/* $Xorg: fontscale.c,v 1.5 2001/02/09 02:04:03 xorgcvs Exp $ */ /* Copyright 1991, 1998 The Open Group Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. */ /* * Author: Keith Packard, MIT X Consortium */ #include "fntfilst.h" #ifdef _XOPEN_SOURCE #include #else #define _XOPEN_SOURCE /* to get prototype for hypot on some systems */ #include #undef _XOPEN_SOURCE #endif Bool FontFileAddScaledInstance (entry, vals, pFont, bitmapName) FontEntryPtr entry; FontScalablePtr vals; FontPtr pFont; char *bitmapName; { FontScalableEntryPtr scalable; FontScalableExtraPtr extra; FontScaledPtr new; int newsize; scalable = &entry->u.scalable; extra = scalable->extra; if (extra->numScaled == extra->sizeScaled) { newsize = extra->sizeScaled + 4; new = (FontScaledPtr) xrealloc (extra->scaled, newsize * sizeof (FontScaledRec)); if (!new) return FALSE; extra->sizeScaled = newsize; extra->scaled = new; } new = &extra->scaled[extra->numScaled++]; new->vals = *vals; new->pFont = pFont; new->bitmap = (FontEntryPtr) bitmapName; if (pFont) pFont->fpePrivate = (pointer) entry; return TRUE; } /* Must call this after the directory is sorted */ void FontFileSwitchStringsToBitmapPointers (dir) FontDirectoryPtr dir; { int s; int b; int i; FontEntryPtr scalable; FontEntryPtr nonScalable; FontScaledPtr scaled; FontScalableExtraPtr extra; scalable = dir->scalable.entries; nonScalable = dir->nonScalable.entries; for (s = 0; s < dir->scalable.used; s++) { extra = scalable[s].u.scalable.extra; scaled = extra->scaled; for (i = 0; i < extra->numScaled; i++) for (b = 0; b < dir->nonScalable.used; b++) if (nonScalable[b].name.name == (char *) scaled[i].bitmap) scaled[i].bitmap = &nonScalable[b]; } } void FontFileRemoveScaledInstance (entry, pFont) FontEntryPtr entry; FontPtr pFont; { FontScalableEntryPtr scalable; FontScalableExtraPtr extra; int i; scalable = &entry->u.scalable; extra = scalable->extra; for (i = 0; i < extra->numScaled; i++) { if (extra->scaled[i].pFont == pFont) { if (extra->scaled[i].vals.ranges) xfree (extra->scaled[i].vals.ranges); extra->numScaled--; for (; i < extra->numScaled; i++) extra->scaled[i] = extra->scaled[i+1]; } } } Bool FontFileCompleteXLFD (vals, def) register FontScalablePtr vals; FontScalablePtr def; { FontResolutionPtr res; int num_res; double sx, sy, temp_matrix[4]; double pixel_setsize_adjustment = 1.0; /* * If two of the three vertical scale values are specified, compute the * third. If all three are specified, make sure they are consistent * (within a pixel) * * One purpose of this procedure is to complete XLFD names in a * repeatable manner. That is, if the user partially specifies * a name (say, pixelsize but not pointsize), the results generated * here result in a fully specified name that will result in the * same font. */ res = GetClientResolutions(&num_res); if (!(vals->values_supplied & PIXELSIZE_MASK) || !(vals->values_supplied & POINTSIZE_MASK)) { /* If resolution(s) unspecified and cannot be computed from pixelsize and pointsize, get appropriate defaults. */ if (num_res) { if (vals->x <= 0) vals->x = res->x_resolution; if (vals->y <= 0) vals->y = res->y_resolution; } if (vals->x <= 0) vals->x = def->x; if (vals->y <= 0) vals->y = def->y; } else { /* If needed, compute resolution values from the pixel and pointsize information we were given. This problem is overdetermined (four equations, two unknowns), but we don't check for inconsistencies here. If they exist, they will show up in later tests for the point and pixel sizes. */ if (vals->y <= 0) { double x = hypot(vals->pixel_matrix[1], vals->pixel_matrix[3]); double y = hypot(vals->point_matrix[1], vals->point_matrix[3]); if (y < EPS) return FALSE; vals->y = (int)(x * 72.27 / y + .5); } if (vals->x <= 0) { /* If the pixelsize was given as an array, or as a scalar that has been normalized for the pixel shape, we have enough information to compute a separate horizontal resolution */ if ((vals->values_supplied & PIXELSIZE_MASK) == PIXELSIZE_ARRAY || (vals->values_supplied & PIXELSIZE_MASK) == PIXELSIZE_SCALAR_NORMALIZED) { double x = hypot(vals->pixel_matrix[0], vals->pixel_matrix[2]); double y = hypot(vals->point_matrix[0], vals->point_matrix[2]); if (y < EPS) return FALSE; vals->x = (int)(x * 72.27 / y + .5); } else { /* Not enough information in the pixelsize array. Just assume the pixels are square. */ vals->x = vals->y; } } } if (vals->x <= 0 || vals->y <= 0) return FALSE; /* If neither pixelsize nor pointsize is defined, take the pointsize from the defaults structure we've been passed. */ if (!(vals->values_supplied & PIXELSIZE_MASK) && !(vals->values_supplied & POINTSIZE_MASK)) { if (num_res) { vals->point_matrix[0] = vals->point_matrix[3] = (double)res->point_size / 10.0; vals->point_matrix[1] = vals->point_matrix[2] = 0; vals->values_supplied = (vals->values_supplied & ~POINTSIZE_MASK) | POINTSIZE_SCALAR; } else if (def->values_supplied & POINTSIZE_MASK) { vals->point_matrix[0] = def->point_matrix[0]; vals->point_matrix[1] = def->point_matrix[1]; vals->point_matrix[2] = def->point_matrix[2]; vals->point_matrix[3] = def->point_matrix[3]; vals->values_supplied = (vals->values_supplied & ~POINTSIZE_MASK) | (def->values_supplied & POINTSIZE_MASK); } else return FALSE; } /* At this point, at least two of the three vertical scale values should be specified. Our job now is to compute the missing ones and check for agreement between overspecified values */ /* If pixelsize was specified by a scalar, we need to fix the matrix now that we know the resolutions. */ if ((vals->values_supplied & PIXELSIZE_MASK) == PIXELSIZE_SCALAR) { /* pixel_setsize_adjustment used below to modify permissible error in pixel/pointsize matching, since multiplying a number rounded to integer changes the amount of the error caused by the rounding */ pixel_setsize_adjustment = (double)vals->x / (double)vals->y; vals->pixel_matrix[0] *= pixel_setsize_adjustment; vals->values_supplied = vals->values_supplied & ~PIXELSIZE_MASK | PIXELSIZE_SCALAR_NORMALIZED; } sx = (double)vals->x / 72.27; sy = (double)vals->y / 72.27; /* If a pointsize was specified, make sure pixelsize is consistent to within 1 pixel, then replace pixelsize with a consistent floating-point value. */ if (vals->values_supplied & POINTSIZE_MASK) { recompute_pixelsize: ; temp_matrix[0] = vals->point_matrix[0] * sx; temp_matrix[1] = vals->point_matrix[1] * sy; temp_matrix[2] = vals->point_matrix[2] * sx; temp_matrix[3] = vals->point_matrix[3] * sy; if (vals->values_supplied & PIXELSIZE_MASK) { if (fabs(vals->pixel_matrix[0] - temp_matrix[0]) > pixel_setsize_adjustment || fabs(vals->pixel_matrix[1] - temp_matrix[1]) > 1 || fabs(vals->pixel_matrix[2] - temp_matrix[2]) > 1 || fabs(vals->pixel_matrix[3] - temp_matrix[3]) > 1) return FALSE; } if ((vals->values_supplied & PIXELSIZE_MASK) == PIXELSIZE_ARRAY && (vals->values_supplied & POINTSIZE_MASK) == POINTSIZE_SCALAR) { /* In the special case that pixelsize came as an array and pointsize as a scalar, recompute the pointsize matrix from the pixelsize matrix. */ goto recompute_pointsize; } /* Refresh pixel matrix with precise values computed from pointsize and resolution. */ vals->pixel_matrix[0] = temp_matrix[0]; vals->pixel_matrix[1] = temp_matrix[1]; vals->pixel_matrix[2] = temp_matrix[2]; vals->pixel_matrix[3] = temp_matrix[3]; /* Set values_supplied for pixel to match that for point */ vals->values_supplied = (vals->values_supplied & ~PIXELSIZE_MASK) | (((vals->values_supplied & POINTSIZE_MASK) == POINTSIZE_ARRAY) ? PIXELSIZE_ARRAY : PIXELSIZE_SCALAR_NORMALIZED); } else { /* Pointsize unspecified... compute from pixel size and resolutions */ recompute_pointsize: ; if (fabs(sx) < EPS || fabs(sy) < EPS) return FALSE; vals->point_matrix[0] = vals->pixel_matrix[0] / sx; vals->point_matrix[1] = vals->pixel_matrix[1] / sy; vals->point_matrix[2] = vals->pixel_matrix[2] / sx; vals->point_matrix[3] = vals->pixel_matrix[3] / sy; /* Set values_supplied for pixel to match that for point */ vals->values_supplied = (vals->values_supplied & ~POINTSIZE_MASK) | (((vals->values_supplied & PIXELSIZE_MASK) == PIXELSIZE_ARRAY) ? POINTSIZE_ARRAY : POINTSIZE_SCALAR); /* If we computed scalar pointsize from scalar pixelsize, round pointsize to decipoints and recompute pixelsize so we end up with a repeatable name */ if ((vals->values_supplied & POINTSIZE_MASK) == POINTSIZE_SCALAR) { /* Off-diagonal elements should be zero since no matrix was specified. */ vals->point_matrix[0] = (double)(int)(vals->point_matrix[0] * 10.0 + .5) / 10.0; vals->point_matrix[3] = (double)(int)(vals->point_matrix[3] * 10.0 + .5) / 10.0; goto recompute_pixelsize; } } /* We've succeeded. Round everything to a few decimal places for repeatability. */ vals->pixel_matrix[0] = xlfd_round_double(vals->pixel_matrix[0]); vals->pixel_matrix[1] = xlfd_round_double(vals->pixel_matrix[1]); vals->pixel_matrix[2] = xlfd_round_double(vals->pixel_matrix[2]); vals->pixel_matrix[3] = xlfd_round_double(vals->pixel_matrix[3]); vals->point_matrix[0] = xlfd_round_double(vals->point_matrix[0]); vals->point_matrix[1] = xlfd_round_double(vals->point_matrix[1]); vals->point_matrix[2] = xlfd_round_double(vals->point_matrix[2]); vals->point_matrix[3] = xlfd_round_double(vals->point_matrix[3]); /* Fill in the deprecated fields for the benefit of rasterizers that do not handle the matrices. */ vals->point = vals->point_matrix[3] * 10; vals->pixel = vals->pixel_matrix[3]; return TRUE; } static Bool MatchScalable (a, b) FontScalablePtr a, b; { int i; /* Some asymmetry here: we assume that the first argument (a) is the table entry and the second (b) the item we're trying to match (the key). We'll consider the fonts matched if the relevant metrics match *and* if a) the table entry doesn't have charset subsetting or b) the table entry has identical charset subsetting to that in the key. We could add logic to check if the table entry has a superset of the charset required by the key, but we'll resist the urge for now. */ #define EQUAL(a,b) ((a)[0] == (b)[0] && \ (a)[1] == (b)[1] && \ (a)[2] == (b)[2] && \ (a)[3] == (b)[3]) if (!(a->x == b->x && a->y == b->y && (a->width == b->width || a->width == 0 || b->width == 0) && (!(b->values_supplied & PIXELSIZE_MASK) || (a->values_supplied & PIXELSIZE_MASK) == (b->values_supplied & PIXELSIZE_MASK) && EQUAL(a->pixel_matrix, b->pixel_matrix)) && (!(b->values_supplied & POINTSIZE_MASK) || (a->values_supplied & POINTSIZE_MASK) == (b->values_supplied & POINTSIZE_MASK) && EQUAL(a->point_matrix, b->point_matrix)) && (a->nranges == 0 || a->nranges == b->nranges))) return FALSE; for (i = 0; i < a->nranges; i++) if (a->ranges[i].min_char_low != b->ranges[i].min_char_low || a->ranges[i].min_char_high != b->ranges[i].min_char_high || a->ranges[i].max_char_low != b->ranges[i].max_char_low || a->ranges[i].max_char_high != b->ranges[i].max_char_high) return FALSE; return TRUE; } FontScaledPtr FontFileFindScaledInstance (entry, vals, noSpecificSize) FontEntryPtr entry; FontScalablePtr vals; { FontScalableEntryPtr scalable; FontScalableExtraPtr extra; FontScalablePtr mvals; int dist, i; int mini; double mindist; register double temp, sum=0.0; #define NORMDIFF(a, b) ( \ temp = (a)[0] - (b)[0], \ sum = temp * temp, \ temp = (a)[1] - (b)[1], \ sum += temp * temp, \ temp = (a)[2] - (b)[2], \ sum += temp * temp, \ temp = (a)[3] - (b)[3], \ sum + temp * temp ) scalable = &entry->u.scalable; extra = scalable->extra; if (noSpecificSize && extra->numScaled) { mini = 0; mindist = NORMDIFF(extra->scaled[0].vals.point_matrix, vals->point_matrix); for (i = 1; i < extra->numScaled; i++) { if (extra->scaled[i].pFont && !extra->scaled[i].pFont->info.cachable) continue; mvals = &extra->scaled[i].vals; dist = NORMDIFF(mvals->point_matrix, vals->point_matrix); if (dist < mindist) { mindist = dist; mini = i; } } if (extra->scaled[mini].pFont && !extra->scaled[mini].pFont->info.cachable) return 0; return &extra->scaled[mini]; } else { /* See if we've scaled to this value yet */ for (i = 0; i < extra->numScaled; i++) { if (extra->scaled[i].pFont && !extra->scaled[i].pFont->info.cachable) continue; if (MatchScalable (&extra->scaled[i].vals, vals)) return &extra->scaled[i]; } } return 0; }