drv, 0); /* Fill in what we can of the ScrnInfoRec */ pScrn->driverVersion = FFB_VERSION; pScrn->driverName = FFB_DRIVER_NAME; pScrn->name = FFB_NAME; pScrn->Probe = FFBProbe; pScrn->PreInit = FFBPreInit; pScrn->ScreenInit = FFBScreenInit; pScrn->SwitchMode = FFBSwitchMode; pScrn->AdjustFrame = FFBAdjustFrame; pScrn->EnterVT = FFBEnterVT; pScrn->LeaveVT = FFBLeaveVT; pScrn->FreeScreen = FFBFreeScreen; pScrn->ValidMode = FFBValidMode; xf86AddEntityToScreen(pScrn, pEnt->index); foundScreen = TRUE; } free(pEnt); } free(usedChips); return foundScreen; } /* Mandatory */ static Bool FFBPreInit(ScrnInfoPtr pScrn, int flags) { FFBPtr pFfb; sbusDevicePtr psdp; MessageType from; int i; if (flags & PROBE_DETECT) return FALSE; /* * Note: This function is only called once at server startup, and * not at the start of each server generation. This means that * only things that are persistent across server generations can * be initialised here. xf86Screens[] is (pScrn is a pointer to one * of these). Privates allocated using xf86AllocateScrnInfoPrivateIndex() * are too, and should be used for data that must persist across * server generations. * * Per-generation data should be allocated with * AllocateScreenPrivateIndex() from the ScreenInit() function. */ /* Allocate the FFBRec driverPrivate */ if (!FFBGetRec(pScrn)) return FALSE; pFfb = GET_FFB_FROM_SCRN(pScrn); /* Set pScrn->monitor */ pScrn->monitor = pScrn->confScreen->monitor; /* This driver doesn't expect more than one entity per screen */ if (pScrn->numEntities > 1) return FALSE; /* This is the general case */ for (i = 0; i < pScrn->numEntities; i++) { EntityInfoPtr pEnt = xf86GetEntityInfo(pScrn->entityList[i]); /* FFB is purely UPA (but we handle it as SBUS) */ if (pEnt->location.type == BUS_SBUS) { psdp = xf86GetSbusInfoForEntity(pEnt->index); pFfb->psdp = psdp; } else return FALSE; } /********************* deal with depth *********************/ if (!xf86SetDepthBpp(pScrn, 24, 0, 32, Support32bppFb)) { return FALSE; } else { /* Check that the returned depth is one we support */ switch (pScrn->depth) { case 24: /* OK */ break; default: xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Given depth (%d) is not supported by this driver\n", pScrn->depth); return FALSE; } } /* Collect all of the relevant option flags (fill in pScrn->options) */ xf86CollectOptions(pScrn, NULL); /* Process the options */ if (!(pFfb->Options = malloc(sizeof(FFBOptions)))) return FALSE; memcpy(pFfb->Options, FFBOptions, sizeof(FFBOptions)); xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, pFfb->Options); /* * This must happen after pScrn->display has been set because * xf86SetWeight references it. */ if (pScrn->depth > 8) { rgb weight = {8, 8, 8}; rgb mask = {0xff, 0xff00, 0xff0000}; if (!xf86SetWeight(pScrn, weight, mask)) { return FALSE; } } if (!xf86SetDefaultVisual(pScrn, -1)) return FALSE; /* * The new cmap code requires this to be initialised. */ { Gamma zeros = {0.0, 0.0, 0.0}; if (!xf86SetGamma(pScrn, zeros)) { return FALSE; } } /* Set the bits per RGB for 8bpp mode */ from = X_DEFAULT; /* determine whether we use hardware or software cursor */ pFfb->HWCursor = TRUE; if (xf86GetOptValBool(pFfb->Options, OPTION_HW_CURSOR, &pFfb->HWCursor)) from = X_CONFIG; if (xf86ReturnOptValBool(pFfb->Options, OPTION_SW_CURSOR, FALSE)) { from = X_CONFIG; pFfb->HWCursor = FALSE; } xf86DrvMsg(pScrn->scrnIndex, from, "Using %s cursor\n", pFfb->HWCursor ? "HW" : "SW"); if (xf86ReturnOptValBool(pFfb->Options, OPTION_NOACCEL, FALSE)) { pFfb->NoAccel = TRUE; xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Acceleration disabled\n"); } if (xf86LoadSubModule(pScrn, "fb") == NULL) { FFBFreeRec(pScrn); return FALSE; } if (!pFfb->NoAccel) { if (xf86LoadSubModule(pScrn, "xaa") == NULL) { xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Loading XAA failed, acceleration disabled\n"); pFfb->NoAccel = TRUE; } } if (pFfb->HWCursor && xf86LoadSubModule(pScrn, "ramdac") == NULL) { FFBFreeRec(pScrn); return FALSE; } if (xf86LoadSubModule(pScrn, "dbe") == NULL) { FFBFreeRec(pScrn); return FALSE; } /********************* set up clock and mode stuff *********************/ pScrn->progClock = TRUE; if(pScrn->display->virtualX || pScrn->display->virtualY) { xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "FFB does not support a virtual desktop\n"); pScrn->display->virtualX = 0; pScrn->display->virtualY = 0; } xf86SbusUseBuiltinMode(pScrn, pFfb->psdp); pScrn->currentMode = pScrn->modes; pScrn->displayWidth = pScrn->virtualX; /* Set display resolution */ xf86SetDpi(pScrn, 0, 0); return TRUE; } /* Determine the FFB/AFB board type. We need this information even * if acceleration is disabled because the ramdac support layer needs * to know what kind of FFB/AFB this is. */ static void FFBProbeBoardType(FFBPtr pFfb) { ffb_fbcPtr ffb = pFfb->regs; volatile unsigned int *afb_fem; unsigned int val; afb_fem = ((volatile unsigned int *) ((char *)ffb + 0x1540)); val = *afb_fem; val &= 0x7f; xf86Msg(X_INFO, "%s: ", pFfb->psdp->device); if (val == 0x3f || val == 0x07 || val == 0x01) { /* When firmware has not been loaded onto AFB we * just assume it is an M6 board. */ if (val == 0x3f || val != 0x07) { pFfb->ffb_type = afb_m6; ErrorF("AFB: Detected Elite3D/M6.\n"); } else { pFfb->ffb_type = afb_m3; ErrorF("AFB: Detected Elite3D/M3.\n"); } /* These attributes are invariant on AFB. */ pFfb->has_double_res = 0; pFfb->has_z_buffer = 1; pFfb->has_double_buffer = 1; } else { unsigned char sbits; /* Read the board strapping bits twice, because sometimes * the strapping pins can get misrouted to the bus interface * on the first attempt. The second attempt will get the * correct value. */ sbits = *((volatile unsigned char *)pFfb->strapping_bits); sbits = *((volatile unsigned char *)pFfb->strapping_bits); switch (sbits & 0x78) { case (0x0 << 5) | (0x0 << 3): pFfb->ffb_type = ffb1_prototype; ErrorF("Detected FFB1 pre-FCS prototype, "); break; case (0x0 << 5) | (0x1 << 3): pFfb->ffb_type = ffb1_standard; ErrorF("Detected FFB1, "); break; case (0x0 << 5) | (0x3 << 3): pFfb->ffb_type = ffb1_speedsort; ErrorF("Detected FFB1-SpeedSort, "); break; case (0x1 << 5) | (0x0 << 3): pFfb->ffb_type = ffb2_prototype; ErrorF("Detected FFB2/vertical pre-FCS prototype, "); break; case (0x1 << 5) | (0x1 << 3): pFfb->ffb_type = ffb2_vertical; ErrorF("Detected FFB2/vertical, "); break; case (0x1 << 5) | (0x2 << 3): pFfb->ffb_type = ffb2_vertical_plus; ErrorF("Detected FFB2+/vertical, "); break; case (0x2 << 5) | (0x0 << 3): pFfb->ffb_type = ffb2_horizontal; ErrorF("Detected FFB2/horizontal, "); break; case (0x2 << 5) | (0x2 << 3): pFfb->ffb_type = ffb2_horizontal; ErrorF("Detected FFB2+/horizontal, "); break; default: pFfb->ffb_type = ffb2_vertical; ErrorF("Unknown boardID[%08x], assuming FFB2, ", sbits); break; }; if (sbits & (1 << 2)) { ErrorF("DoubleRES, "); pFfb->has_double_res = 1; } else { pFfb->has_double_res = 0; } if (sbits & (1 << 1)) { ErrorF("Z-buffer, "); pFfb->has_z_buffer = 1; } else { pFfb->has_z_buffer = 0; } if (sbits & (1 << 0)) { /* This state really means to the driver that the double * buffers are available for hw accelerate Dbe. When the * FFB is in high-resolution mode, the buffers are combined * into one single large framebuffer. So in high-resolution * hw accelerated double-buffering is not available. */ if ((ffb->fbcfg0 & FFB_FBCFG0_RES_MASK) != FFB_FBCFG0_RES_HIGH) pFfb->has_double_buffer = 1; else pFfb->has_double_buffer = 0; } else { pFfb->has_double_buffer = 0; } if (pFfb->has_double_buffer) ErrorF("Double-buffered.\n"); else ErrorF("Single-buffered.\n"); } } /* Mandatory */ /* This gets called at the start of each server generation */ static Bool FFBScreenInit(SCREEN_INIT_ARGS_DECL) { ScrnInfoPtr pScrn; FFBPtr pFfb; int ret; unsigned int afb_fem; VisualPtr visual; /* * First get the ScrnInfoRec */ pScrn = xf86ScreenToScrn(pScreen); pFfb = GET_FFB_FROM_SCRN(pScrn); /* Map the FFB framebuffer, for each view. */ /* 24-bit RGB Dumb view */ pFfb->fb = pFfb->dfb24 = xf86MapSbusMem (pFfb->psdp, FFB_DFB24_VOFF, 0x1000000); if (! pFfb->dfb24) return FALSE; /* 8-bit R Dumb view */ pFfb->dfb8r = xf86MapSbusMem (pFfb->psdp, FFB_DFB8R_VOFF, 0x400000); if (! pFfb->dfb8r) return FALSE; /* 8-bit X Dumb view */ pFfb->dfb8x = xf86MapSbusMem (pFfb->psdp, FFB_DFB8X_VOFF, 0x400000); if (! pFfb->dfb8x) return FALSE; /* 32-bit RGB Smart view */ pFfb->sfb32 = xf86MapSbusMem (pFfb->psdp, FFB_SFB32_VOFF, 0x1000000); if (!pFfb->sfb32) return FALSE; /* 8-bit R Smart view */ pFfb->sfb8r = xf86MapSbusMem(pFfb->psdp, FFB_SFB8R_VOFF, 0x400000); if (!pFfb->sfb8r) return FALSE; /* 8-bit X Smart view */ pFfb->sfb8x = xf86MapSbusMem(pFfb->psdp, FFB_SFB8X_VOFF, 0x400000); if (!pFfb->sfb8x) return FALSE; /* Map the rendering pipeline */ pFfb->regs = xf86MapSbusMem (pFfb->psdp, FFB_FBC_REGS_VOFF, 16384); if (! pFfb->regs) return FALSE; /* Map the ramdac */ pFfb->dac = xf86MapSbusMem (pFfb->psdp, FFB_DAC_VOFF, 8192); if (! pFfb->dac) return FALSE; /* Map the board strapping bits */ pFfb->strapping_bits = (volatile unsigned int *) xf86MapSbusMem(pFfb->psdp, FFB_EXP_VOFF, 8192); if (! pFfb->strapping_bits) return FALSE; /* Probe for the type of FFB/AFB we have. */ FFBProbeBoardType(pFfb); /* Now that we have the board type, we can init the ramdac layer. */ if (FFBDacInit(pFfb) == FALSE) return FALSE; /* OK, a fun gross hack to detect if this is * AFB and if so whether the correct firmware * has been loaded. The machine will flatline * if you try to use certain acceleration features * without the full firmware loaded. * * The bootup Elite3D/AFB firmware is minimal, and * will leave the FloatEnableMask register at a * value of 0x01. Creator{,3D} lacks the FEM register * and will return a "nonsense" value on attempts to * read this location. After experimentation, an * appropriate definition for "nonsense" seems to * be anything with all low 7 bits not 0x3f, 0x07, * of 0x01. * * If the FEM register is non-zero and is some value * other than 0x1 (usually 0x3f or 0x7 depending upon * whether the card has 3 or 6 floats) we can assume * the correct firmware has been loaded. -DaveM */ afb_fem = *(unsigned int *)((char *)pFfb->regs + 0x1540); if ((afb_fem & 0x7f) != 0x3f && (afb_fem & 0x7f) != 0x07 && (afb_fem & 0x7f) != 0x01) xf86Msg(X_INFO, "%s: Detected Creator/Creator3D\n", pFfb->psdp->device); else { xf86Msg(X_INFO, "%s: Detected Elite3D M3/M6, checking firmware...\n", pFfb->psdp->device); if (afb_fem == 0x1) { xf86Msg(X_INFO, "%s: ... AFB firmware not loaded\n", pFfb->psdp->device); if (!pFfb->NoAccel) { xf86Msg(X_WARNING, "%s: Forcing no acceleration on Elite3D M3/M6\n", pFfb->psdp->device); pFfb->NoAccel = TRUE; } } else xf86Msg(X_INFO, "%s: ... AFB firmware is loaded\n", pFfb->psdp->device); } /* Darken the screen for aesthetic reasons and set the viewport */ FFBSaveScreen(pScreen, SCREEN_SAVER_ON); /* * The next step is to setup the screen's visuals, and initialise the * framebuffer code. In cases where the framebuffer's default * choices for things like visual layouts and bits per RGB are OK, * this may be as simple as calling the framebuffer's ScreenInit() * function. If not, the visuals will need to be setup before calling * a fb ScreenInit() function and fixed up after. */ /* * Reset visual list. */ miClearVisualTypes(); /* Setup the visuals we support. */ if (!miSetVisualTypes(24, TrueColorMask, pScrn->rgbBits, TrueColor)) return FALSE; if (!miSetPixmapDepths()) return FALSE; /* * Call the framebuffer layer's ScreenInit function, and fill in other * pScreen fields. */ ret = fbScreenInit(pScreen, (pFfb->NoAccel ? pFfb->dfb24 : pFfb->sfb32), pScrn->virtualX, pScrn->virtualY, pScrn->xDpi, pScrn->yDpi, 2048, 32); if (!ret) return FALSE; if (pScrn->bitsPerPixel > 8) { /* Fixup RGB ordering */ visual = pScreen->visuals + pScreen->numVisuals; while (--visual >= pScreen->visuals) { if ((visual->class | DynamicClass) == DirectColor) { visual->offsetRed = pScrn->offset.red; visual->offsetGreen = pScrn->offset.green; visual->offsetBlue = pScrn->offset.blue; visual->redMask = pScrn->mask.red; visual->greenMask = pScrn->mask.green; visual->blueMask = pScrn->mask.blue; } } } if (!fbPictureInit(pScreen, NULL, 0) && (serverGeneration == 1)) xf86DrvMsg(pScrn->scrnIndex, X_WARNING, "RENDER extension initialisation failed.\n"); xf86SetBlackWhitePixels(pScreen); if (!pFfb->NoAccel) { if (!FFBAccelInit(pScreen, pFfb)) return FALSE; xf86Msg(X_INFO, "%s: Using acceleration\n", pFfb->psdp->device); } xf86SetBackingStore(pScreen); xf86SetSilkenMouse(pScreen); /* Initialise cursor functions */ miDCInitialize (pScreen, xf86GetPointerScreenFuncs()); /* Initialize HW cursor layer. * Must follow software cursor initialization. */ if (pFfb->HWCursor) { if(!FFBHWCursorInit(pScreen)) { xf86DrvMsg(pScrn->scrnIndex, X_ERROR, "Hardware cursor initialization failed\n"); return(FALSE); } xf86SbusHideOsHwCursor(pFfb->psdp); } /* Initialise default colourmap. */ if (!miCreateDefColormap(pScreen)) return FALSE; /* Initialize colormap layer. * Must follow initialization of the default colormap. */ if (!xf86HandleColormaps(pScreen, 256, 8, FFBDacLoadPalette, NULL, CMAP_LOAD_EVEN_IF_OFFSCREEN | CMAP_RELOAD_ON_MODE_SWITCH)) return FALSE; /* Setup DGA support. */ if (!pFfb->NoAccel) FFB_InitDGA(pScreen); xf86DPMSInit(pScreen, FFBDPMSSet, 0); pFfb->CloseScreen = pScreen->CloseScreen; pScreen->CloseScreen = FFBCloseScreen; pScreen->SaveScreen = FFBSaveScreen; (void) xf86DPMSInit(pScreen, FFBDPMSMode, 0); /* Report any unused options (only for the first generation) */ if (serverGeneration == 1) { xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options); } /* unblank the screen */ FFBSaveScreen(pScreen, SCREEN_SAVER_OFF); /* Done */ return TRUE; } /* Usually mandatory */ static Bool FFBSwitchMode(SWITCH_MODE_ARGS_DECL) { return TRUE; } /* * This function is used to initialize the Start Address - the first * displayed location in the video memory. */ /* Usually mandatory */ static void FFBAdjustFrame(ADJUST_FRAME_ARGS_DECL) { /* we don't support virtual desktops */ return; } /* * This is called when VT switching back to the X server. Its job is * to reinitialise the video mode. */ /* Mandatory */ static Bool FFBEnterVT(VT_FUNC_ARGS_DECL) { SCRN_INFO_PTR(arg); FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn); pFfb->vtSema = FALSE; if (!pFfb->NoAccel) CreatorVtChange (pScrn->pScreen, TRUE); if (pFfb->HWCursor) xf86SbusHideOsHwCursor (pFfb->psdp); FFBDacEnterVT(pFfb); return TRUE; } /* * This is called when VT switching away from the X server. */ /* Mandatory */ static void FFBLeaveVT(VT_FUNC_ARGS_DECL) { SCRN_INFO_PTR(arg); FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn); FFBDacLeaveVT(pFfb); if (!pFfb->NoAccel) CreatorVtChange (pScrn->pScreen, FALSE); if (pFfb->HWCursor) xf86SbusHideOsHwCursor (pFfb->psdp); pFfb->vtSema = TRUE; return; } /* * This is called at the end of each server generation. It restores the * original (text) mode. It should really also unmap the video memory too. */ /* Mandatory */ static Bool FFBCloseScreen(CLOSE_SCREEN_ARGS_DECL) { ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen); FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn); /* Restore kernel ramdac state before we unmap registers. */ FFBDacFini(pFfb); pScrn->vtSema = FALSE; xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb24, 0x1000000); xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb8r, 0x400000); xf86UnmapSbusMem(pFfb->psdp, pFfb->dfb8x, 0x400000); xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb32, 0x1000000); xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb8r, 0x400000); xf86UnmapSbusMem(pFfb->psdp, pFfb->sfb8x, 0x400000); xf86UnmapSbusMem(pFfb->psdp, pFfb->regs, 16384); xf86UnmapSbusMem(pFfb->psdp, pFfb->dac, 8192); xf86UnmapSbusMem(pFfb->psdp, (void *)pFfb->strapping_bits, 8192); if (pFfb->HWCursor) xf86SbusHideOsHwCursor (pFfb->psdp); pScreen->CloseScreen = pFfb->CloseScreen; return (*pScreen->CloseScreen)(CLOSE_SCREEN_ARGS); } /* Free up any per-generation data structures */ /* Optional */ static void FFBFreeScreen(FREE_SCREEN_ARGS_DECL) { SCRN_INFO_PTR(arg); FFBFreeRec(pScrn); } /* Checks if a mode is suitable for the selected chipset. */ /* Optional */ static ModeStatus FFBValidMode(SCRN_ARG_TYPE arg, DisplayModePtr mode, Bool verbose, int flags) { if (mode->Flags & V_INTERLACE) return MODE_BAD; return MODE_OK; } /* Do screen blanking */ /* Mandatory */ static Bool FFBSaveScreen(ScreenPtr pScreen, int mode) /* This function blanks the screen when mode=SCREEN_SAVER_ON and unblanks it when mode=SCREEN_SAVER_OFF. It is used internally in the FFBScreenInit code `for aesthetic reasons,' and it is used for blanking if you set "xset s on s blank." The work (such as it is) is done in "ffb_dac.c" `for aesthetic reasons.' */ { ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen); return FFBDacSaveScreen(GET_FFB_FROM_SCRN(pScrn), mode); } static void FFBDPMSSet(ScrnInfoPtr pScrn, int mode, int flags) { FFBPtr pFfb = GET_FFB_FROM_SCRN(pScrn); FFBDacDPMSMode(pFfb, mode, 0); } /* * This is the implementation of the Sync() function. */ void FFBSync(ScrnInfoPtr pScrn) { return; } /* Hook for DPMS Mode. */ static void FFBDPMSMode(ScrnInfoPtr pScrn, int DPMSMode, int flags) { FFBDacDPMSMode(GET_FFB_FROM_SCRN(pScrn), DPMSMode, flags); }