The X Input Extension 2.x ========================= :toclevels: 3 :toc: :numbered: Authors: - Peter Hutterer (Red Hat) - Daniel Stone (Collabora Ltd.) - Chase Douglas (Canonical, Ltd.) - Povilas Kanapickas [[history]] History ------- - v2.4, September 2021: Touchpad gesture support added - v2.3, December 2012: Pointer barrier events added - v2.2, March 2012: Multitouch support added - v2.1, December 2011: new raw event behaviour, smooth scrolling support added - v2.0, October 2009: Initial release of XI2 protocol [[intro-xi20]] Introduction ------------ The X Input Extension version 2.0 (XI2) is the second major release of the X Input Extension. XI2 provides a number of enhancements over version 1.5, including: - use of XGE and GenericEvents. GenericEvents are of flexible length with a minimum length of 32 bytes. - explicit device hierarchy of master and slave devices. See Section <>. - use of multiple independent master devices (Multi-Pointer X or MPX). - the ability for devices to change capabilities at runtime. - raw device events XI2's intent is to replace both core input processing and prior versions of the X Input Extension. Historically, the majority of applications employed the core protocol requests and events to handle user input. The core protocol does not provide information about which device generated the event. The X Input Extension version up to 1.5 requires the differentiation between core and extended devices. Extended devices may not be core devices and thus cannot be used on applications employing the core protocol. XI2 addresses both of these issues by enabling devices to be both extended and core devices and providing device information in each event (with the exception of core events). Changes in version 2.1 ---------------------- - RawEvents are sent regardless of the grab state. - Addition of the ScrollClass for smooth scrolling Changes in version 2.2 ---------------------- - Multitouch support added Changes in version 2.3 ---------------------- - Pointer barrier events added Changes in version 2.4 ---------------------- - Touchpad gesture support added // ❧❧❧❧❧❧❧❧❧❧❧ Notations used in this document ------------------------------- Notation for requests: ┌─── Name of request name of request field: type of request field name of request field: type of request field ▶ name of reply field: type of reply field └─── Notation for events: ┌─── Name of event name of field: type of field name of field: type of field └─── Complex fields are specified in the following notation: name of field: COMPLEXFIELDTYPE or, if multiple of these fields exist: name of field: LISTofCOMPLEXFIELDTYPE COMPLEXFIELDTYPE: { name of subfield: type of subfield, name of subfield: type of subfield } // ❧❧❧❧❧❧❧❧❧❧❧ Interoperability between version 1.x and 2.0 -------------------------------------------- There is little interaction between 1.x and 2.x versions of the X Input Extension. Clients are requested to avoid mixing XI1.x and XI2 code as much as possible. Several direct incompatibilities are observable: [[interop-xi1-limitations]] Limitations resulting from different variable ranges ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ XI2 provides a larger range for some fields than XI1. As a result, XI1 clients may not receive data an XI2 client receives. These fields include: - devices with a deviceid of greater than 127 are invisible to XI1 clients. - key events and key grabs featuring larger than 255 can only be sent to XI2 clients. - no subpixel information is available to XI1 clients. If motion events are in a subpixel range only, the server may omit these events and an XI 1.x client will not receive events until the pixel boundary is crossed. [[interop-xi1-grabs]] Blocking of grabs ~~~~~~~~~~~~~~~~~ XI1 grabs are different to XI2 grab and a device may not be grabbed through an XI2 grab if an XI1 grab is currently active on this device or vice versa. Likewise, a keycode or button already grabbed by an XI 1.x or XI2 client may not be grabbed with the same modifier combination by an XI2 or XI 1.x client, respectively. [[interop-xi1-device-list]] Invisibility of Master Devices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ XI 1.x was not designed with support for multiple master devices. As a result, only the first master pointer and master keyboard are visible to XI 1.x clients; all other master devices are invisible and cannot be accessed from XI 1.x calls. Smooth scrolling ~~~~~~~~~~~~~~~~ Historically, X implemented scrolling events by using button press events: button 4 was one “click” of the scroll wheel upwards, button 5 was downwards, button 6 was one unit of scrolling left, and button 7 was one unit of scrolling right. This is insufficient for e.g. touchpads which are able to provide scrolling events through multi-finger drag gestures, or simply dragging your finger along a designated strip along the side of the touchpad. Newer X servers may provide scrolling information through valuators to provide clients with more precision than the legacy button events. This scrolling information is part of the valuator data in device events. Scrolling events do not have a specific event type. Valuators for axes sending scrolling information must have one ScrollClass for each scrolling axis. If scrolling valuators are present on a device, the server must provide two-way emulation between these valuators and the legacy button events for each delta unit of scrolling. One unit of scrolling in either direction is considered to be equivalent to one button event, e.g. for a unit size of 1.0, -2.0 on an valuator type Vertical sends two button press/release events for button 4. Likewise, a button press event for button 7 generates an event on the Horizontal valuator with a value of +1.0. The server may accumulate deltas of less than one unit of scrolling. Any server providing this behaviour marks emulated button or valuator events with the XIPointerEmulated flag for DeviceEvents, and the XIRawEmulated flag for raw events, to hint at applications which event is a hardware event. If more than one scroll valuator of the same type is present on a device, the valuator marked with Preferred for the same scroll direction is used to convert legacy button events into scroll valuator events. If no valuator is marked Preferred or more than one valuator is marked with Preferred for this scroll direction, this should be considered a driver bug and the behaviour is implementation-dependent. [[hierarchy]] The Master/Slave device hierarchy --------------------------------- XI2 introduces a device hierarchy split up into so-called Master Devices (MD) and Slave Devices (SD). [[hierarchy-master]] Master devices ~~~~~~~~~~~~~~ An MD is a virtual device created and managed by the server. MDs may send core events and XI events. However, an MD does not represent a physical device and relies on SDs for event generation. MDs come in two forms: as master pointers or as master keyboards. A master pointer is represented by a visible cursor on the screen. A master keyboard is represented by a keyboard focus. Each master pointer is paired with the respective master keyboard and vice versa, and this pairing is constant for the lifetime of both input devices. Clients can use this pairing behaviour to implement input paradigms that require pointer and keyboard integration (e.g. SHIFT + Click). [[hierarchy-slave]] Slave devices ~~~~~~~~~~~~~ An SD is usually a physical device configured in the server. SDs are not represented by a cursor or keyboard focus and may be attached to a master pointer or master keyboard. SDs can only be attached to any master of the same type (e.g. a physical pointer device can be attached to any master pointer). If an event is generated by an SD - if the SD is attached to a master pointer, it changes the position and/or button state of the master pointer. - if the SD has a keyboard focus other than None, the key event is sent to the focus window. - if the SD is attached to a master keyboard, it sends events to this keyboard's focus window (if applicable) and/or changes the modifier state of this keyboard. - if the SD is not attached to an MD ("floating"), it does not change any master device. The SD has its own (invisible) sprite and its own focus. Both the sprite and the focus must be managed explicitly by the client program. Note: the keyboard focus of an attached slave device is independent to that of the master device. Two keyboard events are generated, once with deviceid and sourceid set to the slave device. This keyboard event is sent to the slave device's focus window. The second event has a deviceid of the master and a sourceid of the slave device. This second event is delivered to the master keyboard's focus window. [[hierarchy-dcce]] Event processing for attached slave devices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Whenever an SD changes its logical state, - the event is delivered as an XI event to any interested clients. If the device is floating, event processing stops. Otherwise, if the device is attached, - the master device changes its classes to reflect the SD's capabilities. All interested clients are notified of this device change. - then, the event is delivered as an XI event from the MD to any interested clients. If the event has been delivered, event processing stops. Otherwise, - the event is delivered as a core event to any interested clients. Given that W is the event window, and P the parent window of W, event delivery to P is only attempted if neither the XI event, nor the core event has been delivered on W. Once an event has been delivered as either XI or core event, event processing stops. [[clientpointer]] The ClientPointer principle ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Many core protocol and some extension requests are ambiguous when multiple master devices are available (e.g. QueryPointer does not specify which pointer). The X server does not have the knowledge to chose the contextually correct master device. For each client, one master pointer is designated as this clients's "ClientPointer". Whenever a client sends an ambiguous request (e.g. QueryPointer), the ClientPointer or the keyboard paired with the ClientPointer is chosen to provide the data for this request. This ClientPointer may be explicitly assigned to a client with the SetClientPointer call. If no ClientPointer is set when a client issues an ambiguous request, the server choses one device as the ClientPointer. The method of choosing a ClientPointer from the available master pointers is implementation-specific. If the master pointer currently set as ClientPointer for one or more clients is removed, the server may either unset the ClientPointer setting or change the ClientPointer to a different master pointer. [[multitouch]] Touch device support -------------------- XI 2.2 introduces support for multi-touch devices. The traditional pointer/keyboard approach enforced by XI 2.0 with the master/slave device hierarchy is not always suitable for multi-touch devices that can provide a dynamic number of touchpoints per physical device; it is not known without client-specific interpretation whether the touchpoints must be considered separately or grouped together. The additions in XI 2.2 aim to: - support a dynamic number of simultaneous touch points, - support devices that are both multi-touch and traditional pointer devices, - allow touchpoints to be either grouped together or handled separately, - be backwards-compatible to pre-XI 2.2 clients through emulation of XI 2.x/XI 1.x and core pointer events. Touch events are only available to clients supporting version 2.2 or later of the X Input Extension. Clients must use the XIQueryVersion request to announce support for this version. Touch devices may generate emulated pointer events alongside XI 2.2 touch events to support older clients; see Section <>. Touch event processing differs from normal event processing in a few ways. The most notable differences are that touch events are processed partially out-of-band from pointer and keyboard events, and that touch events may be sent to multiple clients simultaneously. For more details see Section <>. [[multitouch-lifecycle]] Touch event sequences ~~~~~~~~~~~~~~~~~~~~~ Touch input follows a three-stage cycle: begin - update - update - ... - end i.e. “begin” the sequence by touching the device, “update” the current touch location or properties any number of times, and finally “end” the sequence by ceasing to touch the device. Within this document, the term "touch sequence" is used to describe the above sequence of events. In the protocol, the three stages are represented with the event types TouchBegin, TouchUpdate, and TouchEnd, respectively. A touch sequence always generates TouchBegin and TouchEnd events, and may also generate TouchUpdate events. Clients must select for all three of these events simultaneously. When a touch starts, clients are sent a TouchBegin event detailing the position of the touchpoint, as well as the initial properties of the touchpoint. Note that the logical state of the device (as seen through the input protocol) may lag the physical state if event processing is affected by grabs. Multiple touchpoints may be active on the same device at any time, potentially owned by and/or delivered to a different set of clients. Whenever the touch position or any other property of the touchpoint changes, a TouchUpdate event is sent to all clients listening to events for that touchpoint with the updated information. When the touch has physically ended, or a client will otherwise not receive any more events for a given touchpoint, a TouchEnd event will be sent to that client. Passive touch grabs are similar to standard input event grabs in that they take precedence over event selections and are searched from the root window to the child window (as opposed to selections, which start their search at the child window and continue up to the root window). When a touch grab activates, the client whose grab activates becomes the “owner” of this touch sequence, and must decide what to do with it, as per Section <>. See the <> request documentation for more information on passive grab activation. Only one client may select for touch events from a given device on a window. [[multitouch-ownership]] Ownership of touch sequences ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Once a grabbing client becomes the owner of a touch, it must either “accept” or "reject" the touch sequence using the XIAllowEvents request. If a touch sequence is rejected, a TouchEnd event is sent to the rejecting client, and it will not receive any more events for this touch. The server then looks to the next window in the stack for another passive grab, and attempts to pass ownership on to the next candidate for a passive grab (i.e. the next window towards the final child window with a matching grab), or to the first applicable event selection if there are no more grabs. If a touch sequence is accepted by its owner, all other clients receive TouchEnd events, and the touch sequence is exclusively delivered to the owner from that point on. If the touch sequence physically ends while the owner of the touch sequence has not yet accepted or rejected ownership, the owner receives a TouchEnd event and all other clients receive a TouchUpdate event with the TouchPendingEnd flag set. The owner must still accept or reject the sequence nonetheless. If the owner rejects the touch sequence, the server will still attempt to exhaust all other passive grabs and/or event selections looking for a final owner. If the touch sequence has not physically ended yet and the owner of the touch sequence rejects, the owner receives a TouchEnd event and ownership is passed to the next client. Clients may opt for touch events to be delivered before they become the owner of the touch sequence. In this case, the logical state of the device (as seen by means of the protocol) always matches the physical state of the device. Clients must use caution if they opt for this feature; any action taken must be undone if the touch sequence ends without the client becoming the owner. To select for touch events regardless of ownership, a client must set the TouchOwnership event mask in addition to the TouchBegin, TouchUpdate and TouchEnd mask. When selected, a client will receive touch events as they occur on the device. If and when the client becomes the owner of a touch sequence, a TouchOwnership event is sent to the client. If the client is the initial owner of the sequence, the TouchBegin is immediately followed by the TouchOwnership event. Otherwise, TouchUpdate events may precede a TouchOwnership event. A client is not guaranteed to become the owner of any given touch sequence. The server delivers touch events to all clients that have selected for TouchOwnership and to the current owner of the sequence in parallel. If a client has selected for TouchOwnership and is not the current owner of the sequence and the current owner accepts the sequence, the client receives a TouchEnd event and no further events from this sequence are sent to this client. If a client has selected for TouchOwnership and the physical touch ends before the current owner has accepted or rejected the sequence, the client receives a TouchUpdate event with the TouchPendingEnd flag set. No further TouchUpdate events will be sent for this sequence. If the current owner accepts the sequence, the client receives a TouchEnd event. Otherwise, if the current owner rejects the sequence, the client may become the owner of the touch sequence and receive a TouchOwnership event and a TouchEnd event. [[multitouch-device-modes]] Touch device modes ~~~~~~~~~~~~~~~~~~ Touch devices come in many different forms with varying capabilities. The following device modes are defined for this protocol: 'DirectTouch': These devices map their input region to a subset of the screen region. Touch events are delivered to window at the location of the touch. "direct" here refers to the user manipulating objects at their screen location. An example of a DirectTouch device is a touchscreen. 'DependentTouch': These devices do not have a direct correlation between a touch location and a position on the screen. Touch events are delivered according to the location of the device's cursor and often need to be interpreted relative to the current position of that cursor. Such interactions are usually the result of a gesture performed on the device, rather than direct manipulation. An example of a DependentTouch device is a trackpad. A device is identified as only one of the device modes above at any time, and the touch mode may change at any time. If a device's touch mode changes, an XIDeviceChangedEvent is generated. [[multitouch-processing]] Touch event delivery ~~~~~~~~~~~~~~~~~~~~ For direct touch devices, the window set for event propagation is the set of windows from the root window to the topmost window lying at the co-ordinates of the touch. For dependent devices, the window set for event propagation is the set of windows from the root window to the window that contains the device's pointer. A dependent device may only have one window set at a time, for all touches. Any future touch sequence will use the same window set. The window set is cleared when all touch sequences on the device end. A window set is calculated on TouchBegin and remains constant until the end of the sequence. Modifications to the window hierarchy, new grabs or changed event selection do not affect the window set. Pointer control of dependent devices ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ On a dependent device, the device may differ between a pointer-controlling touch and a non-pointer-controlling touch. For example, on a touchpad the first touch is pointer-controlling (i.e. serves only to move the visible pointer). Multi-finger gestures on a touchpad cause all touches to be non-pointer-controlling. For pointer-controlling touches, no touch events are sent; the touch generates regular pointer events instead. Non-pointer-controlling touches send touch events. A touch may change from pointer-controlling to non-pointer-controlling, or vice versa. - If a touch changes from pointer-controlling to non-pointer-controlling, a new touch ID is assigned and a TouchBegin is sent for the last known position of the touch. Further events are sent as TouchUpdate events, or as TouchEnd event if the touch terminates. - If a touch changes from non-pointer-controlling to pointer-controlling, a TouchEnd is sent for that touch at the last known position of the touch. Further events are sent as pointer events. The conditions to switch from pointer-controlling to non-pointer-controlling touch is implementation-dependent. A device may support touches that are both pointer-controlling and a touch event. In the dependent touch example event sequence below, touches are marked when switching to pointer-controlling (pc) or to non-pointer-controlling (np). .Dependent touch example event sequence on a touchpad [width="50%", options="header"] |==================================================== | Finger 1 | Finger 2 | Event generated(touchid) | down | | Motion | move | | Motion | move | | Motion | (np) | down | TouchBegin(0), TouchBegin(1) | move | -- | TouchUpdate(0) | -- | move | TouchUpdate(1) | up | (pc) | TouchEnd(0), TouchEnd(1) | | move | Motion | down | (np) | TouchBegin(2), TouchBegin(3) | move | -- | TouchUpdate(2) | up | (pc) | TouchEnd(2), TouchEnd(3) | | up | Motion | down | | Motion | (np) | down | TouchBegin(4), TouchBegin(5) | (pc) | up | TouchEnd(4), TouchEnd(5) | move | | Motion | up | | Motion |==================================================== [[multitouch-emulation]] Pointer emulation from multitouch events ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Touch sequences from direct touch devices may emulate pointer events. Only one touch sequence from a device may emulate pointer events at a time; which touch sequence emulates pointer events is implementation-dependent. Pointer events are emulated as follows: - A TouchBegin event generates a pointer motion event to the location of the touch with the same axis values of the touch event, followed by a button press event for button 1. - A TouchUpdate event generates a pointer motion event to the location of the touch and/or to update axis values of the pointer device. The button state as seen from the protocol includes button 1 set. - A TouchEnd event generates a pointer motion event to the location of the touch and/or to update the axis values if either have changed, followed by a button release event for button 1. The button state as seen from the protocol includes button 1 set. If a touch sequence emulates pointer events and an emulated pointer event triggers the activation of a passive grab, the grabbing client becomes the owner of the touch sequence. The touch sequence is considered to have been accepted if - the grab mode is asynchronous, or - the grab mode is synchronous and the device is thawed as a result of AllowEvents with AsyncPointer or AsyncDevice Otherwise, if the button press is replayed by the client, the touch sequence is considered to be rejected. Touch event delivery precedes pointer event delivery. A touch event emulating pointer events is delivered: - as a touch event to the top-most window of the current window set if a client has a touch grab on this window, - otherwise, as a pointer event to the top-most window of the current window set if a client has a pointer grab on this window, - otherwise, to the next child window in the window set until a grab has been found. If no touch or pointer grab on any window is active and the last window in the window set has been reached, the event is delivered: - as a touch event to the window if a client has selected for touch events on this window - otherwise, as a pointer event to the window if a client has selected for pointer events. - otherwise, to the next parent window in the window set until a selection has been found. Emulated pointer events will have the PointerEmulated flag set. A touch event that emulates pointer events has the TouchEmulatingPointer flag set. [[barrier-events]] Pointer barrier events ^^^^^^^^^^^^^^^^^^^^^^ If a master pointer moves against a pointer barrier blocking movement in that pointer's direction, the movement of the pointer is clamped to the x or y coordinate of the barrier, whichever applies. For a description of pointer barriers and barrier creation and destruction see the XFixes protocol specification v 5.0 or later. https://gitlab.freedesktop.org/xorg/proto/xorgproto/raw/master/fixesproto.txt A pointer hitting a blocking barrier creates a new barrier event sequence, identified by a unique event ID. A new event ID is assigned when the pointer first hits a barrier. Subsequent movements against or along the pointer barrier are assigned the same event ID. The event generated by the pointer leaving the barrier, or being released by a client request, is the last event with this event ID. Any future movements of this device blocked by this barrier will be assigned a new event ID. Pointer barrier events are delivered exclusively to the client that created the barrier, and to the window specified in the CreatePointerBarrier request (the "barrier window"). A pointer barrier blocks pointer movement regardless of whether its window is mapped and/or viewable. If the pointer barrier window is destroyed, the pointer barrier remains blocking but a client will not receive further events. If a device is actively grabbed by a client or a passive grab activated for this client, and the pointer moves against a pointer barrier created by this client and the grab-window is the barrier window, that client will receive pointer barrier events if: - owner-events is true or false and the grab's event mask includes pointer barrier events, or - owner-events is true and the client has selected for barrier events on the barrier window. If the grab-window is not the barrier window, the client will receive events if: - the client has selected for barrier events on the barrier window. If the barrier is not owned by this client, no barrier events are sent to this client. The client owning the barrier will receive events if: - the client has pointer barrier events selected on the window associated with the pointer barrier The BarrierDeviceIsGrabbed flag is set whenever a pointer barrier event is generated while the device is actively grabbed by any client or a passive grab has activated for this device prior to the event. [[touch-gestures]] Gesture event sequences ~~~~~~~~~~~~~~~~~~~~~~~ XI 2.4 introduces support for touch gestures. A touch gesture is a interaction of two or more fingers that is interpreted by the driver as a gesture such as swipe or pinch. A pinch gesture is executed when two or more fingers are located on the touchpad and are either changing the relative distance to each other or are changing the relative angle. Pinch gestures may change both rotation and distance at the same time. Swipe gestures are executed when three or more fingers are moved synchronously in the same direction. A single device may only support either touch or gesture events. Gestures are supported only on dependent devices as direct touch devices do not expose enough context about the gestures by design (see <> for explanation of the properties of direct and dependent devices). Gesture events are only available to clients supporting version 2.4 or later of the X Input Extension. Clients must use the XIQueryVersion request to announce support for this version. Gesture event processing differs from normal event processing in a few ways. The most notable differences are that gesture events are processed partially out-of-band from pointer and keyboard events. A single device must not support both touch and gesture events. [[gesture-lifecycle]] Gesture event lifecycle ~~~~~~~~~~~~~~~~~~~~~~~ Gesture input follows a three-stage cycle: begin - update - update - ... - end i.e. “begin” the sequence when the device interprets interaction on it as a gesture, “update” the current gesture location or properties any number of times, and finally “end” the sequence when the interation stops or is no longer a gesture. Within this document, the term "gesture sequence" is used to describe the above sequence of events. Two gesture types are supported: swipe and pinch. In the protocol, there's a separate event type for each of the three stages and gesture types: - GesturePinchBegin - GesturePinchUpdate - GesturePinchEnd - GestureSwipeBegin - GestureSwipeUpdate - GestureSwipeEnd In this document we will use the following abbreviations: - GestureFOOBegin refers to either GesturePinchBegin or GestureSwipeBegin - GestureFOOUpdate refers to either GesturePinchUpdate or GestureSwipeUpdate - GestureFOOEnd refers to either GesturePinchEnd or GestureSwipeEnd A gesture sequence always generates GestureFOOBegin and GestureFOOEnd events, and may also generate GestureFOOUpdate events. Clients must select for all three of these events simultaneously. When a gesture starts, the client is sent a GestureFOOBegin event detailing the position of the gesture, as well as the initial properties of the gesture. Note that the logical state of the device (as seen through the input protocol) may lag the physical state if event processing is affected by grabs. Only one gesture sequence may be active on a specific input device at a time. Whenever the gesture position or any other property of the gesture changes, a GestureFOOUpdate event is sent to the client listening to events for that gesture with the updated information. When the gesture has logically ended, or a client will otherwise not receive any more events for a given gesture, a GestureFOOEnd event will be sent to that client. If a gesture does not physically end but changes the number of touches, a GestureFOOEnd event with the cancel flag set is sent tot he client, followed by a GestureFOOBegin event. This may happen when e.g. at the beginning of a 4 finger gesture, a 3 finger gesture is recognized for a short moment. Clients are expected to undo any actions caused by the cancelled gesture. Passive gesture grabs are similar to standard input event grabs in that they take precedence over event selections and are searched from the root window to the child window (as opposed to selections, which start their search at the child window and continue up to the root window). See the <> request documentation for more information on passive grab activation. Only one client may select for gesture events from a given device on a window. Events originating from a single gesture sequence will generally be sent to a single client. The only exception is when GestureFOOBegin is grabbed and replayed to a subsequent client. In this case, all replaying clients will get GestureFOOBegin and GestureFOOEnd events and the final client will get whole gesture sequence. The decision what client will be sent the gesture sequence happens when the GestureFOOBegin event is received. First, any active device grab is chosen. If no grab is active, the first passive grab is chosen searching from the root window to the deepest child window. If no grab is found, then the first event selection is chosen going from the deepest child to the root window. If gesture events are not included in the mask of the chosen grab, then no client will receive events for the gesture sequence. A core or a XI 1.x pointer grab will cause the gesture sequence to be discarded. If there are simultaneous gesture event sequences from multiple devices, the master device will ignore all gesture sequences except the first. Specifically, if GestureFOOBegin is received when a gesture is already active, all events relating to the new gesture sequence will be discarded. [[glossary-notations]] Notations used in this document ------------------------------- Notation for requests: ┌─── Name of request name of request field: type of request field name of request field: type of request field ▶ name of reply field: type of reply field └─── Notation for events: ┌─── Name of event name of field: type of field name of field: type of field └─── Complex fields are specified in the following notation: name of field: COMPLEXFIELDTYPE or, if multiple of these fields exist: name of field: LISTofCOMPLEXFIELDTYPE COMPLEXFIELDTYPE: { name of subfield: type of subfield, name of subfield: type of subfield } [[glossary-datatypes]] Data types ---------- BUTTONMASK A binary mask defined as (1 << button number). A SETofBUTTONMASK is a binary OR of zero or more BUTTONMASK. DEVICE { DEVICEID, AllDevices, AllMasterDevices } A DEVICE specifies either a DEVICEID or AllDevices or AllMasterDevices. DEVICEID { CARD16 } A DEVICEID is a numerical ID for a device currently available in the server. The server may re-use a device ID after a device's removal. The device IDs 0 and 1 are reserved. AllDevices ........ 0 AllMasterDevices .. 1 DEVICEUSE { MasterPointer, MasterKeyboard, SlavePointer, SlaveKeyboard, FloatingSlave } A DEVICEUSE field specifies the current use of a device in the MD/SD device hierarchy. See Section "The Master/Slave device hierarchy" for more information. EVTYPEMASK An EVTYPEMASK is a binary mask defined as (1 << event type). A SETofEVTYPEMASK is a binary OR of zero or more EVTYPEMASK. FP1616 Fixed point decimal in 16.16 format as one INT16 and one CARD16. The INT16 contains the integral part, the CARD16 the decimal fraction shifted by 16. FP3232 Fixed point decimal in 32.32 format as one INT32 and one CARD32. The INT32 contains the integral part, the CARD32 the decimal fraction shifted by 32. MODIFIERMASK A MODIFIERMASK is a binary mask defined as (1 << modifier map index). A SETofMODIFIERMASK is a binary OR of zero or more MODIFIERMASK or GrabAnyModifier. VALUATORMASK A binary mask defined as (1 << valuator number). A SETofVALUATORMASK is a binary OR of zero or more VALUATORMASK. [[errors]] Errors ------ Errors are sent using core X error reports. Device A value for a DEVICE argument does not specify a valid DEVICE. [[requests]] Requests -------- The server does not guarantee that the length of a reply remains constant in future revisions of XI2. A client must always retrieve the exact length of the protocol reply from the connection, even if the reply is longer than defined for the XI2 version supported by the client. Additional bytes in a request may include data supported in later versions of XI2. Clients should ignore this data. Padding bytes in XI2 protocol requests are required to be 0. [[requests-xi20]] Requests introduced in version 2.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [[requests-queryversion]] XIQueryVersion ^^^^^^^^^^^^^^ ┌─── XIQueryVersion major_version: CARD16 minor_version: CARD16 ▶ major_version: CARD16 minor_version: CARD16 └─── The client sends the highest supported version to the server and the server sends the highest version it supports, but no higher than the requested version. Major versions changes can introduce incompatibilities in existing functionality, minor version changes introduce only backward compatible changes. It is the client's responsibility to ensure that the server supports a version which is compatible with its expectations. major_version Major XI2 version. minor_version Minor XI2 version. If major_version is less than 2, a BadValue error occurs. [[requests-querydevice]] XIQueryDevice ^^^^^^^^^^^^^ ┌─── XIQueryDevice DEVICE deviceid ▶ num_devices: CARD16 deviceinfo: LISTofDEVICEINFO └─── DEVICEINFO { deviceid: DEVICEID use: DEVICEUSE attachment: DEVICEID enabled: BOOL num_classes: CARD16 name_len: CARD16 name: LISTofCHAR8 classes: LISTofCLASS } CLASS { BUTTONCLASS, KEYCLASS, VALUATORCLASS, SCROLLCLASS, TOUCHCLASS, GESTURECLASS } BUTTONCLASS { type: ButtonClass length: CARD16 sourceid: CARD16 num_buttons: CARD16 state: SETofBUTTONMASK labels: LISTofATOM } KEYCLASS { type: KeyClass length: CARD16 sourceid: CARD16 num_keys: CARD16 keys: LISTofCARD32 } VALUATORCLASS { type: ValuatorClass length: CARD16 sourceid: CARD16 number: CARD16 label: ATOM min: FP3232 max: FP3232 value: FP3232 resolution: CARD32 mode: CARD8 } SCROLLCLASS¹ { type: ScrollClass length: CARD16 sourceid: CARD16 number: CARD16 scroll_type: SCROLLTYPE flags: SETofSCROLLFLAGS increment: FP3232 } SCROLLTYPE { Vertical, Horizontal } SCROLLFLAGS { NoEmulation, Preferred } TOUCHCLASS² { type: TouchClass length: CARD16 sourceid: CARD16 mode: TOUCHMODE num_touches: CARD8 } TOUCHMODE { DirectTouch, DependentTouch } GESTURECLASS³ { type: GestureClass length: CARD16 sourceid: CARD16 num_touches: CARD8 pad: CARD8 } ¹ since XI 2.1 ² since XI 2.2 ³ since XI 2.4 XIQueryDevice details information about the requested input devices. devices The device to list. If devices is AllDevices, all enabled and disabled devices are listed. If devices is AllMasterDevices, all enabled and disabled master devices are listed. If devices is a valid DEVICE, only this DEVICE is listed and num_devices is 1. num_devices The number of deviceinfos returned. Each deviceinfo is detailed as follows: deviceid The unique ID of the device. Device IDs may get re-used when a device is removed. use If the device is a master pointer, use is MasterPointer. If the device is a master keyboard, use is MasterKeyboard. If the device is a slave pointer, use is SlavePointer. If the device is a slave keyboard, use is SlaveKeyboard. If the device is a floating slave, use is FloatingSlave. attachment If the device is a master pointer or a master keyboard, attachment specifies the paired master keyboard, or the paired master pointer, respectively. If the device is a non-floating slave device attachment specifies the master device this device is attached to. If the device is a floating slave, attachment is undefined. enabled Zero if the device is disabled, nonzero otherwise. num_classes Number of classes provided. name_len Length of the name in bytes not including padding. classes Details the available classes provided by the device in an undefined order. name The device's name. padded to a multiple of 4 bytes. For all classes, type specifies the device class. Clients are required to ignore unknown device classes. The length field specifies the length of the class in 4 byte units. The following classes may occur only once: ButtonClass, KeyClass ButtonClass: type Always ButtonClass. length Length in 4 byte units. sourceid The device this class originates from. num_buttons Number of buttons provided by the device. labels List of Atoms specifying the label for each button. An Atom of None specifies an unlabeled button. Buttons are listed in the device-native order regardless of the current button mapping. state The current button mask for this device after button mapping is applied. Each bit representing a button is 1 if this button is logically down, or 0 otherwise. State is a multiple of 4-byte units and always contains at least num_buttons bits. KeyClass: type Always KeyClass. length Length in 4 byte units. sourceid The device this class originates from. num_keys Number of keycodes provided by the device. keys List of keycodes provided. ValuatorClass: type Always ValuatorClass. length Length in 4 byte units. sourceid The device this class originates from. number Valuator number of this axis. The valuator number is in device-native order and potential axis mappings are ignored. label Atom specifying the axis name. An Atom of None specifies an unlabeled axis. min Minimum value. max Minimum value. resolution Resolution in counts/meter. mode Relative or Absolute. value Last published axis value (if mode is absolute). An axis in Relative mode may specify min and max as a hint to the client. If no min and max information is available, both must be 0. ScrollClass: type Always ScrollClass. number Valuator number that is referred to. This valuator number must be listed in the ValuatorClassInfo. scroll_type: Vertical for a vertical scrolling axis, Horizontal for a horizontal scrolling axis. flags: A set of flags that apply to this scroll axis. NoEmulation: no legacy scroll button events are generated for events on this scrolling axis. Preferred: This axis is the preferred axis for emulating valuator events from legacy scroll button events. increment: The valuator delta equivalent to one positive unit of scrolling. A ScrollClass may only exist if the device has at least one ValuatorClass and each valuator number listed in any ScrollClass. Only one ScrollClass may exist per ValuatorClass. TouchClass: type Always TouchClass. length Length in 4 byte units. sourceid The device this class originates from. mode The device type of the touch device. This mode may change at runtime. num_touches The maximum number of simultaneous touchpoints the device may send. If num_touches is 0, the number of supported touches is unknown or unlimited. Devices with a TouchClass emit touch events with the same axes as pointer events. GestureClass: type Always GestureClass. length Length in 4 byte units. sourceid The device this class originates from. num_touches The maximum number of touchpoints in a gesture that the device may send. If num_touches is 0, the number of supported touches is unknown or unlimited. Devices with a GestureClass emit gesture events. [[requests-selectevents]] XISelectEvents ^^^^^^^^^^^^^^ ┌─── XISelectEvents window: Window num_masks: CARD16 masks: LISTofEVENTMASK └─── EVENTMASK { deviceid: DEVICE, mask_len: CARD16, mask: SETofEVTYPEMASK } window The window to select the events on. num_masks Number of items in masks. deviceid Numerical deviceid, or AllDevices, or AllMasterDevices. mask_len Length of mask in 4 byte units. mask Event mask. An event mask for an event type T is defined as (1 << T). XISelectEvents selects for XI2 events on window. If num_masks is 0, a BadValue error occurs. Each mask sets the (and overwrites a previous) event mask for the DEVICE specified through deviceid. The device AllDevices or AllMasterDevices is treated as a separate device by server. A client's event mask is the union of AllDevices, AllMasterDevices and the per-device event mask. The removal of device from the server unsets the event masks for the device. If an event mask is set for AllDevices or AllMasterDevices, the event mask is not cleared on device removal and affects all future devices. If mask_len is 0, the event mask for the given device is cleared. The mask for XIHierarchyEvents may only be selected for XIAllDevices. Setting it for any other device results in a BadValue error. A client selecting for any of XI_TouchBegin, XI_TouchUpdate, or XI_TouchEnd must select for all three events at the same time, else a BadValue error will be generated. A client selecting for XI_TouchOwnership must select for all three of the other touch events. If the selection for these touch events overlaps a current selection by another client (e.g. selecting for a specific device when another client has a selection for XIAllDevices), a BadAccess error occurs. A client selecting for any of XI_GesturePinchBegin, XI_GesturePinchUpdate, or XI_GesturePinchEnd must select for all three events at the same time, else a BadValue error will be generated. A client selecting for any of XI_GestureSwipeBegin, XI_GestureSwipeUpdate, or XI_GestureSwipeEnd must select for all three events at the same time, else a BadValue error will be generated. If the selection for gesture events overlaps a current selection by another client (e.g. selecting for a specific device when another client has a selection for XIAllDevices), a BadAccess error occurs. [[requests-getselectedevents]] XIGetSelectedEvents ^^^^^^^^^^^^^^^^^^^ ┌─── XIGetSelectedEvents window: Window ▶ num_masks: CARD16 masks: LISTofEVENTMASK └─── window The window to select the events on. num_masks Number of items in masks. masks Selected event masks by this client. Masks are returned on a per-device basis, with masks for AllDevices and AllMasterDevices returned separately. A client can calculate the effective mask for a device with a bitwise OR of the AllDevices, the AllMasterDevices and the device-specific mask. If num_masks is 0, no events have been selected by this client on the given window. [[requests-querypointer]] XIQueryPointer ^^^^^^^^^^^^^^ ┌─── XIQueryPointer window: Window deviceid: DEVICEID ▶ root: Window child: Window root_x: FP1616 root_y: FP1616 win_x: FP1616 win_y: FP1616 same_screen: BOOL mods: MODIFIERINFO group: GROUPINFO buttons_len: CARD16 buttons: SETofBUTTONMASK └─── Query a master pointer device for its current position. root The root window the pointer is logically on. child The child window of window that contains the pointer or None. root_x root_y Pointer position relative to the root window's origin. win_x win_y Pointer position relative to window or 0 if same_screen is false. same_screen True if window is on the same screen as the pointer. mods XKB modifier state on the paired device. group XKB group state on the paired device. buttons_len The length of buttons in 4 byte units. buttons Button state. If the device is not a master pointer device or not a floating slave pointer, a BadDevice error results. [[requests-warppointer]] XIWarpPointer ^^^^^^^^^^^^^ ┌─── XIWarpPointer src_win: Window dst_win: Window src_x: FP1616 src_y: FP1616 src_width: INT16 src_height: INT16 dst_x: FP1616 dst_y: FP1616 deviceid: DEVICEID └─── WarpPointer moves the pointer of deviceid as if the user had moved the pointer. WarpPointer can only be called for MasterPointer and FloatingSlave devices. src_win If src_window is not None, the move only takes place if src_window contains the pointer and the pointer is contained in the specified rectangle of src_window. dst_win If dst_win is None, this request moves the pointer by offsets dst_x/dst_y relative to the current position of the pointer. If dst_window is a window, this request moves the pointer to dst_x/dst_y relative to dst_win's origin. src_x src_y src_width src_height Specifies the source window rectangle. dst_x dst_y The relative coordinates to move the pointer if dst_win is None, or the absolute coordinates if dst_win is a window. deviceid The device to warp. This request cannot be used to move the pointer outside the confine-to window of an active pointer grab. An attempt will only move the pointer as far as the closest edge of the confine-to window. This request will generate events just as if the user had instantaneously moved the pointer. [[requests-changecursor]] XIChangeCursor ^^^^^^^^^^^^^^ ┌─── XIChangeCursor win: Window cursor: Cursor deviceid: DEVICEID └─── Change a master pointer's cursor on the specified window. window The window. cursor The new cursor or None. deviceid The master pointer device. Whenever device enters a window W, the cursor shape is selected in the following order: - if the current window has a device cursor C(d) defined for device, display this cursor C(d). - otherwise, if the current window has a cursor C(w) defined in the core protocol's window attributes, display cursor C(w). - repeat on parent window until a cursor has been found. The device cursor for a given window is reset once the window is destroyed or the device is removed, whichever comes earlier. If deviceid does not specify a master pointer, a BadDevice error is returned. [[requests-changehierarchy]] XIChangeHierarchy ^^^^^^^^^^^^^^^^^ ┌─── XIChangeHierarchy num_changes: CARD8 changes: LISTofHIERARCHYCHANGES └─── HIERARCHYCHANGE { ADDMASTER, REMOVEMASTER, ATTACHSLAVE, DETACHSLAVE } HIERARCHYCHANGETYPE { AddMaster, RemoveMaster, AttachSlave, DetachSlave } CHANGEMODE { Float, Attach } ADDMASTER { type: HIERARCHYCHANGETYPE length: CARD16 name_len: CARD16 send_core: BOOL enable: BOOL name: LISTofCHAR8 } REMOVEMASTER { type: HIERARCHYCHANGETYPE length: CARD16 deviceid: DEVICEID return_mode: CHANGEMODE return_pointer: DEVICEID return_keyboard: DEVICEID } ATTACHSLAVE { type: HIERARCHYCHANGETYPE length: CARD16 deviceid: DEVICEID master: DEVICEID } DETACHSLAVE { type: HIERARCHYCHANGETYPE length: CARD16 deviceid: DEVICEID } XIChangeHierarchy allows a client to modify the <>. num_changes The number of changes to apply to the current hierarchy. changes The list of changes. The server processes the changes in the order received from the client and applies each requested change immediately. If an error occurs, processing stops at the current change and returns the number of successfully applied changes in the error. ADDMASTER creates a pair of master devices. type Always AddMaster. length Length in 4 byte units. name_len Length of name in bytes. send_core True if the device should send core events. enable True if the device is to be enabled immediately. name The name for the new master devices. The master pointer's name is automatically appended with " pointer", the master keyboard's name is automatically appended with " keyboard". REMOVEMASTER removes an existing master device. type Always RemoveMaster. length Length in 4 byte units. deviceid The device to remove. return_mode Return mode for attached slave devices. If return_mode is Float, all slave devices are set to floating. If return_mode is Attach, slave pointers are attached to return_pointer and slave keyboards are attached to return_keyboard. return_pointer return_keyboard The master pointer and master keyboard to attach slave devices to, if return_mode is Attach. If return_mode is Float, return_pointer and return_keyboard are undefined. Removing a master pointer removes the paired master keyboard and vice versa. ATTACHSLAVE attaches a slave device to a given master device. type Always ChangeAttachment. length Length in 4 byte units. deviceid Deviceid of the slave device. master The new master device to attach this slave device to. If any clients are selecting for touch events from the slave device, their selection will be canceled. DETACHSLAVE detaches a slave device from its current master device. type Always ChangeAttachment. length Length in 4 byte units. deviceid Deviceid of the slave device. [[requests-setclientpointer]] XISetClientPointer ^^^^^^^^^^^^^^^^^^ ┌─── XISetClientPointer win: Window deviceid: DEVICEID └─── Set the ClientPointer for the client owning win to the given device. win Window or client ID. deviceid The master pointer or master keyboard that acts as ClientPointer. Some protocol requests are ambiguous and the server has to choose a device to provide data for a request or a reply. By default, the server will choose a client's ClientPointer device to provide the data, unless the client currently has a grab on another device. See section <> for more details. If win is None, the ClientPointer for this client is set to the given device. Otherwise, if win is a valid window, the ClientPointer for the client owning this window is set to the given device. Otherwise, if win is not a valid window but a client with the client mask equal to win exists, this client's ClientPointer is set to the given device. If deviceid does not specify a master pointer or master keyboard, a BadDevice error is returned. If window does not specify a valid window or client ID and is not None, a BadWindow error is returned. [[requests-getclientpointer]] XIGetClientPointer ^^^^^^^^^^^^^^^^^^ ┌─── XIGetClientPointer win: Window ▶ set: BOOL deviceid: DEVICEID └─── Query the ClientPointer for the client owning win. win The window or client ID. set True if the client has a ClientPointer set. deviceid The master pointer that acts as a ClientPointer if set is True. No difference is made between a ClientPointer set explicitly through XISetClientPointer and a ClientPointer implicitly assigned by the server in response to an ambiguous request. [[requests-setfocus]] XISetFocus ^^^^^^^^^^ ┌─── XISetFocus focus: Window deviceid: DEVICEID time: Time └─── Set the focus for the given device to the given window. Future key events from this device are sent to this window. This request generates FocusIn and FocusOut events. focus A viewable window or None. deviceid The device to modify the focus window for. time Specifies the time to change the focus or CurrentTime. If focus is None, key events from this device are discarded until a new focus window is set. If focus is a viewable window, key events from this device are sent to this window. If the window becomes unviewable, the window's first viewable ancestor automatically becomes the focus window and FocusIn and FocusOut events are sent as if a client had changed the focus window. This is equivalent to RevertToParent in the core XSetInputFocus window. This request has no effect if the specified time is earlier than the current last-focus-change time or is later than the current X server time. Otherwise, the last-focus-change time is set to the specified time. [[requests-getfocus]] XIGetFocus ^^^^^^^^^^ ┌─── XIGetFocus deviceid: DEVICEID ▶ focus: Window └─── Return the current focus window for the given device. [[requests-grabdevice]] XIGrabDevice ^^^^^^^^^^^^ ┌─── XIGrabDevice deviceid: DEVICEID grab_window: Window owner_events: BOOL grab_mode: { Synchronous, Asynchronous } paired_device_mode: { Synchronous, Asynchronous } time: TIMESTAMP or CurrentTime cursor: Cursor mask_len: CARD16 masks: SETofEVTYPEMASK ▶ status: Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable └─── This request actively grabs control of the specified input device. Further input events from this device are reported only to the grabbing client. This request overrides any previous active grab by this client for this device. This request does not affect the processing of XI 2.2 touch events. deviceid The device to grab. grab_window Events are reported relative to the grab window. owner_events Specifies whether event will be reported normally or relative to the grab window. grab_mode Specifies if this device will be frozen as a result of the grab. paired_device_mode Specifies if the master device paired with this device will be frozen as a result of the grab. time A valid server time or CurrentTime. cursor The cursor to display for the duration of the grab or None. mask_len Length of mask in 4 byte units. mask Event mask. An event mask for an event type T is defined as (1 << T). status Success or the reason why the grab could not be established. The masks parameter specifies which events the client wishes to receive while the device is grabbed. If owner-events is False, input events generated from this device are reported with respect to grab-window, and are only reported if selected by being included in the event-list. If owner-events is True, then if a generated event would normally be reported to this client, it is reported normally, otherwise the event is reported with respect to the grab-window, and is only reported if selected by being included in the event-list. For either value of owner-events, unreported events are discarded. If grab-mode is Asynchronous, device event processing continues normally. If the device is currently frozen by this client, then processing of device events is resumed. If grab-mode is Synchronous, the state of the grabbed device (as seen by means of the protocol) appears to freeze, and no further device events are generated by the server until the grabbing client issues a releasing XIAllowEvents request or until the device grab is released. Actual device input events are not lost while the device is frozen; they are simply queued for later processing. If the device is a slave device, the paired-device-mode is ignored. Otherwise, if this device is a master device and paired-device-mode is Asynchronous, event processing is unaffected by activation of the grab. If this device is a master device and paired-device-mode is Synchronous, the state of the master device paired with this device (as seen by means of the protocol) appears to freeze, and no further events are generated by the server until the grabbing client issues a releasing XIAllowEvents request or until the device grab is released. Actual events are not lost while the devices are frozen; they are simply queued for later processing. If the cursor is not None and the device is a master pointer device, the cursor will be displayed until the device is ungrabbed. This request fails and returns: AlreadyGrabbed: If the device is actively grabbed by some other client. NotViewable: If grab-window is not viewable. InvalidTime: If the specified time is earlier than the last-grab-time for the specified device or later than the current X server time. Otherwise, the last-grab-time for the specified device is set to the specified time and CurrentTime is replaced by the current X server time. Frozen: If the device is frozen by an active grab of another client. To release a grab of a device, use XIUngrabDevice. [[requests-ungrabdevice]] XIUngrabDevice ^^^^^^^^^^^^^^ ┌─── XIUngrabDevice deviceid: DEVICEID time: TIMESTAMP or CurrentTime └─── This request releases the device if this client has it actively grabbed (from either XIGrabDevice or XIPassiveGrabDevice) and releases any queued events. If any devices were frozen by the grab, XIUngrabDevice thaws them. deviceid The device to grab. time A valid server time or CurrentTime. The request has no effect if the specified time is earlier than the last-device-grab time or is later than the current server time. This request generates FocusIn and FocusOut events. An XIUngrabDevice is performed automatically if the event window for an active device grab becomes not viewable. [[requests-allowevents]] XIAllowEvents ^^^^^^^^^^^^^ ┌─── XIAllowEvents deviceid: DEVICEID time: TIMESTAMP or CurrentTime event_mode: { AsyncDevice, SyncDevice, AsyncPairedDevice, SyncPairedDevice, ReplayDevice, AsyncPair, SyncPair, AcceptTouch¹, RejectTouch¹ } touchid¹: CARD32 grab_window¹: Window └─── ¹ since XI 2.2 The XIAllowEvents request releases some queued events if the client has caused a device to freeze. It also is used to handle touch grab and ownership processing. deviceid The device to grab. time A valid server time or CurrentTime. event_mode Specifies whether a device is to be thawed and events are to be replayed, or how to handle a grabbed touch sequence. touchid The ID of the touch sequence to accept or reject. The value is ignored for event modes other than AcceptTouch and RejectTouch. grab_window The window on which to accept or reject a touch sequence grab. The value is ignored for event modes other than AcceptTouch and RejectTouch. The request has no effect if the specified time is earlier than the last-grab time of the most recent active grab for the client, or if the specified time is later than the current X server time. The time parameter must be CurrentTime for requests with event modes of AcceptTouch and RejectTouch. When event-mode is AcceptTouch, a BadValue error occurs if the touch ID is invalid. A BadAccess error occurs if this client is not the current or potential owner of the specified touch ID. The following describes the processing that occurs depending on what constant you pass to the event-mode argument: AsyncDevice: If the specified device is frozen by the client, event processing for that device continues as usual. If the device is frozen multiple times by the client on behalf of multiple separate grabs, AsyncDevice thaws for all. AsyncDevice has no effect if the specified device is not frozen by the client, but the device need not be grabbed by the client. SyncDevice: If the specified device is frozen and actively grabbed by the client, event processing for that device continues normally until the next button press or release, or key press or release, or a gesture begin or end event (depending on the grab) is reported to the client. At this time, the specified device again appears to freeze. However, if the reported event causes the grab to be released, the specified device does not freeze. SyncDevice has no effect if the specified device is not frozen by the client or is not grabbed by the client. ReplayDevice: If the specified device is actively grabbed by the client and is frozen as the result of an event having been sent to the client (either from the activation of a XIGrabButton or from a previous XIAllowEvents with mode SyncDevice, but not from a Grab), the grab is released and that event is completely reprocessed. This time, however, the request ignores any passive grabs at or above (towards the root) the grab-window of the grab just released. The request has no effect if the specified device is not grabbed by the client or if it is not frozen as the result of an event. In case of gesture begin event being replayed, the original grabbing client will receive a GesturePinchEnd or GestureSwipeEnd event. AsyncPairedDevice If the paired master device is frozen by the client, event processing for it continues as usual. If the paired device is frozen multiple times by the client on behalf of multiple separate grabs, AsyncPairedDevice thaws for all. AsyncPairedDevice has no effect if the device is not frozen by the client, but those devices need not be grabbed by the client. AsyncPairedDevice has no effect if deviceid specifies a slave device. SyncPairedDevice If the paired master device is frozen by the client, event processing (for the paired master device) continues normally until the next button or key event is reported to the client for the grabbed device (button event for the grabbed device, key or motion event for the device), at which time the device again appears to freeze. However, if the reported event causes the grab to be released, then the device does not freeze. SyncPairedDevice has no effect if the specified device is not grabbed by the client or if it is no frozen as the result of an event. SyncPairedDevice has no effect if deviceid specifies a slave device. SyncPair If both the device and the paired master device are frozen by the client, event processing (for both devices) continues normally until the next XIButtonPress, XIButtonRelease, XIKeyPress, or XIKeyRelease event is reported to the client for a grabbed device (button event for a pointer, key event for a keyboard), at which time the devices again appear to freeze. However, if the reported event causes the grab to be released, then the devices do not freeze (but if the other device is still grabbed, then a subsequent event for it will still cause both devices to freeze). SyncPair has no effect unless both the device and the paired master device are frozen by the client. If the device or paired master device is frozen twice by the client on behalf of two separate grabs, SyncPair thaws for both (but a subsequent freeze for SyncPair will only freeze each device once). SyncPair has no effect if deviceid specifies a slave device. AsyncPair If the device and the paired master device are frozen by the client, event processing for both devices continues normally. If a device is frozen twice by the client on behalf of two separate grabs, AsyncBoth thaws for both. AsyncPair has no effect unless both the device and the paired master device frozen by the client. AsyncPair has no effect if deviceid specifies a slave device. AcceptTouch The client is deemed to have taken control of the touch sequence once it owns the sequence. TouchEnd events will be sent to all clients listening to the touch sequence that have either grabbed the touch sequence on a child window of the grab_window or have received events for the touch sequence through event selection. These clients will no longer receive any TouchUpdate events. RejectTouch The client is no longer interested in the touch sequence, and will receive a TouchEnd event. If the client is the current owner of the sequence, ownership will be passed on to the next listener. [[requests-passivegrabdevice]] XIPassiveGrabDevice ^^^^^^^^^^^^^^^^^^^ ┌─── XIPassiveGrabDevice deviceid: DEVICE detail: CARD32 grab_type: GRABTYPE time: TIMESTAMP grab_window: Window cursor: Cursor owner_events: Bool grab_mode: { Synchronous, Asynchronous, Touch¹ } paired_device_mode: { Synchronous, Asynchronous } num_modifiers: INT16 mask_len: CARD16 masks: SETofEVTYPEMASK modifiers: LISTofSETofMODIFIERMASK ▶ num_modifiers_return: INT16 modifiers_return: LISTofGRABMODIFIERINFO └─── GRABTYPE { GrabtypeButton, GrabtypeKeycode, GrabtypeEnter, GrabtypeFocusIn, GrabtypeTouchBegin¹, GrabtypeGesturePinchBegin², GrabtypeGestureSwipeBegin² } GRABMODIFIERINFO { status: Access modifiers: SETofMODIFIERMASK } ¹ since XI 2.2 ² since XI 2.4 Establish an explicit passive grab for a button or keycode on the specified input device. cursor The cursor to display for the duration of the grab. If grab_type is not GrabtypeButton, this argument is ignored. deviceid The device to establish the passive grab on or AllDevices or AllMasterDevices. detail In the case of GrabtypeButton, specifies the button number to grab for. In the case of GrabtypeKeycode, specifies the key code to grab for. The value must be 0 for GrabtypeEnter, GrabtypeFocusIn, GrabtypeTouchBegin, GrabtypeGesturePinchBegin and GrabtypeGestureSwipeBegin. grab_type The type of grab to establish. grab_window Events are reported relative to the grab window. grab_mode If grab-mode is Asynchronous, device event processing continues normally. If the device is currently frozen by this client, then processing of device events is resumed. If grab-mode is Synchronous, the state of the grabbed device (as seen by means of the protocol) appears to freeze, and no further device events are generated by the server until the grabbing client issues a releasing XIAllowEvents request or until the device grab is released. Actual device input events are not lost while the device is frozen; they are simply queued for later processing. If grab_type is GrabtypeTouchBegin, grab_mode must be set to Touch. mask_len Length of mask in 4 byte units. mask Event mask. An event mask for an event type T is defined as (1 << T). modifiers XKB modifier state to activate this passive grab. num_modifiers Number of elements in modifiers. owner_events Specifies whether event will be reported normally or relative to the grab window. num_modifiers_return Number of elements in modifiers_return modifiers_return XKB modifier state that could not be grabbed. time This field is unused. If owner-events is False, input events generated from this device are reported with respect to grab-window, and are only reported if selected by being included in the event-list. If owner-events is True, then if a generated event would normally be reported to this client, it is reported normally, otherwise the event is reported with respect to the grab-window, and is only reported if selected by being included in the event-list. For either value of owner-events, unreported events are discarded. If deviceid specifies a master pointer, the modifiers of the paired master keyboard are used. If deviceid specifies a slave pointer the modifiers of the master keyboard paired with the attached master pointers are used. If deviceid specifies a slave keyboard, the modifiers of the attached master keyboard are used. Note that activating a grab on a slave device detaches the device from its master. In this case, the modifiers after activation of the grab are from the slave device only and may be different to the modifier state when the grab was triggered. In the future, if grab_type is GrabtypeButton or GrabtypeKeyboard, the device is actively grabbed if: - the device is not grabbed, and - the specified modifier keys are down, and - the grab_type is GrabtypeButton and the button specified in detail is logically pressed or the grab_type is GrabtypeKeycode and the keycode specified in detail is logically pressed, and - the grab_window contains the pointer, and - a passive grab on the same button/keycode + modifier combination does not exist on an ancestor of grab_window. Otherwise, if grab_type is GrabtypeEnter or GrabtypeFocusIn, the device is actively grabbed if: - the device is not actively grabbed, and - the specified modifier keys are down, and - the grab_type is GrabtypeEnter and the device's pointer has moved into grab_window or a descendant of grab_window, or the grab_type is GrabtypeFocusIn and the device's focus has been set to the grab_window or a descendant of grab_window, and - a passive grab of the same grab_type + modifier combination does not does not exist on an ancestor of grab_window. Otherwise, if grab_type is GrabtypeTouchBegin, a touch grab begins if: - the device is not actively grabbed, and - the specified modifier keys are down, and - a touch begins in grab_window or a descendant of grab_window, and - a passive grab of the same grab_type + modifier combination does not does not exist on an ancestor of grab_window. Otherwise, if grab_type is GrabtypeGesturePinchBegin or GrabtypeGestureSwipeBegin, a gesture grab begins if: - the device is not actively grabbed, and - the specified modifier keys are down, and - a specific gesture begins in grab_window or a descendant of grab_window, and - a passive grab of the same grab_type + modifier combination does not does not exist on an ancestor of grab_window. Ownership of the touch sequence is granted to the grabbing client if: - a TouchBegin or pointer grab for an emulated touch sequence of a direct touch device with the same modifier set does not exist on an ancestor of grab_window, or all applicable grabs have released ownership. A modifier of GrabAnyModifier is equivalent to issuing the request for all possible modifier combinations (including no modifiers). A client may request a grab for GrabAnyModifier and explicit modifier combinations in the same request. A GrabtypeButton or GrabtypeKeyboard grab is released when all buttons or keycode are released, independent of the state of modifier keys. A GrabtypeEnter or GrabtypeFocusIn grab is released when the pointer or focus leaves the window and all of its descendants, independent of the state of modifier keys. A GrabtypeTouchBegin grab is released when the touch sequence ends or the client uses XIAllowEvents with mode RejectTouch. A GrabtypeGesturePinchBegin and GrabtypeGestureSwipeBegin grab are released when the gesture sequence ends. Note that the logical state of a device (as seen by means of the protocol) may lag the physical state if device event processing is frozen. This request overrides all previous passive grabs by the same client on the same button/key/enter/focus in + modifier combinations on the same window. If some other client already has issued a XIPassiveGrabDevice request with the same button or keycode and modifier combination, the failed modifier combinations is returned in modifiers_return. If some other client already has issued an XIPassiveGrabDevice request of grab_type XIGrabtypeEnter, XIGrabtypeFocusIn, or XIGrabtypeTouchBegin with the same grab_window and the same modifier combination, the failed modifier combinations are returned in modifiers_return. If some other client already has issued an XIPassiveGrabDevice request of grab_type XIGrabtypeGesturePinchBegin or XIGrabtypeGestureSwipeBegin with the same grab_window, and the same modifier combination, the failed modifier combinations are returned in modifiers_return. If num_modifiers_return is zero, all passive grabs have been successful. If a button grab or enter grab activates, EnterNotify and LeaveNotify events with mode Grab are generated as if the pointer were to suddenly warp from its current position some position in the grab_window. However, the pointer does not warp, and the pointer position is used as both the initial and final positions for the events. If a keycode grab or focus grab activates, FocusIn and FocusOut events with mode Grab are generated as if the focus were to change from the current window to the grab_window. If an enter or focus in grab activates, additional EnterNotify events with mode XIPassiveGrabNotify are generated as if the pointer or focus were to suddenly warp from its current position to some position in the grab window. These events are sent to the grabbing client only and only if the grab event mask has selected for it. If such a passive grab deactivates, additional LeaveNotify events with mode XIPassiveUngrabNotify are generated and sent to the grabbing client before the grab deactivates. For GrabtypeTouchBegin, grab_mode must be Touch or a BadValue error is generated. See section <> for additional notes on touch grabs, as they do not behave like traditional grabs: in particular, they do not freeze the device, and delivery of touch events continues even if the device is frozen due to a grab by another client. [[requests-passiveungrabdevice]] XIPassiveUngrabDevice ^^^^^^^^^^^^^^^^^^^^^ ┌─── XIPassiveUngrabDevice deviceid: DEVICEID detail: CARD32 grab_type: GRABTYPE grab_window: Window num_modifiers: INT16 modifiers: LISTofSETofMODIFIERMASK └─── Release an explicit passive grab on the specified input device. deviceid The device to establish the passive grab on. detail In the case of GrabtypeButton, specifies the button number to ungrab. In the case of GrabtypeKeycode, specifies the key code to ungrab. The value must be 0 for GrabtypeEnter, GrabtypeFocusIn, GrabtypeTouchBegin, GrabtypeGesturePinchBegin and GrabtypeGestureSwipeBegin. grab_type The type of grab to establish. grab_window Events are reported relative to the grab window. modifiers XKB modifier state to activate this passive grab. num_modifiers Number of elements in modifiers. This request has no effect if the client does not have a passive grab of the same type, same button or keycode (if applicable) and modifier combination on the grab_window. [[requests-listproperties]] XIListProperties ^^^^^^^^^^^^^^^^ ┌─── XIListProperties deviceid: DEVICEID ▶ num_properties: INT16 properties: LISTofATOM └─── List the properties associated with the given device. deviceid The device to list the properties for. num_properties Number of properties in the reply properties All properties on the device. [[requests-changeproperty]] XIChangeProperty ^^^^^^^^^^^^^^^^ ┌─── XIChangeProperty deviceid: DEVICEID property: ATOM type: ATOM format: { 8, 16, 32 } mode: { Append, Prepend, Replace } num_items: CARD32 data: LISTofINT8, or LISTofINT16, or LISTofINT32 └─── Change the given property on the given device. deviceid The device to change the property on. property The property to modify. type The property's type. mode One of Append, Prepend, or Replace num_items Number of items following this request. data Property data (nitems * format/8 bytes) The type is uninterpreted by the server. The format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities so that the server can correctly byte-swap as necessary. If the mode is Replace, the previous property value is discarded. If the mode is Prepend or Append, then the type and format must match the existing property value (or a Match error results). If the property is undefined, it is treated as defined with the correct type and format with zero-length data. For Prepend, the data is tacked on to the beginning of the existing data, and for Append, it is tacked on to the end of the existing data. The lifetime of a property is not tied to the storing client. Properties remain until explicitly deleted, until the device is removed, or until server reset. A property cannot be deleted by setting nitems to zero. To delete a property, use XIDeleteProperty. This request generates an XIPropertyEvent. [[requests-deleteproperty]] XIDeleteProperty ^^^^^^^^^^^^^^^^ ┌─── XIDeleteProperty deviceid: DEVICEID property: ATOM └─── Deletes the given property on the given device. deviceid The device to delete the property on. property The property to delete. If the property is deleted, an XIPropertyEvent is generated on the device. If the property does not exist, this request does nothing. [[requests-getproperty]] XIGetProperty ^^^^^^^^^^^^^ ┌─── XIGetProperty deviceid: DEVICEID property: ATOM type: Atom or AnyPropertyType offset: CARD32 len: CARD32 delete: BOOL ▶ type: Atom bytes_after: CARD32 num_items: CARD32 format: { 8, 16, 32 } data: LISTofINT8, or LISTofINT16, or LISTofINT32 └─── Get the data for the given property on the given device. deviceid The device to retrieve the property data from. property The property to retrieve the data from.. type The property type to retrieve or AnyPropertyType offset The offset in 4-byte units. len Number of bytes to receive in 4-byte units. delete Delete the property after retrieving the data. bytes_after Number of unread bytes in the stored property num_items Number of items in data format 8, 16, or 32 data Property data (nitems * format/8 bytes) If the specified property does not exist for the specified device, then the return type is None, the format and bytes-after are zero, and the value is empty. The delete argument is ignored in this case. If the specified property exists but its type does not match the specified type, then the return type is the actual type of the property, the format is the actual format of the property (never zero), the bytes-after is the length of the property in bytes (even if the format is 16 or 32), and the value is empty. The delete argument is ignored in this case. If the specified property exists and either AnyPropertyType is specified or the specified type matches the actual type of the property, then the return type is the actual type of the property, the format is the actual format of the property (never zero), and the bytes-after and value are as follows, given: N = actual length of the stored property in bytes (even if the format is 16 or 32) I = 4 * long-offset T = N−I L = MINIMUM(T, 4 * long-length) A = N − (I + L) The returned value starts at byte index I in the property (indexing from 0), and its length in bytes is L. However, it is a Value error if offset is given such that L is negative. The value of bytes_after is A, giving the number of trailing unread bytes in the stored property. If delete is True and the bytes_after is zero, the property is also deleted from the device, and a XIPropertyNotify event is generated on the device. [[requests-xi23]] Requests introduced in version 2.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [[requests-barrierreleasepointer]] XIBarrierReleasePointer ^^^^^^^^^^^^^^^^^^^^^^^ ┌─── XIBarrierReleasePointer num_items: CARD32 ▶ data: LISTofBARRIERRELEASEINFO └─── BARRIERRELEASEINFO { deviceid: DEVICEID, barrier: Barrier, eventid: CARD32 } Release a pointer currently blocked by a barrier. In the future, movement of this pointer against the barrier will not be blocked. deviceid The device currently being blocked by a barrier barrier The barrier currently blocking the device eventid The unique event ID assigned to this barrier event sequence If the barrier given does not currently block this device, or the eventid is invalid, this request does nothing. Releasing a pointer barrier is only valid during one barrier event sequence, and only applies to the next movement of this device against this barrier. If the pointer moves away from the barrier following a XIBarrierReleasePointer request, the release request is discarded. In the future, if the pointer moves against the barrier again, a new eventid is assigned and the client must re-issue the XIBarrierReleasePointer request. If the device is not a master pointer device, a BadDevice error results. If the barrier does not name a valid barrier, a BadValue error results. [[events]] Events ------ An event specifies its length in 4-byte units after the initial 32 bytes. Future versions of the protocol may provide additional information in the same event, thus increasing the event size. Clients are required to always read the number of bytes specified by the event, not the size of the event they may have been compiled against. The following event types are available in XI2. Version 2.0: - HierarchyChanged (see <>) - DeviceChanged (see <>) - KeyPress (see <>) - KeyRelease (see <>) - ButtonPress (see <>) - ButtonRelease (see <>) - Motion (see <>) - RawKeyPress (see <>) - RawKeyRelease (see <>) - RawButtonPress (see <>) - RawButtonRelease (see <>) - RawMotion (see <>) - Enter (see <>) - Leave (see <>) - FocusIn (see <>) - FocusOut (see <>) - PropertyEvent (see <>) Version 2.2: - TouchBegin (see <>) - TouchUpdate (see <>) - TouchOwnership (see <>) - TouchEnd (see <>) - RawTouchBegin (see <>) - RawTouchUpdate (see <>) - RawTouchEnd (see <>) Version 2.3: - BarrierHit (see <>) - BarrierLeave (see <>) Version 2.4 - GesturePinchBegin (see <