diff options
author | Dale Rahn <drahn@cvs.openbsd.org> | 2006-11-06 15:11:38 +0000 |
---|---|---|
committer | Dale Rahn <drahn@cvs.openbsd.org> | 2006-11-06 15:11:38 +0000 |
commit | 8c80337001e667db6b9fc6355d168e8eb9f7ad8a (patch) | |
tree | e75c911de7727bae1610fdfc96feb9012768b7fe | |
parent | 1a4c2224244dd04852e7e252cb6f8b6b70791be1 (diff) |
Copy MI softfloat bits from arm to here, so that they can be shared.
29 files changed, 7216 insertions, 0 deletions
diff --git a/lib/libc/softfloat/eqdf2.c b/lib/libc/softfloat/eqdf2.c new file mode 100644 index 00000000000..c331c037809 --- /dev/null +++ b/lib/libc/softfloat/eqdf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: eqdf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: eqdf2.c,v 1.1 2000/06/06 08:15:02 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include <sys/cdefs.h> + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +flag __eqdf2(float64, float64); + +flag +__eqdf2(float64 a, float64 b) +{ + + /* libgcc1.c says !(a == b) */ + return !float64_eq(a, b); +} diff --git a/lib/libc/softfloat/eqsf2.c b/lib/libc/softfloat/eqsf2.c new file mode 100644 index 00000000000..416034abe6e --- /dev/null +++ b/lib/libc/softfloat/eqsf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: eqsf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: eqsf2.c,v 1.1 2000/06/06 08:15:03 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include <sys/cdefs.h> + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +flag __eqsf2(float32, float32); + +flag +__eqsf2(float32 a, float32 b) +{ + + /* libgcc1.c says !(a == b) */ + return !float32_eq(a, b); +} diff --git a/lib/libc/softfloat/fpgetmask.c b/lib/libc/softfloat/fpgetmask.c new file mode 100644 index 00000000000..2fd3e91eb3a --- /dev/null +++ b/lib/libc/softfloat/fpgetmask.c @@ -0,0 +1,61 @@ +/* $OpenBSD: fpgetmask.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpgetmask.c,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif + +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpgetmask,fpgetmask); +#endif + +fp_except +fpgetmask(void) +{ + + return float_exception_mask; +} diff --git a/lib/libc/softfloat/fpgetround.c b/lib/libc/softfloat/fpgetround.c new file mode 100644 index 00000000000..929de2444aa --- /dev/null +++ b/lib/libc/softfloat/fpgetround.c @@ -0,0 +1,60 @@ +/* $OpenBSD: fpgetround.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpgetround.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpgetround,fpgetround); +#endif + +fp_rnd +fpgetround(void) +{ + + return float_rounding_mode; +} diff --git a/lib/libc/softfloat/fpgetsticky.c b/lib/libc/softfloat/fpgetsticky.c new file mode 100644 index 00000000000..966b69be0c2 --- /dev/null +++ b/lib/libc/softfloat/fpgetsticky.c @@ -0,0 +1,60 @@ +/* $OpenBSD: fpgetsticky.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpgetsticky.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpgetsticky,fpgetsticky); +#endif + +fp_except +fpgetsticky(void) +{ + + return float_exception_flags; +} diff --git a/lib/libc/softfloat/fpsetmask.c b/lib/libc/softfloat/fpsetmask.c new file mode 100644 index 00000000000..d9c33ded118 --- /dev/null +++ b/lib/libc/softfloat/fpsetmask.c @@ -0,0 +1,63 @@ +/* $OpenBSD: fpsetmask.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpsetmask.c,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpsetmask,fpsetmask); +#endif + +fp_except +fpsetmask(fp_except mask) +{ + fp_except old; + + old = float_exception_mask; + float_exception_mask = mask; + return old; +} diff --git a/lib/libc/softfloat/fpsetround.c b/lib/libc/softfloat/fpsetround.c new file mode 100644 index 00000000000..23cc0878757 --- /dev/null +++ b/lib/libc/softfloat/fpsetround.c @@ -0,0 +1,63 @@ +/* $OpenBSD: fpsetround.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpsetround.c,v 1.2 2002/01/13 21:45:53 thorpej Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpsetround,fpsetround); +#endif + +fp_rnd +fpsetround(fp_rnd rnd_dir) +{ + fp_rnd old; + + old = float_rounding_mode; + float_rounding_mode = rnd_dir; + return old; +} diff --git a/lib/libc/softfloat/fpsetsticky.c b/lib/libc/softfloat/fpsetsticky.c new file mode 100644 index 00000000000..fbfbd08d0f4 --- /dev/null +++ b/lib/libc/softfloat/fpsetsticky.c @@ -0,0 +1,63 @@ +/* $OpenBSD: fpsetsticky.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: fpsetsticky.c,v 1.2 2002/01/13 21:45:54 thorpej Exp $ */ + +/*- + * Copyright (c) 1997 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Neil A. Carson and Mark Brinicombe + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +#include "namespace.h" + +#include <ieeefp.h> +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif +#include "milieu.h" +#include "softfloat.h" + +#ifdef __weak_alias +__weak_alias(_fpsetsticky,fpsetsticky); +#endif + +fp_except +fpsetsticky(fp_except except) +{ + fp_except old; + + old = float_exception_flags; + float_exception_flags = except; + return old; +} diff --git a/lib/libc/softfloat/gedf2.c b/lib/libc/softfloat/gedf2.c new file mode 100644 index 00000000000..747fc779570 --- /dev/null +++ b/lib/libc/softfloat/gedf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: gedf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: gedf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __gedf2(float64, float64); + +flag +__gedf2(float64 a, float64 b) +{ + + /* libgcc1.c says (a >= b) - 1 */ + return float64_le(b, a) - 1; +} diff --git a/lib/libc/softfloat/gesf2.c b/lib/libc/softfloat/gesf2.c new file mode 100644 index 00000000000..e6b79c23634 --- /dev/null +++ b/lib/libc/softfloat/gesf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: gesf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: gesf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __gesf2(float32, float32); + +flag +__gesf2(float32 a, float32 b) +{ + + /* libgcc1.c says (a >= b) - 1 */ + return float32_le(b, a) - 1; +} diff --git a/lib/libc/softfloat/gtdf2.c b/lib/libc/softfloat/gtdf2.c new file mode 100644 index 00000000000..9573064fb44 --- /dev/null +++ b/lib/libc/softfloat/gtdf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: gtdf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: gtdf2.c,v 1.1 2000/06/06 08:15:05 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __gtdf2(float64, float64); + +flag +__gtdf2(float64 a, float64 b) +{ + + /* libgcc1.c says a > b */ + return float64_lt(b, a); +} diff --git a/lib/libc/softfloat/gtsf2.c b/lib/libc/softfloat/gtsf2.c new file mode 100644 index 00000000000..7310cff58e4 --- /dev/null +++ b/lib/libc/softfloat/gtsf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: gtsf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: gtsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __gtsf2(float32, float32); + +flag +__gtsf2(float32 a, float32 b) +{ + + /* libgcc1.c says a > b */ + return float32_lt(b, a); +} diff --git a/lib/libc/softfloat/ledf2.c b/lib/libc/softfloat/ledf2.c new file mode 100644 index 00000000000..7a9e89eda00 --- /dev/null +++ b/lib/libc/softfloat/ledf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: ledf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: ledf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __ledf2(float64, float64); + +flag +__ledf2(float64 a, float64 b) +{ + + /* libgcc1.c says 1 - (a <= b) */ + return 1 - float64_le(a, b); +} diff --git a/lib/libc/softfloat/lesf2.c b/lib/libc/softfloat/lesf2.c new file mode 100644 index 00000000000..c03d521e4e5 --- /dev/null +++ b/lib/libc/softfloat/lesf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: lesf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: lesf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __lesf2(float32, float32); + +flag +__lesf2(float32 a, float32 b) +{ + + /* libgcc1.c says 1 - (a <= b) */ + return 1 - float32_le(a, b); +} diff --git a/lib/libc/softfloat/ltdf2.c b/lib/libc/softfloat/ltdf2.c new file mode 100644 index 00000000000..07b860d5064 --- /dev/null +++ b/lib/libc/softfloat/ltdf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: ltdf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: ltdf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __ltdf2(float64, float64); + +flag +__ltdf2(float64 a, float64 b) +{ + + /* libgcc1.c says -(a < b) */ + return -float64_lt(a, b); +} diff --git a/lib/libc/softfloat/ltsf2.c b/lib/libc/softfloat/ltsf2.c new file mode 100644 index 00000000000..040bf0adfdd --- /dev/null +++ b/lib/libc/softfloat/ltsf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: ltsf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: ltsf2.c,v 1.1 2000/06/06 08:15:06 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __ltsf2(float32, float32); + +flag +__ltsf2(float32 a, float32 b) +{ + + /* libgcc1.c says -(a < b) */ + return -float32_lt(a, b); +} diff --git a/lib/libc/softfloat/milieu.h b/lib/libc/softfloat/milieu.h new file mode 100644 index 00000000000..62c4582506c --- /dev/null +++ b/lib/libc/softfloat/milieu.h @@ -0,0 +1,5 @@ +#if defined(__arm__) +#include "../arch/arm/softfloat/milieu.h" +#elif defined(__sh__) +#include "../arch/sh/softfloat/milieu.h" +#endif diff --git a/lib/libc/softfloat/nedf2.c b/lib/libc/softfloat/nedf2.c new file mode 100644 index 00000000000..a42305dbe4c --- /dev/null +++ b/lib/libc/softfloat/nedf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: nedf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: nedf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __nedf2(float64, float64); + +flag +__nedf2(float64 a, float64 b) +{ + + /* libgcc1.c says a != b */ + return !float64_eq(a, b); +} diff --git a/lib/libc/softfloat/negdf2.c b/lib/libc/softfloat/negdf2.c new file mode 100644 index 00000000000..643ff30fd6f --- /dev/null +++ b/lib/libc/softfloat/negdf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: negdf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: negdf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +float64 __negdf2(float64); + +float64 +__negdf2(float64 a) +{ + + /* libgcc1.c says -a */ + return a ^ FLOAT64_MANGLE(0x8000000000000000ULL); +} diff --git a/lib/libc/softfloat/negsf2.c b/lib/libc/softfloat/negsf2.c new file mode 100644 index 00000000000..944af66b7c7 --- /dev/null +++ b/lib/libc/softfloat/negsf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: negsf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: negsf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +float32 __negsf2(float32); + +float32 +__negsf2(float32 a) +{ + + /* libgcc1.c says INTIFY(-a) */ + return a ^ 0x80000000; +} diff --git a/lib/libc/softfloat/nesf2.c b/lib/libc/softfloat/nesf2.c new file mode 100644 index 00000000000..87fa705e80e --- /dev/null +++ b/lib/libc/softfloat/nesf2.c @@ -0,0 +1,22 @@ +/* $OpenBSD: nesf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: nesf2.c,v 1.1 2000/06/06 08:15:07 bjh21 Exp $ */ + +/* + * Written by Ben Harris, 2000. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __nesf2(float32, float32); + +flag +__nesf2(float32 a, float32 b) +{ + + /* libgcc1.c says a != b */ + return !float32_eq(a, b); +} diff --git a/lib/libc/softfloat/softfloat-for-gcc.h b/lib/libc/softfloat/softfloat-for-gcc.h new file mode 100644 index 00000000000..3162626ee76 --- /dev/null +++ b/lib/libc/softfloat/softfloat-for-gcc.h @@ -0,0 +1,44 @@ +/* $OpenBSD: softfloat-for-gcc.h,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: softfloat-for-gcc.h,v 1.6 2003/07/26 19:24:51 salo Exp $ */ + +/* + * Move private identifiers with external linkage into implementation + * namespace. -- Klaus Klein <kleink@NetBSD.org>, May 5, 1999 + */ +#define float_exception_flags _softfloat_float_exception_flags +#define float_exception_mask _softfloat_float_exception_mask +#define float_rounding_mode _softfloat_float_rounding_mode +#define float_raise _softfloat_float_raise +/* The following batch are called by GCC through wrappers */ +#define float32_eq _softfloat_float32_eq +#define float32_le _softfloat_float32_le +#define float32_lt _softfloat_float32_lt +#define float64_eq _softfloat_float64_eq +#define float64_le _softfloat_float64_le +#define float64_lt _softfloat_float64_lt + +/* + * Macros to define functions with the GCC expected names + */ + +#define float32_add __addsf3 +#define float64_add __adddf3 +#define float32_sub __subsf3 +#define float64_sub __subdf3 +#define float32_mul __mulsf3 +#define float64_mul __muldf3 +#define float32_div __divsf3 +#define float64_div __divdf3 +#define int32_to_float32 __floatsisf +#define int32_to_float64 __floatsidf +#define int64_to_float32 __floatdisf +#define int64_to_float64 __floatdidf +#define float32_to_int32_round_to_zero __fixsfsi +#define float64_to_int32_round_to_zero __fixdfsi +#define float32_to_int64_round_to_zero __fixsfdi +#define float64_to_int64_round_to_zero __fixdfdi +#define float32_to_uint32_round_to_zero __fixunssfsi +#define float64_to_uint32_round_to_zero __fixunsdfsi +#define float32_to_float64 __extendsfdf2 +#define float64_to_float32 __truncdfsf2 + diff --git a/lib/libc/softfloat/softfloat-macros.h b/lib/libc/softfloat/softfloat-macros.h new file mode 100644 index 00000000000..0437e35b8b9 --- /dev/null +++ b/lib/libc/softfloat/softfloat-macros.h @@ -0,0 +1,648 @@ +/* $OpenBSD: softfloat-macros.h,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +Shifts `a' right by the number of bits given in `count'. If any nonzero +bits are shifted off, they are ``jammed'' into the least significant bit of +the result by setting the least significant bit to 1. The value of `count' +can be arbitrarily large; in particular, if `count' is greater than 32, the +result will be either 0 or 1, depending on whether `a' is zero or nonzero. +The result is stored in the location pointed to by `zPtr'. +------------------------------------------------------------------------------- +*/ +__inline void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) +{ + bits32 z; + + if ( count == 0 ) { + z = a; + } + else if ( count < 32 ) { + z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); + } + else { + z = ( a != 0 ); + } + *zPtr = z; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' can be arbitrarily large; in particular, if `count' is greater +than 64, the result will be 0. The result is broken into two 32-bit pieces +which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + shift64Right( + bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + bits32 z0, z1; + int8 negCount = ( - count ) & 31; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 32 ) { + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0; + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. If any nonzero bits are shifted off, they +are ``jammed'' into the least significant bit of the result by setting the +least significant bit to 1. The value of `count' can be arbitrarily large; +in particular, if `count' is greater than 64, the result will be either 0 +or 1, depending on whether the concatenation of `a0' and `a1' is zero or +nonzero. The result is broken into two 32-bit pieces which are stored at +the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + shift64RightJamming( + bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + bits32 z0, z1; + int8 negCount = ( - count ) & 31; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 32 ) { + z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); + z0 = a0>>count; + } + else { + if ( count == 32 ) { + z1 = a0 | ( a1 != 0 ); + } + else if ( count < 64 ) { + z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); + } + else { + z1 = ( ( a0 | a1 ) != 0 ); + } + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right +by 32 _plus_ the number of bits given in `count'. The shifted result is +at most 64 nonzero bits; these are broken into two 32-bit pieces which are +stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted +off form a third 32-bit result as follows: The _last_ bit shifted off is +the most-significant bit of the extra result, and the other 31 bits of the +extra result are all zero if and only if _all_but_the_last_ bits shifted off +were all zero. This extra result is stored in the location pointed to by +`z2Ptr'. The value of `count' can be arbitrarily large. + (This routine makes more sense if `a0', `a1', and `a2' are considered +to form a fixed-point value with binary point between `a1' and `a2'. This +fixed-point value is shifted right by the number of bits given in `count', +and the integer part of the result is returned at the locations pointed to +by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly +corrupted as described above, and is returned at the location pointed to by +`z2Ptr'.) +------------------------------------------------------------------------------- +*/ +__inline void + shift64ExtraRightJamming( + bits32 a0, + bits32 a1, + bits32 a2, + int16 count, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr + ) +{ + bits32 z0, z1, z2; + int8 negCount = ( - count ) & 31; + + if ( count == 0 ) { + z2 = a2; + z1 = a1; + z0 = a0; + } + else { + if ( count < 32 ) { + z2 = a1<<negCount; + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + if ( count == 32 ) { + z2 = a1; + z1 = a0; + } + else { + a2 |= a1; + if ( count < 64 ) { + z2 = a0<<negCount; + z1 = a0>>( count & 31 ); + } + else { + z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); + z1 = 0; + } + } + z0 = 0; + } + z2 |= ( a2 != 0 ); + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' must be less than 32. The result is broken into two 32-bit +pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + shortShift64Left( + bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + + *z1Ptr = a1<<count; + *z0Ptr = + ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) ); + +} + +/* +------------------------------------------------------------------------------- +Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left +by the number of bits given in `count'. Any bits shifted off are lost. +The value of `count' must be less than 32. The result is broken into three +32-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + shortShift96Left( + bits32 a0, + bits32 a1, + bits32 a2, + int16 count, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr + ) +{ + bits32 z0, z1, z2; + int8 negCount; + + z2 = a2<<count; + z1 = a1<<count; + z0 = a0<<count; + if ( 0 < count ) { + negCount = ( ( - count ) & 31 ); + z1 |= a2>>negCount; + z0 |= a1>>negCount; + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit +value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so +any carry out is lost. The result is broken into two 32-bit pieces which +are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + add64( + bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + bits32 z1; + + z1 = a1 + b1; + *z1Ptr = z1; + *z0Ptr = a0 + b0 + ( z1 < a1 ); + +} + +/* +------------------------------------------------------------------------------- +Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the +96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is +modulo 2^96, so any carry out is lost. The result is broken into three +32-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + add96( + bits32 a0, + bits32 a1, + bits32 a2, + bits32 b0, + bits32 b1, + bits32 b2, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr + ) +{ + bits32 z0, z1, z2; + int8 carry0, carry1; + + z2 = a2 + b2; + carry1 = ( z2 < a2 ); + z1 = a1 + b1; + carry0 = ( z1 < a1 ); + z0 = a0 + b0; + z1 += carry1; + z0 += ( z1 < carry1 ); + z0 += carry0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the +64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo +2^64, so any borrow out (carry out) is lost. The result is broken into two +32-bit pieces which are stored at the locations pointed to by `z0Ptr' and +`z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + sub64( + bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + + *z1Ptr = a1 - b1; + *z0Ptr = a0 - b0 - ( a1 < b1 ); + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from +the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction +is modulo 2^96, so any borrow out (carry out) is lost. The result is broken +into three 32-bit pieces which are stored at the locations pointed to by +`z0Ptr', `z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + sub96( + bits32 a0, + bits32 a1, + bits32 a2, + bits32 b0, + bits32 b1, + bits32 b2, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr + ) +{ + bits32 z0, z1, z2; + int8 borrow0, borrow1; + + z2 = a2 - b2; + borrow1 = ( a2 < b2 ); + z1 = a1 - b1; + borrow0 = ( a1 < b1 ); + z0 = a0 - b0; + z0 -= ( z1 < borrow1 ); + z1 -= borrow1; + z0 -= borrow0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies `a' by `b' to obtain a 64-bit product. The product is broken +into two 32-bit pieces which are stored at the locations pointed to by +`z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr ) +{ + bits16 aHigh, aLow, bHigh, bLow; + bits32 z0, zMiddleA, zMiddleB, z1; + + aLow = a; + aHigh = a>>16; + bLow = b; + bHigh = b>>16; + z1 = ( (bits32) aLow ) * bLow; + zMiddleA = ( (bits32) aLow ) * bHigh; + zMiddleB = ( (bits32) aHigh ) * bLow; + z0 = ( (bits32) aHigh ) * bHigh; + zMiddleA += zMiddleB; + z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 ); + zMiddleA <<= 16; + z1 += zMiddleA; + z0 += ( z1 < zMiddleA ); + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b' +to obtain a 96-bit product. The product is broken into three 32-bit pieces +which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and +`z2Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + mul64By32To96( + bits32 a0, + bits32 a1, + bits32 b, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr + ) +{ + bits32 z0, z1, z2, more1; + + mul32To64( a1, b, &z1, &z2 ); + mul32To64( a0, b, &z0, &more1 ); + add64( z0, more1, 0, z1, &z0, &z1 ); + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the +64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit +product. The product is broken into four 32-bit pieces which are stored at +the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. +------------------------------------------------------------------------------- +*/ +__inline void + mul64To128( + bits32 a0, + bits32 a1, + bits32 b0, + bits32 b1, + bits32 *z0Ptr, + bits32 *z1Ptr, + bits32 *z2Ptr, + bits32 *z3Ptr + ) +{ + bits32 z0, z1, z2, z3; + bits32 more1, more2; + + mul32To64( a1, b1, &z2, &z3 ); + mul32To64( a1, b0, &z1, &more2 ); + add64( z1, more2, 0, z2, &z1, &z2 ); + mul32To64( a0, b0, &z0, &more1 ); + add64( z0, more1, 0, z1, &z0, &z1 ); + mul32To64( a0, b1, &more1, &more2 ); + add64( more1, more2, 0, z2, &more1, &z2 ); + add64( z0, z1, 0, more1, &z0, &z1 ); + *z3Ptr = z3; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Returns an approximation to the 32-bit integer quotient obtained by dividing +`b' into the 64-bit value formed by concatenating `a0' and `a1'. The +divisor `b' must be at least 2^31. If q is the exact quotient truncated +toward zero, the approximation returned lies between q and q + 2 inclusive. +If the exact quotient q is larger than 32 bits, the maximum positive 32-bit +unsigned integer is returned. +------------------------------------------------------------------------------- +*/ +static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b ) +{ + bits32 b0, b1; + bits32 rem0, rem1, term0, term1; + bits32 z; + + if ( b <= a0 ) return 0xFFFFFFFF; + b0 = b>>16; + z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16; + mul32To64( b, z, &term0, &term1 ); + sub64( a0, a1, term0, term1, &rem0, &rem1 ); + while ( ( (sbits32) rem0 ) < 0 ) { + z -= 0x10000; + b1 = b<<16; + add64( rem0, rem1, b0, b1, &rem0, &rem1 ); + } + rem0 = ( rem0<<16 ) | ( rem1>>16 ); + z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0; + return z; + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns an approximation to the square root of the 32-bit significand given +by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of +`aExp' (the least significant bit) is 1, the integer returned approximates +2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' +is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either +case, the approximation returned lies strictly within +/-2 of the exact +value. +------------------------------------------------------------------------------- +*/ +static bits32 estimateSqrt32( int16 aExp, bits32 a ) +{ + static const bits16 sqrtOddAdjustments[] = { + 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, + 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 + }; + static const bits16 sqrtEvenAdjustments[] = { + 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, + 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 + }; + int8 index; + bits32 z; + + index = ( a>>27 ) & 15; + if ( aExp & 1 ) { + z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; + z = ( ( a / z )<<14 ) + ( z<<15 ); + a >>= 1; + } + else { + z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; + z = a / z + z; + z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); + if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); + } + return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the number of leading 0 bits before the most-significant 1 bit of +`a'. If `a' is zero, 32 is returned. +------------------------------------------------------------------------------- +*/ +static int8 countLeadingZeros32( bits32 a ) +{ + static const int8 countLeadingZerosHigh[] = { + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; + int8 shiftCount; + + shiftCount = 0; + if ( a < 0x10000 ) { + shiftCount += 16; + a <<= 16; + } + if ( a < 0x1000000 ) { + shiftCount += 8; + a <<= 8; + } + shiftCount += countLeadingZerosHigh[ a>>24 ]; + return shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is +equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, +returns 0. +------------------------------------------------------------------------------- +*/ +__inline flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) +{ + + return ( a0 == b0 ) && ( a1 == b1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less +than or equal to the 64-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +__inline flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less +than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, +returns 0. +------------------------------------------------------------------------------- +*/ +__inline flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not +equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, +returns 0. +------------------------------------------------------------------------------- +*/ +__inline flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) +{ + + return ( a0 != b0 ) || ( a1 != b1 ); + +} + diff --git a/lib/libc/softfloat/softfloat-specialize.h b/lib/libc/softfloat/softfloat-specialize.h new file mode 100644 index 00000000000..b2c29b297de --- /dev/null +++ b/lib/libc/softfloat/softfloat-specialize.h @@ -0,0 +1,490 @@ +/* $OpenBSD: softfloat-specialize.h,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */ + +/* This is a derivative work. */ + +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include <signal.h> + +/* +------------------------------------------------------------------------------- +Underflow tininess-detection mode, statically initialized to default value. +(The declaration in `softfloat.h' must match the `int8' type here.) +------------------------------------------------------------------------------- +*/ +#ifdef SOFTFLOAT_FOR_GCC +static +#endif +int8 float_detect_tininess = float_tininess_after_rounding; + +/* +------------------------------------------------------------------------------- +Raises the exceptions specified by `flags'. Floating-point traps can be +defined here if desired. It is currently not possible for such a trap to +substitute a result value. If traps are not implemented, this routine +should be simply `float_exception_flags |= flags;'. +------------------------------------------------------------------------------- +*/ +fp_except float_exception_mask = 0; +void float_raise( fp_except flags ) +{ + + float_exception_flags |= flags; + + if ( flags & float_exception_mask ) { + raise( SIGFPE ); + } +} + +/* +------------------------------------------------------------------------------- +Internal canonical NaN format. +------------------------------------------------------------------------------- +*/ +typedef struct { + flag sign; + bits64 high, low; +} commonNaNT; + +/* +------------------------------------------------------------------------------- +The pattern for a default generated single-precision NaN. +------------------------------------------------------------------------------- +*/ +#define float32_default_nan 0xFFFFFFFF + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +#ifdef SOFTFLOAT_FOR_GCC +static +#endif +flag float32_is_nan( float32 a ) +{ + + return ( 0xFF000000 < (bits32) ( a<<1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a signaling +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) +static +#endif +flag float32_is_signaling_nan( float32 a ) +{ + + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float32ToCommonNaN( float32 a ) +{ + commonNaNT z; + + if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a>>31; + z.low = 0; + z.high = ( (bits64) a )<<41; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the single- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float32 commonNaNToFloat32( commonNaNT a ) +{ + + return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); + +} + +/* +------------------------------------------------------------------------------- +Takes two single-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float32 propagateFloat32NaN( float32 a, float32 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float32_is_nan( a ); + aIsSignalingNaN = float32_is_signaling_nan( a ); + bIsNaN = float32_is_nan( b ); + bIsSignalingNaN = float32_is_signaling_nan( b ); + a |= 0x00400000; + b |= 0x00400000; + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +/* +------------------------------------------------------------------------------- +The pattern for a default generated double-precision NaN. +------------------------------------------------------------------------------- +*/ +#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +#ifdef SOFTFLOAT_FOR_GCC +static +#endif +flag float64_is_nan( float64 a ) +{ + + return ( LIT64( 0xFFE0000000000000 ) < + (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is a signaling +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) +static +#endif +flag float64_is_signaling_nan( float64 a ) +{ + + return + ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE ) + && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float64ToCommonNaN( float64 a ) +{ + commonNaNT z; + + if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = FLOAT64_DEMANGLE(a)>>63; + z.low = 0; + z.high = FLOAT64_DEMANGLE(a)<<12; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the double- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float64 commonNaNToFloat64( commonNaNT a ) +{ + + return FLOAT64_MANGLE( + ( ( (bits64) a.sign )<<63 ) + | LIT64( 0x7FF8000000000000 ) + | ( a.high>>12 ) ); + +} + +/* +------------------------------------------------------------------------------- +Takes two double-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float64 propagateFloat64NaN( float64 a, float64 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float64_is_nan( a ); + aIsSignalingNaN = float64_is_signaling_nan( a ); + bIsNaN = float64_is_nan( b ); + bIsSignalingNaN = float64_is_signaling_nan( b ); + a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); + b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +The pattern for a default generated extended double-precision NaN. The +`high' and `low' values hold the most- and least-significant bits, +respectively. +------------------------------------------------------------------------------- +*/ +#define floatx80_default_nan_high 0xFFFF +#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag floatx80_is_nan( floatx80 a ) +{ + + return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +signaling NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag floatx80_is_signaling_nan( floatx80 a ) +{ + bits64 aLow; + + aLow = a.low & ~ LIT64( 0x4000000000000000 ); + return + ( ( a.high & 0x7FFF ) == 0x7FFF ) + && (bits64) ( aLow<<1 ) + && ( a.low == aLow ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the +invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT floatx80ToCommonNaN( floatx80 a ) +{ + commonNaNT z; + + if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a.high>>15; + z.low = 0; + z.high = a.low<<1; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the extended +double-precision floating-point format. +------------------------------------------------------------------------------- +*/ +static floatx80 commonNaNToFloatx80( commonNaNT a ) +{ + floatx80 z; + + z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); + z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes two extended double-precision floating-point values `a' and `b', one +of which is a NaN, and returns the appropriate NaN result. If either `a' or +`b' is a signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = floatx80_is_nan( a ); + aIsSignalingNaN = floatx80_is_signaling_nan( a ); + bIsNaN = floatx80_is_nan( b ); + bIsSignalingNaN = floatx80_is_signaling_nan( b ); + a.low |= LIT64( 0xC000000000000000 ); + b.low |= LIT64( 0xC000000000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +The pattern for a default generated quadruple-precision NaN. The `high' and +`low' values hold the most- and least-significant bits, respectively. +------------------------------------------------------------------------------- +*/ +#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) +#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float128_is_nan( float128 a ) +{ + + return + ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) + && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is a +signaling NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float128_is_signaling_nan( float128 a ) +{ + + return + ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) + && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float128ToCommonNaN( float128 a ) +{ + commonNaNT z; + + if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a.high>>63; + shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the quadruple- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float128 commonNaNToFloat128( commonNaNT a ) +{ + float128 z; + + shift128Right( a.high, a.low, 16, &z.high, &z.low ); + z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes two quadruple-precision floating-point values `a' and `b', one of +which is a NaN, and returns the appropriate NaN result. If either `a' or +`b' is a signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float128 propagateFloat128NaN( float128 a, float128 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float128_is_nan( a ); + aIsSignalingNaN = float128_is_signaling_nan( a ); + bIsNaN = float128_is_nan( b ); + bIsSignalingNaN = float128_is_signaling_nan( b ); + a.high |= LIT64( 0x0000800000000000 ); + b.high |= LIT64( 0x0000800000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +#endif + diff --git a/lib/libc/softfloat/softfloat.c b/lib/libc/softfloat/softfloat.c new file mode 100644 index 00000000000..546dad91648 --- /dev/null +++ b/lib/libc/softfloat/softfloat.c @@ -0,0 +1,2347 @@ +/* $OpenBSD: softfloat.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: softfloat.c,v 1.1 2002/05/21 23:51:07 bjh21 Exp $ */ + +/* + * This version hacked for use with gcc -msoft-float by bjh21. + * (Mostly a case of #ifdefing out things GCC doesn't need or provides + * itself). + */ + +/* + * Things you may want to define: + * + * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with + * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them + * properly renamed. + */ + +/* + * This differs from the standard bits32/softfloat.c in that float64 + * is defined to be a 64-bit integer rather than a structure. The + * structure is float64s, with translation between the two going via + * float64u. + */ + +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-Point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include <sys/cdefs.h> + +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif + +#include "milieu.h" +#include "softfloat.h" + +/* + * Conversions between floats as stored in memory and floats as + * SoftFloat uses them + */ +#ifndef FLOAT64_DEMANGLE +#define FLOAT64_DEMANGLE(a) (a) +#endif +#ifndef FLOAT64_MANGLE +#define FLOAT64_MANGLE(a) (a) +#endif + +/* +------------------------------------------------------------------------------- +Primitive arithmetic functions, including multi-word arithmetic, and +division and square root approximations. (Can be specialized to target if +desired.) +------------------------------------------------------------------------------- +*/ +#include "softfloat-macros.h" + +/* +------------------------------------------------------------------------------- +Functions and definitions to determine: (1) whether tininess for underflow +is detected before or after rounding by default, (2) what (if anything) +happens when exceptions are raised, (3) how signaling NaNs are distinguished +from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs +are propagated from function inputs to output. These details are target- +specific. +------------------------------------------------------------------------------- +*/ +#include "softfloat-specialize.h" + +/* +------------------------------------------------------------------------------- +Floating-point rounding mode and exception flags. +------------------------------------------------------------------------------- +*/ +fp_rnd float_rounding_mode = float_round_nearest_even; +fp_except float_exception_flags = 0; + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat32Frac( float32 a ) +{ + + return a & 0x007FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat32Exp( float32 a ) +{ + + return ( a>>23 ) & 0xFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat32Sign( float32 a ) +{ + + return a>>31; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal single-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( aSig ) - 8; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +single-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the single-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal single- +precision floating-point number. + The input significand `zSig' has its binary point between bits 30 +and 29, which is 7 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = roundingMode == float_round_nearest_even; + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x7F; + if ( 0xFD <= (bits16) zExp ) { + if ( ( 0xFD < zExp ) + || ( ( zExp == 0xFD ) + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < 0x80000000 ); + shift32RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x7F; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>7; + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat32' except that `zSig' does not have to be normalized. +Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' +floating-point exponent. +------------------------------------------------------------------------------- +*/ +static float32 + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( zSig ) - 1; + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +/* +------------------------------------------------------------------------------- +Returns the least-significant 32 fraction bits of the double-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat64Frac1( float64 a ) +{ + + return FLOAT64_DEMANGLE(a) & LIT64( 0x00000000FFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the most-significant 20 fraction bits of the double-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat64Frac0( float64 a ) +{ + + return ( FLOAT64_DEMANGLE(a)>>32 ) & 0x000FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat64Exp( float64 a ) +{ + + return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat64Sign( float64 a ) +{ + + return FLOAT64_DEMANGLE(a)>>63; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal double-precision floating-point value represented +by the denormalized significand formed by the concatenation of `aSig0' and +`aSig1'. The normalized exponent is stored at the location pointed to by +`zExpPtr'. The most significant 21 bits of the normalized significand are +stored at the location pointed to by `zSig0Ptr', and the least significant +32 bits of the normalized significand are stored at the location pointed to +by `zSig1Ptr'. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat64Subnormal( + bits32 aSig0, + bits32 aSig1, + int16 *zExpPtr, + bits32 *zSig0Ptr, + bits32 *zSig1Ptr + ) +{ + int8 shiftCount; + + if ( aSig0 == 0 ) { + shiftCount = countLeadingZeros32( aSig1 ) - 11; + if ( shiftCount < 0 ) { + *zSig0Ptr = aSig1>>( - shiftCount ); + *zSig1Ptr = aSig1<<( shiftCount & 31 ); + } + else { + *zSig0Ptr = aSig1<<shiftCount; + *zSig1Ptr = 0; + } + *zExpPtr = - shiftCount - 31; + } + else { + shiftCount = countLeadingZeros32( aSig0 ) - 11; + shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); + *zExpPtr = 1 - shiftCount; + } + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', the exponent `zExp', and the significand formed by +the concatenation of `zSig0' and `zSig1' into a double-precision floating- +point value, returning the result. After being shifted into the proper +positions, the three fields `zSign', `zExp', and `zSig0' are simply added +together to form the most significant 32 bits of the result. This means +that any integer portion of `zSig0' will be added into the exponent. Since +a properly normalized significand will have an integer portion equal to 1, +the `zExp' input should be 1 less than the desired result exponent whenever +`zSig0' and `zSig1' concatenated form a complete, normalized significand. +------------------------------------------------------------------------------- +*/ +INLINE float64 + packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) +{ + + return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + + ( ( (bits64) zExp )<<52 ) + + ( ( (bits64) zSig0 )<<32 ) + zSig1 ); + + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0', `zSig1', +and `zSig2', and returns the proper double-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +simply rounded and packed into the double-precision format, with the inexact +exception raised if the abstract input cannot be represented exactly. +However, if the abstract value is too large, the overflow and inexact +exceptions are raised and an infinity or maximal finite value is returned. +If the abstract value is too small, the input value is rounded to a +subnormal number, and the underflow and inexact exceptions are raised if the +abstract input cannot be represented exactly as a subnormal double-precision +floating-point number. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. In the +usual case that the input significand is normalized, `zExp' must be 1 less +than the ``true'' floating-point exponent. The handling of underflow and +overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 + roundAndPackFloat64( + flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + increment = ( (sbits32) zSig2 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + if ( 0x7FD <= (bits16) zExp ) { + if ( ( 0x7FD < zExp ) + || ( ( zExp == 0x7FD ) + && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 ) + && increment + ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF ); + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ! increment + || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF ); + shift64ExtraRightJamming( + zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); + zExp = 0; + if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); + if ( roundNearestEven ) { + increment = ( (sbits32) zSig2 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + } + if ( zSig2 ) float_exception_flags |= float_flag_inexact; + if ( increment ) { + add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); + zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); + } + else { + if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; + } + return packFloat64( zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand formed by the concatenation of `zSig0' and `zSig1', and +returns the proper double-precision floating-point value corresponding +to the abstract input. This routine is just like `roundAndPackFloat64' +except that the input significand has fewer bits and does not have to be +normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float64 + normalizeRoundAndPackFloat64( + flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 ) +{ + int8 shiftCount; + bits32 zSig2; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 32; + } + shiftCount = countLeadingZeros32( zSig0 ) - 11; + if ( 0 <= shiftCount ) { + zSig2 = 0; + shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + } + else { + shift64ExtraRightJamming( + zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); + } + zExp -= shiftCount; + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int32 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int32_to_float64( int32 a ) +{ + flag zSign; + bits32 absA; + int8 shiftCount; + bits32 zSig0, zSig1; + + if ( a == 0 ) return packFloat64( 0, 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) - 11; + if ( 0 <= shiftCount ) { + zSig0 = absA<<shiftCount; + zSig1 = 0; + } + else { + shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 ); + } + return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig, aSigExtra; + int32 z; + int8 roundingMode; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x96; + if ( 0 <= shiftCount ) { + if ( 0x9E <= aExp ) { + if ( a != 0xCF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { + return 0x7FFFFFFF; + } + } + return (sbits32) 0x80000000; + } + z = ( aSig | 0x00800000 )<<shiftCount; + if ( aSign ) z = - z; + } + else { + if ( aExp < 0x7E ) { + aSigExtra = aExp | aSig; + z = 0; + } + else { + aSig |= 0x00800000; + aSigExtra = aSig<<( shiftCount & 31 ); + z = aSig>>( - shiftCount ); + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( (sbits32) aSigExtra < 0 ) { + ++z; + if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1; + } + if ( aSign ) z = - z; + } + else { + aSigExtra = ( aSigExtra != 0 ); + if ( aSign ) { + z += ( roundingMode == float_round_down ) & aSigExtra; + z = - z; + } + else { + z += ( roundingMode == float_round_up ) & aSigExtra; + } + } + } + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + if ( 0 <= shiftCount ) { + if ( a != 0xCF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; + } + return (sbits32) 0x80000000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + float_exception_flags |= float_flag_inexact; + } + if ( aSign ) z = - z; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float32_to_float64( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig, zSig0, zSig1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); + return packFloat64( aSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + shift64Right( aSig, 0, 3, &zSig0, &zSig1 ); + return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Rounds the single-precision floating-point value `a' to an integer, +and returns the result as a single-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float32 z; + + aExp = extractFloat32Exp( a ); + if ( 0x96 <= aExp ) { + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { + return propagateFloat32NaN( a, a ); + } + return a; + } + if ( aExp <= 0x7E ) { + if ( (bits32) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat32Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { + return packFloat32( aSign, 0x7F, 0 ); + } + break; + case float_round_to_zero: + break; + case float_round_down: + return aSign ? 0xBF800000 : 0; + case float_round_up: + return aSign ? 0x80000000 : 0x3F800000; + } + return packFloat32( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x96 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the single-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 6; + bSig <<= 6; + if ( 0 < expDiff ) { + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x20000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x20000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); + zSig = 0x40000000 + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= 0x20000000; + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits32) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the single- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 7; + bSig <<= 7; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign ^ 1, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x40000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + bSig |= 0x40000000; + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x40000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + aSig |= 0x40000000; + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the single-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_add( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return addFloat32Sigs( a, b, aSign ); + } + else { + return subFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sub( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return subFloat32Sigs( a, b, aSign ); + } + else { + return addFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_mul( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig0, zSig1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x7F; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + mul32To64( aSig, bSig, &zSig0, &zSig1 ); + zSig0 |= ( zSig1 != 0 ); + if ( 0 <= (sbits32) ( zSig0<<1 ) ) { + zSig0 <<= 1; + --zExp; + } + return roundAndPackFloat32( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the single-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_div( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig, rem0, rem1, term0, term1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat32( zSign, 0xFF, 0 ); + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x7D; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = estimateDiv64To32( aSig, 0, bSig ); + if ( ( zSig & 0x3F ) <= 2 ) { + mul32To64( bSig, zSig, &term0, &term1 ); + sub64( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig; + add64( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig |= ( rem1 != 0 ); + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the remainder of the single-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_rem( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig, bSig, q, allZero, alternateASig; + sbits32 sigMean; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig = ( aSig | 0x00800000 )<<8; + bSig = ( bSig | 0x00800000 )<<8; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + expDiff -= 32; + while ( 0 < expDiff ) { + q = estimateDiv64To32( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + aSig = - ( ( bSig>>2 ) * q ); + expDiff -= 30; + } + expDiff += 32; + if ( 0 < expDiff ) { + q = estimateDiv64To32( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 32 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits32) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits32) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); + +} +#endif + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the square root of the single-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sqrt( float32 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig, zSig, rem0, rem1, term0, term1; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, 0 ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; + aSig = ( aSig | 0x00800000 )<<8; + zSig = estimateSqrt32( aExp, aSig ) + 2; + if ( ( zSig & 0x7F ) <= 5 ) { + if ( zSig < 2 ) { + zSig = 0x7FFFFFFF; + goto roundAndPack; + } + else { + aSig >>= aExp & 1; + mul32To64( zSig, zSig, &term0, &term1 ); + sub64( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig; + shortShift64Left( 0, zSig, 1, &term0, &term1 ); + term1 |= 1; + add64( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + zSig |= ( ( rem0 | rem1 ) != 0 ); + } + } + shift32RightJamming( zSig, 1, &zSig ); + roundAndPack: + return roundAndPackFloat32( 0, zExp, zSig ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq_signaling( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + int16 aExp, bExp; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig0, aSig1, absZ, aSigExtra; + int32 z; + int8 roundingMode; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = aExp - 0x413; + if ( 0 <= shiftCount ) { + if ( 0x41E < aExp ) { + if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; + goto invalid; + } + shortShift64Left( + aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); + if ( 0x80000000 < absZ ) goto invalid; + } + else { + aSig1 = ( aSig1 != 0 ); + if ( aExp < 0x3FE ) { + aSigExtra = aExp | aSig0 | aSig1; + absZ = 0; + } + else { + aSig0 |= 0x00100000; + aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; + absZ = aSig0>>( - shiftCount ); + } + } + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( (sbits32) aSigExtra < 0 ) { + ++absZ; + if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1; + } + z = aSign ? - absZ : absZ; + } + else { + aSigExtra = ( aSigExtra != 0 ); + if ( aSign ) { + z = - ( absZ + + ( ( roundingMode == float_round_down ) & aSigExtra ) ); + } + else { + z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra ); + } + } + if ( ( aSign ^ ( z < 0 ) ) && z ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + return z; + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig0, aSig1, absZ, aSigExtra; + int32 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = aExp - 0x413; + if ( 0 <= shiftCount ) { + if ( 0x41E < aExp ) { + if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0; + goto invalid; + } + shortShift64Left( + aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra ); + } + else { + if ( aExp < 0x3FF ) { + if ( aExp | aSig0 | aSig1 ) { + float_exception_flags |= float_flag_inexact; + } + return 0; + } + aSig0 |= 0x00100000; + aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1; + absZ = aSig0>>( - shiftCount ); + } + z = aSign ? - absZ : absZ; + if ( ( aSign ^ ( z < 0 ) ) && z ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( aSigExtra ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the single-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float64_to_float32( float64 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig0, aSig1, zSig; + bits32 allZero; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) { + return commonNaNToFloat32( float64ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig ); + if ( aExp ) zSig |= 0x40000000; + return roundAndPackFloat32( aSign, aExp - 0x381, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Rounds the double-precision floating-point value `a' to an integer, +and returns the result as a double-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float64 z; + + aExp = extractFloat64Exp( a ); + if ( 0x413 <= aExp ) { + if ( 0x433 <= aExp ) { + if ( ( aExp == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) { + return propagateFloat64NaN( a, a ); + } + return a; + } + lastBitMask = 1; + lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + if ( lastBitMask ) { + add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else { + if ( (sbits32) z.low < 0 ) { + ++z.high; + if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1; + } + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); + } + } + z.low &= ~ roundBitsMask; + } + else { + if ( aExp <= 0x3FE ) { + if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat64Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FE ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) + ) { + return packFloat64( aSign, 0x3FF, 0, 0 ); + } + break; + case float_round_down: + return + aSign ? packFloat64( 1, 0x3FF, 0, 0 ) + : packFloat64( 0, 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloat64( 1, 0, 0, 0 ) + : packFloat64( 0, 0x3FF, 0, 0 ); + } + return packFloat64( aSign, 0, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x413 - aExp; + roundBitsMask = lastBitMask - 1; + z.low = 0; + z.high = a.high; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z.high += lastBitMask>>1; + if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { + z.high &= ~ lastBitMask; + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + z.high |= ( a.low != 0 ); + z.high += roundBitsMask; + } + } + z.high &= ~ roundBitsMask; + } + if ( ( z.low != a.low ) || ( z.high != a.high ) ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the double-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + int16 expDiff; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= 0x00100000; + } + shift64ExtraRightJamming( + bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= 0x00100000; + } + shift64ExtraRightJamming( + aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat64NaN( a, b ); + } + return a; + } + add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 ); + zSig2 = 0; + zSig0 |= 0x00200000; + zExp = aExp; + goto shiftRight1; + } + aSig0 |= 0x00100000; + add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + --zExp; + if ( zSig0 < 0x00200000 ) goto roundAndPack; + ++zExp; + shiftRight1: + shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + roundAndPack: + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the double- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; + int16 expDiff; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 ); + shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 ); + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat64NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig0 < aSig0 ) goto aBigger; + if ( aSig0 < bSig0 ) goto bBigger; + if ( bSig1 < aSig1 ) goto aBigger; + if ( aSig1 < bSig1 ) goto bBigger; + return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign ^ 1, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= 0x40000000; + } + shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + bSig0 |= 0x40000000; + bBigger: + sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= 0x40000000; + } + shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); + aSig0 |= 0x40000000; + aBigger: + sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the double-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_add( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return addFloat64Sigs( a, b, aSign ); + } + else { + return subFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sub( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return subFloat64Sigs( a, b, aSign ); + } + else { + return addFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_mul( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat64NaN( a, b ); + } + if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + zExp = aExp + bExp - 0x400; + aSig0 |= 0x00100000; + shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 ); + mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); + add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zSig2 |= ( zSig3 != 0 ); + if ( 0x00200000 <= zSig0 ) { + shift64ExtraRightJamming( + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + ++zExp; + } + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the double-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_div( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b ); + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + goto invalid; + } + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0, 0, 0 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat64( zSign, 0x7FF, 0, 0 ); + } + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = aExp - bExp + 0x3FD; + shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 ); + shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); + if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) { + shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); + ++zExp; + } + zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 ); + mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); + sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); + while ( (sbits32) rem0 < 0 ) { + --zSig0; + add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); + } + zSig1 = estimateDiv64To32( rem1, rem2, bSig0 ); + if ( ( zSig1 & 0x3FF ) <= 4 ) { + mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); + sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits32) rem1 < 0 ) { + --zSig1; + add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the remainder of the double-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_rem( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; + bits32 allZero, alternateASig0, alternateASig1, sigMean1; + sbits32 sigMean0; + float64 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig1 = extractFloat64Frac1( b ); + bSig0 = extractFloat64Frac0( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + if ( aExp == 0x7FF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat64NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FF ) { + if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return a; + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + expDiff = aExp - bExp; + if ( expDiff < -1 ) return a; + shortShift64Left( + aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 ); + shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 ); + q = le64( bSig0, bSig1, aSig0, aSig1 ); + if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + expDiff -= 32; + while ( 0 < expDiff ) { + q = estimateDiv64To32( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); + shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero ); + shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero ); + sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 ); + expDiff -= 29; + } + if ( -32 < expDiff ) { + q = estimateDiv64To32( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + q >>= - expDiff; + shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); + expDiff += 24; + if ( expDiff < 0 ) { + shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + } + else { + shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); + } + mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 ); + sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); + } + else { + shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 ); + shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 ); + } + do { + alternateASig0 = aSig0; + alternateASig1 = aSig1; + ++q; + sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + } while ( 0 <= (sbits32) aSig0 ); + add64( + aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); + if ( ( sigMean0 < 0 ) + || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + } + zSign = ( (sbits32) aSig0 < 0 ); + if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); + return + normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); + +} +#endif + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the square root of the double-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sqrt( float64 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; + bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + float64 z; + + aSig1 = extractFloat64Frac1( a ); + aSig0 = extractFloat64Frac0( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; + aSig0 |= 0x00100000; + shortShift64Left( aSig0, aSig1, 11, &term0, &term1 ); + zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1; + if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF; + doubleZSig0 = zSig0 + zSig0; + shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 ); + mul32To64( zSig0, zSig0, &term0, &term1 ); + sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits32) rem0 < 0 ) { + --zSig0; + doubleZSig0 -= 2; + add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 ); + } + zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 ); + if ( ( zSig1 & 0x1FF ) <= 5 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul32To64( doubleZSig0, zSig1, &term1, &term2 ); + sub64( rem1, 0, term1, term2, &rem1, &rem2 ); + mul32To64( zSig1, zSig1, &term2, &term3 ); + sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits32) rem1 < 0 ) { + --zSig1; + shortShift64Left( 0, zSig1, 1, &term2, &term3 ); + term3 |= 1; + term2 |= doubleZSig0; + add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == + 0 ); + return ( a == b ) || + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign && + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != + 0 ); + return ( a != b ) && + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq_signaling( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) + && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) + && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#endif diff --git a/lib/libc/softfloat/softfloat.h b/lib/libc/softfloat/softfloat.h new file mode 100644 index 00000000000..f19598415e2 --- /dev/null +++ b/lib/libc/softfloat/softfloat.h @@ -0,0 +1,313 @@ +/* $OpenBSD: softfloat.h,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: softfloat.h,v 1.6 2002/05/12 13:12:46 bjh21 Exp $ */ + +/* This is a derivative work. */ + +/* +=============================================================================== + +This C header file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +The macro `FLOATX80' must be defined to enable the extended double-precision +floating-point format `floatx80'. If this macro is not defined, the +`floatx80' type will not be defined, and none of the functions that either +input or output the `floatx80' type will be defined. The same applies to +the `FLOAT128' macro and the quadruple-precision format `float128'. +------------------------------------------------------------------------------- +*/ +/* #define FLOATX80 */ +/* #define FLOAT128 */ + +#include <machine/ieeefp.h> + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point types. +------------------------------------------------------------------------------- +*/ +typedef unsigned int float32; +typedef unsigned long long float64; +#ifdef FLOATX80 +typedef struct { + unsigned short high; + unsigned long long low; +} floatx80; +#endif +#ifdef FLOAT128 +typedef struct { + unsigned long long high, low; +} float128; +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point underflow tininess-detection mode. +------------------------------------------------------------------------------- +*/ +extern int float_detect_tininess; +enum { + float_tininess_after_rounding = 0, + float_tininess_before_rounding = 1 +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point rounding mode. +------------------------------------------------------------------------------- +*/ +extern fp_rnd float_rounding_mode; +enum { + float_round_nearest_even = FP_RN, + float_round_to_zero = FP_RZ, + float_round_down = FP_RM, + float_round_up = FP_RP +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point exception flags. +------------------------------------------------------------------------------- +*/ +extern fp_except float_exception_flags; +extern fp_except float_exception_mask; +enum { + float_flag_inexact = FP_X_IMP, + float_flag_underflow = FP_X_UFL, + float_flag_overflow = FP_X_OFL, + float_flag_divbyzero = FP_X_DZ, + float_flag_invalid = FP_X_INV +}; + +/* +------------------------------------------------------------------------------- +Routine to raise any or all of the software IEC/IEEE floating-point +exception flags. +------------------------------------------------------------------------------- +*/ +void float_raise( fp_except ); + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE integer-to-floating-point conversion routines. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int ); +float64 int32_to_float64( int ); +#ifdef FLOATX80 +floatx80 int32_to_floatx80( int ); +#endif +#ifdef FLOAT128 +float128 int32_to_float128( int ); +#endif +#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */ +float32 int64_to_float32( long long ); +float64 int64_to_float64( long long ); +#ifdef FLOATX80 +floatx80 int64_to_floatx80( long long ); +#endif +#ifdef FLOAT128 +float128 int64_to_float128( long long ); +#endif +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float32_to_int32( float32 ); +int float32_to_int32_round_to_zero( float32 ); +#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS) +unsigned int float32_to_uint32_round_to_zero( float32 ); +#endif +#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ +long long float32_to_int64( float32 ); +long long float32_to_int64_round_to_zero( float32 ); +#endif +float64 float32_to_float64( float32 ); +#ifdef FLOATX80 +floatx80 float32_to_floatx80( float32 ); +#endif +#ifdef FLOAT128 +float128 float32_to_float128( float32 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision operations. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 ); +float32 float32_add( float32, float32 ); +float32 float32_sub( float32, float32 ); +float32 float32_mul( float32, float32 ); +float32 float32_div( float32, float32 ); +float32 float32_rem( float32, float32 ); +float32 float32_sqrt( float32 ); +int float32_eq( float32, float32 ); +int float32_le( float32, float32 ); +int float32_lt( float32, float32 ); +int float32_eq_signaling( float32, float32 ); +int float32_le_quiet( float32, float32 ); +int float32_lt_quiet( float32, float32 ); +#ifndef SOFTFLOAT_FOR_GCC +int float32_is_signaling_nan( float32 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float64_to_int32( float64 ); +int float64_to_int32_round_to_zero( float64 ); +#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS) +unsigned int float64_to_uint32_round_to_zero( float64 ); +#endif +#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ +long long float64_to_int64( float64 ); +long long float64_to_int64_round_to_zero( float64 ); +#endif +float32 float64_to_float32( float64 ); +#ifdef FLOATX80 +floatx80 float64_to_floatx80( float64 ); +#endif +#ifdef FLOAT128 +float128 float64_to_float128( float64 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision operations. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 ); +float64 float64_add( float64, float64 ); +float64 float64_sub( float64, float64 ); +float64 float64_mul( float64, float64 ); +float64 float64_div( float64, float64 ); +float64 float64_rem( float64, float64 ); +float64 float64_sqrt( float64 ); +int float64_eq( float64, float64 ); +int float64_le( float64, float64 ); +int float64_lt( float64, float64 ); +int float64_eq_signaling( float64, float64 ); +int float64_le_quiet( float64, float64 ); +int float64_lt_quiet( float64, float64 ); +#ifndef SOFTFLOAT_FOR_GCC +int float64_is_signaling_nan( float64 ); +#endif + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int floatx80_to_int32( floatx80 ); +int floatx80_to_int32_round_to_zero( floatx80 ); +long long floatx80_to_int64( floatx80 ); +long long floatx80_to_int64_round_to_zero( floatx80 ); +float32 floatx80_to_float32( floatx80 ); +float64 floatx80_to_float64( floatx80 ); +#ifdef FLOAT128 +float128 floatx80_to_float128( floatx80 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision rounding precision. Valid +values are 32, 64, and 80. +------------------------------------------------------------------------------- +*/ +extern int floatx80_rounding_precision; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision operations. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 ); +floatx80 floatx80_add( floatx80, floatx80 ); +floatx80 floatx80_sub( floatx80, floatx80 ); +floatx80 floatx80_mul( floatx80, floatx80 ); +floatx80 floatx80_div( floatx80, floatx80 ); +floatx80 floatx80_rem( floatx80, floatx80 ); +floatx80 floatx80_sqrt( floatx80 ); +int floatx80_eq( floatx80, floatx80 ); +int floatx80_le( floatx80, floatx80 ); +int floatx80_lt( floatx80, floatx80 ); +int floatx80_eq_signaling( floatx80, floatx80 ); +int floatx80_le_quiet( floatx80, floatx80 ); +int floatx80_lt_quiet( floatx80, floatx80 ); +int floatx80_is_signaling_nan( floatx80 ); + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE quadruple-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float128_to_int32( float128 ); +int float128_to_int32_round_to_zero( float128 ); +long long float128_to_int64( float128 ); +long long float128_to_int64_round_to_zero( float128 ); +float32 float128_to_float32( float128 ); +float64 float128_to_float64( float128 ); +#ifdef FLOATX80 +floatx80 float128_to_floatx80( float128 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE quadruple-precision operations. +------------------------------------------------------------------------------- +*/ +float128 float128_round_to_int( float128 ); +float128 float128_add( float128, float128 ); +float128 float128_sub( float128, float128 ); +float128 float128_mul( float128, float128 ); +float128 float128_div( float128, float128 ); +float128 float128_rem( float128, float128 ); +float128 float128_sqrt( float128 ); +int float128_eq( float128, float128 ); +int float128_le( float128, float128 ); +int float128_lt( float128, float128 ); +int float128_eq_signaling( float128, float128 ); +int float128_le_quiet( float128, float128 ); +int float128_lt_quiet( float128, float128 ); +int float128_is_signaling_nan( float128 ); + +#endif + diff --git a/lib/libc/softfloat/timesoftfloat.c b/lib/libc/softfloat/timesoftfloat.c new file mode 100644 index 00000000000..b9a22c7cdec --- /dev/null +++ b/lib/libc/softfloat/timesoftfloat.c @@ -0,0 +1,2639 @@ +/* $OpenBSD: timesoftfloat.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: timesoftfloat.c,v 1.1 2000/06/06 08:15:11 bjh21 Exp $ */ + +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include <sys/cdefs.h> + +#include <stdlib.h> +#include <stdarg.h> +#include <string.h> +#include <stdio.h> +#include <time.h> +#include "milieu.h" +#include "softfloat.h" + +enum { + minIterations = 1000 +}; + +static void fail( const char *message, ... ) +{ + va_list varArgs; + + fputs( "timesoftfloat: ", stderr ); + va_start( varArgs, message ); + vfprintf( stderr, message, varArgs ); + va_end( varArgs ); + fputs( ".\n", stderr ); + exit( EXIT_FAILURE ); + +} + +static char *functionName; +static char *roundingPrecisionName, *roundingModeName, *tininessModeName; + +static void reportTime( int32 count, long clocks ) +{ + + printf( + "%8.1f kops/s: %s", + ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000, + functionName + ); + if ( roundingModeName ) { + if ( roundingPrecisionName ) { + fputs( ", precision ", stdout ); + fputs( roundingPrecisionName, stdout ); + } + fputs( ", rounding ", stdout ); + fputs( roundingModeName, stdout ); + if ( tininessModeName ) { + fputs( ", tininess ", stdout ); + fputs( tininessModeName, stdout ); + fputs( " rounding", stdout ); + } + } + fputc( '\n', stdout ); + +} + +enum { + numInputs_int32 = 32 +}; + +static const int32 inputs_int32[ numInputs_int32 ] = { + 0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04, + 0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA, + 0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7, + 0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006, + 0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765, + 0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C, + 0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13, + 0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A +}; + +static void time_a_int32_z_float32( float32 function( int32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_int32_z_float64( float64 function( int32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +static void time_a_int32_z_floatx80( floatx80 function( int32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +#ifdef FLOAT128 + +static void time_a_int32_z_float128( float128 function( int32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +enum { + numInputs_int64 = 32 +}; + +static const int64 inputs_int64[ numInputs_int64 ] = { + LIT64( 0xFBFFC3FFFFFFFFFF ), + LIT64( 0x0000000003C589BC ), + LIT64( 0x00000000400013FE ), + LIT64( 0x0000000000186171 ), + LIT64( 0xFFFFFFFFFFFEFBFA ), + LIT64( 0xFFFFFD79E6DFFC73 ), + LIT64( 0x0000000010001DFF ), + LIT64( 0xDD1A0F0C78513710 ), + LIT64( 0xFFFF83FFFFFEFFFE ), + LIT64( 0x00756EBD1AD0C1C7 ), + LIT64( 0x0003FDFFFFFFFFBE ), + LIT64( 0x0007D0FB2C2CA951 ), + LIT64( 0x0007FC0007FFFFFE ), + LIT64( 0x0000001F942B18BB ), + LIT64( 0x0000080101FFFFFE ), + LIT64( 0xFFFFFFFFFFFF0978 ), + LIT64( 0x000000000008BFFF ), + LIT64( 0x0000000006F5AF08 ), + LIT64( 0xFFDEFF7FFFFFFFFE ), + LIT64( 0x0000000000000003 ), + LIT64( 0x3FFFFFFFFF80007D ), + LIT64( 0x0000000000000078 ), + LIT64( 0xFFF80000007FDFFD ), + LIT64( 0x1BBC775B78016AB0 ), + LIT64( 0xFFF9001FFFFFFFFE ), + LIT64( 0xFFFD4767AB98E43F ), + LIT64( 0xFFFFFEFFFE00001E ), + LIT64( 0xFFFFFFFFFFF04EFD ), + LIT64( 0x07FFFFFFFFFFF7FF ), + LIT64( 0xFFFC9EAA38F89050 ), + LIT64( 0x00000020FBFFFFFE ), + LIT64( 0x0000099AE6455357 ) +}; + +static void time_a_int64_z_float32( float32 function( int64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_int64_z_float64( float64 function( int64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +static void time_a_int64_z_floatx80( floatx80 function( int64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +#ifdef FLOAT128 + +static void time_a_int64_z_float128( float128 function( int64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_int64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +enum { + numInputs_float32 = 32 +}; + +static const float32 inputs_float32[ numInputs_float32 ] = { + 0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E, + 0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A, + 0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00, + 0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF, + 0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C, + 0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007, + 0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, + 0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE +}; + +static void time_a_float32_z_int32( int32 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float32_z_int64( int64 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float32_z_float64( float64 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +static void time_a_float32_z_floatx80( floatx80 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +#ifdef FLOAT128 + +static void time_a_float32_z_float128( float128 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +static void time_az_float32( float32 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_ab_float32_z_flag( flag function( float32, float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( + inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( + inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_abz_float32( float32 function( float32, float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( + inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( + inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static const float32 inputs_float32_pos[ numInputs_float32 ] = { + 0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E, + 0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A, + 0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00, + 0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF, + 0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C, + 0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007, + 0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000, + 0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE +}; + +static void time_az_float32_pos( float32 function( float32 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float32_pos[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float32_pos[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +enum { + numInputs_float64 = 32 +}; + +static const float64 inputs_float64[ numInputs_float64 ] = { + LIT64( 0x422FFFC008000000 ), + LIT64( 0xB7E0000480000000 ), + LIT64( 0xF3FD2546120B7935 ), + LIT64( 0x3FF0000000000000 ), + LIT64( 0xCE07F766F09588D6 ), + LIT64( 0x8000000000000000 ), + LIT64( 0x3FCE000400000000 ), + LIT64( 0x8313B60F0032BED8 ), + LIT64( 0xC1EFFFFFC0002000 ), + LIT64( 0x3FB3C75D224F2B0F ), + LIT64( 0x7FD00000004000FF ), + LIT64( 0xA12FFF8000001FFF ), + LIT64( 0x3EE0000000FE0000 ), + LIT64( 0x0010000080000004 ), + LIT64( 0x41CFFFFE00000020 ), + LIT64( 0x40303FFFFFFFFFFD ), + LIT64( 0x3FD000003FEFFFFF ), + LIT64( 0xBFD0000010000000 ), + LIT64( 0xB7FC6B5C16CA55CF ), + LIT64( 0x413EEB940B9D1301 ), + LIT64( 0xC7E00200001FFFFF ), + LIT64( 0x47F00021FFFFFFFE ), + LIT64( 0xBFFFFFFFF80000FF ), + LIT64( 0xC07FFFFFE00FFFFF ), + LIT64( 0x001497A63740C5E8 ), + LIT64( 0xC4BFFFE0001FFFFF ), + LIT64( 0x96FFDFFEFFFFFFFF ), + LIT64( 0x403FC000000001FE ), + LIT64( 0xFFD00000000001F6 ), + LIT64( 0x0640400002000000 ), + LIT64( 0x479CEE1E4F789FE0 ), + LIT64( 0xC237FFFFFFFFFDFE ) +}; + +static void time_a_float64_z_int32( int32 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float64_z_int64( int64 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float64_z_float32( float32 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +static void time_a_float64_z_floatx80( floatx80 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +#ifdef FLOAT128 + +static void time_a_float64_z_float128( float128 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +static void time_az_float64( float64 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_ab_float64_z_flag( flag function( float64, float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( + inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( + inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_abz_float64( float64 function( float64, float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( + inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( + inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static const float64 inputs_float64_pos[ numInputs_float64 ] = { + LIT64( 0x422FFFC008000000 ), + LIT64( 0x37E0000480000000 ), + LIT64( 0x73FD2546120B7935 ), + LIT64( 0x3FF0000000000000 ), + LIT64( 0x4E07F766F09588D6 ), + LIT64( 0x0000000000000000 ), + LIT64( 0x3FCE000400000000 ), + LIT64( 0x0313B60F0032BED8 ), + LIT64( 0x41EFFFFFC0002000 ), + LIT64( 0x3FB3C75D224F2B0F ), + LIT64( 0x7FD00000004000FF ), + LIT64( 0x212FFF8000001FFF ), + LIT64( 0x3EE0000000FE0000 ), + LIT64( 0x0010000080000004 ), + LIT64( 0x41CFFFFE00000020 ), + LIT64( 0x40303FFFFFFFFFFD ), + LIT64( 0x3FD000003FEFFFFF ), + LIT64( 0x3FD0000010000000 ), + LIT64( 0x37FC6B5C16CA55CF ), + LIT64( 0x413EEB940B9D1301 ), + LIT64( 0x47E00200001FFFFF ), + LIT64( 0x47F00021FFFFFFFE ), + LIT64( 0x3FFFFFFFF80000FF ), + LIT64( 0x407FFFFFE00FFFFF ), + LIT64( 0x001497A63740C5E8 ), + LIT64( 0x44BFFFE0001FFFFF ), + LIT64( 0x16FFDFFEFFFFFFFF ), + LIT64( 0x403FC000000001FE ), + LIT64( 0x7FD00000000001F6 ), + LIT64( 0x0640400002000000 ), + LIT64( 0x479CEE1E4F789FE0 ), + LIT64( 0x4237FFFFFFFFFDFE ) +}; + +static void time_az_float64_pos( float64 function( float64 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + function( inputs_float64_pos[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + function( inputs_float64_pos[ inputNum ] ); + inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +enum { + numInputs_floatx80 = 32 +}; + +static const struct { + bits16 high; + bits64 low; +} inputs_floatx80[ numInputs_floatx80 ] = { + { 0xC03F, LIT64( 0xA9BE15A19C1E8B62 ) }, + { 0x8000, LIT64( 0x0000000000000000 ) }, + { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, + { 0xBFFF, LIT64( 0xFFF0000000000040 ) }, + { 0x0CD8, LIT64( 0xFC000000000007FE ) }, + { 0x43BA, LIT64( 0x99A4000000000000 ) }, + { 0x3FFF, LIT64( 0x8000000000000000 ) }, + { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, + { 0x403E, LIT64( 0xFFF0000000002000 ) }, + { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, + { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, + { 0x737A, LIT64( 0x800000007FFDFFFE ) }, + { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, + { 0xBBFE, LIT64( 0x8000040000001FFE ) }, + { 0xC002, LIT64( 0xFF80000000000020 ) }, + { 0xDE8D, LIT64( 0xFFFFFFFFFFE00004 ) }, + { 0xC004, LIT64( 0x8000000000003FFB ) }, + { 0x407F, LIT64( 0x800000000003FFFE ) }, + { 0xC000, LIT64( 0xA459EE6A5C16CA55 ) }, + { 0x8003, LIT64( 0xC42CBF7399AEEB94 ) }, + { 0xBF7F, LIT64( 0xF800000000000006 ) }, + { 0xC07F, LIT64( 0xBF56BE8871F28FEA ) }, + { 0xC07E, LIT64( 0xFFFF77FFFFFFFFFE ) }, + { 0xADC9, LIT64( 0x8000000FFFFFFFDE ) }, + { 0xC001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, + { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, + { 0xC06B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, + { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, + { 0x87E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, + { 0xA63F, LIT64( 0x801FFFFFFEFFFFFE ) }, + { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, + { 0x4018, LIT64( 0x8000000000080003 ) } +}; + +static void time_a_floatx80_z_int32( int32 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_floatx80_z_int64( int64 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_floatx80_z_float32( float32 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_floatx80_z_float64( float64 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOAT128 + +static void time_a_floatx80_z_float128( float128 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +static void time_az_floatx80( floatx80 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNum ].low; + a.high = inputs_floatx80[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_ab_floatx80_z_flag( flag function( floatx80, floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + floatx80 a, b; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNumA ].low; + a.high = inputs_floatx80[ inputNumA ].high; + b.low = inputs_floatx80[ inputNumB ].low; + b.high = inputs_floatx80[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNumA ].low; + a.high = inputs_floatx80[ inputNumA ].high; + b.low = inputs_floatx80[ inputNumB ].low; + b.high = inputs_floatx80[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_abz_floatx80( floatx80 function( floatx80, floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + floatx80 a, b; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80[ inputNumA ].low; + a.high = inputs_floatx80[ inputNumA ].high; + b.low = inputs_floatx80[ inputNumB ].low; + b.high = inputs_floatx80[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80[ inputNumA ].low; + a.high = inputs_floatx80[ inputNumA ].high; + b.low = inputs_floatx80[ inputNumB ].low; + b.high = inputs_floatx80[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static const struct { + bits16 high; + bits64 low; +} inputs_floatx80_pos[ numInputs_floatx80 ] = { + { 0x403F, LIT64( 0xA9BE15A19C1E8B62 ) }, + { 0x0000, LIT64( 0x0000000000000000 ) }, + { 0x75A8, LIT64( 0xE59591E4788957A5 ) }, + { 0x3FFF, LIT64( 0xFFF0000000000040 ) }, + { 0x0CD8, LIT64( 0xFC000000000007FE ) }, + { 0x43BA, LIT64( 0x99A4000000000000 ) }, + { 0x3FFF, LIT64( 0x8000000000000000 ) }, + { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) }, + { 0x403E, LIT64( 0xFFF0000000002000 ) }, + { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) }, + { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) }, + { 0x737A, LIT64( 0x800000007FFDFFFE ) }, + { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) }, + { 0x3BFE, LIT64( 0x8000040000001FFE ) }, + { 0x4002, LIT64( 0xFF80000000000020 ) }, + { 0x5E8D, LIT64( 0xFFFFFFFFFFE00004 ) }, + { 0x4004, LIT64( 0x8000000000003FFB ) }, + { 0x407F, LIT64( 0x800000000003FFFE ) }, + { 0x4000, LIT64( 0xA459EE6A5C16CA55 ) }, + { 0x0003, LIT64( 0xC42CBF7399AEEB94 ) }, + { 0x3F7F, LIT64( 0xF800000000000006 ) }, + { 0x407F, LIT64( 0xBF56BE8871F28FEA ) }, + { 0x407E, LIT64( 0xFFFF77FFFFFFFFFE ) }, + { 0x2DC9, LIT64( 0x8000000FFFFFFFDE ) }, + { 0x4001, LIT64( 0xEFF7FFFFFFFFFFFF ) }, + { 0x4001, LIT64( 0xBE84F30125C497A6 ) }, + { 0x406B, LIT64( 0xEFFFFFFFFFFFFFFF ) }, + { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) }, + { 0x07E9, LIT64( 0x81FFFFFFFFFFFBFF ) }, + { 0x263F, LIT64( 0x801FFFFFFEFFFFFE ) }, + { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) }, + { 0x4018, LIT64( 0x8000000000080003 ) } +}; + +static void time_az_floatx80_pos( floatx80 function( floatx80 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + floatx80 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_floatx80_pos[ inputNum ].low; + a.high = inputs_floatx80_pos[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_floatx80_pos[ inputNum ].low; + a.high = inputs_floatx80_pos[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +#ifdef FLOAT128 + +enum { + numInputs_float128 = 32 +}; + +static const struct { + bits64 high, low; +} inputs_float128[ numInputs_float128 ] = { + { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x85F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, + { LIT64( 0xF2B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, + { LIT64( 0x8000000000000000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0xBFFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, + { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, + { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, + { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, + { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, + { LIT64( 0xBF7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, + { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, + { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, + { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, + { LIT64( 0xBFFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, + { LIT64( 0xBDB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, + { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, + { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, + { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, + { LIT64( 0x8001000000000000 ), LIT64( 0x0000001000000001 ) }, + { LIT64( 0xC036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, + { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, + { LIT64( 0xBFFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, + { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, + { LIT64( 0xB5CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, + { LIT64( 0xE228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, + { LIT64( 0xC1AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, + { LIT64( 0xC96F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, + { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, + { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } +}; + +static void time_a_float128_z_int32( int32 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float128_z_int64( int64 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float128_z_float32( float32 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_a_float128_z_float64( float64 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#ifdef FLOATX80 + +static void time_a_float128_z_floatx80( floatx80 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +static void time_az_float128( float128 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNum ].low; + a.high = inputs_float128[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_ab_float128_z_flag( flag function( float128, float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + float128 a, b; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNumA ].low; + a.high = inputs_float128[ inputNumA ].high; + b.low = inputs_float128[ inputNumB ].low; + b.high = inputs_float128[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNumA ].low; + a.high = inputs_float128[ inputNumA ].high; + b.low = inputs_float128[ inputNumB ].low; + b.high = inputs_float128[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static void time_abz_float128( float128 function( float128, float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNumA, inputNumB; + float128 a, b; + + count = 0; + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128[ inputNumA ].low; + a.high = inputs_float128[ inputNumA ].high; + b.low = inputs_float128[ inputNumB ].low; + b.high = inputs_float128[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNumA = 0; + inputNumB = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128[ inputNumA ].low; + a.high = inputs_float128[ inputNumA ].high; + b.low = inputs_float128[ inputNumB ].low; + b.high = inputs_float128[ inputNumB ].high; + function( a, b ); + inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 ); + if ( inputNumA == 0 ) ++inputNumB; + inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +static const struct { + bits64 high, low; +} inputs_float128_pos[ numInputs_float128 ] = { + { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x05F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) }, + { LIT64( 0x72B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) }, + { LIT64( 0x0000000000000000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x3FFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) }, + { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) }, + { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) }, + { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) }, + { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) }, + { LIT64( 0x3F7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) }, + { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) }, + { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) }, + { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) }, + { LIT64( 0x3FFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) }, + { LIT64( 0x3DB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) }, + { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) }, + { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) }, + { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) }, + { LIT64( 0x0001000000000000 ), LIT64( 0x0000001000000001 ) }, + { LIT64( 0x4036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) }, + { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) }, + { LIT64( 0x3FFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) }, + { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) }, + { LIT64( 0x35CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) }, + { LIT64( 0x6228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) }, + { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) }, + { LIT64( 0x41AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) }, + { LIT64( 0x496F000000000000 ), LIT64( 0x00000001FFFBFFFF ) }, + { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) }, + { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) } +}; + +static void time_az_float128_pos( float128 function( float128 ) ) +{ + clock_t startClock, endClock; + int32 count, i; + int8 inputNum; + float128 a; + + count = 0; + inputNum = 0; + startClock = clock(); + do { + for ( i = minIterations; i; --i ) { + a.low = inputs_float128_pos[ inputNum ].low; + a.high = inputs_float128_pos[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + count += minIterations; + } while ( clock() - startClock < CLOCKS_PER_SEC ); + inputNum = 0; + startClock = clock(); + for ( i = count; i; --i ) { + a.low = inputs_float128_pos[ inputNum ].low; + a.high = inputs_float128_pos[ inputNum ].high; + function( a ); + inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 ); + } + endClock = clock(); + reportTime( count, endClock - startClock ); + +} + +#endif + +enum { + INT32_TO_FLOAT32 = 1, + INT32_TO_FLOAT64, +#ifdef FLOATX80 + INT32_TO_FLOATX80, +#endif +#ifdef FLOAT128 + INT32_TO_FLOAT128, +#endif + INT64_TO_FLOAT32, + INT64_TO_FLOAT64, +#ifdef FLOATX80 + INT64_TO_FLOATX80, +#endif +#ifdef FLOAT128 + INT64_TO_FLOAT128, +#endif + FLOAT32_TO_INT32, + FLOAT32_TO_INT32_ROUND_TO_ZERO, + FLOAT32_TO_INT64, + FLOAT32_TO_INT64_ROUND_TO_ZERO, + FLOAT32_TO_FLOAT64, +#ifdef FLOATX80 + FLOAT32_TO_FLOATX80, +#endif +#ifdef FLOAT128 + FLOAT32_TO_FLOAT128, +#endif + FLOAT32_ROUND_TO_INT, + FLOAT32_ADD, + FLOAT32_SUB, + FLOAT32_MUL, + FLOAT32_DIV, + FLOAT32_REM, + FLOAT32_SQRT, + FLOAT32_EQ, + FLOAT32_LE, + FLOAT32_LT, + FLOAT32_EQ_SIGNALING, + FLOAT32_LE_QUIET, + FLOAT32_LT_QUIET, + FLOAT64_TO_INT32, + FLOAT64_TO_INT32_ROUND_TO_ZERO, + FLOAT64_TO_INT64, + FLOAT64_TO_INT64_ROUND_TO_ZERO, + FLOAT64_TO_FLOAT32, +#ifdef FLOATX80 + FLOAT64_TO_FLOATX80, +#endif +#ifdef FLOAT128 + FLOAT64_TO_FLOAT128, +#endif + FLOAT64_ROUND_TO_INT, + FLOAT64_ADD, + FLOAT64_SUB, + FLOAT64_MUL, + FLOAT64_DIV, + FLOAT64_REM, + FLOAT64_SQRT, + FLOAT64_EQ, + FLOAT64_LE, + FLOAT64_LT, + FLOAT64_EQ_SIGNALING, + FLOAT64_LE_QUIET, + FLOAT64_LT_QUIET, +#ifdef FLOATX80 + FLOATX80_TO_INT32, + FLOATX80_TO_INT32_ROUND_TO_ZERO, + FLOATX80_TO_INT64, + FLOATX80_TO_INT64_ROUND_TO_ZERO, + FLOATX80_TO_FLOAT32, + FLOATX80_TO_FLOAT64, +#ifdef FLOAT128 + FLOATX80_TO_FLOAT128, +#endif + FLOATX80_ROUND_TO_INT, + FLOATX80_ADD, + FLOATX80_SUB, + FLOATX80_MUL, + FLOATX80_DIV, + FLOATX80_REM, + FLOATX80_SQRT, + FLOATX80_EQ, + FLOATX80_LE, + FLOATX80_LT, + FLOATX80_EQ_SIGNALING, + FLOATX80_LE_QUIET, + FLOATX80_LT_QUIET, +#endif +#ifdef FLOAT128 + FLOAT128_TO_INT32, + FLOAT128_TO_INT32_ROUND_TO_ZERO, + FLOAT128_TO_INT64, + FLOAT128_TO_INT64_ROUND_TO_ZERO, + FLOAT128_TO_FLOAT32, + FLOAT128_TO_FLOAT64, +#ifdef FLOATX80 + FLOAT128_TO_FLOATX80, +#endif + FLOAT128_ROUND_TO_INT, + FLOAT128_ADD, + FLOAT128_SUB, + FLOAT128_MUL, + FLOAT128_DIV, + FLOAT128_REM, + FLOAT128_SQRT, + FLOAT128_EQ, + FLOAT128_LE, + FLOAT128_LT, + FLOAT128_EQ_SIGNALING, + FLOAT128_LE_QUIET, + FLOAT128_LT_QUIET, +#endif + NUM_FUNCTIONS +}; + +static struct { + char *name; + int8 numInputs; + flag roundingPrecision, roundingMode; + flag tininessMode, tininessModeAtReducedPrecision; +} functions[ NUM_FUNCTIONS ] = { + { 0, 0, 0, 0, 0, 0 }, + { "int32_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, + { "int32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, +#ifdef FLOATX80 + { "int32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, +#endif +#ifdef FLOAT128 + { "int32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, +#endif + { "int64_to_float32", 1, FALSE, TRUE, FALSE, FALSE }, + { "int64_to_float64", 1, FALSE, TRUE, FALSE, FALSE }, +#ifdef FLOATX80 + { "int64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, +#endif +#ifdef FLOAT128 + { "int64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, +#endif + { "float32_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, + { "float32_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float32_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, + { "float32_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float32_to_float64", 1, FALSE, FALSE, FALSE, FALSE }, +#ifdef FLOATX80 + { "float32_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, +#endif +#ifdef FLOAT128 + { "float32_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, +#endif + { "float32_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, + { "float32_add", 2, FALSE, TRUE, FALSE, FALSE }, + { "float32_sub", 2, FALSE, TRUE, FALSE, FALSE }, + { "float32_mul", 2, FALSE, TRUE, TRUE, FALSE }, + { "float32_div", 2, FALSE, TRUE, FALSE, FALSE }, + { "float32_rem", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, + { "float32_eq", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_le", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_lt", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, + { "float32_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, + { "float64_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float64_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, + { "float64_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float64_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, +#ifdef FLOATX80 + { "float64_to_floatx80", 1, FALSE, FALSE, FALSE, FALSE }, +#endif +#ifdef FLOAT128 + { "float64_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, +#endif + { "float64_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, + { "float64_add", 2, FALSE, TRUE, FALSE, FALSE }, + { "float64_sub", 2, FALSE, TRUE, FALSE, FALSE }, + { "float64_mul", 2, FALSE, TRUE, TRUE, FALSE }, + { "float64_div", 2, FALSE, TRUE, FALSE, FALSE }, + { "float64_rem", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, + { "float64_eq", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_le", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_lt", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, + { "float64_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, +#ifdef FLOATX80 + { "floatx80_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, + { "floatx80_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, + { "floatx80_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, + { "floatx80_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, +#ifdef FLOAT128 + { "floatx80_to_float128", 1, FALSE, FALSE, FALSE, FALSE }, +#endif + { "floatx80_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, + { "floatx80_add", 2, TRUE, TRUE, FALSE, TRUE }, + { "floatx80_sub", 2, TRUE, TRUE, FALSE, TRUE }, + { "floatx80_mul", 2, TRUE, TRUE, TRUE, TRUE }, + { "floatx80_div", 2, TRUE, TRUE, FALSE, TRUE }, + { "floatx80_rem", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_sqrt", 1, TRUE, TRUE, FALSE, FALSE }, + { "floatx80_eq", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_le", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_lt", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, + { "floatx80_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, +#endif +#ifdef FLOAT128 + { "float128_to_int32", 1, FALSE, TRUE, FALSE, FALSE }, + { "float128_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float128_to_int64", 1, FALSE, TRUE, FALSE, FALSE }, + { "float128_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE }, + { "float128_to_float32", 1, FALSE, TRUE, TRUE, FALSE }, + { "float128_to_float64", 1, FALSE, TRUE, TRUE, FALSE }, +#ifdef FLOATX80 + { "float128_to_floatx80", 1, FALSE, TRUE, TRUE, FALSE }, +#endif + { "float128_round_to_int", 1, FALSE, TRUE, FALSE, FALSE }, + { "float128_add", 2, FALSE, TRUE, FALSE, FALSE }, + { "float128_sub", 2, FALSE, TRUE, FALSE, FALSE }, + { "float128_mul", 2, FALSE, TRUE, TRUE, FALSE }, + { "float128_div", 2, FALSE, TRUE, FALSE, FALSE }, + { "float128_rem", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_sqrt", 1, FALSE, TRUE, FALSE, FALSE }, + { "float128_eq", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_le", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_lt", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_eq_signaling", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_le_quiet", 2, FALSE, FALSE, FALSE, FALSE }, + { "float128_lt_quiet", 2, FALSE, FALSE, FALSE, FALSE }, +#endif +}; + +enum { + ROUND_NEAREST_EVEN = 1, + ROUND_TO_ZERO, + ROUND_DOWN, + ROUND_UP, + NUM_ROUNDINGMODES +}; +enum { + TININESS_BEFORE_ROUNDING = 1, + TININESS_AFTER_ROUNDING, + NUM_TININESSMODES +}; + +static void + timeFunctionVariety( + uint8 functionCode, + int8 roundingPrecision, + int8 roundingMode, + int8 tininessMode + ) +{ + uint8 roundingCode; + int8 tininessCode; + + functionName = functions[ functionCode ].name; + if ( roundingPrecision == 32 ) { + roundingPrecisionName = "32"; + } + else if ( roundingPrecision == 64 ) { + roundingPrecisionName = "64"; + } + else if ( roundingPrecision == 80 ) { + roundingPrecisionName = "80"; + } + else { + roundingPrecisionName = 0; + } +#ifdef FLOATX80 + floatx80_rounding_precision = roundingPrecision; +#endif + switch ( roundingMode ) { + case 0: + roundingModeName = 0; + roundingCode = float_round_nearest_even; + break; + case ROUND_NEAREST_EVEN: + roundingModeName = "nearest_even"; + roundingCode = float_round_nearest_even; + break; + case ROUND_TO_ZERO: + roundingModeName = "to_zero"; + roundingCode = float_round_to_zero; + break; + case ROUND_DOWN: + roundingModeName = "down"; + roundingCode = float_round_down; + break; + case ROUND_UP: + roundingModeName = "up"; + roundingCode = float_round_up; + break; + } + float_rounding_mode = roundingCode; + switch ( tininessMode ) { + case 0: + tininessModeName = 0; + tininessCode = float_tininess_after_rounding; + break; + case TININESS_BEFORE_ROUNDING: + tininessModeName = "before"; + tininessCode = float_tininess_before_rounding; + break; + case TININESS_AFTER_ROUNDING: + tininessModeName = "after"; + tininessCode = float_tininess_after_rounding; + break; + } + float_detect_tininess = tininessCode; + switch ( functionCode ) { + case INT32_TO_FLOAT32: + time_a_int32_z_float32( int32_to_float32 ); + break; + case INT32_TO_FLOAT64: + time_a_int32_z_float64( int32_to_float64 ); + break; +#ifdef FLOATX80 + case INT32_TO_FLOATX80: + time_a_int32_z_floatx80( int32_to_floatx80 ); + break; +#endif +#ifdef FLOAT128 + case INT32_TO_FLOAT128: + time_a_int32_z_float128( int32_to_float128 ); + break; +#endif + case INT64_TO_FLOAT32: + time_a_int64_z_float32( int64_to_float32 ); + break; + case INT64_TO_FLOAT64: + time_a_int64_z_float64( int64_to_float64 ); + break; +#ifdef FLOATX80 + case INT64_TO_FLOATX80: + time_a_int64_z_floatx80( int64_to_floatx80 ); + break; +#endif +#ifdef FLOAT128 + case INT64_TO_FLOAT128: + time_a_int64_z_float128( int64_to_float128 ); + break; +#endif + case FLOAT32_TO_INT32: + time_a_float32_z_int32( float32_to_int32 ); + break; + case FLOAT32_TO_INT32_ROUND_TO_ZERO: + time_a_float32_z_int32( float32_to_int32_round_to_zero ); + break; + case FLOAT32_TO_INT64: + time_a_float32_z_int64( float32_to_int64 ); + break; + case FLOAT32_TO_INT64_ROUND_TO_ZERO: + time_a_float32_z_int64( float32_to_int64_round_to_zero ); + break; + case FLOAT32_TO_FLOAT64: + time_a_float32_z_float64( float32_to_float64 ); + break; +#ifdef FLOATX80 + case FLOAT32_TO_FLOATX80: + time_a_float32_z_floatx80( float32_to_floatx80 ); + break; +#endif +#ifdef FLOAT128 + case FLOAT32_TO_FLOAT128: + time_a_float32_z_float128( float32_to_float128 ); + break; +#endif + case FLOAT32_ROUND_TO_INT: + time_az_float32( float32_round_to_int ); + break; + case FLOAT32_ADD: + time_abz_float32( float32_add ); + break; + case FLOAT32_SUB: + time_abz_float32( float32_sub ); + break; + case FLOAT32_MUL: + time_abz_float32( float32_mul ); + break; + case FLOAT32_DIV: + time_abz_float32( float32_div ); + break; + case FLOAT32_REM: + time_abz_float32( float32_rem ); + break; + case FLOAT32_SQRT: + time_az_float32_pos( float32_sqrt ); + break; + case FLOAT32_EQ: + time_ab_float32_z_flag( float32_eq ); + break; + case FLOAT32_LE: + time_ab_float32_z_flag( float32_le ); + break; + case FLOAT32_LT: + time_ab_float32_z_flag( float32_lt ); + break; + case FLOAT32_EQ_SIGNALING: + time_ab_float32_z_flag( float32_eq_signaling ); + break; + case FLOAT32_LE_QUIET: + time_ab_float32_z_flag( float32_le_quiet ); + break; + case FLOAT32_LT_QUIET: + time_ab_float32_z_flag( float32_lt_quiet ); + break; + case FLOAT64_TO_INT32: + time_a_float64_z_int32( float64_to_int32 ); + break; + case FLOAT64_TO_INT32_ROUND_TO_ZERO: + time_a_float64_z_int32( float64_to_int32_round_to_zero ); + break; + case FLOAT64_TO_INT64: + time_a_float64_z_int64( float64_to_int64 ); + break; + case FLOAT64_TO_INT64_ROUND_TO_ZERO: + time_a_float64_z_int64( float64_to_int64_round_to_zero ); + break; + case FLOAT64_TO_FLOAT32: + time_a_float64_z_float32( float64_to_float32 ); + break; +#ifdef FLOATX80 + case FLOAT64_TO_FLOATX80: + time_a_float64_z_floatx80( float64_to_floatx80 ); + break; +#endif +#ifdef FLOAT128 + case FLOAT64_TO_FLOAT128: + time_a_float64_z_float128( float64_to_float128 ); + break; +#endif + case FLOAT64_ROUND_TO_INT: + time_az_float64( float64_round_to_int ); + break; + case FLOAT64_ADD: + time_abz_float64( float64_add ); + break; + case FLOAT64_SUB: + time_abz_float64( float64_sub ); + break; + case FLOAT64_MUL: + time_abz_float64( float64_mul ); + break; + case FLOAT64_DIV: + time_abz_float64( float64_div ); + break; + case FLOAT64_REM: + time_abz_float64( float64_rem ); + break; + case FLOAT64_SQRT: + time_az_float64_pos( float64_sqrt ); + break; + case FLOAT64_EQ: + time_ab_float64_z_flag( float64_eq ); + break; + case FLOAT64_LE: + time_ab_float64_z_flag( float64_le ); + break; + case FLOAT64_LT: + time_ab_float64_z_flag( float64_lt ); + break; + case FLOAT64_EQ_SIGNALING: + time_ab_float64_z_flag( float64_eq_signaling ); + break; + case FLOAT64_LE_QUIET: + time_ab_float64_z_flag( float64_le_quiet ); + break; + case FLOAT64_LT_QUIET: + time_ab_float64_z_flag( float64_lt_quiet ); + break; +#ifdef FLOATX80 + case FLOATX80_TO_INT32: + time_a_floatx80_z_int32( floatx80_to_int32 ); + break; + case FLOATX80_TO_INT32_ROUND_TO_ZERO: + time_a_floatx80_z_int32( floatx80_to_int32_round_to_zero ); + break; + case FLOATX80_TO_INT64: + time_a_floatx80_z_int64( floatx80_to_int64 ); + break; + case FLOATX80_TO_INT64_ROUND_TO_ZERO: + time_a_floatx80_z_int64( floatx80_to_int64_round_to_zero ); + break; + case FLOATX80_TO_FLOAT32: + time_a_floatx80_z_float32( floatx80_to_float32 ); + break; + case FLOATX80_TO_FLOAT64: + time_a_floatx80_z_float64( floatx80_to_float64 ); + break; +#ifdef FLOAT128 + case FLOATX80_TO_FLOAT128: + time_a_floatx80_z_float128( floatx80_to_float128 ); + break; +#endif + case FLOATX80_ROUND_TO_INT: + time_az_floatx80( floatx80_round_to_int ); + break; + case FLOATX80_ADD: + time_abz_floatx80( floatx80_add ); + break; + case FLOATX80_SUB: + time_abz_floatx80( floatx80_sub ); + break; + case FLOATX80_MUL: + time_abz_floatx80( floatx80_mul ); + break; + case FLOATX80_DIV: + time_abz_floatx80( floatx80_div ); + break; + case FLOATX80_REM: + time_abz_floatx80( floatx80_rem ); + break; + case FLOATX80_SQRT: + time_az_floatx80_pos( floatx80_sqrt ); + break; + case FLOATX80_EQ: + time_ab_floatx80_z_flag( floatx80_eq ); + break; + case FLOATX80_LE: + time_ab_floatx80_z_flag( floatx80_le ); + break; + case FLOATX80_LT: + time_ab_floatx80_z_flag( floatx80_lt ); + break; + case FLOATX80_EQ_SIGNALING: + time_ab_floatx80_z_flag( floatx80_eq_signaling ); + break; + case FLOATX80_LE_QUIET: + time_ab_floatx80_z_flag( floatx80_le_quiet ); + break; + case FLOATX80_LT_QUIET: + time_ab_floatx80_z_flag( floatx80_lt_quiet ); + break; +#endif +#ifdef FLOAT128 + case FLOAT128_TO_INT32: + time_a_float128_z_int32( float128_to_int32 ); + break; + case FLOAT128_TO_INT32_ROUND_TO_ZERO: + time_a_float128_z_int32( float128_to_int32_round_to_zero ); + break; + case FLOAT128_TO_INT64: + time_a_float128_z_int64( float128_to_int64 ); + break; + case FLOAT128_TO_INT64_ROUND_TO_ZERO: + time_a_float128_z_int64( float128_to_int64_round_to_zero ); + break; + case FLOAT128_TO_FLOAT32: + time_a_float128_z_float32( float128_to_float32 ); + break; + case FLOAT128_TO_FLOAT64: + time_a_float128_z_float64( float128_to_float64 ); + break; +#ifdef FLOATX80 + case FLOAT128_TO_FLOATX80: + time_a_float128_z_floatx80( float128_to_floatx80 ); + break; +#endif + case FLOAT128_ROUND_TO_INT: + time_az_float128( float128_round_to_int ); + break; + case FLOAT128_ADD: + time_abz_float128( float128_add ); + break; + case FLOAT128_SUB: + time_abz_float128( float128_sub ); + break; + case FLOAT128_MUL: + time_abz_float128( float128_mul ); + break; + case FLOAT128_DIV: + time_abz_float128( float128_div ); + break; + case FLOAT128_REM: + time_abz_float128( float128_rem ); + break; + case FLOAT128_SQRT: + time_az_float128_pos( float128_sqrt ); + break; + case FLOAT128_EQ: + time_ab_float128_z_flag( float128_eq ); + break; + case FLOAT128_LE: + time_ab_float128_z_flag( float128_le ); + break; + case FLOAT128_LT: + time_ab_float128_z_flag( float128_lt ); + break; + case FLOAT128_EQ_SIGNALING: + time_ab_float128_z_flag( float128_eq_signaling ); + break; + case FLOAT128_LE_QUIET: + time_ab_float128_z_flag( float128_le_quiet ); + break; + case FLOAT128_LT_QUIET: + time_ab_float128_z_flag( float128_lt_quiet ); + break; +#endif + } + +} + +static void + timeFunction( + uint8 functionCode, + int8 roundingPrecisionIn, + int8 roundingModeIn, + int8 tininessModeIn + ) +{ + int8 roundingPrecision, roundingMode, tininessMode; + + roundingPrecision = 32; + for (;;) { + if ( ! functions[ functionCode ].roundingPrecision ) { + roundingPrecision = 0; + } + else if ( roundingPrecisionIn ) { + roundingPrecision = roundingPrecisionIn; + } + for ( roundingMode = 1; + roundingMode < NUM_ROUNDINGMODES; + ++roundingMode + ) { + if ( ! functions[ functionCode ].roundingMode ) { + roundingMode = 0; + } + else if ( roundingModeIn ) { + roundingMode = roundingModeIn; + } + for ( tininessMode = 1; + tininessMode < NUM_TININESSMODES; + ++tininessMode + ) { + if ( ( roundingPrecision == 32 ) + || ( roundingPrecision == 64 ) ) { + if ( ! functions[ functionCode ] + .tininessModeAtReducedPrecision + ) { + tininessMode = 0; + } + else if ( tininessModeIn ) { + tininessMode = tininessModeIn; + } + } + else { + if ( ! functions[ functionCode ].tininessMode ) { + tininessMode = 0; + } + else if ( tininessModeIn ) { + tininessMode = tininessModeIn; + } + } + timeFunctionVariety( + functionCode, roundingPrecision, roundingMode, tininessMode + ); + if ( tininessModeIn || ! tininessMode ) break; + } + if ( roundingModeIn || ! roundingMode ) break; + } + if ( roundingPrecisionIn || ! roundingPrecision ) break; + if ( roundingPrecision == 80 ) { + break; + } + else if ( roundingPrecision == 64 ) { + roundingPrecision = 80; + } + else if ( roundingPrecision == 32 ) { + roundingPrecision = 64; + } + } + +} + +main( int argc, char **argv ) +{ + char *argPtr; + flag functionArgument; + uint8 functionCode; + int8 operands, roundingPrecision, roundingMode, tininessMode; + + if ( argc <= 1 ) goto writeHelpMessage; + functionArgument = FALSE; + functionCode = 0; + operands = 0; + roundingPrecision = 0; + roundingMode = 0; + tininessMode = 0; + --argc; + ++argv; + while ( argc && ( argPtr = argv[ 0 ] ) ) { + if ( argPtr[ 0 ] == '-' ) ++argPtr; + if ( strcmp( argPtr, "help" ) == 0 ) { + writeHelpMessage: + fputs( +"timesoftfloat [<option>...] <function>\n" +" <option>: (* is default)\n" +" -help --Write this message and exit.\n" +#ifdef FLOATX80 +" -precision32 --Only time rounding precision equivalent to float32.\n" +" -precision64 --Only time rounding precision equivalent to float64.\n" +" -precision80 --Only time maximum rounding precision.\n" +#endif +" -nearesteven --Only time rounding to nearest/even.\n" +" -tozero --Only time rounding to zero.\n" +" -down --Only time rounding down.\n" +" -up --Only time rounding up.\n" +" -tininessbefore --Only time underflow tininess before rounding.\n" +" -tininessafter --Only time underflow tininess after rounding.\n" +" <function>:\n" +" int32_to_<float> <float>_add <float>_eq\n" +" <float>_to_int32 <float>_sub <float>_le\n" +" <float>_to_int32_round_to_zero <float>_mul <float>_lt\n" +" int64_to_<float> <float>_div <float>_eq_signaling\n" +" <float>_to_int64 <float>_rem <float>_le_quiet\n" +" <float>_to_int64_round_to_zero <float>_lt_quiet\n" +" <float>_to_<float>\n" +" <float>_round_to_int\n" +" <float>_sqrt\n" +" -all1 --All 1-operand functions.\n" +" -all2 --All 2-operand functions.\n" +" -all --All functions.\n" +" <float>:\n" +" float32 --Single precision.\n" +" float64 --Double precision.\n" +#ifdef FLOATX80 +" floatx80 --Extended double precision.\n" +#endif +#ifdef FLOAT128 +" float128 --Quadruple precision.\n" +#endif + , + stdout + ); + return EXIT_SUCCESS; + } +#ifdef FLOATX80 + else if ( strcmp( argPtr, "precision32" ) == 0 ) { + roundingPrecision = 32; + } + else if ( strcmp( argPtr, "precision64" ) == 0 ) { + roundingPrecision = 64; + } + else if ( strcmp( argPtr, "precision80" ) == 0 ) { + roundingPrecision = 80; + } +#endif + else if ( ( strcmp( argPtr, "nearesteven" ) == 0 ) + || ( strcmp( argPtr, "nearest_even" ) == 0 ) ) { + roundingMode = ROUND_NEAREST_EVEN; + } + else if ( ( strcmp( argPtr, "tozero" ) == 0 ) + || ( strcmp( argPtr, "to_zero" ) == 0 ) ) { + roundingMode = ROUND_TO_ZERO; + } + else if ( strcmp( argPtr, "down" ) == 0 ) { + roundingMode = ROUND_DOWN; + } + else if ( strcmp( argPtr, "up" ) == 0 ) { + roundingMode = ROUND_UP; + } + else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) { + tininessMode = TININESS_BEFORE_ROUNDING; + } + else if ( strcmp( argPtr, "tininessafter" ) == 0 ) { + tininessMode = TININESS_AFTER_ROUNDING; + } + else if ( strcmp( argPtr, "all1" ) == 0 ) { + functionArgument = TRUE; + functionCode = 0; + operands = 1; + } + else if ( strcmp( argPtr, "all2" ) == 0 ) { + functionArgument = TRUE; + functionCode = 0; + operands = 2; + } + else if ( strcmp( argPtr, "all" ) == 0 ) { + functionArgument = TRUE; + functionCode = 0; + operands = 0; + } + else { + for ( functionCode = 1; + functionCode < NUM_FUNCTIONS; + ++functionCode + ) { + if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) { + break; + } + } + if ( functionCode == NUM_FUNCTIONS ) { + fail( "Invalid option or function `%s'", argv[ 0 ] ); + } + functionArgument = TRUE; + } + --argc; + ++argv; + } + if ( ! functionArgument ) fail( "Function argument required" ); + if ( functionCode ) { + timeFunction( + functionCode, roundingPrecision, roundingMode, tininessMode ); + } + else if ( operands == 1 ) { + for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode + ) { + if ( functions[ functionCode ].numInputs == 1 ) { + timeFunction( + functionCode, roundingPrecision, roundingMode, tininessMode + ); + } + } + } + else if ( operands == 2 ) { + for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode + ) { + if ( functions[ functionCode ].numInputs == 2 ) { + timeFunction( + functionCode, roundingPrecision, roundingMode, tininessMode + ); + } + } + } + else { + for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode + ) { + timeFunction( + functionCode, roundingPrecision, roundingMode, tininessMode ); + } + } + return EXIT_SUCCESS; + +} + diff --git a/lib/libc/softfloat/unorddf2.c b/lib/libc/softfloat/unorddf2.c new file mode 100644 index 00000000000..3502a2bd031 --- /dev/null +++ b/lib/libc/softfloat/unorddf2.c @@ -0,0 +1,26 @@ +/* $OpenBSD: unorddf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: unorddf2.c,v 1.1 2003/05/06 08:58:19 rearnsha Exp $ */ + +/* + * Written by Richard Earnshaw, 2003. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __unorddf2(float64, float64); + +flag +__unorddf2(float64 a, float64 b) +{ + /* + * The comparison is unordered if either input is a NaN. + * Test for this by comparing each operand with itself. + * We must perform both comparisons to correctly check for + * signalling NaNs. + */ + return 1 ^ (float64_eq(a, a) & float64_eq(b, b)); +} diff --git a/lib/libc/softfloat/unordsf2.c b/lib/libc/softfloat/unordsf2.c new file mode 100644 index 00000000000..21d81236a32 --- /dev/null +++ b/lib/libc/softfloat/unordsf2.c @@ -0,0 +1,26 @@ +/* $OpenBSD: unordsf2.c,v 1.1 2006/11/06 15:11:37 drahn Exp $ */ +/* $NetBSD: unordsf2.c,v 1.1 2003/05/06 08:58:20 rearnsha Exp $ */ + +/* + * Written by Richard Earnshaw, 2003. This file is in the Public Domain. + */ + +#include "softfloat-for-gcc.h" +#include "milieu.h" +#include "softfloat.h" + +#include <sys/cdefs.h> + +flag __unordsf2(float32, float32); + +flag +__unordsf2(float32 a, float32 b) +{ + /* + * The comparison is unordered if either input is a NaN. + * Test for this by comparing each operand with itself. + * We must perform both comparisons to correctly check for + * signalling NaNs. + */ + return 1 ^ (float32_eq(a, a) & float32_eq(b, b)); +} |