summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTheo Buehler <tb@cvs.openbsd.org>2022-06-20 19:38:26 +0000
committerTheo Buehler <tb@cvs.openbsd.org>2022-06-20 19:38:26 +0000
commit0b84d3a027d5a67345c8a7cabbd86cb676ceac8e (patch)
tree0014edfafe310a75ce3ebae7f920460ebb4cc960
parenta0a04d9961b372a2faca322405b872bca45fa2ea (diff)
Flip roles of lowercase and uppercase A and B.
This matches Cohen's text better and makes the entire thing easier to read. suggested by jsing
-rw-r--r--lib/libcrypto/bn/bn_kron.c88
1 files changed, 44 insertions, 44 deletions
diff --git a/lib/libcrypto/bn/bn_kron.c b/lib/libcrypto/bn/bn_kron.c
index c7bc53535e8..774e9cef30d 100644
--- a/lib/libcrypto/bn/bn_kron.c
+++ b/lib/libcrypto/bn/bn_kron.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: bn_kron.c,v 1.7 2022/06/20 19:32:35 tb Exp $ */
+/* $OpenBSD: bn_kron.c,v 1.8 2022/06/20 19:38:25 tb Exp $ */
/* ====================================================================
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
*
@@ -66,36 +66,36 @@
*/
int
-BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
+BN_kronecker(const BIGNUM *A, const BIGNUM *B, BN_CTX *ctx)
{
/* tab[BN_lsw(n) & 7] = (-1)^((n^2 - 1)) / 8) for odd values of n. */
static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
- BIGNUM *A, *B, *tmp;
+ BIGNUM *a, *b, *tmp;
int k, v;
int ret = -2;
- bn_check_top(a);
- bn_check_top(b);
+ bn_check_top(A);
+ bn_check_top(B);
BN_CTX_start(ctx);
- if ((A = BN_CTX_get(ctx)) == NULL)
+ if ((a = BN_CTX_get(ctx)) == NULL)
goto end;
- if ((B = BN_CTX_get(ctx)) == NULL)
+ if ((b = BN_CTX_get(ctx)) == NULL)
goto end;
- if (BN_copy(A, a) == NULL)
+ if (BN_copy(a, A) == NULL)
goto end;
- if (BN_copy(B, b) == NULL)
+ if (BN_copy(b, B) == NULL)
goto end;
/*
* Cohen's step 1:
*/
- /* If B is zero, output 1 if |A| is 1, otherwise output 0. */
- if (BN_is_zero(B)) {
- ret = BN_abs_is_word(A, 1);
+ /* If b is zero, output 1 if |a| is 1, otherwise output 0. */
+ if (BN_is_zero(b)) {
+ ret = BN_abs_is_word(a, 1);
goto end;
}
@@ -104,36 +104,36 @@ BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
*/
/* If both are even, they have a factor in common, so output 0. */
- if (!BN_is_odd(A) && !BN_is_odd(B)) {
+ if (!BN_is_odd(a) && !BN_is_odd(b)) {
ret = 0;
goto end;
}
- /* Factorize B = 2^v * u with odd u and replace B with u. */
+ /* Factorize b = 2^v * u with odd u and replace b with u. */
v = 0;
- while (!BN_is_bit_set(B, v))
+ while (!BN_is_bit_set(b, v))
v++;
- if (!BN_rshift(B, B, v))
+ if (!BN_rshift(b, b, v))
goto end;
- /* If v is even set k = 1, otherwise set it to (-1)^((A^2 - 1) / 8). */
+ /* If v is even set k = 1, otherwise set it to (-1)^((a^2 - 1) / 8). */
k = 1;
if (v % 2 != 0)
- k = tab[BN_lsw(A) & 7];
+ k = tab[BN_lsw(a) & 7];
/*
- * If B is negative, replace it with -B and if A is also negative
+ * If b is negative, replace it with -b and if a is also negative
* replace k with -k.
*/
- if (BN_is_negative(B)) {
- BN_set_negative(B, 0);
+ if (BN_is_negative(b)) {
+ BN_set_negative(b, 0);
- if (BN_is_negative(A))
+ if (BN_is_negative(a))
k = -k;
}
/*
- * Now B is positive and odd, so compute the Jacobi symbol (A/B)
+ * Now b is positive and odd, so compute the Jacobi symbol (a/b)
* and multiply it by k.
*/
@@ -142,55 +142,55 @@ BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
* Cohen's step 3:
*/
- /* B is positive and odd. */
+ /* b is positive and odd. */
- /* If A is zero output k if B is one, otherwise output 0. */
- if (BN_is_zero(A)) {
- ret = BN_is_one(B) ? k : 0;
+ /* If a is zero output k if b is one, otherwise output 0. */
+ if (BN_is_zero(a)) {
+ ret = BN_is_one(b) ? k : 0;
goto end;
}
- /* Factorize A = 2^v * u with odd u and replace A with u. */
+ /* Factorize a = 2^v * u with odd u and replace a with u. */
v = 0;
- while (!BN_is_bit_set(A, v))
+ while (!BN_is_bit_set(a, v))
v++;
- if (!BN_rshift(A, A, v))
+ if (!BN_rshift(a, a, v))
goto end;
- /* If v is odd, multiply k with (-1)^((B^2 - 1) / 8). */
+ /* If v is odd, multiply k with (-1)^((b^2 - 1) / 8). */
if (v % 2 != 0)
- k *= tab[BN_lsw(B) & 7];
+ k *= tab[BN_lsw(b) & 7];
/*
* Cohen's step 4:
*/
/*
- * Apply the reciprocity law: multiply k by (-1)^((A-1)(B-1)/4).
+ * Apply the reciprocity law: multiply k by (-1)^((a-1)(b-1)/4).
*
- * This expression is -1 if and only if A and B are 3 (mod 4).
+ * This expression is -1 if and only if a and b are 3 (mod 4).
* In turn, this is the case if and only if their two's
* complement representations have the second bit set.
- * A could be negative in the first iteration, B is positive.
+ * a could be negative in the first iteration, b is positive.
*/
- if ((BN_is_negative(A) ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
+ if ((BN_is_negative(a) ? ~BN_lsw(a) : BN_lsw(a)) & BN_lsw(b) & 2)
k = -k;
/*
- * (A, B) := (B mod |A|, |A|)
+ * (a, b) := (b mod |a|, |a|)
*
- * Once this is done, we know that 0 < A < B at the start of the
- * loop. Since B is strictly decreasing, the loop terminates.
+ * Once this is done, we know that 0 < a < b at the start of the
+ * loop. Since b is strictly decreasing, the loop terminates.
*/
- if (!BN_nnmod(B, B, A, ctx))
+ if (!BN_nnmod(b, b, a, ctx))
goto end;
- tmp = A;
- A = B;
- B = tmp;
+ tmp = a;
+ a = b;
+ b = tmp;
- BN_set_negative(B, 0);
+ BN_set_negative(b, 0);
}
end: