summaryrefslogtreecommitdiff
path: root/fixesproto.txt
blob: 65f042cdf960adcf6d3879b6178460bb6d23baff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
                        The XFIXES Extension
			    Version 4.0
			 Document Revision 1
			     2006-12-14
			    Keith Packard
			  keithp@keithp.com

1. Introduction

X applications have often needed to work around various shortcomings in the
core X window system.  This extension is designed to provide the minimal
server-side support necessary to eliminate problems caused by these
workarounds.

2. Acknowledgements

This extension is a direct result of requests made by application
developers, in particular,

 +	Owen Taylor for describing the issues raised with the XEMBED
 	mechanisms and SaveSet processing and his initial extension
	to handle this issue.

 +	Bill Haneman for the design for cursor image tracking.

 +	Havoc Pennington 

 +	Fredrik Höglund for cursor names

 +	Deron Johnson for cursor visibility

3. Basic Premise

Requests in this extension may seem to wander all over the map of X server
capabilities, but they are tied by a simple rule -- resolving issues raised
by application interaction with core protocol mechanisms that cannot be
adequately worked around on the client side of the wire.

4. Extension initialization

The client must negotiate the version of the extension before executing
extension requests.  Behavior of the server is undefined otherwise.

QueryVersion

	client-major-version:		CARD32
	client-minor-version:		CARD32

	->

	major-version:			CARD32
	minor-version:			CARD32

	The client sends the highest supported version to the server and
	the server sends the highest version it supports, but no higher than
	the requested version.  Major versions changes can introduce
	new requests, minor version changes introduce only adjustments to
	existing requests or backward compatible changes.  It is
	the clients responsibility to ensure that the server supports
	a version which is compatible with its expectations.

************* XFIXES VERSION 1 OR BETTER ***********

5. Save Set processing changes

Embedding one application within another provides a way of unifying
disparate documents and views within a single framework.  From the X
protocol perspective, this appears similar to nested window managers; the
embedding application "manages" the embedded windows much as a window
manager does for top-level windows.  To protect the embedded application
from embedding application failure, it is reasonable to use the core SaveSet
mechanism so that embedding application failure causes embedded windows to
be preserved instead of destroyed.

The core save set mechanism defines the target for each save set member
window as the nearest enclosing window not owned by the terminating client.
For embedding applications, this nearest window is usually the window
manager frame.  The problem here is that the window manager will not
generally expect to receive and correctly manage new windows appearing within
that window by the save set mechanism, and will instead destroy the frame
window in response to the client window destruction.  This causes the
embedded window to be destroyed.

An easy fix for this problem is to change the target of the save set member
to a window which won't be affected by the underlying window destruction.
XFIXES chooses the root window as the target.

Having embedded windows suddenly appear at the top level can confuse users,
so XFIXES also permits these windows to remain unmapped instead of being
remapped.

5.1 Requests

ChangeSaveSet

		window:				Window
		mode:				{ Insert, Delete }
		target:				{ Nearest, Root }
		map:				{ Map, Unmap }

	ChangeSaveSet is an extension of the core protocol ChangeSaveSet
	request.  As in that request, mode specifies whether the indicated
	window is inserted or deleted from the save-set.  Target specifies
	whether the window is reparented to the nearest non-client window as
	in the core protocol, or reparented to the root window.  Map
	specifies whether the window is mapped as in the core protocol or
	unmapped.

6. Selection Tracking

Applications wishing to monitor the contents of current selections must
poll for selection changes.  XFIXES improves this by providing an event
delivered whenever the selection ownership changes.

6.1 Types

	SELECTIONEVENT			{ SetSelectionOwner,
					  SelectionWindowDestroy,
					  SelectionClientClose }

6.1 Events

SelectionNotify

	subtype:			SELECTIONEVENT
	window:				Window
	owner:				Window
	selection:			Atom
	timestamp:			Timestamp
	selection-timestamp:		Timestamp

6.2 Requests

SelectSelectionInput

		window:				Window
		selection:			Atom
		event-mask:			SETofSELECTIONEVENT

	Selects for events to be delivered to window when various causes of
	ownership of selection occur.  Subtype indicates the cause of the
	selection ownership change.  Owner is set to the current selection
	owner, or None.  Timestamp indicates the time the event was
	generated while selection-timestamp indicates the timestamp used to
	own the selection.

7. Cursor Image Monitoring

Mirroring the screen contents is easily done with the core protocol or VNC
addons, except for the current cursor image.  There is no way using the core
protocol to discover which cursor image is currently displayed.  The
cursor image often contains significant semantic content about the user
interface.  XFIXES provides a simple mechanism to discover when the cursor
image changes and to fetch the current cursor image.

As the current cursor may or may not have any XID associated with it, there
is no stable name available.  Instead, XFIXES returns only the image of the
current cursor and provides a way to identify cursor images to avoid
refetching the image each time it changes to a previously seen cursor.

7.1 Types
	CURSOREVENT			{ DisplayCursor }

7.2 Events

CursorNotify

	subtype:		CURSOREVENT
	window:			Window
	cursor-serial:		CARD32
	timestamp:		Timestamp
	name:			Atom		(Version 2 only)

7.3 Requests

SelectCursorInput

		window:			Window
		event-mask:		SETofCURSOREVENT

	This request directs cursor change events to the named window.
	Events will be delivered irrespective of the screen on which they
	occur.  Subtype indicates the cause of the cursor image change
	(there is only one subtype at present).  Cursor-serial is a number
	assigned to the cursor image which identifies the image.  Cursors
	with different serial numbers may have different images.  Timestamp
	is the time of the cursor change.

GetCursorImage

		->

		x:			INT16
		y:			INT16
		width:			CARD16
		height:			CARD16
		x-hot:			CARD16
		y-hot:			CARD16
		cursor-serial:		CARD32
		cursor-image:		LISTofCARD32

	GetCursorImage returns the image of the current cursor.  X and y are
	the current cursor position.  Width and height are the size of the
	cursor image.  X-hot and y-hot mark the hotspot within the cursor
	image.  Cursor-serial provides the number assigned to this cursor
	image, this same serial number will be reported in a CursorNotify
	event if this cursor image is redisplayed in the future.

	The cursor image itself is returned as a single image at 32 bits per
	pixel with 8 bits of alpha in the most significant 8 bits of the
	pixel followed by 8 bits each of red, green and finally 8 bits of
	blue in the least significant 8 bits.  The color components are
	pre-multiplied with the alpha component.
	
************* XFIXES VERSION 2 OR BETTER ***********

8. Region Objects

The core protocol doesn't expose regions as a primitive object and this
makes many operations more complicated than they really need to be.  Adding
region objects simplifies expose handling, the Shape extension and other
operations. These operations are also designed to support a separate
extension, the X Damage Extension.

8.1 Types

	Region:				XID
	WINDOW_REGION_KIND:		{ Bounding, Clip }
	
8.2 Errors

	Region				The specified region is invalid

8.3 Requests

CreateRegion

		region:				REGION
		rects:				LISTofRECTANGLE

	Creates a region initialized to the specified list of rectangles.
	The rectangles may be specified in any order, their union becomes
	the region.  The core protocol allows applications to specify an
	order for the rectangles, but it turns out to be just as hard to
	verify the rectangles are actually in that order as it is to simply
	ignore the ordering information and union them together.  Hence,
	this request dispenses with the ordering information.

	Errors: IDChoice

CreateRegionFromBitmap

		region:				REGION
		bitmap:				PIXMAP

	Creates a region initialized to the set of 'one' pixels in bitmap
	(which must be depth 1, else Match error).

	Errors: Pixmap, IDChoice, Match

CreateRegionFromWindow

		window:				Window
		kind:				WINDOW_REGION_KIND
		region:				Region

	Creates a region initialized to the specified window region.  See the
	Shape extension for the definition of Bounding and Clip regions.

	Errors: Window, IDChoice, Value

CreateRegionFromGC

		gc:				GContext
		region:				Region

	Creates a region initialized from the clip list of the specified
	GContext.

	Errors: GContext, IDChoice

CreateRegionFromPicture

		picture:			Picture
		region:				Region


	Creates a region initialized from the clip list of the specified
	Picture.

	Errors: Picture, IDChoice

DestroyRegion

		region:				Region

	Destroys the specified region.

	Errors: Region

SetRegion

		region:				Region
		rects:				LISTofRECTANGLE

	This replaces the current contents of region with the region formed
	by the union of rects.

CopyRegion
		source:				Region
		destination:			Region

	This replaces the contents of destination with the contents of 
	source.

UnionRegion
IntersectRegion
SubtractRegion

		source1:			Region
		source2:			Region
		destination:			Region
	
	Combines source1 and source2, placing the result in destination.
	Destination may be the same as either source1 or source2.

	Errors: Region, Value
	
InvertRegion

		source:				Region
		bounds:				RECTANGLE
		destination:			Region
	
	The source region is subtracted from the region specified by
	bounds.  The result is placed in destination, replacing its contents.

	Errors: Region
	
TranslateRegion

		region:				Region
		dx, dy:				INT16

	The region is translated by dx, dy in place.

	Errors: Region

RegionExtents

		source:				Region
		destination:			Region

	The extents of the source region are placed in the destination

FetchRegion

		region:				Region
		->
		extents:			RECTANGLE
		rectangles:			LISTofRECTANGLE

	The region is returned as a list of rectangles in YX-banded order.

	Errors: Region

SetGCClipRegion

		gc:				GCONTEXT
		clip-x-origin, clip-y-origin:	INT16
		region:				Region or None

	This request changes clip-mask in gc to the specified region and
	sets the clip origin.  Output will be clipped to remain contained
	within the region.  The clip origin is interpreted relative to the
	origin of whatever destination drawable is specified in a graphics
	request.  The region is interpreted relative to the clip origin.
	Future changes to region have no effect on the gc clip-mask.

	Errors: GContext, Region

SetWindowShapeRegion

		dest:				Window
		destKind:			SHAPE_KIND
		xOff, yOff:			INT16
		region:				Region or None

	This request sets the specified (by destKind) Shape extension region
	of the window to region, offset by xOff and yOff.   Future changes to
	region have no effect on the window shape.

	Errors: Window, Value, Region

SetPictureClipRegion

		picture:			Picture
		clip-x-origin, clip-y-origin:	INT16
		region:				Region or None

	This request changes clip-mask in picture to the specified region
	and sets the clip origin.  Input and output will be clipped to
	remain contained within the region.  The clip origin is interpreted
	relative to the origin of the drawable associated with picture.  The
	region is interpreted relative to the clip origin.  Future changes
	to region have no effect on the picture clip-mask.

	Errors: Picture, Region

9. Cursor Names

Attaching names to cursors permits some abstract semantic content to be
associated with specific cursor images.  Reflecting those names back to
applications allows that semantic content to be related to the user through
non-visual means.

9.1 Events

CursorNotify

		subtype:		CURSOREVENT
		window:			Window
		cursor-serial:		CARD32
		timestamp:		Timestamp
		name:			Atom or None
	
	In Version 2 of the XFIXES protocol, this event adds the atom
	of any name associated with the current cursor (else None).

9.2 Requests

SetCursorName

		cursor:			CURSOR
		name:			LISTofCARD8

	This request interns name as an atom and sets that atom as the name
	of cursor.

	Errors: Cursor

GetCursorName

		cursor:			CURSOR
		->
		atom:			ATOM or None
		name:			LISTofCARD8

	This request returns the name and atom of cursor.  If no name is
	set, atom is None and name is empty.

	Errors: Cursor

GetCursorImageAndName

		->

		x:			INT16
		y:			INT16
		width:			CARD16
		height:			CARD16
		x-hot:			CARD16
		y-hot:			CARD16
		cursor-serial:		CARD32
		cursor-atom:		ATOM
		cursor-name:		LISTofCARD8
		cursor-image:		LISTofCARD32

	This is similar to GetCursorImage except for including both
	the atom and name of the current cursor.

ChangeCursor

		source, destination:	CURSOR

	This request replaces all references to the destination with a
	reference to source.  Any existing uses of the destination cursor
	object will now show the source cursor image.

ChangeCursorByName

		src:			CURSOR
		name:			LISTofCARD8

	This request replaces the contents of all cursors with the specified
	name with the src cursor.

************* XFIXES VERSION 3 OR BETTER ***********

10. Region Expansion

This update provides another operation on the region objects defined in
Section 8 of this document.

10.1 Requests

ExpandRegion
		source:				REGION
		destination:			REGION
		left, right, top, bottom:	CARD16

	Creates destination region containing the area specified by
	expanding each rectangle in the source region by the specified
	number of pixels to the left, right, top and bottom.

************* XFIXES VERSION 4 OR BETTER ***********

11. Cursor Visibility

Composite managers may want to render the cursor themselves instead of
relying on the X server sprite drawing, this provides a way for them to
do so without getting a double cursor image.

11.1 Requests

HideCursor

		window:			WINDOW

	A client sends this request to indicate that it wants the
	cursor image to be hidden (i.e. to not be displayed) when
	the sprite is inside the specified window, or one of its
	subwindows. If the sprite is inside a window for which one
	or more active clients have requested cursor hiding then the
	cursor image will not be displayed.

	Note that even though cursor hiding causes the cursor image
	to be invisible, CursorNotify events will still be sent
	normally, as if the cursor image were visible.

	If, during a grab, one or more active clients have requested
	cursor hiding for grab window, or one of its ancestors, the
	cursor image of the grab cursor will not be displayed during
	the lifetime of that grab.

	When a client with outstanding cursor hiding requests
	terminates its connection these requests will be deleted.

ShowCursor

		window:			WINDOW

	A client sends this request to indicate that it wants the
	cursor image to be displayed when the sprite is inside the
	specified window, or one of its subwindows. If the sprite
	is inside a window for which no active clients have requested
	cursor hiding then the cursor image for that window will be
	displayed. In other words, if a client calls HideCursor for
	a specified window, or window subtree, this request reverses
	the effects of the HideCursor request.

	If the client has made no outstanding HideCursor requests
	a BadMatch error is generated.

		
99. Future compatibility

This extension is not expected to remain fixed.  Future changes will
strive to remain compatible if at all possible.  The X server will always
support version 1 of the extension protocol if requested by a client.

Additions to the protocol will always by marked by minor version number
changes so that applications will be able to detect what requests are
supported.