diff options
author | Peter Valchev <pvalchev@cvs.openbsd.org> | 2002-04-28 20:55:15 +0000 |
---|---|---|
committer | Peter Valchev <pvalchev@cvs.openbsd.org> | 2002-04-28 20:55:15 +0000 |
commit | ac8277407eec4f1f45a73b8462b4a807928dd1f0 (patch) | |
tree | e97e090b84d170144eb0ed99eeba0d7e1ab1ed5d | |
parent | 4433d79654bae3b6a03df679b3ace77f4b639331 (diff) |
IEEE 754 floating point completion code, and implementation of the
FP_C (Floating Point Control Quadword).
From ross@NetBSD. Added a way to disable it with option NO_IEEE,
which appears on the ramdisks to save space. This affects only
programs compiled with -mieee, and what it essentially does is
enabling infinities and NaNs, instead of generating SIGFPE on
division by zero, overflow, etc.
ok art, deraadt
24 files changed, 8706 insertions, 104 deletions
diff --git a/sys/arch/alpha/alpha/db_instruction.h b/sys/arch/alpha/alpha/db_instruction.h index 10994cff35c..6eb6a4faf7f 100644 --- a/sys/arch/alpha/alpha/db_instruction.h +++ b/sys/arch/alpha/alpha/db_instruction.h @@ -1,5 +1,5 @@ -/* $OpenBSD: db_instruction.h,v 1.3 2001/08/12 12:03:02 heko Exp $ */ -/* $NetBSD: db_instruction.h,v 1.6 2000/03/20 02:54:45 thorpej Exp $ */ +/* $OpenBSD: db_instruction.h,v 1.4 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: db_instruction.h,v 1.7 2001/04/26 03:10:44 ross Exp $ */ /* * Copyright (c) 1999 Christopher G. Demetriou. All rights reserved. @@ -185,6 +185,16 @@ typedef union { opcode : 6; } float_format; + struct { + unsigned fc : 5, + opclass : 4, + src : 2, + rnd : 2, + trp : 3, + fb : 5, + fa : 5, + opcode : 6; + } float_detail; /* * PAL instructions just define the major opcode @@ -223,6 +233,7 @@ typedef union { #define op_bit 0x12 /* see BIT sub-table */ #define op_mul 0x13 /* see MUL sub-table */ /* reserved */ +#define op_fix_float 0x14 /* if ALPHA_AMASK_FIX */ #define op_vax_float 0x15 /* see FLOAT sub-table */ #define op_ieee_float 0x16 /* see FLOAT sub-table */ #define op_any_float 0x17 /* see FLOAT sub-table */ @@ -412,6 +423,12 @@ typedef union { * Load and store operations use opcodes op_ldf..op_stt */ + /* src encoding from function, 9..10 */ +#define op_src_sf 0 +#define op_src_xd 1 +#define op_src_tg 2 +#define op_src_qq 3 + /* any FLOAT, "function" opcodes (bits 5..11) */ #define op_cvtlq 0x010 @@ -428,7 +445,7 @@ typedef union { #define op_fcmovgt 0x02f #define op_cvtql 0x030 #define op_cvtql_v 0x130 -#define op_cvtql_sv 0x330 +#define op_cvtql_sv 0x530 /* ieee FLOAT, "function" opcodes (bits 5..11) */ @@ -521,6 +538,7 @@ typedef union { #define op_mult_ud 0x1e2 #define op_divt_ud 0x1e3 #define op_cvtts_ud 0x1ec +#define op_cvtst 0x2ac #define op_adds_suc 0x500 #define op_subs_suc 0x501 #define op_muls_suc 0x502 @@ -563,6 +581,7 @@ typedef union { #define op_mult_sud 0x5e2 #define op_divt_sud 0x5e3 #define op_cvtts_sud 0x5ec +#define op_cvtst_u 0x6ac #define op_adds_suic 0x700 #define op_subs_suic 0x701 #define op_muls_suic 0x702 diff --git a/sys/arch/alpha/alpha/fp_complete.c b/sys/arch/alpha/alpha/fp_complete.c new file mode 100644 index 00000000000..80f295050e5 --- /dev/null +++ b/sys/arch/alpha/alpha/fp_complete.c @@ -0,0 +1,698 @@ +/* $OpenBSD: fp_complete.c,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: fp_complete.c,v 1.5 2002/01/18 22:15:56 ross Exp $ */ + +/*- + * Copyright (c) 2001 Ross Harvey + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef NO_IEEE + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/proc.h> + +#include <machine/cpu.h> +#include <machine/fpu.h> +#include <machine/reg.h> +#include <machine/cpu.h> +#include <alpha/alpha/db_instruction.h> + +#include <lib/libkern/softfloat.h> + +#define TSWINSIZE 4 /* size of trap shadow window in u_int32_t units */ + +/* Set Name Opcodes AARM C.* Symbols */ + +#define CPUREG_CLASS (0xfUL << 0x10) /* INT[ALSM] */ +#define FPUREG_CLASS (0xfUL << 0x14) /* ITFP, FLT[ILV] */ +#define CHECKFUNCTIONCODE (1UL << 0x18) /* MISC */ +#define TRAPSHADOWBOUNDARY (1UL << 0x00 | /* PAL */\ + 1UL << 0x19 | /* \PAL\ */\ + 1UL << 0x1a | /* JSR */\ + 1UL << 0x1b | /* \PAL\ */\ + 1UL << 0x1d | /* \PAL\ */\ + 1UL << 0x1e | /* \PAL\ */\ + 1UL << 0x1f | /* \PAL\ */\ + 0xffffUL << 0x30 | /* branch ops */\ + CHECKFUNCTIONCODE) + +#define MAKE_FLOATXX(width, expwidth, sign, exp, msb, rest_of_frac) \ + (u_int ## width ## _t)(sign) << ((width) - 1) |\ + (u_int ## width ## _t)(exp) << ((width) - 1 - (expwidth)) |\ + (u_int ## width ## _t)(msb) << ((width) - 1 - (expwidth) - 1) |\ + (u_int ## width ## _t)(rest_of_frac) + +#define FLOAT32QNAN MAKE_FLOATXX(32, 8, 0, 0xff, 1, 0) +#define FLOAT64QNAN MAKE_FLOATXX(64, 11, 0, 0x7ff, 1, 0) + +#define IS_SUBNORMAL(v) ((v)->exp == 0 && (v)->frac != 0) + +#define PREFILTER_SUBNORMAL(p,v) if ((p)->p_md.md_flags & IEEE_MAP_DMZ \ + && IS_SUBNORMAL(v)) \ + (v)->frac = 0; else + +#define POSTFILTER_SUBNORMAL(p,v) if ((p)->p_md.md_flags & IEEE_MAP_UMZ \ + && IS_SUBNORMAL(v)) \ + (v)->frac = 0; else + + /* Alpha returns 2.0 for true, all zeroes for false. */ + +#define CMP_RESULT(flag) ((flag) ? 4UL << 60 : 0L) + + /* Move bits from sw fp_c to hw fpcr. */ + +#define CRBLIT(sw, hw, m, offs) (((sw) & ~(m)) | ((hw) >> (offs) & (m))) + +/* + * Temporary trap shadow instrumentation. The [un]resolved counters + * could be kept permanently, as they provide information on whether + * user code has met AARM trap shadow generation requirements. + */ + +struct alpha_shadow { + u_int64_t resolved; /* cases trigger pc found */ + u_int64_t unresolved; /* cases it wasn't, code problems? */ + u_int64_t scans; /* trap shadow scans */ + u_int64_t len; /* number of instructions examined */ + u_int64_t uop; /* bit mask of unexpected opcodes */ + u_int64_t sqrts; /* ev6+ square root single count */ + u_int64_t sqrtt; /* ev6+ square root double count */ + u_int32_t ufunc; /* bit mask of unexpected functions */ + u_int32_t max; /* max trap shadow scan */ + u_int32_t nilswop; /* unexpected op codes */ + u_int32_t nilswfunc; /* unexpected function codes */ + u_int32_t nilanyop; /* this "cannot happen" */ + u_int32_t vax; /* sigs from vax fp opcodes */ +} alpha_shadow, alpha_shadow_zero; + +static float64 float64_unk(float64, float64); +static float64 compare_un(float64, float64); +static float64 compare_eq(float64, float64); +static float64 compare_lt(float64, float64); +static float64 compare_le(float64, float64); +static void cvt_qs_ts_st_gf_qf(u_int32_t, struct proc *); +static void cvt_gd(u_int32_t, struct proc *); +static void cvt_qt_dg_qg(u_int32_t, struct proc *); +static void cvt_tq_gq(u_int32_t, struct proc *); + +static float32 (*swfp_s[])(float32, float32) = { + float32_add, float32_sub, float32_mul, float32_div, +}; + +static float64 (*swfp_t[])(float64, float64) = { + float64_add, float64_sub, float64_mul, float64_div, + compare_un, compare_eq, compare_lt, compare_le, + float64_unk, float64_unk, float64_unk, float64_unk +}; + +static void (*swfp_cvt[])(u_int32_t, struct proc *) = { + cvt_qs_ts_st_gf_qf, cvt_gd, cvt_qt_dg_qg, cvt_tq_gq +}; + +static void +this_cannot_happen(int what_cannot_happen, int64_t bits) +{ + static int total; + alpha_instruction inst; + static u_int64_t reported; + + inst.bits = bits; + ++alpha_shadow.nilswfunc; + if (bits != -1) + alpha_shadow.uop |= 1UL << inst.generic_format.opcode; + if (1UL << what_cannot_happen & reported) + return; + reported |= 1UL << what_cannot_happen; + if (total >= 1000) + return; /* right now, this return "cannot happen" */ + ++total; + if (bits) + printf("FP instruction %x\n", (unsigned int)bits); + printf("FP event %d/%lx/%lx\n", what_cannot_happen, reported, + alpha_shadow.uop); +} + +static __inline void +sts(unsigned int rn, s_float *v, struct proc *p) +{ + alpha_sts(rn, v); + PREFILTER_SUBNORMAL(p, v); +} + +static __inline void +stt(unsigned int rn, t_float *v, struct proc *p) +{ + alpha_stt(rn, v); + PREFILTER_SUBNORMAL(p, v); +} + +static __inline void +lds(unsigned int rn, s_float *v, struct proc *p) +{ + POSTFILTER_SUBNORMAL(p, v); + alpha_lds(rn, v); +} + +static __inline void +ldt(unsigned int rn, t_float *v, struct proc *p) +{ + POSTFILTER_SUBNORMAL(p, v); + alpha_ldt(rn, v); +} + +static float64 +compare_lt(float64 a, float64 b) +{ + return CMP_RESULT(float64_lt(a, b)); +} + +static float64 +compare_le(float64 a, float64 b) +{ + return CMP_RESULT(float64_le(a, b)); +} + +static float64 +compare_un(float64 a, float64 b) +{ + if (float64_is_nan(a) | float64_is_nan(b)) { + if (float64_is_signaling_nan(a) | float64_is_signaling_nan(b)) + float_set_invalid(); + return CMP_RESULT(1); + } + return CMP_RESULT(0); +} + +static float64 +compare_eq(float64 a, float64 b) +{ + return CMP_RESULT(float64_eq(a, b)); +} +/* + * A note regarding the VAX FP ops. + * + * The AARM gives us complete leeway to set or not set status flags on VAX + * ops, but we do any subnorm, NaN and dirty zero fixups anyway, and we set + * flags by IEEE rules. Many ops are common to d/f/g and s/t source types. + * For the purely vax ones, it's hard to imagine ever running them. + * (Generated VAX fp ops with completion flags? Hmm.) We are careful never + * to panic, assert, or print unlimited output based on a path through the + * decoder, so weird cases don't become security issues. + */ +static void +cvt_qs_ts_st_gf_qf(u_int32_t inst_bits, struct proc *p) +{ + t_float tfb, tfc; + s_float sfb, sfc; + alpha_instruction inst; + + inst.bits = inst_bits; + /* + * cvtst and cvtts have the same opcode, function, and source. The + * distinction for cvtst is hidden in the illegal modifier combinations. + * We decode even the non-/s modifier, so that the fix-up-always mode + * works on ev6 and later. The rounding bits are unused and fixed for + * cvtst, so we check those too. + */ + switch(inst.float_format.function) { + case op_cvtst: + case op_cvtst_u: + sts(inst.float_detail.fb, &sfb, p); + tfc.i = float32_to_float64(sfb.i); + ldt(inst.float_detail.fc, &tfc, p); + return; + } + if(inst.float_detail.src == 2) { + stt(inst.float_detail.fb, &tfb, p); + sfc.i = float64_to_float32(tfb.i); + lds(inst.float_detail.fc, &sfc, p); + return; + } + /* 0: S/F */ + /* 1: /D */ + /* 3: Q/Q */ + this_cannot_happen(5, inst.generic_format.opcode); + tfc.i = FLOAT64QNAN; + ldt(inst.float_detail.fc, &tfc, p); + return; +} + +static void +cvt_gd(u_int32_t inst_bits, struct proc *p) +{ + t_float tfb, tfc; + alpha_instruction inst; + + inst.bits = inst_bits; + stt(inst.float_detail.fb, &tfb, p); + (void) float64_to_float32(tfb.i); + p->p_md.md_flags &= ~OPENBSD_FLAG_TO_FP_C(FP_X_IMP); + tfc.i = float64_add(tfb.i, (float64)0); + ldt(inst.float_detail.fc, &tfc, p); +} + +static void +cvt_qt_dg_qg(u_int32_t inst_bits, struct proc *p) +{ + t_float tfb, tfc; + alpha_instruction inst; + + inst.bits = inst_bits; + switch(inst.float_detail.src) { + case 0: /* S/F */ + this_cannot_happen(3, inst.bits); + /* fall thru */ + case 1: /* D */ + /* VAX dirty 0's and reserved ops => UNPREDICTABLE */ + /* We've done what's important by just not trapping */ + tfc.i = 0; + break; + case 2: /* T/G */ + this_cannot_happen(4, inst.bits); + tfc.i = 0; + break; + case 3: /* Q/Q */ + stt(inst.float_detail.fb, &tfb, p); + tfc.i = int64_to_float64(tfb.i); + break; + } + alpha_ldt(inst.float_detail.fc, &tfc); +} +/* + * XXX: AARM and 754 seem to disagree here, also, beware of softfloat's + * unfortunate habit of always returning the nontrapping result. + * XXX: there are several apparent AARM/AAH disagreements, as well as + * the issue of trap handler pc and trapping results. + */ +static void +cvt_tq_gq(u_int32_t inst_bits, struct proc *p) +{ + t_float tfb, tfc; + alpha_instruction inst; + + inst.bits = inst_bits; + stt(inst.float_detail.fb, &tfb, p); + tfc.i = float64_to_int64(tfb.i); + alpha_ldt(inst.float_detail.fc, &tfc); /* yes, ldt */ +} + +static u_int64_t +fp_c_to_fpcr_1(u_int64_t fpcr, u_int64_t fp_c) +{ + u_int64_t disables; + + /* + * It's hard to arrange for conforming bit fields, because the FP_C + * and the FPCR are both architected, with specified (and relatively + * scrambled) bit numbers. Defining an internal unscrambled FP_C + * wouldn't help much, because every user exception requires the + * architected bit order in the sigcontext. + * + * Programs that fiddle with the fpcr exception bits (instead of fp_c) + * will lose, because those bits can be and usually are subsetted; + * the official home is in the fp_c. Furthermore, the kernel puts + * phony enables (it lies :-) in the fpcr in order to get control when + * it is necessary to initially set a sticky bit. + */ + + fpcr &= FPCR_DYN(3); + + /* + * enable traps = case where flag bit is clear OR program wants a trap + * enables = ~flags | mask + * disables = ~(~flags | mask) + * disables = flags & ~mask. Thank you, Augustus De Morgan (1806-1871) + */ + disables = FP_C_TO_OPENBSD_FLAG(fp_c) & ~FP_C_TO_OPENBSD_MASK(fp_c); + + fpcr |= (disables & (FP_X_IMP | FP_X_UFL)) << (61 - 3); + fpcr |= (disables & (FP_X_OFL | FP_X_DZ | FP_X_INV)) << (49 - 0); + +# if !(FP_X_INV == 1 && FP_X_DZ == 2 && FP_X_OFL == 4 && \ + FP_X_UFL == 8 && FP_X_IMP == 16 && FP_X_IOV == 32 && \ + FP_X_UFL << (61 - 3) == FPCR_UNFD && \ + FP_X_IMP << (61 - 3) == FPCR_INED && \ + FP_X_OFL << (49 - 0) == FPCR_OVFD) +# error "Assertion failed" + /* + * We don't care about the other built-in bit numbers because they + * have been architecturally specified. + */ +# endif + + fpcr |= fp_c & FP_C_MIRRORED << (FPCR_MIR_START - FP_C_MIR_START); + fpcr |= (fp_c & IEEE_MAP_DMZ) << 36; + if (fp_c & FP_C_MIRRORED) + fpcr |= FPCR_SUM; + if (fp_c & IEEE_MAP_UMZ) + fpcr |= FPCR_UNDZ | FPCR_UNFD; + fpcr |= (~fp_c & IEEE_TRAP_ENABLE_DNO) << 41; + return fpcr; +} + +static void +fp_c_to_fpcr(struct proc *p) +{ + alpha_write_fpcr(fp_c_to_fpcr_1(alpha_read_fpcr(), p->p_md.md_flags)); +} + +void +alpha_write_fp_c(struct proc *p, u_int64_t fp_c) +{ + u_int64_t md_flags; + + fp_c &= MDP_FP_C; + md_flags = p->p_md.md_flags; + if ((md_flags & MDP_FP_C) == fp_c) + return; + p->p_md.md_flags = (md_flags & ~MDP_FP_C) | fp_c; + alpha_enable_fp(p, 1); + fp_c_to_fpcr(p); + alpha_pal_wrfen(0); +} + +u_int64_t +alpha_read_fp_c(struct proc *p) +{ + /* + * A possibly-desireable EV6-specific optimization would deviate from + * the Alpha Architecture spec and keep some FP_C bits in the FPCR, + * but in a transparent way. Some of the code for that would need to + * go right here. + */ + return p->p_md.md_flags & MDP_FP_C; +} + +static float64 +float64_unk(float64 a, float64 b) +{ + return 0; +} + +/* + * The real function field encodings for IEEE and VAX FP instructions. + * + * Since there is only one operand type field, the cvtXX instructions + * require a variety of special cases, and these have to be analyzed as + * they don't always fit into the field descriptions in AARM section I. + * + * Lots of staring at bits in the appendix shows what's really going on. + * + * | | + * 15 14 13|12 11 10 09|08 07 06 05 + * --------======------============ + * TRAP : RND : SRC : FUNCTION : + * 0 0 0:. . .:. . . . . . . . . . . . Imprecise + * 0 0 1|. . .:. . . . . . . . . . . ./U underflow enable (if FP output) + * | /V overfloat enable (if int output) + * 0 1 0:. . .:. . . . . . . . . . . ."Unsupported", but used for CVTST + * 0 1 1|. . .:. . . . . . . . . . . . Unsupported + * 1 0 0:. . .:. . . . . . . . . . . ./S software completion (VAX only) + * 1 0 1|. . .:. . . . . . . . . . . ./SU + * | /SV + * 1 1 0:. . .:. . . . . . . . . . . ."Unsupported", but used for CVTST/S + * 1 1 1|. . .:. . . . . . . . . . . ./SUI (if FP output) (IEEE only) + * | /SVI (if int output) (IEEE only) + * S I UV: In other words: bits 15:13 are S:I:UV, except that _usually_ + * | not all combinations are valid. + * | | + * 15 14 13|12 11 10 09|08 07 06 05 + * --------======------============ + * TRAP : RND : SRC : FUNCTION : + * | 0 0 . . . . . . . . . . . ./C Chopped + * : 0 1 . . . . . . . . . . . ./M Minus Infinity + * | 1 0 . . . . . . . . . . . . Normal + * : 1 1 . . . . . . . . . . . ./D Dynamic (in FPCR: Plus Infinity) + * | | + * 15 14 13|12 11 10 09|08 07 06 05 + * --------======------============ + * TRAP : RND : SRC : FUNCTION : + * 0 0. . . . . . . . . . S/F + * 0 1. . . . . . . . . . -/D + * 1 0. . . . . . . . . . T/G + * 1 1. . . . . . . . . . Q/Q + * | | + * 15 14 13|12 11 10 09|08 07 06 05 + * --------======------============ + * TRAP : RND : SRC : FUNCTION : + * 0 0 0 0 . . . addX + * 0 0 0 1 . . . subX + * 0 0 1 0 . . . mulX + * 0 0 1 1 . . . divX + * 0 1 0 0 . . . cmpXun + * 0 1 0 1 . . . cmpXeq + * 0 1 1 0 . . . cmpXlt + * 0 1 1 1 . . . cmpXle + * 1 0 0 0 . . . reserved + * 1 0 0 1 . . . reserved + * 1 0 1 0 . . . sqrt[fg] (op_fix, not exactly "vax") + * 1 0 1 1 . . . sqrt[st] (op_fix, not exactly "ieee") + * 1 1 0 0 . . . cvtXs/f (cvt[qt]s, cvtst(!), cvt[gq]f) + * 1 1 0 1 . . . cvtXd (vax only) + * 1 1 1 0 . . . cvtXt/g (cvtqt, cvt[dq]g only) + * 1 1 1 1 . . . cvtXq/q (cvttq, cvtgq) + * | | + * 15 14 13|12 11 10 09|08 07 06 05 the twilight zone + * --------======------============ + * TRAP : RND : SRC : FUNCTION : + * /s /i /u x x 1 0 1 1 0 0 . . . cvtts, /siu only 0, 1, 5, 7 + * 0 1 0 1 0 1 0 1 1 0 0 . . . cvtst (src == T (!)) 2ac NOT /S + * 1 1 0 1 0 1 0 1 1 0 0 . . . cvtst/s (src == T (!)) 6ac + * x 0 x x x x 0 1 1 1 1 . . . cvttq/_ (src == T) + */ + +static void +alpha_fp_interpret(alpha_instruction *pc, struct proc *p, u_int64_t bits) +{ + s_float sfa, sfb, sfc; + t_float tfa, tfb, tfc; + alpha_instruction inst; + + inst.bits = bits; + switch(inst.generic_format.opcode) { + default: + /* this "cannot happen" */ + this_cannot_happen(2, inst.bits); + return; + case op_any_float: + if (inst.float_format.function == op_cvtql_sv || + inst.float_format.function == op_cvtql_v) { + alpha_stt(inst.float_detail.fb, &tfb); + sfc.i = (int64_t)tfb.i >= 0L ? INT_MAX : INT_MIN; + alpha_lds(inst.float_detail.fc, &sfc); + float_raise(FP_X_INV); + } else { + ++alpha_shadow.nilanyop; + this_cannot_happen(3, inst.bits); + } + break; + case op_vax_float: + ++alpha_shadow.vax; /* fall thru */ + case op_ieee_float: + case op_fix_float: + switch(inst.float_detail.src) { + case op_src_sf: + sts(inst.float_detail.fb, &sfb, p); + if (inst.float_detail.opclass == 10) + sfc.i = float32_sqrt(sfb.i); + else if (inst.float_detail.opclass & ~3) { + this_cannot_happen(1, inst.bits); + sfc.i = FLOAT32QNAN; + } else { + sts(inst.float_detail.fa, &sfa, p); + sfc.i = (*swfp_s[inst.float_detail.opclass])( + sfa.i, sfb.i); + } + lds(inst.float_detail.fc, &sfc, p); + break; + case op_src_xd: + case op_src_tg: + if (inst.float_detail.opclass >= 12) + (*swfp_cvt[inst.float_detail.opclass - 12])( + inst.bits, p); + else { + stt(inst.float_detail.fb, &tfb, p); + if (inst.float_detail.opclass == 10) + tfc.i = float64_sqrt(tfb.i); + else { + stt(inst.float_detail.fa, &tfa, p); + tfc.i = (*swfp_t[inst.float_detail + .opclass])(tfa.i, tfb.i); + } + ldt(inst.float_detail.fc, &tfc, p); + } + break; + case op_src_qq: + float_raise(FP_X_IMP); + break; + } + } +} + +static int +alpha_fp_complete_at(alpha_instruction *trigger_pc, struct proc *p, + u_int64_t *ucode) +{ + int needsig; + alpha_instruction inst; + u_int64_t rm, fpcr, orig_fpcr; + u_int64_t orig_flags, new_flags, changed_flags, md_flags; + + if (__predict_false(copyin(trigger_pc, &inst, sizeof inst))) { + this_cannot_happen(6, -1); + return SIGSEGV; + } + alpha_enable_fp(p, 1); + /* + * If necessary, lie about the dynamic rounding mode so emulation + * software need go to only one place for it, and so we don't have to + * lock any memory locations or pass a third parameter to every + * SoftFloat entry point. + */ + orig_fpcr = fpcr = alpha_read_fpcr(); + rm = inst.float_detail.rnd; + if (__predict_false(rm != 3 /* dynamic */ && rm != (fpcr >> 58 & 3))) { + fpcr = (fpcr & ~FPCR_DYN(3)) | FPCR_DYN(rm); + alpha_write_fpcr(fpcr); + } + orig_flags = FP_C_TO_OPENBSD_FLAG(p->p_md.md_flags); + + alpha_fp_interpret(trigger_pc, p, inst.bits); + + md_flags = p->p_md.md_flags; + + new_flags = FP_C_TO_OPENBSD_FLAG(md_flags); + changed_flags = orig_flags ^ new_flags; + KASSERT((orig_flags | changed_flags) == new_flags); /* panic on 1->0 */ + alpha_write_fpcr(fp_c_to_fpcr_1(orig_fpcr, md_flags)); + needsig = changed_flags & FP_C_TO_OPENBSD_MASK(md_flags); + alpha_pal_wrfen(0); + if (__predict_false(needsig)) { + *ucode = needsig; + return SIGFPE; + } + return 0; +} + +int +alpha_fp_complete(u_long a0, u_long a1, struct proc *p, u_int64_t *ucode) +{ + int t; + int sig; + u_int64_t op_class; + alpha_instruction inst; + /* "trigger_pc" is Compaq's term for the earliest faulting op */ + alpha_instruction *trigger_pc, *usertrap_pc; + alpha_instruction *pc, *win_begin, tsw[TSWINSIZE]; + + sig = SIGFPE; + pc = (alpha_instruction *)p->p_md.md_tf->tf_regs[FRAME_PC]; + trigger_pc = pc - 1; /* for ALPHA_AMASK_PAT case */ + if (cpu_amask & ALPHA_AMASK_PAT) { + if (a0 & 1 || alpha_fp_sync_complete) { + sig = alpha_fp_complete_at(trigger_pc, p, ucode); + goto done; + } + } + *ucode = a0; + if (!(a0 & 1)) + return sig; +/* + * At this point we are somwhere in the trap shadow of one or more instruc- + * tions that have trapped with software completion specified. We have a mask + * of the registers written by trapping instructions. + * + * Now step backwards through the trap shadow, clearing bits in the + * destination write mask until the trigger instruction is found, and + * interpret this one instruction in SW. If a SIGFPE is not required, back up + * the PC until just after this instruction and restart. This will execute all + * trap shadow instructions between the trigger pc and the trap pc twice. + * + * If a SIGFPE is generated from the OSF1 emulation, back up one more + * instruction to the trigger pc itself. Native binaries don't because it + * is non-portable and completely defeats the intended purpose of IEEE + * traps -- for example, to count the number of exponent wraps for a later + * correction. + */ + trigger_pc = 0; + win_begin = pc; + ++alpha_shadow.scans; + t = alpha_shadow.len; + for (--pc; a1; --pc) { + ++alpha_shadow.len; + if (pc < win_begin) { + win_begin = pc - TSWINSIZE + 1; + if (copyin(win_begin, tsw, sizeof tsw)) { + /* sigh, try to get just one */ + win_begin = pc; + if (copyin(win_begin, tsw, 4)) + return SIGSEGV; + } + } + assert(win_begin <= pc && !((long)pc & 3)); + inst = tsw[pc - win_begin]; + op_class = 1UL << inst.generic_format.opcode; + if (op_class & FPUREG_CLASS) { + a1 &= ~(1UL << (inst.operate_generic_format.rc + 32)); + trigger_pc = pc; + } else if (op_class & CPUREG_CLASS) { + a1 &= ~(1UL << inst.operate_generic_format.rc); + trigger_pc = pc; + } else if (op_class & TRAPSHADOWBOUNDARY) { + if (op_class & CHECKFUNCTIONCODE) { + if (inst.mem_format.displacement == op_trapb || + inst.mem_format.displacement == op_excb) + break; /* code breaks AARM rules */ + } else + break; /* code breaks AARM rules */ + } + /* Some shadow-safe op, probably load, store, or FPTI class */ + } + t = alpha_shadow.len - t; + if (t > alpha_shadow.max) + alpha_shadow.max = t; + if (__predict_true(trigger_pc != 0 && a1 == 0)) { + ++alpha_shadow.resolved; + sig = alpha_fp_complete_at(trigger_pc, p, ucode); + } else { + ++alpha_shadow.unresolved; + return sig; + } +done: + if (sig) { + usertrap_pc = trigger_pc + 1; + p->p_md.md_tf->tf_regs[FRAME_PC] = (unsigned long)usertrap_pc; + return sig; + } + return 0; +} +#endif diff --git a/sys/arch/alpha/alpha/locore.s b/sys/arch/alpha/alpha/locore.s index 8c1d9ddc315..4d38766d884 100644 --- a/sys/arch/alpha/alpha/locore.s +++ b/sys/arch/alpha/alpha/locore.s @@ -1,5 +1,5 @@ -/* $OpenBSD: locore.s,v 1.17 2001/09/30 13:08:45 art Exp $ */ -/* $NetBSD: locore.s,v 1.80 2000/09/04 00:31:59 thorpej Exp $ */ +/* $OpenBSD: locore.s,v 1.18 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: locore.s,v 1.94 2001/04/26 03:10:44 ross Exp $ */ /*- * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc. @@ -1906,6 +1906,63 @@ longjmp_botchmsg: .text END(longjmp) +/* + * void sts(int rn, u_int32_t *rval); + * void stt(int rn, u_int64_t *rval); + * void lds(int rn, u_int32_t *rval); + * void ldt(int rn, u_int64_t *rval); + */ + +#ifndef NO_IEEE +.macro make_freg_util name, op + LEAF(alpha_\name, 2) + and a0, 0x1f, a0 + s8addq a0, pv, pv + addq pv, 1f - alpha_\name, pv + jmp (pv) +1: + rn = 0 + .rept 32 + \op $f0 + rn, 0(a1) + RET + rn = rn + 1 + .endr + END(alpha_\name) +.endm +/* +LEAF(alpha_sts, 2) +LEAF(alpha_stt, 2) +LEAF(alpha_lds, 2) +LEAF(alpha_ldt, 2) + */ + make_freg_util sts, sts + make_freg_util stt, stt + make_freg_util lds, lds + make_freg_util ldt, ldt + +LEAF(alpha_read_fpcr, 0); f30save = 0; rettmp = 8; framesz = 16 + lda sp, -framesz(sp) + stt $f30, f30save(sp) + mf_fpcr $f30 + stt $f30, rettmp(sp) + ldt $f30, f30save(sp) + ldq v0, rettmp(sp) + lda sp, framesz(sp) + RET +END(alpha_read_fpcr) + +LEAF(alpha_write_fpcr, 1); f30save = 0; fpcrtmp = 8; framesz = 16 + lda sp, -framesz(sp) + stq a0, fpcrtmp(sp) + stt $f30, f30save(sp) + ldt $f30, fpcrtmp(sp) + mt_fpcr $f30 + ldt $f30, f30save(sp) + lda sp, framesz(sp) + RET +END(alpha_write_fpcr) +#endif + #if 0 NESTED(transfer_check,0,0,ra,0,0) CALL(U_need_2_run_config) diff --git a/sys/arch/alpha/alpha/machdep.c b/sys/arch/alpha/alpha/machdep.c index 9918d85d027..9b56830e56b 100644 --- a/sys/arch/alpha/alpha/machdep.c +++ b/sys/arch/alpha/alpha/machdep.c @@ -1,4 +1,4 @@ -/* $OpenBSD: machdep.c,v 1.70 2002/04/25 00:53:58 miod Exp $ */ +/* $OpenBSD: machdep.c,v 1.71 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: machdep.c,v 1.210 2000/06/01 17:12:38 thorpej Exp $ */ /*- @@ -90,6 +90,9 @@ #include <sys/core.h> #include <sys/kcore.h> #include <machine/kcore.h> +#ifndef NO_IEEE +#include <machine/fpu.h> +#endif #ifdef SYSVMSG #include <sys/msg.h> #endif @@ -113,6 +116,9 @@ #include <machine/rpb.h> #include <machine/prom.h> #include <machine/cpuconf.h> +#ifndef NO_IEEE +#include <machine/ieeefp.h> +#endif #include <dev/pci/pcivar.h> @@ -201,6 +207,9 @@ struct platform platform; int alpha_unaligned_print = 1; /* warn about unaligned accesses */ int alpha_unaligned_fix = 1; /* fix up unaligned accesses */ int alpha_unaligned_sigbus = 1; /* SIGBUS on fixed-up accesses */ +#ifndef NO_IEEE +int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */ +#endif /* * XXX This should be dynamically sized, but we have the chicken-egg problem! @@ -1597,19 +1606,18 @@ sendsig(catcher, sig, mask, code, type, val) ksc.sc_regs[R_SP] = alpha_pal_rdusp(); /* save the floating-point state, if necessary, then copy it. */ - if (p == fpcurproc) { - alpha_pal_wrfen(1); - savefpstate(&p->p_addr->u_pcb.pcb_fp); - alpha_pal_wrfen(0); - fpcurproc = NULL; - } + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 1); ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED; - bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs, + memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp, sizeof(struct fpreg)); - ksc.sc_fp_control = 0; /* XXX ? */ - bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */ - bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */ - +#ifndef NO_IEEE + ksc.sc_fp_control = alpha_read_fp_c(p); +#else + ksc.sc_fp_control = 0; +#endif + memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */ + memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */ #ifdef COMPAT_OSF1 /* @@ -1713,11 +1721,14 @@ sys_sigreturn(p, v, retval) alpha_pal_wrusp(ksc.sc_regs[R_SP]); /* XXX ksc.sc_ownedfp ? */ - if (p == fpcurproc) - fpcurproc = NULL; - bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp, + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 0); + memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs, sizeof(struct fpreg)); - /* XXX ksc.sc_fp_control ? */ +#ifndef NO_IEEE + p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr; + p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C; +#endif #ifdef DEBUG if (sigdebug & SDB_FOLLOW) @@ -1772,10 +1783,17 @@ cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) case CPU_BOOTED_KERNEL: return (sysctl_rdstring(oldp, oldlenp, newp, bootinfo.booted_kernel)); - + case CPU_CHIPSET: return (alpha_sysctl_chipset(name + 1, namelen - 1, oldp, oldlenp)); + +#ifndef NO_IEEE + case CPU_FP_SYNC_COMPLETE: + return (sysctl_int(oldp, oldlenp, newp, newlen, + &alpha_fp_sync_complete)); +#endif + default: return (EOPNOTSUPP); } @@ -1812,8 +1830,6 @@ setregs(p, pack, stack, retval) bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]); #endif bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp); -#define FP_RN 2 /* XXX */ - p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58; alpha_pal_wrusp(stack); tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET; tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3; @@ -1823,10 +1839,96 @@ setregs(p, pack, stack, retval) tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */ p->p_md.md_flags &= ~MDP_FPUSED; - if (fpcurproc == p) - fpcurproc = NULL; +#ifndef NO_IEEE + if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) { + p->p_md.md_flags &= ~MDP_FP_C; + p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN); + } +#endif + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 0); +} + +/* + * Release the FPU. + */ +void +fpusave_cpu(struct cpu_info *ci, int save) +{ + struct proc *p; +#if defined(MULTIPROCESSOR) + int s; +#endif + + KDASSERT(ci == curcpu()); + +#if defined(MULTIPROCESSOR) + atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE); +#endif - retval[0] = retval[1] = 0; + p = ci->ci_fpcurproc; + if (p == NULL) + goto out; + + if (save) { + alpha_pal_wrfen(1); + savefpstate(&p->p_addr->u_pcb.pcb_fp); + } + + alpha_pal_wrfen(0); + + p->p_addr->u_pcb.pcb_fpcpu = NULL; + ci->ci_fpcurproc = NULL; + +out: +#if defined(MULTIPROCESSOR) + atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE); +#endif + return; +} + +/* + * Synchronize FP state for this process. + */ +void +fpusave_proc(struct proc *p, int save) +{ + struct cpu_info *ci = curcpu(); + struct cpu_info *oci; +#if defined(MULTIPROCESSOR) + u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU; + int s, spincount; +#endif + + KDASSERT(p->p_addr != NULL); + KDASSERT(p->p_flag & P_INMEM); + + oci = p->p_addr->u_pcb.pcb_fpcpu; + if (oci == NULL) { + return; + } + +#if defined(MULTIPROCESSOR) + if (oci == ci) { + KASSERT(ci->ci_fpcurproc == p); + fpusave_cpu(ci, save); + return; + } + + KASSERT(oci->ci_fpcurproc == p); + alpha_send_ipi(oci->ci_cpuid, ipi); + + spincount = 0; + while (p->p_addr->u_pcb.pcb_fpcpu != NULL) { + spincount++; + delay(1000); /* XXX */ + if (spincount > 10000) + panic("fpsave ipi didn't"); + } +#else + KASSERT(ci->ci_fpcurproc == p); + fpusave_cpu(ci, save); +#endif /* MULTIPROCESSOR */ } int diff --git a/sys/arch/alpha/alpha/process_machdep.c b/sys/arch/alpha/alpha/process_machdep.c index ed6817e9bcd..a99c685acfb 100644 --- a/sys/arch/alpha/alpha/process_machdep.c +++ b/sys/arch/alpha/alpha/process_machdep.c @@ -1,4 +1,4 @@ -/* $OpenBSD: process_machdep.c,v 1.8 2002/03/14 06:04:11 mickey Exp $ */ +/* $OpenBSD: process_machdep.c,v 1.9 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: process_machdep.c,v 1.7 1996/07/11 20:14:21 cgd Exp $ */ /*- @@ -154,8 +154,8 @@ process_write_fpregs(p, regs) struct fpreg *regs; { - if (p == fpcurproc) - fpcurproc = NULL; + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 1); bcopy(regs, process_fpframe(p), sizeof(struct fpreg)); return (0); @@ -333,6 +333,8 @@ process_sstep(struct proc *p, int sstep) count = 1; } + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 0); p->p_md.md_sstep[0].addr = addr[0]; error = ptrace_set_bpt(p, &p->p_md.md_sstep[0]); if (error) diff --git a/sys/arch/alpha/alpha/sys_machdep.c b/sys/arch/alpha/alpha/sys_machdep.c index 5a2bc9f6f28..587cd20986e 100644 --- a/sys/arch/alpha/alpha/sys_machdep.c +++ b/sys/arch/alpha/alpha/sys_machdep.c @@ -1,5 +1,41 @@ -/* $OpenBSD: sys_machdep.c,v 1.5 1997/01/24 19:56:44 niklas Exp $ */ -/* $NetBSD: sys_machdep.c,v 1.5 1996/11/13 22:20:57 cgd Exp $ */ +/* $OpenBSD: sys_machdep.c,v 1.6 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: sys_machdep.c,v 1.14 2002/01/14 00:53:16 thorpej Exp $ */ + +/*- + * Copyright (c) 2000 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Jason R. Thorpe. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ /* * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University. @@ -30,22 +66,92 @@ #include <sys/param.h> #include <sys/systm.h> +#ifndef NO_IEEE +#include <sys/device.h> +#include <sys/proc.h> +#endif #include <sys/mount.h> #include <sys/syscallargs.h> +#ifndef NO_IEEE +#include <machine/fpu.h> +#include <machine/sysarch.h> + +#include <dev/pci/pcivar.h> + int -sys_sysarch(p, v, retval) - struct proc *p; - void *v; - register_t *retval; +sys_sysarch(struct proc *p, void *v, register_t *retval) { -#if 0 struct sys_sysarch_args /* { syscallarg(int) op; - syscallarg(char *) parms; + syscallarg(void *) parms; } */ *uap = v; -#endif + int error = 0; + + switch(SCARG(uap, op)) { + case ALPHA_FPGETMASK: + *retval = FP_C_TO_OPENBSD_MASK(p->p_md.md_flags); + break; + case ALPHA_FPGETSTICKY: + *retval = FP_C_TO_OPENBSD_FLAG(p->p_md.md_flags); + break; + case ALPHA_FPSETMASK: + case ALPHA_FPSETSTICKY: + { + fp_except m; + u_int64_t md_flags; + struct alpha_fp_except_args args; + + error = copyin(SCARG(uap, parms), &args, sizeof args); + if (error) + return error; + m = args.mask; + md_flags = p->p_md.md_flags; + switch (SCARG(uap, op)) { + case ALPHA_FPSETMASK: + *retval = FP_C_TO_OPENBSD_MASK(md_flags); + md_flags = SET_FP_C_MASK(md_flags, m); + break; + case ALPHA_FPSETSTICKY: + *retval = FP_C_TO_OPENBSD_FLAG(md_flags); + md_flags = SET_FP_C_FLAG(md_flags, m); + break; + } + alpha_write_fp_c(p, md_flags); + break; + } + case ALPHA_GET_FP_C: + { + struct alpha_fp_c_args args; + + args.fp_c = alpha_read_fp_c(p); + error = copyout(&args, SCARG(uap, parms), sizeof args); + break; + } + case ALPHA_SET_FP_C: + { + struct alpha_fp_c_args args; + + error = copyin(SCARG(uap, parms), &args, sizeof args); + if (error) + return (error); + if ((args.fp_c >> 63) != 0) + args.fp_c |= IEEE_INHERIT; + alpha_write_fp_c(p, args.fp_c); + break; + } + default: + error = EINVAL; + break; + } + + return (error); +} +#else +int sys_sysarch(struct proc *p, void *v, register_t *retval) +{ return (ENOSYS); } +#endif diff --git a/sys/arch/alpha/alpha/trap.c b/sys/arch/alpha/alpha/trap.c index d6722a9c831..d6d06f2521e 100644 --- a/sys/arch/alpha/alpha/trap.c +++ b/sys/arch/alpha/alpha/trap.c @@ -1,4 +1,4 @@ -/* $OpenBSD: trap.c,v 1.32 2002/03/16 03:21:28 art Exp $ */ +/* $OpenBSD: trap.c,v 1.33 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: trap.c,v 1.52 2000/05/24 16:48:33 thorpej Exp $ */ /*- @@ -102,6 +102,9 @@ #include <sys/user.h> #include <sys/syscall.h> #include <sys/buf.h> +#ifndef NO_IEEE +#include <sys/device.h> +#endif #ifdef KTRACE #include <sys/ktrace.h> #endif @@ -114,7 +117,7 @@ #ifdef DDB #include <machine/db_machdep.h> #endif -#include <alpha/alpha/db_instruction.h> /* for handle_opdec() */ +#include <alpha/alpha/db_instruction.h> #ifdef COMPAT_OSF1 #include <compat/osf1/osf1_syscall.h> @@ -135,6 +138,11 @@ int unaligned_fixup(unsigned long, unsigned long, unsigned long, struct proc *); int handle_opdec(struct proc *p, u_int64_t *ucodep); +#ifndef NO_IEEE +struct device fpevent_use; +struct device fpevent_reuse; +#endif + static void printtrap(const unsigned long, const unsigned long, const unsigned long, const unsigned long, struct trapframe *, int, int); @@ -331,21 +339,19 @@ trap(a0, a1, a2, entry, framep) goto dopanic; case ALPHA_KENTRY_ARITH: - /* - * If user-land, just give a SIGFPE. Should do - * software completion and IEEE handling, if the - * user has requested that. + /* + * Resolve trap shadows, interpret FP ops requiring infinities, + * NaNs, or denorms, and maintain FPCR corrections. */ if (user) { -#ifdef COMPAT_OSF1 - extern struct emul emul_osf1; - - /* just punt on OSF/1. XXX THIS IS EVIL */ - if (p->p_emul == &emul_osf1) +#ifndef NO_IEEE + i = alpha_fp_complete(a0, a1, p, &ucode); + if (i == 0) goto out; -#endif +#else i = SIGFPE; - ucode = a0; /* exception summary */ + ucode = a0; +#endif break; } @@ -401,6 +407,10 @@ trap(a0, a1, a2, entry, framep) break; case ALPHA_IF_CODE_FEN: +#ifndef NO_IEEE + alpha_enable_fp(p, 0); + alpha_pal_wrfen(0); +#else /* * on exit from the kernel, if proc == fpcurproc, * FP is enabled. @@ -410,7 +420,7 @@ trap(a0, a1, a2, entry, framep) p); goto dopanic; } - + alpha_pal_wrfen(1); if (fpcurproc) savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp); @@ -419,6 +429,7 @@ trap(a0, a1, a2, entry, framep) alpha_pal_wrfen(0); p->p_md.md_flags |= MDP_FPUSED; +#endif goto out; default: @@ -751,6 +762,45 @@ child_return(arg) #endif } +#ifndef NO_IEEE +/* + * Set the float-point enable for the current process, and return + * the FPU context to the named process. If check == 0, it is an + * error for the named process to already be fpcurproc. + */ +void +alpha_enable_fp(struct proc *p, int check) +{ + struct cpu_info *ci = curcpu(); + + if (check && ci->ci_fpcurproc == p) { + alpha_pal_wrfen(1); + return; + } + if (ci->ci_fpcurproc == p) + panic("trap: fp disabled for fpcurproc == %p", p); + + if (ci->ci_fpcurproc != NULL) + fpusave_cpu(ci, 1); + + KDASSERT(ci->ci_fpcurproc == NULL); + +#if defined(MULTIPROCESSOR) + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 1); +#else + KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL); +#endif + + p->p_addr->u_pcb.pcb_fpcpu = ci; + ci->ci_fpcurproc = p; + + p->p_md.md_flags |= MDP_FPUSED; + alpha_pal_wrfen(1); + restorefpstate(&p->p_addr->u_pcb.pcb_fp); +} +#endif + /* * Process an asynchronous software trap. * This is relatively easy. @@ -804,12 +854,8 @@ const static int reg_to_framereg[32] = { (&(p)->p_addr->u_pcb.pcb_fp.fpr_regs[(reg)]) #define dump_fp_regs() \ - if (p == fpcurproc) { \ - alpha_pal_wrfen(1); \ - savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp); \ - alpha_pal_wrfen(0); \ - fpcurproc = NULL; \ - } + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) \ + fpusave_proc(p, 1); #define unaligned_load(storage, ptrf, mod) \ if (copyin((caddr_t)va, &(storage), sizeof (storage)) != 0) \ @@ -957,9 +1003,6 @@ Gfloat_reg_cvt(input) } #endif /* FIX_UNALIGNED_VAX_FP */ -extern int alpha_unaligned_print, alpha_unaligned_fix; -extern int alpha_unaligned_sigbus; - struct unaligned_fixup_data { const char *type; /* opcode name */ int fixable; /* fixable, 0 if fixup not supported */ diff --git a/sys/arch/alpha/alpha/vm_machdep.c b/sys/arch/alpha/alpha/vm_machdep.c index 05d78106c69..afab58a822f 100644 --- a/sys/arch/alpha/alpha/vm_machdep.c +++ b/sys/arch/alpha/alpha/vm_machdep.c @@ -1,4 +1,4 @@ -/* $OpenBSD: vm_machdep.c,v 1.27 2001/12/08 02:24:05 art Exp $ */ +/* $OpenBSD: vm_machdep.c,v 1.28 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: vm_machdep.c,v 1.55 2000/03/29 03:49:48 simonb Exp $ */ /* @@ -68,12 +68,9 @@ cpu_coredump(p, vp, cred, chdr) cpustate.md_tf = *p->p_md.md_tf; cpustate.md_tf.tf_regs[FRAME_SP] = alpha_pal_rdusp(); /* XXX */ if (p->p_md.md_flags & MDP_FPUSED) { - if (p == fpcurproc) { - alpha_pal_wrfen(1); - savefpstate(&cpustate.md_fpstate); - alpha_pal_wrfen(0); - } else - cpustate.md_fpstate = p->p_addr->u_pcb.pcb_fp; + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 1); + cpustate.md_fpstate = p->p_addr->u_pcb.pcb_fp; } else bzero(&cpustate.md_fpstate, sizeof(cpustate.md_fpstate)); @@ -108,8 +105,8 @@ cpu_exit(p) struct proc *p; { - if (p == fpcurproc) - fpcurproc = NULL; + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 0); /* * Deactivate the exiting address space before the vmspace @@ -150,7 +147,12 @@ cpu_fork(p1, p2, stack, stacksize, func, arg) struct user *up = p2->p_addr; p2->p_md.md_tf = p1->p_md.md_tf; + +#ifndef NO_IEEE + p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_FP_C); +#else p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED; +#endif /* * Cache the physical address of the pcb, so we can @@ -162,11 +164,8 @@ cpu_fork(p1, p2, stack, stacksize, func, arg) * Copy floating point state from the FP chip to the PCB * if this process has state stored there. */ - if (p1 == fpcurproc) { - alpha_pal_wrfen(1); - savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp); - alpha_pal_wrfen(0); - } + if (p1->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p1, 1); /* * Copy pcb and stack from proc p1 to p2. @@ -265,13 +264,8 @@ cpu_swapout(p) struct proc *p; { - if (p != fpcurproc) - return; - - alpha_pal_wrfen(1); - savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp); - alpha_pal_wrfen(0); - fpcurproc = NULL; + if (p->p_addr->u_pcb.pcb_fpcpu != NULL) + fpusave_proc(p, 1); } /* diff --git a/sys/arch/alpha/conf/RAMDISK b/sys/arch/alpha/conf/RAMDISK index 7c681de4f26..231d1c8a513 100644 --- a/sys/arch/alpha/conf/RAMDISK +++ b/sys/arch/alpha/conf/RAMDISK @@ -1,4 +1,4 @@ -# $OpenBSD: RAMDISK,v 1.55 2002/03/30 20:21:25 deraadt Exp $ +# $OpenBSD: RAMDISK,v 1.56 2002/04/28 20:55:14 pvalchev Exp $ # $NetBSD: RAMDISK,v 1.9 1996/12/03 17:25:33 cgd Exp $ machine alpha # architecture, used by config; REQUIRED @@ -21,6 +21,8 @@ option DEC_550 # Miata: Digital Personal Workstation option RAMDISK_HOOKS option MINIROOTSIZE=5744 # 4 Megabytes! +option NO_IEEE # Disable IEEE math + # Standard system options maxusers 8 # estimated number of users diff --git a/sys/arch/alpha/conf/RAMDISKB b/sys/arch/alpha/conf/RAMDISKB index 7a7759e2b9a..d32a646f415 100644 --- a/sys/arch/alpha/conf/RAMDISKB +++ b/sys/arch/alpha/conf/RAMDISKB @@ -1,4 +1,4 @@ -# $OpenBSD: RAMDISKB,v 1.18 2002/03/30 20:21:25 deraadt Exp $ +# $OpenBSD: RAMDISKB,v 1.19 2002/04/28 20:55:14 pvalchev Exp $ # $NetBSD: RAMDISK,v 1.9 1996/12/03 17:25:33 cgd Exp $ machine alpha # architecture, used by config; REQUIRED @@ -21,6 +21,8 @@ option API_UP1000 # EV6: Alpha Processor UP1000 option RAMDISK_HOOKS option MINIROOTSIZE=5744 # 4 Megabytes! +option NO_IEEE # Disable IEEE math + # Standard system options maxusers 8 # estimated number of users diff --git a/sys/arch/alpha/conf/RAMDISKBIG b/sys/arch/alpha/conf/RAMDISKBIG index 364066a2c33..fc4d1cba8c2 100644 --- a/sys/arch/alpha/conf/RAMDISKBIG +++ b/sys/arch/alpha/conf/RAMDISKBIG @@ -1,4 +1,4 @@ -# $OpenBSD: RAMDISKBIG,v 1.24 2002/04/02 17:14:48 deraadt Exp $ +# $OpenBSD: RAMDISKBIG,v 1.25 2002/04/28 20:55:14 pvalchev Exp $ # $NetBSD: GENERIC,v 1.31 1996/12/03 17:25:29 cgd Exp $ # # Generic Alpha kernel. Enough to get booted, etc., but not much more. @@ -21,6 +21,8 @@ option API_UP1000 # EV6: Alpha Processor UP1000 option RAMDISK_HOOKS option MINIROOTSIZE=5744 # 4 Megabytes! +option NO_IEEE # Disable IEEE math + # Standard system options maxusers 8 # estimated number of users diff --git a/sys/arch/alpha/conf/files.alpha b/sys/arch/alpha/conf/files.alpha index e643643f3d4..5249e2ecadd 100644 --- a/sys/arch/alpha/conf/files.alpha +++ b/sys/arch/alpha/conf/files.alpha @@ -1,4 +1,4 @@ -# $OpenBSD: files.alpha,v 1.56 2002/03/23 14:14:25 deraadt Exp $ +# $OpenBSD: files.alpha,v 1.57 2002/04/28 20:55:14 pvalchev Exp $ # $NetBSD: files.alpha,v 1.32 1996/11/25 04:03:21 cgd Exp $ # # alpha-specific configuration info @@ -288,6 +288,7 @@ file arch/alpha/alpha/process_machdep.c file arch/alpha/alpha/prom.c file arch/alpha/alpha/sys_machdep.c file arch/alpha/alpha/trap.c +file arch/alpha/alpha/fp_complete.c file arch/alpha/alpha/vm_machdep.c file arch/alpha/alpha/disksubr.c file arch/alpha/dev/bus_dma.c diff --git a/sys/arch/alpha/include/cpu.h b/sys/arch/alpha/include/cpu.h index b599120df2e..4a4ff665401 100644 --- a/sys/arch/alpha/include/cpu.h +++ b/sys/arch/alpha/include/cpu.h @@ -1,4 +1,4 @@ -/* $OpenBSD: cpu.h,v 1.15 2001/11/06 18:41:09 art Exp $ */ +/* $OpenBSD: cpu.h,v 1.16 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: cpu.h,v 1.45 2000/08/21 02:03:12 thorpej Exp $ */ /*- @@ -83,6 +83,22 @@ #ifndef _ALPHA_CPU_H_ #define _ALPHA_CPU_H_ +#ifndef NO_IEEE +typedef union alpha_s_float { + u_int32_t i; + u_int32_t frac: 23, + exp: 8, + sign: 1; +} s_float; + +typedef union alpha_t_float { + u_int64_t i; + u_int64_t frac: 52, + exp: 11, + sign: 1; +} t_float; +#endif + /* * Exported definitions unique to Alpha cpu support. */ @@ -100,7 +116,11 @@ struct reg; struct rpb; struct trapframe; +extern u_long cpu_implver; /* from IMPLVER instruction */ +extern u_long cpu_amask; /* from AMASK instruction */ extern int bootdev_debug; +extern int alpha_fp_sync_complete; +extern int alpha_unaligned_print, alpha_unaligned_fix, alpha_unaligned_sigbus; void XentArith(u_int64_t, u_int64_t, u_int64_t); /* MAGIC */ void XentIF(u_int64_t, u_int64_t, u_int64_t); /* MAGIC */ @@ -195,6 +215,11 @@ struct cpu_info { #define CPUF_PRIMARY 0x01 /* CPU is primary CPU */ #define CPUF_PRESENT 0x02 /* CPU is present */ #define CPUF_RUNNING 0x04 /* CPU is running */ +#define CPUF_PAUSED 0x08 /* CPU is paused */ +#define CPUF_FPUSAVE 0x10 /* CPU is currently in fpusave_cpu() */ + +void fpusave_cpu(struct cpu_info *, int); +void fpusave_proc(struct proc *, int); #if defined(MULTIPROCESSOR) extern __volatile u_long cpus_running; @@ -218,9 +243,6 @@ extern struct cpu_info cpu_info_store; #define fpcurproc curcpu()->ci_fpcurproc #define curpcb curcpu()->ci_curpcb -extern u_long cpu_implver; /* from IMPLVER instruction */ -extern u_long cpu_amask; /* from AMASK instruction */ - /* * definitions of cpu-dependent requirements * referenced in generic code @@ -309,8 +331,9 @@ do { \ #define CPU_UNALIGNED_FIX 4 /* int: fix unaligned accesses */ #define CPU_UNALIGNED_SIGBUS 5 /* int: SIGBUS unaligned accesses */ #define CPU_BOOTED_KERNEL 6 /* string: booted kernel name */ -#define CPU_CHIPSET 7 /* chipset information */ -#define CPU_MAXID 8 /* 6 valid machdep IDs */ +#define CPU_FP_SYNC_COMPLETE 7 /* int: always fixup sync fp traps */ +#define CPU_MAXID 8 /* 7 valid machdep IDs */ +#define CPU_CHIPSET 9 /* chipset information */ #define CPU_CHIPSET_MEM 1 /* PCI memory address */ #define CPU_CHIPSET_BWX 2 /* PCI supports BWX */ @@ -328,6 +351,7 @@ do { \ { "unaligned_sigbus", CTLTYPE_INT }, \ { "booted_kernel", CTLTYPE_STRING }, \ { "chipset", CTLTYPE_NODE }, \ + { "fp_sync_complete", CTLTYPE_INT }, \ } #ifdef _KERNEL @@ -338,5 +362,23 @@ struct reg; struct rpb; struct trapframe; +/* IEEE and VAX FP completion */ + +#ifndef NO_IEEE +void alpha_sts(int, s_float *); /* MAGIC */ +void alpha_stt(int, t_float *); /* MAGIC */ +void alpha_lds(int, s_float *); /* MAGIC */ +void alpha_ldt(int, t_float *); /* MAGIC */ + +uint64_t alpha_read_fpcr(void); /* MAGIC */ +void alpha_write_fpcr(u_int64_t); /* MAGIC */ + +u_int64_t alpha_read_fp_c(struct proc *); +void alpha_write_fp_c(struct proc *, u_int64_t); + +void alpha_enable_fp(struct proc *, int); +int alpha_fp_complete(u_long, u_long, struct proc *, u_int64_t *); +#endif + #endif /* _KERNEL */ #endif /* _ALPHA_CPU_H_ */ diff --git a/sys/arch/alpha/include/fpu.h b/sys/arch/alpha/include/fpu.h new file mode 100644 index 00000000000..1aa71c1e765 --- /dev/null +++ b/sys/arch/alpha/include/fpu.h @@ -0,0 +1,121 @@ +/* $OpenBSD: fpu.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: fpu.h,v 1.4 2001/04/26 03:10:46 ross Exp $ */ + +/*- + * Copyright (c) 2001 Ross Harvey + * All rights reserved. + * + * This software was written for NetBSD. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _ALPHA_FPU_H_ +#define _ALPHA_FPU_H_ + +#define _FP_C_DEF(n) (1UL << (n)) + +/* + * Most of these next definitions were moved from <ieeefp.h>. Apparently the + * names happen to match those exported by Compaq and Linux from their fpu.h + * files. + */ + +#define FPCR_SUM _FP_C_DEF(63) +#define FPCR_INED _FP_C_DEF(62) +#define FPCR_UNFD _FP_C_DEF(61) +#define FPCR_UNDZ _FP_C_DEF(60) +#define FPCR_DYN(rm) ((unsigned long)(rm) << 58) +#define FPCR_IOV _FP_C_DEF(57) +#define FPCR_INE _FP_C_DEF(56) +#define FPCR_UNF _FP_C_DEF(55) +#define FPCR_OVF _FP_C_DEF(54) +#define FPCR_DZE _FP_C_DEF(53) +#define FPCR_INV _FP_C_DEF(52) +#define FPCR_OVFD _FP_C_DEF(51) +#define FPCR_DZED _FP_C_DEF(50) +#define FPCR_INVD _FP_C_DEF(49) +#define FPCR_DNZ _FP_C_DEF(48) +#define FPCR_DNOD _FP_C_DEF(47) + +#define FPCR_MIRRORED (FPCR_INE | FPCR_UNF | FPCR_OVF | FPCR_DZE | FPCR_INV) +#define FPCR_MIR_START 52 + +/* + * The AARM specifies the bit positions of the software word used for + * user mode interface to the control and status of the kernel completion + * routines. Although it largely just redefines the FPCR, it shuffles + * the bit order. The names of the bits are defined in the AARM, and + * the definition prefix can easily be determined from public domain + * programs written to either the Compaq or Linux interfaces, which + * appear to be identical. + */ + +#define IEEE_STATUS_DNO _FP_C_DEF(22) +#define IEEE_STATUS_INE _FP_C_DEF(21) +#define IEEE_STATUS_UNF _FP_C_DEF(20) +#define IEEE_STATUS_OVF _FP_C_DEF(19) +#define IEEE_STATUS_DZE _FP_C_DEF(18) +#define IEEE_STATUS_INV _FP_C_DEF(17) + +#define IEEE_TRAP_ENABLE_DNO _FP_C_DEF(6) +#define IEEE_TRAP_ENABLE_INE _FP_C_DEF(5) +#define IEEE_TRAP_ENABLE_UNF _FP_C_DEF(4) +#define IEEE_TRAP_ENABLE_OVF _FP_C_DEF(3) +#define IEEE_TRAP_ENABLE_DZE _FP_C_DEF(2) +#define IEEE_TRAP_ENABLE_INV _FP_C_DEF(1) + +#define IEEE_INHERIT _FP_C_DEF(14) +#define IEEE_MAP_UMZ _FP_C_DEF(13) +#define IEEE_MAP_DMZ _FP_C_DEF(12) + +#define FP_C_MIRRORED (IEEE_STATUS_INE | IEEE_STATUS_UNF | IEEE_STATUS_OVF\ + | IEEE_STATUS_DZE | IEEE_STATUS_INV) +#define FP_C_MIR_START 17 + +#ifdef _KERNEL + +#define FLD_MASK(len) ((1UL << (len)) - 1) +#define FLD_CLEAR(obj, origin, len) \ + ((obj) & ~(FLD_MASK(len) << (origin))) +#define FLD_INSERT(obj, origin, len, value) \ + (FLD_CLEAR(obj, origin, len) | (value) << origin) + +#define FP_C_TO_OPENBSD_MASK(fp_c) ((fp_c) >> 1 & 0x3f) +#define FP_C_TO_OPENBSD_FLAG(fp_c) ((fp_c) >> 17 & 0x3f) +#define OPENBSD_MASK_TO_FP_C(m) (((m) & 0x3f) << 1) +#define OPENBSD_FLAG_TO_FP_C(s) (((s) & 0x3f) << 17) +#define CLEAR_FP_C_MASK(fp_c) ((fp_c) & ~(0x3f << 1)) +#define CLEAR_FP_C_FLAG(fp_c) ((fp_c) & ~(0x3f << 17)) +#define SET_FP_C_MASK(fp_c, m) (CLEAR_FP_C_MASK(fp_c) | OPENBSD_MASK_TO_FP_C(m)) +#define SET_FP_C_FLAG(fp_c, m) (CLEAR_FP_C_FLAG(fp_c) | OPENBSD_FLAG_TO_FP_C(m)) + +#endif + +#endif diff --git a/sys/arch/alpha/include/ieeefp.h b/sys/arch/alpha/include/ieeefp.h index 4ebb20b0aa5..4cb8539a2c1 100644 --- a/sys/arch/alpha/include/ieeefp.h +++ b/sys/arch/alpha/include/ieeefp.h @@ -1,4 +1,4 @@ -/* $OpenBSD: ieeefp.h,v 1.3 1996/10/30 22:39:08 niklas Exp $ */ +/* $OpenBSD: ieeefp.h,v 1.4 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: ieeefp.h,v 1.1 1995/04/29 01:09:17 cgd Exp $ */ /* @@ -10,18 +10,45 @@ #define _ALPHA_IEEEFP_H_ typedef int fp_except; + +#ifdef _KERNEL + +#include <sys/param.h> +#include <sys/proc.h> +#include <machine/fpu.h> +#include <machine/cpu.h> + +/* FP_X_IOV is intentionally omitted from the architecture flags mask */ + +#define FP_AA_FLAGS (FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL | FP_X_IMP) + +#define float_raise(f) \ + do curproc->p_md.md_flags |= OPENBSD_FLAG_TO_FP_C(f); \ + while(0) + +#define float_set_inexact() float_raise(FP_X_IMP) +#define float_set_invalid() float_raise(FP_X_INV) +#define fpgetround() (alpha_read_fpcr() >> 58 & 3) + +#endif + #define FP_X_INV 0x01 /* invalid operation exception */ #define FP_X_DZ 0x02 /* divide-by-zero exception */ #define FP_X_OFL 0x04 /* overflow exception */ #define FP_X_UFL 0x08 /* underflow exception */ #define FP_X_IMP 0x10 /* imprecise (loss of precision; "inexact") */ -#define FP_X_IOV 0x20 /* integer overflow XXX? */ +#define FP_X_IOV 0x20 /* integer overflow */ +/* + * fp_rnd bits match the fpcr, below, as well as bits 12:11 + * in fp operate instructions + */ typedef enum { - FP_RZ=0, /* round to zero (truncate) */ - FP_RM=1, /* round toward negative infinity */ - FP_RN=2, /* round to nearest representable number */ - FP_RP=3 /* round toward positive infinity */ + FP_RZ = 0, /* round to zero (truncate) */ + FP_RM = 1, /* round toward negative infinity */ + FP_RN = 2, /* round to nearest representable number */ + FP_RP = 3, /* round toward positive infinity */ + _FP_DYNAMIC=FP_RP } fp_rnd; #endif /* _ALPHA_IEEEFP_H_ */ diff --git a/sys/arch/alpha/include/pcb.h b/sys/arch/alpha/include/pcb.h index f7eb89491af..b91bdf22438 100644 --- a/sys/arch/alpha/include/pcb.h +++ b/sys/arch/alpha/include/pcb.h @@ -1,4 +1,4 @@ -/* $OpenBSD: pcb.h,v 1.5 2002/03/14 01:26:27 millert Exp $ */ +/* $OpenBSD: pcb.h,v 1.6 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: pcb.h,v 1.5 1996/11/13 22:21:00 cgd Exp $ */ /* @@ -52,6 +52,7 @@ struct pcb { struct fpreg pcb_fp; /* FP registers [SW] */ unsigned long pcb_onfault; /* for copy faults [SW] */ unsigned long pcb_accessaddr; /* for [fs]uswintr [SW] */ + struct cpu_info *__volatile pcb_fpcpu; /* CPU with our FP state[SW] */ }; /* diff --git a/sys/arch/alpha/include/proc.h b/sys/arch/alpha/include/proc.h index fd698f6f9e1..dab1d4c78c0 100644 --- a/sys/arch/alpha/include/proc.h +++ b/sys/arch/alpha/include/proc.h @@ -1,4 +1,4 @@ -/* $OpenBSD: proc.h,v 1.7 2002/03/14 01:26:27 millert Exp $ */ +/* $OpenBSD: proc.h,v 1.8 2002/04/28 20:55:14 pvalchev Exp $ */ /* $NetBSD: proc.h,v 1.2 1995/03/24 15:01:36 cgd Exp $ */ /* @@ -45,7 +45,28 @@ struct mdproc { struct mdbpt md_sstep[2]; /* two breakpoints for sstep */ }; +/* + * md_flags usage + * -------------- + * MDP_FPUSED + * A largely unused bit indicating the presence of FPU history. + * Cleared on exec. Set but not used by the fpu context switcher + * itself. + * + * MDP_FP_C + * The architected FP Control word. It should forever begin at bit 1, + * as the bits are AARM specified and this way it doesn't need to be + * shifted. + * + * Until C99 there was never an IEEE 754 API, making most of the + * standard useless. Because of overlapping AARM, OSF/1, NetBSD, and + * C99 API's, the use of the MDP_FP_C bits is defined variously in + * ieeefp.h and fpu.h. + */ #define MDP_FPUSED 0x0001 /* Process used the FPU */ +#ifndef NO_IEEE +#define MDP_FP_C 0x7ffffe /* Extended FP_C Quadword bits */ +#endif #define MDP_STEP1 0x0002 /* Single step normal */ #define MDP_STEP2 0x0003 /* Single step branch */ diff --git a/sys/arch/alpha/include/sysarch.h b/sys/arch/alpha/include/sysarch.h new file mode 100644 index 00000000000..a439c52c7e2 --- /dev/null +++ b/sys/arch/alpha/include/sysarch.h @@ -0,0 +1,69 @@ +/* $OpenBSD: sysarch.h,v 1.3 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: sysarch.h,v 1.8 2001/04/26 03:10:46 ross Exp $ */ + +/*- + * Copyright (c) 2000 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Jason R. Thorpe. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _ALPHA_SYSARCH_H_ +#define _ALPHA_SYSARCH_H_ + +#include <machine/bus.h> +#include <machine/ieeefp.h> + +/* + * Architecture specific syscalls (ALPHA) + */ + +#define ALPHA_FPGETMASK 0 +#define ALPHA_FPSETMASK 1 +#define ALPHA_FPSETSTICKY 2 +#define ALPHA_FPGETSTICKY 6 +#define ALPHA_GET_FP_C 7 +#define ALPHA_SET_FP_C 8 + +struct alpha_fp_except_args { + fp_except mask; +}; + +struct alpha_fp_c_args { + uint64_t fp_c; +}; + +#ifdef _KERNEL +int sysarch(int, void *); +#endif /* _KERNEL */ + +#endif /* !_ALPHA_SYSARCH_H_ */ diff --git a/sys/lib/libkern/arch/alpha/Makefile.inc b/sys/lib/libkern/arch/alpha/Makefile.inc index af056c8c99f..b984665e3a5 100644 --- a/sys/lib/libkern/arch/alpha/Makefile.inc +++ b/sys/lib/libkern/arch/alpha/Makefile.inc @@ -1,10 +1,10 @@ -# $OpenBSD: Makefile.inc,v 1.11 2000/12/18 18:40:45 provos Exp $ +# $OpenBSD: Makefile.inc,v 1.12 2002/04/28 20:55:14 pvalchev Exp $ # $NetBSD: Makefile.inc,v 1.9 1996/08/27 00:44:24 cgd Exp $ SRCS+= __main.c imax.c imin.c lmax.c lmin.c max.c min.c ulmax.c ulmin.c \ memchr.c memcmp.c memset.c \ - bcmp.c bzero.S ffs.S strcat.c strcmp.c strcpy.c strlcat.c strlcpy.c \ - strlen.c strncmp.c \ + bcmp.c bzero.S ffs.S softfloat.c strcat.c strcmp.c strcpy.c \ + strlcat.c strlcpy.c strlen.c strncmp.c \ strncpy.c scanc.c skpc.c htonl.S htons.S ntohl.S ntohs.S \ random.c strncasecmp.c diff --git a/sys/lib/libkern/milieu.h b/sys/lib/libkern/milieu.h new file mode 100644 index 00000000000..53538bf6e0d --- /dev/null +++ b/sys/lib/libkern/milieu.h @@ -0,0 +1,163 @@ +/* $OpenBSD: milieu.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: milieu.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */ + +/* This is a derivative work. */ + +/*- + * Copyright (c) 2001 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Ross Harvey. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* +=============================================================================== + +This C header file is part of TestFloat, Release 2a, a package of programs +for testing the correctness of floating-point arithmetic complying to the +IEC/IEEE Standard for Floating-Point. + +Written by John R. Hauser. More information is available through the Web +page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/TestFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable +effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT +WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS +RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL +RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM +THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY +(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL +COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS +ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#ifndef NO_IEEE + +#ifndef MILIEU_H +#define MILIEU_H + +#include <sys/types.h> +#include <sys/endian.h> + +enum { + FALSE = 0, + TRUE = 1 +}; + + +/* +------------------------------------------------------------------------------- +One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined. +------------------------------------------------------------------------------- +*/ + +#if _BYTE_ORDER == _LITTLE_ENDIAN +#define LITTLEENDIAN +#else +#define BIGENDIAN +#endif + +#define BITS64 + +/* +------------------------------------------------------------------------------- +Each of the following `typedef's defines the most convenient type that holds +integers of at least as many bits as specified. For example, `uint8' should +be the most convenient type that can hold unsigned integers of as many as +8 bits. The `flag' type must be able to hold either a 0 or 1. For most +implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed +to the same as `int'. +------------------------------------------------------------------------------- +*/ +typedef int flag; +typedef unsigned int uint8; +typedef signed int int8; +typedef unsigned int uint16; +typedef int int16; +typedef unsigned int uint32; +typedef signed int int32; +#ifdef BITS64 +typedef uint64_t uint64; +typedef int64_t int64; +#endif + +/* +------------------------------------------------------------------------------- +Each of the following `typedef's defines a type that holds integers +of _exactly_ the number of bits specified. For instance, for most +implementation of C, `bits16' and `sbits16' should be `typedef'ed to +`unsigned short int' and `signed short int' (or `short int'), respectively. +------------------------------------------------------------------------------- +*/ +typedef uint8_t bits8; +typedef int8_t sbits8; +typedef uint16_t bits16; +typedef int16_t sbits16; +typedef uint32_t bits32; +typedef int32_t sbits32; +#ifdef BITS64 +typedef uint64_t bits64; +typedef int64_t sbits64; +#endif + +#ifdef BITS64 +/* +------------------------------------------------------------------------------- +The `LIT64' macro takes as its argument a textual integer literal and +if necessary ``marks'' the literal as having a 64-bit integer type. +For example, the GNU C Compiler (`gcc') requires that 64-bit literals be +appended with the letters `LL' standing for `long long', which is `gcc's +name for the 64-bit integer type. Some compilers may allow `LIT64' to be +defined as the identity macro: `#define LIT64( a ) a'. +------------------------------------------------------------------------------- +*/ +#define LIT64( a ) a##LL +#endif + +/* +------------------------------------------------------------------------------- +The macro `INLINE' can be used before functions that should be inlined. If +a compiler does not support explicit inlining, this macro should be defined +to be `static'. +------------------------------------------------------------------------------- +*/ +#define INLINE static inline + +#endif +#endif /* !NO_IEEE */ diff --git a/sys/lib/libkern/softfloat-macros.h b/sys/lib/libkern/softfloat-macros.h new file mode 100644 index 00000000000..b6dedb99f29 --- /dev/null +++ b/sys/lib/libkern/softfloat-macros.h @@ -0,0 +1,753 @@ +/* $OpenBSD: softfloat-macros.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: softfloat-macros.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */ + +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable +effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT +WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS +RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL +RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM +THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY +(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL +COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS +ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#ifndef NO_IEEE + +/* +------------------------------------------------------------------------------- +Shifts `a' right by the number of bits given in `count'. If any nonzero +bits are shifted off, they are ``jammed'' into the least significant bit of +the result by setting the least significant bit to 1. The value of `count' +can be arbitrarily large; in particular, if `count' is greater than 32, the +result will be either 0 or 1, depending on whether `a' is zero or nonzero. +The result is stored in the location pointed to by `zPtr'. +------------------------------------------------------------------------------- +*/ +INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) +{ + bits32 z; + + if ( count == 0 ) { + z = a; + } + else if ( count < 32 ) { + z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); + } + else { + z = ( a != 0 ); + } + *zPtr = z; + +} + +/* +------------------------------------------------------------------------------- +Shifts `a' right by the number of bits given in `count'. If any nonzero +bits are shifted off, they are ``jammed'' into the least significant bit of +the result by setting the least significant bit to 1. The value of `count' +can be arbitrarily large; in particular, if `count' is greater than 64, the +result will be either 0 or 1, depending on whether `a' is zero or nonzero. +The result is stored in the location pointed to by `zPtr'. +------------------------------------------------------------------------------- +*/ +INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) +{ + bits64 z; + + if ( count == 0 ) { + z = a; + } + else if ( count < 64 ) { + z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); + } + else { + z = ( a != 0 ); + } + *zPtr = z; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 +_plus_ the number of bits given in `count'. The shifted result is at most +64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The +bits shifted off form a second 64-bit result as follows: The _last_ bit +shifted off is the most-significant bit of the extra result, and the other +63 bits of the extra result are all zero if and only if _all_but_the_last_ +bits shifted off were all zero. This extra result is stored in the location +pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. + (This routine makes more sense if `a0' and `a1' are considered to form a +fixed-point value with binary point between `a0' and `a1'. This fixed-point +value is shifted right by the number of bits given in `count', and the +integer part of the result is returned at the location pointed to by +`z0Ptr'. The fractional part of the result may be slightly corrupted as +described above, and is returned at the location pointed to by `z1Ptr'.) +------------------------------------------------------------------------------- +*/ +INLINE void + shift64ExtraRightJamming( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1 != 0 ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z1 = a0 | ( a1 != 0 ); + } + else { + z1 = ( ( a0 | a1 ) != 0 ); + } + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' can be arbitrarily large; in particular, if `count' is greater +than 128, the result will be 0. The result is broken into two 64-bit pieces +which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shift128Right( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. If any nonzero bits are shifted off, they +are ``jammed'' into the least significant bit of the result by setting the +least significant bit to 1. The value of `count' can be arbitrarily large; +in particular, if `count' is greater than 128, the result will be either +0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or +nonzero. The result is broken into two 64-bit pieces which are stored at +the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shift128RightJamming( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z1 = a0 | ( a1 != 0 ); + } + else if ( count < 128 ) { + z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); + } + else { + z1 = ( ( a0 | a1 ) != 0 ); + } + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right +by 64 _plus_ the number of bits given in `count'. The shifted result is +at most 128 nonzero bits; these are broken into two 64-bit pieces which are +stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted +off form a third 64-bit result as follows: The _last_ bit shifted off is +the most-significant bit of the extra result, and the other 63 bits of the +extra result are all zero if and only if _all_but_the_last_ bits shifted off +were all zero. This extra result is stored in the location pointed to by +`z2Ptr'. The value of `count' can be arbitrarily large. + (This routine makes more sense if `a0', `a1', and `a2' are considered +to form a fixed-point value with binary point between `a1' and `a2'. This +fixed-point value is shifted right by the number of bits given in `count', +and the integer part of the result is returned at the locations pointed to +by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly +corrupted as described above, and is returned at the location pointed to by +`z2Ptr'.) +------------------------------------------------------------------------------- +*/ +INLINE void + shift128ExtraRightJamming( + bits64 a0, + bits64 a1, + bits64 a2, + int16 count, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z2 = a2; + z1 = a1; + z0 = a0; + } + else { + if ( count < 64 ) { + z2 = a1<<negCount; + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z2 = a1; + z1 = a0; + } + else { + a2 |= a1; + if ( count < 128 ) { + z2 = a0<<negCount; + z1 = a0>>( count & 63 ); + } + else { + z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); + z1 = 0; + } + } + z0 = 0; + } + z2 |= ( a2 != 0 ); + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' must be less than 64. The result is broken into two 64-bit +pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shortShift128Left( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + + *z1Ptr = a1<<count; + *z0Ptr = + ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); + +} + +/* +------------------------------------------------------------------------------- +Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left +by the number of bits given in `count'. Any bits shifted off are lost. +The value of `count' must be less than 64. The result is broken into three +64-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shortShift192Left( + bits64 a0, + bits64 a1, + bits64 a2, + int16 count, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 negCount; + + z2 = a2<<count; + z1 = a1<<count; + z0 = a0<<count; + if ( 0 < count ) { + negCount = ( ( - count ) & 63 ); + z1 |= a2>>negCount; + z0 |= a1>>negCount; + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit +value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so +any carry out is lost. The result is broken into two 64-bit pieces which +are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + add128( + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z1; + + z1 = a1 + b1; + *z1Ptr = z1; + *z0Ptr = a0 + b0 + ( z1 < a1 ); + +} + +/* +------------------------------------------------------------------------------- +Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the +192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is +modulo 2^192, so any carry out is lost. The result is broken into three +64-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + add192( + bits64 a0, + bits64 a1, + bits64 a2, + bits64 b0, + bits64 b1, + bits64 b2, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 carry0, carry1; + + z2 = a2 + b2; + carry1 = ( z2 < a2 ); + z1 = a1 + b1; + carry0 = ( z1 < a1 ); + z0 = a0 + b0; + z1 += carry1; + z0 += ( z1 < carry1 ); + z0 += carry0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the +128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo +2^128, so any borrow out (carry out) is lost. The result is broken into two +64-bit pieces which are stored at the locations pointed to by `z0Ptr' and +`z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + sub128( + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + + *z1Ptr = a1 - b1; + *z0Ptr = a0 - b0 - ( a1 < b1 ); + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' +from the 192-bit value formed by concatenating `a0', `a1', and `a2'. +Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The +result is broken into three 64-bit pieces which are stored at the locations +pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + sub192( + bits64 a0, + bits64 a1, + bits64 a2, + bits64 b0, + bits64 b1, + bits64 b2, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 borrow0, borrow1; + + z2 = a2 - b2; + borrow1 = ( a2 < b2 ); + z1 = a1 - b1; + borrow0 = ( a1 < b1 ); + z0 = a0 - b0; + z0 -= ( z1 < borrow1 ); + z1 -= borrow1; + z0 -= borrow0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies `a' by `b' to obtain a 128-bit product. The product is broken +into two 64-bit pieces which are stored at the locations pointed to by +`z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits32 aHigh, aLow, bHigh, bLow; + bits64 z0, zMiddleA, zMiddleB, z1; + + aLow = a; + aHigh = a>>32; + bLow = b; + bHigh = b>>32; + z1 = ( (bits64) aLow ) * bLow; + zMiddleA = ( (bits64) aLow ) * bHigh; + zMiddleB = ( (bits64) aHigh ) * bLow; + z0 = ( (bits64) aHigh ) * bHigh; + zMiddleA += zMiddleB; + z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); + zMiddleA <<= 32; + z1 += zMiddleA; + z0 += ( z1 < zMiddleA ); + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 128-bit value formed by concatenating `a0' and `a1' by +`b' to obtain a 192-bit product. The product is broken into three 64-bit +pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and +`z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + mul128By64To192( + bits64 a0, + bits64 a1, + bits64 b, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2, more1; + + mul64To128( a1, b, &z1, &z2 ); + mul64To128( a0, b, &z0, &more1 ); + add128( z0, more1, 0, z1, &z0, &z1 ); + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the +128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit +product. The product is broken into four 64-bit pieces which are stored at +the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + mul128To256( + bits64 a0, + bits64 a1, + bits64 b0, + bits64 b1, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr, + bits64 *z3Ptr + ) +{ + bits64 z0, z1, z2, z3; + bits64 more1, more2; + + mul64To128( a1, b1, &z2, &z3 ); + mul64To128( a1, b0, &z1, &more2 ); + add128( z1, more2, 0, z2, &z1, &z2 ); + mul64To128( a0, b0, &z0, &more1 ); + add128( z0, more1, 0, z1, &z0, &z1 ); + mul64To128( a0, b1, &more1, &more2 ); + add128( more1, more2, 0, z2, &more1, &z2 ); + add128( z0, z1, 0, more1, &z0, &z1 ); + *z3Ptr = z3; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Returns an approximation to the 64-bit integer quotient obtained by dividing +`b' into the 128-bit value formed by concatenating `a0' and `a1'. The +divisor `b' must be at least 2^63. If q is the exact quotient truncated +toward zero, the approximation returned lies between q and q + 2 inclusive. +If the exact quotient q is larger than 64 bits, the maximum positive 64-bit +unsigned integer is returned. +------------------------------------------------------------------------------- +*/ +static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) +{ + bits64 b0, b1; + bits64 rem0, rem1, term0, term1; + bits64 z; + + if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); + b0 = b>>32; + z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; + mul64To128( b, z, &term0, &term1 ); + sub128( a0, a1, term0, term1, &rem0, &rem1 ); + while ( ( (sbits64) rem0 ) < 0 ) { + z -= LIT64( 0x100000000 ); + b1 = b<<32; + add128( rem0, rem1, b0, b1, &rem0, &rem1 ); + } + rem0 = ( rem0<<32 ) | ( rem1>>32 ); + z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; + return z; + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not used */ +/* +------------------------------------------------------------------------------- +Returns an approximation to the square root of the 32-bit significand given +by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of +`aExp' (the least significant bit) is 1, the integer returned approximates +2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' +is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either +case, the approximation returned lies strictly within +/-2 of the exact +value. +------------------------------------------------------------------------------- +*/ +static bits32 estimateSqrt32( int16 aExp, bits32 a ) +{ + static const bits16 sqrtOddAdjustments[] = { + 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, + 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 + }; + static const bits16 sqrtEvenAdjustments[] = { + 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, + 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 + }; + int8 index; + bits32 z; + + index = ( a>>27 ) & 15; + if ( aExp & 1 ) { + z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; + z = ( ( a / z )<<14 ) + ( z<<15 ); + a >>= 1; + } + else { + z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; + z = a / z + z; + z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); + if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); + } + return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the number of leading 0 bits before the most-significant 1 bit of +`a'. If `a' is zero, 32 is returned. +------------------------------------------------------------------------------- +*/ +static int8 countLeadingZeros32( bits32 a ) +{ + static const int8 countLeadingZerosHigh[] = { + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; + int8 shiftCount; + + shiftCount = 0; + if ( a < 0x10000 ) { + shiftCount += 16; + a <<= 16; + } + if ( a < 0x1000000 ) { + shiftCount += 8; + a <<= 8; + } + shiftCount += countLeadingZerosHigh[ a>>24 ]; + return shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Returns the number of leading 0 bits before the most-significant 1 bit of +`a'. If `a' is zero, 64 is returned. +------------------------------------------------------------------------------- +*/ +static int8 countLeadingZeros64( bits64 a ) +{ + int8 shiftCount; + + shiftCount = 0; + if ( a < ( (bits64) 1 )<<32 ) { + shiftCount += 32; + } + else { + a >>= 32; + } + shiftCount += countLeadingZeros32( a ); + return shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' +is equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 == b0 ) && ( a1 == b1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less +than or equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less +than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, +returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is +not equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 != b0 ) || ( a1 != b1 ); + +} + +#endif /* !NO_IEEE */ diff --git a/sys/lib/libkern/softfloat-specialize.h b/sys/lib/libkern/softfloat-specialize.h new file mode 100644 index 00000000000..db9fb08b4ed --- /dev/null +++ b/sys/lib/libkern/softfloat-specialize.h @@ -0,0 +1,495 @@ +/* $OpenBSD: softfloat-specialize.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: softfloat-specialize.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */ + +/* This is a derivative work. */ + +/*- + * Copyright (c) 2001 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Ross Harvey. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable +effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT +WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS +RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL +RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM +THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY +(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL +COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS +ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +Underflow tininess-detection mode, statically initialized to default value. +------------------------------------------------------------------------------- +*/ + +#ifndef NO_IEEE + +/* [ MP safe, does not change dynamically ] */ +int float_detect_tininess = float_tininess_after_rounding; + +/* +------------------------------------------------------------------------------- +Internal canonical NaN format. +------------------------------------------------------------------------------- +*/ +typedef struct { + flag sign; + bits64 high, low; +} commonNaNT; + +/* +------------------------------------------------------------------------------- +The pattern for a default generated single-precision NaN. +------------------------------------------------------------------------------- +*/ +#define float32_default_nan 0xFFC00000 + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +static flag float32_is_nan( float32 a ) +{ + + return ( 0xFF000000 < (bits32) ( a<<1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a signaling +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float32_is_signaling_nan( float32 a ) +{ + + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float32ToCommonNaN( float32 a ) +{ + commonNaNT z; + + if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a>>31; + z.low = 0; + z.high = ( (bits64) a )<<41; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the single- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float32 commonNaNToFloat32( commonNaNT a ) +{ + + return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); + +} + +/* +------------------------------------------------------------------------------- +Takes two single-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float32 propagateFloat32NaN( float32 a, float32 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float32_is_nan( a ); + aIsSignalingNaN = float32_is_signaling_nan( a ); + bIsNaN = float32_is_nan( b ); + bIsSignalingNaN = float32_is_signaling_nan( b ); + a |= 0x00400000; + b |= 0x00400000; + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsSignalingNaN ) { + if ( bIsSignalingNaN ) goto returnLargerSignificand; + return bIsNaN ? b : a; + } + else if ( aIsNaN ) { + if ( bIsSignalingNaN | ! bIsNaN ) return a; + returnLargerSignificand: + if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b; + if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a; + return ( a < b ) ? a : b; + } + else { + return b; + } + +} + + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float64ToCommonNaN( float64 a ) +{ + commonNaNT z; + + if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a>>63; + z.low = 0; + z.high = a<<12; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the double- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float64 commonNaNToFloat64( commonNaNT a ) +{ + + return + ( ( (bits64) a.sign )<<63 ) + | LIT64( 0x7FF8000000000000 ) + | ( a.high>>12 ); + +} + +/* +------------------------------------------------------------------------------- +Takes two double-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float64 propagateFloat64NaN( float64 a, float64 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float64_is_nan( a ); + aIsSignalingNaN = float64_is_signaling_nan( a ); + bIsNaN = float64_is_nan( b ); + bIsSignalingNaN = float64_is_signaling_nan( b ); + a |= LIT64( 0x0008000000000000 ); + b |= LIT64( 0x0008000000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsSignalingNaN ) { + if ( bIsSignalingNaN ) goto returnLargerSignificand; + return bIsNaN ? b : a; + } + else if ( aIsNaN ) { + if ( bIsSignalingNaN | ! bIsNaN ) return a; + returnLargerSignificand: + if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b; + if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a; + return ( a < b ) ? a : b; + } + else { + return b; + } + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +The pattern for a default generated extended double-precision NaN. The +`high' and `low' values hold the most- and least-significant bits, +respectively. +------------------------------------------------------------------------------- +*/ +#define floatx80_default_nan_high 0xFFFF +#define floatx80_default_nan_low LIT64( 0xC000000000000000 ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +static flag floatx80_is_nan( floatx80 a ) +{ + + return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +signaling NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag floatx80_is_signaling_nan( floatx80 a ) +{ + bits64 aLow; + + aLow = a.low & ~ LIT64( 0x4000000000000000 ); + return + ( ( a.high & 0x7FFF ) == 0x7FFF ) + && (bits64) ( aLow<<1 ) + && ( a.low == aLow ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the +invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT floatx80ToCommonNaN( floatx80 a ) +{ + commonNaNT z; + + if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a.high>>15; + z.low = 0; + z.high = a.low<<1; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the extended +double-precision floating-point format. +------------------------------------------------------------------------------- +*/ +static floatx80 commonNaNToFloatx80( commonNaNT a ) +{ + floatx80 z; + + z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); + z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes two extended double-precision floating-point values `a' and `b', one +of which is a NaN, and returns the appropriate NaN result. If either `a' or +`b' is a signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = floatx80_is_nan( a ); + aIsSignalingNaN = floatx80_is_signaling_nan( a ); + bIsNaN = floatx80_is_nan( b ); + bIsSignalingNaN = floatx80_is_signaling_nan( b ); + a.low |= LIT64( 0xC000000000000000 ); + b.low |= LIT64( 0xC000000000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsSignalingNaN ) { + if ( bIsSignalingNaN ) goto returnLargerSignificand; + return bIsNaN ? b : a; + } + else if ( aIsNaN ) { + if ( bIsSignalingNaN | ! bIsNaN ) return a; + returnLargerSignificand: + if ( a.low < b.low ) return b; + if ( b.low < a.low ) return a; + return ( a.high < b.high ) ? a : b; + } + else { + return b; + } + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +The pattern for a default generated quadruple-precision NaN. The `high' and +`low' values hold the most- and least-significant bits, respectively. +------------------------------------------------------------------------------- +*/ +#define float128_default_nan_high LIT64( 0xFFFF800000000000 ) +#define float128_default_nan_low LIT64( 0x0000000000000000 ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float128_is_nan( float128 a ) +{ + + return + ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) + && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is a +signaling NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float128_is_signaling_nan( float128 a ) +{ + + return + ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) + && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float128ToCommonNaN( float128 a ) +{ + commonNaNT z; + + if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a.high>>63; + shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the quadruple- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float128 commonNaNToFloat128( commonNaNT a ) +{ + float128 z; + + shift128Right( a.high, a.low, 16, &z.high, &z.low ); + z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes two quadruple-precision floating-point values `a' and `b', one of +which is a NaN, and returns the appropriate NaN result. If either `a' or +`b' is a signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float128 propagateFloat128NaN( float128 a, float128 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float128_is_nan( a ); + aIsSignalingNaN = float128_is_signaling_nan( a ); + bIsNaN = float128_is_nan( b ); + bIsSignalingNaN = float128_is_signaling_nan( b ); + a.high |= LIT64( 0x0000800000000000 ); + b.high |= LIT64( 0x0000800000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsSignalingNaN ) { + if ( bIsSignalingNaN ) goto returnLargerSignificand; + return bIsNaN ? b : a; + } + else if ( aIsNaN ) { + if ( bIsSignalingNaN | ! bIsNaN ) return a; + returnLargerSignificand: + if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; + if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; + return ( a.high < b.high ) ? a : b; + } + else { + return b; + } + +} + +#endif + +#endif /* !NO_IEEE */ diff --git a/sys/lib/libkern/softfloat.c b/sys/lib/libkern/softfloat.c new file mode 100644 index 00000000000..853f9fb4972 --- /dev/null +++ b/sys/lib/libkern/softfloat.c @@ -0,0 +1,5506 @@ +/* $OpenBSD: softfloat.c,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $ */ + +/* + * This version hacked for use with gcc -msoft-float by bjh21. + * (Mostly a case of #ifdefing out things GCC doesn't need or provides + * itself). + */ + +/* + * Things you may want to define: + * + * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with + * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them + * properly renamed. + */ + +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable +effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT +WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS +RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL +RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM +THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY +(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL +COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS +ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#ifndef NO_IEEE + +#include <sys/cdefs.h> +#if defined(LIBC_SCCS) && !defined(lint) +__RCSID("$NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $"); +#endif /* LIBC_SCCS and not lint */ + +#ifdef SOFTFLOAT_FOR_GCC +#include "softfloat-for-gcc.h" +#endif + +#include "milieu.h" +#include "softfloat.h" + +/* + * Conversions between floats as stored in memory and floats as + * SoftFloat uses them + */ +#ifndef FLOAT64_DEMANGLE +#define FLOAT64_DEMANGLE(a) (a) +#endif +#ifndef FLOAT64_MANGLE +#define FLOAT64_MANGLE(a) (a) +#endif + +/* +------------------------------------------------------------------------------- +Floating-point rounding mode, extended double-precision rounding precision, +and exception flags. +------------------------------------------------------------------------------- +*/ + +/* + * XXX: This may cause options-MULTIPROCESSOR or thread problems someday. + * Right now, it does not. I've removed all other dynamic global + * variables. [ross] + */ +#ifdef FLOATX80 +int8 floatx80_rounding_precision = 80; +#endif + +/* +------------------------------------------------------------------------------- +Primitive arithmetic functions, including multi-word arithmetic, and +division and square root approximations. (Can be specialized to target if +desired.) +------------------------------------------------------------------------------- +*/ +#include "softfloat-macros.h" + +/* +------------------------------------------------------------------------------- +Functions and definitions to determine: (1) whether tininess for underflow +is detected before or after rounding by default, (2) what (if anything) +happens when exceptions are raised, (3) how signaling NaNs are distinguished +from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs +are propagated from function inputs to output. These details are target- +specific. +------------------------------------------------------------------------------- +*/ +#include "softfloat-specialize.h" + +#ifndef SOFTFLOAT_FOR_GCC /* Not used */ +/* +------------------------------------------------------------------------------- +Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 +and 7, and returns the properly rounded 32-bit integer corresponding to the +input. If `zSign' is 1, the input is negated before being converted to an +integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input +is simply rounded to an integer, with the inexact exception raised if the +input cannot be represented exactly as an integer. However, if the fixed- +point input is too large, the invalid exception is raised and the largest +positive or negative integer is returned. +------------------------------------------------------------------------------- +*/ +static int32 roundAndPackInt32( flag zSign, bits64 absZ ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + int32 z; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = absZ & 0x7F; + absZ = ( absZ + roundIncrement )>>7; + absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + z = absZ; + if ( zSign ) z = - z; + if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { + float_raise( float_flag_invalid ); + return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( roundBits ) float_set_inexact(); + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes the 128-bit fixed-point value formed by concatenating `absZ0' and +`absZ1', with binary point between bits 63 and 64 (between the input words), +and returns the properly rounded 64-bit integer corresponding to the input. +If `zSign' is 1, the input is negated before being converted to an integer. +Ordinarily, the fixed-point input is simply rounded to an integer, with +the inexact exception raised if the input cannot be represented exactly as +an integer. However, if the fixed-point input is too large, the invalid +exception is raised and the largest positive or negative integer is +returned. +------------------------------------------------------------------------------- +*/ +static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 ) +{ + int8 roundingMode; + flag roundNearestEven, increment; + int64 z; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + increment = ( (sbits64) absZ1 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && absZ1; + } + else { + increment = ( roundingMode == float_round_up ) && absZ1; + } + } + } + if ( increment ) { + ++absZ0; + if ( absZ0 == 0 ) goto overflow; + absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); + } + z = absZ0; + if ( zSign ) z = - z; + if ( z && ( ( z < 0 ) ^ zSign ) ) { + overflow: + float_raise( float_flag_invalid ); + return + zSign ? (sbits64) LIT64( 0x8000000000000000 ) + : LIT64( 0x7FFFFFFFFFFFFFFF ); + } + if ( absZ1 ) float_set_inexact(); + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat32Frac( float32 a ) +{ + + return a & 0x007FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat32Exp( float32 a ) +{ + + return ( a>>23 ) & 0xFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat32Sign( float32 a ) +{ + + return a>>31; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal single-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( aSig ) - 8; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +single-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the single-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal single- +precision floating-point number. + The input significand `zSig' has its binary point between bits 30 +and 29, which is 7 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x7F; + if ( 0xFD <= (bits16) zExp ) { + if ( ( 0xFD < zExp ) + || ( ( zExp == 0xFD ) + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < 0x80000000 ); + shift32RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x7F; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_set_inexact(); + zSig = ( zSig + roundIncrement )>>7; + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat32' except that `zSig' does not have to be normalized. +Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' +floating-point exponent. +------------------------------------------------------------------------------- +*/ +static float32 + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( zSig ) - 1; + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloat64Frac( float64 a ) +{ + + return FLOAT64_DEMANGLE(a) & LIT64( 0x000FFFFFFFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat64Exp( float64 a ) +{ + + return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat64Sign( float64 a ) +{ + + return FLOAT64_DEMANGLE(a)>>63; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal double-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ) - 11; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +double-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + + return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) + + ( ( (bits64) zExp )<<52 ) + zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the double-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal double- +precision floating-point number. + The input significand `zSig' has its binary point between bits 62 +and 61, which is 10 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int16 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x200; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x3FF; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x3FF; + if ( 0x7FD <= (bits16) zExp ) { + if ( ( 0x7FD < zExp ) + || ( ( zExp == 0x7FD ) + && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return FLOAT64_MANGLE( + FLOAT64_DEMANGLE(packFloat64( zSign, 0x7FF, 0 )) - + ( roundIncrement == 0 )); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); + shift64RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x3FF; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_set_inexact(); + zSig = ( zSig + roundIncrement )>>10; + zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat64' except that `zSig' does not have to be normalized. +Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' +floating-point exponent. +------------------------------------------------------------------------------- +*/ +static float64 + normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( zSig ) - 1; + return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloatx80Frac( floatx80 a ) +{ + + return a.low; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int32 extractFloatx80Exp( floatx80 a ) +{ + + return a.high & 0x7FFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the extended double-precision floating-point value +`a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloatx80Sign( floatx80 a ) +{ + + return a.high>>15; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal extended double-precision floating-point value +represented by the denormalized significand `aSig'. The normalized exponent +and significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ); + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into an +extended double-precision floating-point value, returning the result. +------------------------------------------------------------------------------- +*/ +INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) +{ + floatx80 z; + + z.low = zSig; + z.high = ( ( (bits16) zSign )<<15 ) + zExp; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +rounded and packed into the extended double-precision format, with the +inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal extended +double-precision floating-point number. + If `roundingPrecision' is 32 or 64, the result is rounded to the same +number of bits as single or double precision, respectively. Otherwise, the +result is rounded to the full precision of the extended double-precision +format. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. The +handling of underflow and overflow follows the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 + roundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + int64 roundIncrement, roundMask, roundBits; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + if ( roundingPrecision == 80 ) goto precision80; + if ( roundingPrecision == 64 ) { + roundIncrement = LIT64( 0x0000000000000400 ); + roundMask = LIT64( 0x00000000000007FF ); + } + else if ( roundingPrecision == 32 ) { + roundIncrement = LIT64( 0x0000008000000000 ); + roundMask = LIT64( 0x000000FFFFFFFFFF ); + } + else { + goto precision80; + } + zSig0 |= ( zSig1 != 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = roundMask; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig0 & roundMask; + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) + ) { + goto overflow; + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ( zSig0 <= zSig0 + roundIncrement ); + shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); + zExp = 0; + roundBits = zSig0 & roundMask; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + if ( roundBits ) float_set_inexact(); + zSig0 += roundIncrement; + if ( (sbits64) zSig0 < 0 ) zExp = 1; + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( roundBits ) float_set_inexact(); + zSig0 += roundIncrement; + if ( zSig0 < roundIncrement ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + if ( zSig0 == 0 ) zExp = 0; + return packFloatx80( zSign, zExp, zSig0 ); + precision80: + increment = ( (sbits64) zSig1 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + } + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) + && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) + && increment + ) + ) { + roundMask = 0; + overflow: + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return packFloatx80( zSign, 0x7FFE, ~ roundMask ); + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ! increment + || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); + shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); + zExp = 0; + if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); + if ( zSig1 ) float_set_inexact(); + if ( roundNearestEven ) { + increment = ( (sbits64) zSig1 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + if ( increment ) { + ++zSig0; + zSig0 &= + ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); + if ( (sbits64) zSig0 < 0 ) zExp = 1; + } + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( zSig1 ) float_set_inexact(); + if ( increment ) { + ++zSig0; + if ( zSig0 == 0 ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + else { + zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); + } + } + else { + if ( zSig0 == 0 ) zExp = 0; + } + return packFloatx80( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent +`zExp', and significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. This routine is just like +`roundAndPackFloatx80' except that the input significand does not have to be +normalized. +------------------------------------------------------------------------------- +*/ +static floatx80 + normalizeRoundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 shiftCount; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 64; + } + shiftCount = countLeadingZeros64( zSig0 ); + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + zExp -= shiftCount; + return + roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the least-significant 64 fraction bits of the quadruple-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloat128Frac1( float128 a ) +{ + + return a.low; + +} + +/* +------------------------------------------------------------------------------- +Returns the most-significant 48 fraction bits of the quadruple-precision +floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloat128Frac0( float128 a ) +{ + + return a.high & LIT64( 0x0000FFFFFFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the quadruple-precision floating-point value +`a'. +------------------------------------------------------------------------------- +*/ +INLINE int32 extractFloat128Exp( float128 a ) +{ + + return ( a.high>>48 ) & 0x7FFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the quadruple-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat128Sign( float128 a ) +{ + + return a.high>>63; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal quadruple-precision floating-point value +represented by the denormalized significand formed by the concatenation of +`aSig0' and `aSig1'. The normalized exponent is stored at the location +pointed to by `zExpPtr'. The most significant 49 bits of the normalized +significand are stored at the location pointed to by `zSig0Ptr', and the +least significant 64 bits of the normalized significand are stored at the +location pointed to by `zSig1Ptr'. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat128Subnormal( + bits64 aSig0, + bits64 aSig1, + int32 *zExpPtr, + bits64 *zSig0Ptr, + bits64 *zSig1Ptr + ) +{ + int8 shiftCount; + + if ( aSig0 == 0 ) { + shiftCount = countLeadingZeros64( aSig1 ) - 15; + if ( shiftCount < 0 ) { + *zSig0Ptr = aSig1>>( - shiftCount ); + *zSig1Ptr = aSig1<<( shiftCount & 63 ); + } + else { + *zSig0Ptr = aSig1<<shiftCount; + *zSig1Ptr = 0; + } + *zExpPtr = - shiftCount - 63; + } + else { + shiftCount = countLeadingZeros64( aSig0 ) - 15; + shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); + *zExpPtr = 1 - shiftCount; + } + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', the exponent `zExp', and the significand formed +by the concatenation of `zSig0' and `zSig1' into a quadruple-precision +floating-point value, returning the result. After being shifted into the +proper positions, the three fields `zSign', `zExp', and `zSig0' are simply +added together to form the most significant 32 bits of the result. This +means that any integer portion of `zSig0' will be added into the exponent. +Since a properly normalized significand will have an integer portion equal +to 1, the `zExp' input should be 1 less than the desired result exponent +whenever `zSig0' and `zSig1' concatenated form a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float128 + packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) +{ + float128 z; + + z.low = zSig1; + z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0', `zSig1', +and `zSig2', and returns the proper quadruple-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +simply rounded and packed into the quadruple-precision format, with the +inexact exception raised if the abstract input cannot be represented +exactly. However, if the abstract value is too large, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal quadruple- +precision floating-point number. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. In the +usual case that the input significand is normalized, `zExp' must be 1 less +than the ``true'' floating-point exponent. The handling of underflow and +overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float128 + roundAndPackFloat128( + flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + + roundingMode = float_rounding_mode(); + roundNearestEven = ( roundingMode == float_round_nearest_even ); + increment = ( (sbits64) zSig2 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + if ( 0x7FFD <= (bits32) zExp ) { + if ( ( 0x7FFD < zExp ) + || ( ( zExp == 0x7FFD ) + && eq128( + LIT64( 0x0001FFFFFFFFFFFF ), + LIT64( 0xFFFFFFFFFFFFFFFF ), + zSig0, + zSig1 + ) + && increment + ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return + packFloat128( + zSign, + 0x7FFE, + LIT64( 0x0000FFFFFFFFFFFF ), + LIT64( 0xFFFFFFFFFFFFFFFF ) + ); + } + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ! increment + || lt128( + zSig0, + zSig1, + LIT64( 0x0001FFFFFFFFFFFF ), + LIT64( 0xFFFFFFFFFFFFFFFF ) + ); + shift128ExtraRightJamming( + zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); + zExp = 0; + if ( isTiny && zSig2 ) float_raise( float_flag_underflow ); + if ( roundNearestEven ) { + increment = ( (sbits64) zSig2 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig2; + } + else { + increment = ( roundingMode == float_round_up ) && zSig2; + } + } + } + } + if ( zSig2 ) float_set_inexact(); + if ( increment ) { + add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); + zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); + } + else { + if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; + } + return packFloat128( zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand formed by the concatenation of `zSig0' and `zSig1', and +returns the proper quadruple-precision floating-point value corresponding +to the abstract input. This routine is just like `roundAndPackFloat128' +except that the input significand has fewer bits and does not have to be +normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float128 + normalizeRoundAndPackFloat128( + flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) +{ + int8 shiftCount; + bits64 zSig2; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 64; + } + shiftCount = countLeadingZeros64( zSig0 ) - 15; + if ( 0 <= shiftCount ) { + zSig2 = 0; + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + } + else { + shift128ExtraRightJamming( + zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); + } + zExp -= shiftCount; + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' +to the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int32 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' +to the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int32_to_float64( int32 a ) +{ + flag zSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return 0; + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 21; + zSig = absA; + return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' +to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 int32_to_floatx80( int32 a ) +{ + flag zSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 32; + zSig = absA; + return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the quadruple-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 int32_to_float128( int32 a ) +{ + flag zSign; + uint32 absA; + int8 shiftCount; + bits64 zSig0; + + if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 17; + zSig0 = absA; + return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); + +} + +#endif + +#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the 64-bit two's complement integer `a' +to the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int64_to_float32( int64 a ) +{ + flag zSign; + uint64 absA; + int8 shiftCount; + + if ( a == 0 ) return 0; + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros64( absA ) - 40; + if ( 0 <= shiftCount ) { + return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); + } + else { + shiftCount += 7; + if ( shiftCount < 0 ) { + shift64RightJamming( absA, - shiftCount, &absA ); + } + else { + absA <<= shiftCount; + } + return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 64-bit two's complement integer `a' +to the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int64_to_float64( int64 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) { + return packFloat64( 1, 0x43E, 0 ); + } + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 64-bit two's complement integer `a' +to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 int64_to_floatx80( int64 a ) +{ + flag zSign; + uint64 absA; + int8 shiftCount; + + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros64( absA ); + return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 64-bit two's complement integer `a' to +the quadruple-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 int64_to_float128( int64 a ) +{ + flag zSign; + uint64 absA; + int8 shiftCount; + int32 zExp; + bits64 zSig0, zSig1; + + if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros64( absA ) + 49; + zExp = 0x406E - shiftCount; + if ( 64 <= shiftCount ) { + zSig1 = 0; + zSig0 = absA; + shiftCount -= 64; + } + else { + zSig1 = absA; + zSig0 = 0; + } + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + return packFloat128( zSign, zExp, zSig0, zSig1 ); + +} + +#endif +#endif /* !SOFTFLOAT_FOR_GCC */ + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + bits64 aSig64; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( ( aExp == 0xFF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= 0x00800000; + shiftCount = 0xAF - aExp; + aSig64 = aSig; + aSig64 <<= 32; + if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); + return roundAndPackInt32( aSign, aSig64 ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + if ( 0 <= shiftCount ) { + if ( a != 0xCF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; + } + return (sbits32) 0x80000000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_set_inexact(); + return 0; + } + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + float_set_inexact(); + } + if ( aSign ) z = - z; + return z; + +} + +#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 64-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int64 float32_to_int64( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + bits64 aSig64, aSigExtra; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = 0xBE - aExp; + if ( shiftCount < 0 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + if ( aExp ) aSig |= 0x00800000; + aSig64 = aSig; + aSig64 <<= 40; + shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); + return roundAndPackInt64( aSign, aSig64, aSigExtra ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 64-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int64 float32_to_int64_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + bits64 aSig64; + int64 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0xBE; + if ( 0 <= shiftCount ) { + if ( a != 0xDF000000 ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_set_inexact(); + return 0; + } + aSig64 = aSig | 0x00800000; + aSig64 <<= 40; + z = aSig64>>( - shiftCount ); + if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { + float_set_inexact(); + } + if ( aSign ) z = - z; + return z; + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float32_to_float64( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); + return packFloat64( aSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float32_to_floatx80( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + aSig |= 0x00800000; + return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float32_to_float128( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) ); + return packFloat128( aSign, 0x7FFF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); + +} + +#endif + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Rounds the single-precision floating-point value `a' to an integer, and +returns the result as a single-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float32 z; + + aExp = extractFloat32Exp( a ); + if ( 0x96 <= aExp ) { + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { + return propagateFloat32NaN( a, a ); + } + return a; + } + if ( aExp <= 0x7E ) { + if ( (bits32) ( a<<1 ) == 0 ) return a; + float_set_inexact(); + aSign = extractFloat32Sign( a ); + switch ( float_rounding_mode() ) { + case float_round_nearest_even: + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { + return packFloat32( aSign, 0x7F, 0 ); + } + break; + case float_round_down: + return aSign ? 0xBF800000 : 0; + case float_round_up: + return aSign ? 0x80000000 : 0x3F800000; + } + return packFloat32( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x96 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode(); + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_set_inexact(); + return z; + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the single-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 6; + bSig <<= 6; + if ( 0 < expDiff ) { + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x20000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x20000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); + zSig = 0x40000000 + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= 0x20000000; + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits32) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the single- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 7; + bSig <<= 7; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat32( float_rounding_mode() == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign ^ 1, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x40000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + bSig |= 0x40000000; + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x40000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + aSig |= 0x40000000; + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the single-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_add( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return addFloat32Sigs( a, b, aSign ); + } + else { + return subFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sub( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return subFloat32Sigs( a, b, aSign ); + } + else { + return addFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_mul( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig; + bits64 zSig64; + bits32 zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x7F; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); + zSig = zSig64; + if ( 0 <= (sbits32) ( zSig<<1 ) ) { + zSig <<= 1; + --zExp; + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the single-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_div( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat32( zSign, 0xFF, 0 ); + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x7D; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = ( ( (bits64) aSig )<<32 ) / bSig; + if ( ( zSig & 0x3F ) == 0 ) { + zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the remainder of the single-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_rem( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig, bSig; + bits32 q; + bits64 aSig64, bSig64, q64; + bits32 alternateASig; + sbits32 sigMean; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig |= 0x00800000; + bSig |= 0x00800000; + if ( expDiff < 32 ) { + aSig <<= 8; + bSig <<= 8; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + if ( 0 < expDiff ) { + q = ( ( (bits64) aSig )<<32 ) / bSig; + q >>= 32 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + } + else { + if ( bSig <= aSig ) aSig -= bSig; + aSig64 = ( (bits64) aSig )<<40; + bSig64 = ( (bits64) bSig )<<40; + expDiff -= 64; + while ( 0 < expDiff ) { + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + aSig64 = - ( ( bSig * q64 )<<38 ); + expDiff -= 62; + } + expDiff += 64; + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + q = q64>>( 64 - expDiff ); + bSig <<= 6; + aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits32) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits32) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the square root of the single-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sqrt( float32 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig, zSig; + bits64 rem, term; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, 0 ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; + aSig = ( aSig | 0x00800000 )<<8; + zSig = estimateSqrt32( aExp, aSig ) + 2; + if ( ( zSig & 0x7F ) <= 5 ) { + if ( zSig < 2 ) { + zSig = 0x7FFFFFFF; + goto roundAndPack; + } + aSig >>= aExp & 1; + term = ( (bits64) zSig ) * zSig; + rem = ( ( (bits64) aSig )<<32 ) - term; + while ( (sbits64) rem < 0 ) { + --zSig; + rem += ( ( (bits64) zSig )<<1 ) | 1; + } + zSig |= ( rem != 0 ); + } + shift32RightJamming( zSig, 1, &zSig ); + roundAndPack: + return roundAndPackFloat32( 0, zExp, zSig ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq_signaling( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x42C - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( 0x41E < aExp ) { + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + goto invalid; + } + else if ( aExp < 0x3FF ) { + if ( aExp || aSig ) float_set_inexact(); + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x433 - aExp; + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_set_inexact(); + } + return z; + +} + +#ifndef SOFTFLOAT_FOR_GCC /* Not needed */ +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 64-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int64 float64_to_int64( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, aSigExtra; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x433 - aExp; + if ( shiftCount <= 0 ) { + if ( 0x43E < aExp ) { + float_raise( float_flag_invalid ); + if ( ! aSign + || ( ( aExp == 0x7FF ) + && ( aSig != LIT64( 0x0010000000000000 ) ) ) + ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + aSigExtra = 0; + aSig <<= - shiftCount; + } + else { + shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); + } + return roundAndPackInt64( aSign, aSig, aSigExtra ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 64-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int64 float64_to_int64_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + int64 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = aExp - 0x433; + if ( 0 <= shiftCount ) { + if ( 0x43E <= aExp ) { + if ( a != LIT64( 0xC3E0000000000000 ) ) { + float_raise( float_flag_invalid ); + if ( ! aSign + || ( ( aExp == 0x7FF ) + && ( aSig != LIT64( 0x0010000000000000 ) ) ) + ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + z = aSig<<shiftCount; + } + else { + if ( aExp < 0x3FE ) { + if ( aExp | aSig ) float_set_inexact(); + return 0; + } + z = aSig>>( - shiftCount ); + if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { + float_set_inexact(); + } + } + if ( aSign ) z = - z; + return z; + +} +#endif /* !SOFTFLOAT_FOR_GCC */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the single-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float64_to_float32( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + bits32 zSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 22, &aSig ); + zSig = aSig; + if ( aExp || zSig ) { + zSig |= 0x40000000; + aExp -= 0x381; + } + return roundAndPackFloat32( aSign, aExp, zSig ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float64_to_floatx80( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + return + packFloatx80( + aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the quadruple-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float64_to_float128( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig, zSig0, zSig1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) ); + return packFloat128( aSign, 0x7FFF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); + return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); + +} + +#endif + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Rounds the double-precision floating-point value `a' to an integer, and +returns the result as a double-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + float64 z; + + aExp = extractFloat64Exp( a ); + if ( 0x433 <= aExp ) { + if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { + return propagateFloat64NaN( a, a ); + } + return a; + } + if ( aExp < 0x3FF ) { + if ( (bits64) ( a<<1 ) == 0 ) return a; + float_set_inexact(); + aSign = extractFloat64Sign( a ); + switch ( float_rounding_mode() ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { + return packFloat64( aSign, 0x3FF, 0 ); + } + break; + case float_round_down: + return aSign ? LIT64( 0xBFF0000000000000 ) : 0; + case float_round_up: + return + aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); + } + return packFloat64( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x433 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode(); + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_set_inexact(); + return z; + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the double-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 9; + bSig <<= 9; + if ( 0 < expDiff ) { + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); + zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= LIT64( 0x2000000000000000 ); + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits64) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the double- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 10; + bSig <<= 10; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat64( float_rounding_mode() == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign ^ 1, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + bSig |= LIT64( 0x4000000000000000 ); + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + aSig |= LIT64( 0x4000000000000000 ); + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the double-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_add( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return addFloat64Sigs( a, b, aSign ); + } + else { + return subFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sub( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return subFloat64Sigs( a, b, aSign ); + } + else { + return addFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_mul( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FF; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + zSig0 |= ( zSig1 != 0 ); + if ( 0 <= (sbits64) ( zSig0<<1 ) ) { + zSig0 <<= 1; + --zExp; + } + return roundAndPackFloat64( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the double-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to +the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_div( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + bits64 rem0, rem1; + bits64 term0, term1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat64( zSign, 0x7FF, 0 ); + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FD; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = estimateDiv128To64( aSig, 0, bSig ); + if ( ( zSig & 0x1FF ) <= 2 ) { + mul64To128( bSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig |= ( rem1 != 0 ); + } + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns the remainder of the double-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_rem( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits64 aSig, bSig; + bits64 q, alternateASig; + sbits64 sigMean; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + aSig = - ( ( bSig>>2 ) * q ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits64) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits64) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the double-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sqrt( float64 a ) +{ + flag aSign; + int16 aExp, zExp; + bits64 aSig, zSig, doubleZSig; + bits64 rem0, rem1, term0, term1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, a ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; + aSig |= LIT64( 0x0010000000000000 ); + zSig = estimateSqrt32( aExp, aSig>>21 ); + aSig <<= 9 - ( aExp & 1 ); + zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); + if ( ( zSig & 0x1FF ) <= 5 ) { + doubleZSig = zSig<<1; + mul64To128( zSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + doubleZSig -= 2; + add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); + } + zSig |= ( ( rem0 | rem1 ) != 0 ); + } + return roundAndPackFloat64( 0, zExp, zSig ); + +} +#endif + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign || + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == + 0 ); + return ( a == b ) || + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) + return aSign && + ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != + 0 ); + return ( a != b ) && + ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); + +} + +#ifndef SOFTFLOAT_FOR_GCC +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The invalid exception is raised +if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq_signaling( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} +#endif + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic---which means in particular that the conversion +is rounded according to the current rounding mode. If `a' is a NaN, the +largest positive integer is returned. Otherwise, if the conversion +overflows, the largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + shiftCount = 0x4037 - aExp; + if ( shiftCount <= 0 ) shiftCount = 1; + shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic, except that the conversion is always rounded +toward zero. If `a' is a NaN, the largest positive integer is returned. +Otherwise, if the conversion overflows, the largest integer with the same +sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32_round_to_zero( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( 0x401E < aExp ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + goto invalid; + } + else if ( aExp < 0x3FFF ) { + if ( aExp || aSig ) float_set_inexact(); + return 0; + } + shiftCount = 0x403E - aExp; + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_set_inexact(); + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 64-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic---which means in particular that the conversion +is rounded according to the current rounding mode. If `a' is a NaN, +the largest positive integer is returned. Otherwise, if the conversion +overflows, the largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int64 floatx80_to_int64( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig, aSigExtra; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + shiftCount = 0x403E - aExp; + if ( shiftCount <= 0 ) { + if ( shiftCount ) { + float_raise( float_flag_invalid ); + if ( ! aSign + || ( ( aExp == 0x7FFF ) + && ( aSig != LIT64( 0x8000000000000000 ) ) ) + ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + aSigExtra = 0; + } + else { + shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); + } + return roundAndPackInt64( aSign, aSig, aSigExtra ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 64-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic, except that the conversion is always rounded +toward zero. If `a' is a NaN, the largest positive integer is returned. +Otherwise, if the conversion overflows, the largest integer with the same +sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int64 floatx80_to_int64_round_to_zero( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig; + int64 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + shiftCount = aExp - 0x403E; + if ( 0 <= shiftCount ) { + aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); + if ( ( a.high != 0xC03E ) || aSig ) { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + else if ( aExp < 0x3FFF ) { + if ( aExp | aSig ) float_set_inexact(); + return 0; + } + z = aSig>>( - shiftCount ); + if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { + float_set_inexact(); + } + if ( aSign ) z = - z; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the single-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 floatx80_to_float32( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 33, &aSig ); + if ( aExp || aSig ) aExp -= 0x3F81; + return roundAndPackFloat32( aSign, aExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the double-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 floatx80_to_float64( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig, zSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); + } + return packFloat64( aSign, 0x7FF, 0 ); + } + shift64RightJamming( aSig, 1, &zSig ); + if ( aExp || aSig ) aExp -= 0x3C01; + return roundAndPackFloat64( aSign, aExp, zSig ); + +} + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the quadruple-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 floatx80_to_float128( floatx80 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig, zSig0, zSig1; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat128( floatx80ToCommonNaN( a ) ); + } + shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); + return packFloat128( aSign, aExp, zSig0, zSig1 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the extended double-precision floating-point value `a' to an integer, +and returns the result as an extended quadruple-precision floating-point +value. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + floatx80 z; + + aExp = extractFloatx80Exp( a ); + if ( 0x403E <= aExp ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { + return propagateFloatx80NaN( a, a ); + } + return a; + } + if ( aExp < 0x3FFF ) { + if ( ( aExp == 0 ) + && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { + return a; + } + float_set_inexact(); + aSign = extractFloatx80Sign( a ); + switch ( float_rounding_mode() ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) + ) { + return + packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + break; + case float_round_down: + return + aSign ? + packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) + : packFloatx80( 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloatx80( 1, 0, 0 ) + : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + return packFloatx80( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x403E - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode(); + if ( roundingMode == float_round_nearest_even ) { + z.low += lastBitMask>>1; + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z.low += roundBitsMask; + } + } + z.low &= ~ roundBitsMask; + if ( z.low == 0 ) { + ++z.high; + z.low = LIT64( 0x8000000000000000 ); + } + if ( z.low != a.low ) float_set_inexact(); + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the extended double- +precision floating-point values `a' and `b'. If `zSign' is 1, the sum is +negated before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + return a; + } + zSig1 = 0; + zSig0 = aSig + bSig; + if ( aExp == 0 ) { + normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); + goto roundAndPack; + } + zExp = aExp; + goto shiftRight1; + } + zSig0 = aSig + bSig; + if ( (sbits64) zSig0 < 0 ) goto roundAndPack; + shiftRight1: + shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); + zSig0 |= LIT64( 0x8000000000000000 ); + ++zExp; + roundAndPack: + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the extended +double-precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + zSig1 = 0; + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloatx80( float_rounding_mode() == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + bBigger: + sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + aBigger: + sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + return + normalizeRoundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the extended double-precision floating-point +values `a' and `b'. The operation is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_add( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return addFloatx80Sigs( a, b, aSign ); + } + else { + return subFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sub( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return subFloatx80Sigs( a, b, aSign ); + } + else { + return addFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_mul( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) goto invalid; + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FFE; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + if ( 0 < (sbits64) zSig0 ) { + shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); + --zExp; + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the extended double-precision floating-point +value `a' by the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_div( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + bits64 rem0, rem1, rem2, term0, term1, term2; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + goto invalid; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + float_raise( float_flag_divbyzero ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FFE; + rem1 = 0; + if ( bSig <= aSig ) { + shift128Right( aSig, 0, 1, &aSig, &rem1 ); + ++zExp; + } + zSig0 = estimateDiv128To64( aSig, rem1, bSig ); + mul64To128( bSig, zSig0, &term0, &term1 ); + sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig1 = estimateDiv128To64( rem1, 0, bSig ); + if ( (bits64) ( zSig1<<1 ) <= 8 ) { + mul64To128( bSig, zSig1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); + } + zSig1 |= ( ( rem1 | rem2 ) != 0 ); + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the extended double-precision floating-point value +`a' with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_rem( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, expDiff; + bits64 aSig0, aSig1, bSig; + bits64 q, term0, term1, alternateASig0, alternateASig1; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( (bits64) ( aSig0<<1 ) == 0 ) return a; + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + bSig |= LIT64( 0x8000000000000000 ); + zSign = aSign; + expDiff = aExp - bExp; + aSig1 = 0; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); + expDiff = 0; + } + q = ( bSig <= aSig0 ); + if ( q ) aSig0 -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + mul64To128( bSig, q, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); + while ( le128( term0, term1, aSig0, aSig1 ) ) { + ++q; + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + } + } + else { + term1 = 0; + term0 = bSig; + } + sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); + if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) + || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) + && ( q & 1 ) ) + ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + zSign = ! zSign; + } + return + normalizeRoundAndPackFloatx80( + 80, zSign, bExp + expDiff, aSig0, aSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the extended double-precision floating-point +value `a'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sqrt( floatx80 a ) +{ + flag aSign; + int32 aExp, zExp; + bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; + zSig0 = estimateSqrt32( aExp, aSig0>>32 ); + shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); + doubleZSig0 = zSig0<<1; + mul64To128( zSig0, zSig0, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + doubleZSig0 -= 2; + add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); + } + zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); + if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul64To128( doubleZSig0, zSig1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + mul64To128( zSig1, zSig1, &term2, &term3 ); + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + shortShift128Left( 0, zSig1, 1, &term2, &term3 ); + term3 |= 1; + term2 |= doubleZSig0; + add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); + zSig0 |= doubleZSig0; + return + roundAndPackFloatx80( + floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than or equal to the corresponding value `b', and 0 otherwise. The +comparison is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is equal +to the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq_signaling( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs +do not cause an exception. Otherwise, the comparison is performed according +to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause +an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the 32-bit two's complement integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float128_to_int32( float128 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig0, aSig1; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); + aSig0 |= ( aSig1 != 0 ); + shiftCount = 0x4028 - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); + return roundAndPackInt32( aSign, aSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the 32-bit two's complement integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float128_to_int32_round_to_zero( float128 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig0, aSig1, savedASig; + int32 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + aSig0 |= ( aSig1 != 0 ); + if ( 0x401E < aExp ) { + if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; + goto invalid; + } + else if ( aExp < 0x3FFF ) { + if ( aExp || aSig0 ) float_set_inexact(); + return 0; + } + aSig0 |= LIT64( 0x0001000000000000 ); + shiftCount = 0x402F - aExp; + savedASig = aSig0; + aSig0 >>= shiftCount; + z = aSig0; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_raise( float_flag_invalid ); + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig0<<shiftCount ) != savedASig ) { + float_set_inexact(); + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the 64-bit two's complement integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int64 float128_to_int64( float128 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig0, aSig1; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); + shiftCount = 0x402F - aExp; + if ( shiftCount <= 0 ) { + if ( 0x403E < aExp ) { + float_raise( float_flag_invalid ); + if ( ! aSign + || ( ( aExp == 0x7FFF ) + && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) + ) + ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); + } + else { + shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); + } + return roundAndPackInt64( aSign, aSig0, aSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the 64-bit two's complement integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic, except that the conversion is always rounded toward zero. +If `a' is a NaN, the largest positive integer is returned. Otherwise, if +the conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int64 float128_to_int64_round_to_zero( float128 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig0, aSig1; + int64 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); + shiftCount = aExp - 0x402F; + if ( 0 < shiftCount ) { + if ( 0x403E <= aExp ) { + aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); + if ( ( a.high == LIT64( 0xC03E000000000000 ) ) + && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { + if ( aSig1 ) float_set_inexact(); + } + else { + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { + return LIT64( 0x7FFFFFFFFFFFFFFF ); + } + } + return (sbits64) LIT64( 0x8000000000000000 ); + } + z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); + if ( (bits64) ( aSig1<<shiftCount ) ) { + float_set_inexact(); + } + } + else { + if ( aExp < 0x3FFF ) { + if ( aExp | aSig0 | aSig1 ) { + float_set_inexact(); + } + return 0; + } + z = aSig0>>( - shiftCount ); + if ( aSig1 + || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { + float_set_inexact(); + } + } + if ( aSign ) z = - z; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the single-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float128_to_float32( float128 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig0, aSig1; + bits32 zSig; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) { + return commonNaNToFloat32( float128ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + aSig0 |= ( aSig1 != 0 ); + shift64RightJamming( aSig0, 18, &aSig0 ); + zSig = aSig0; + if ( aExp || zSig ) { + zSig |= 0x40000000; + aExp -= 0x3F81; + } + return roundAndPackFloat32( aSign, aExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float128_to_float64( float128 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig0, aSig1; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) { + return commonNaNToFloat64( float128ToCommonNaN( a ) ); + } + return packFloat64( aSign, 0x7FF, 0 ); + } + shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); + aSig0 |= ( aSig1 != 0 ); + if ( aExp || aSig0 ) { + aSig0 |= LIT64( 0x4000000000000000 ); + aExp -= 0x3C01; + } + return roundAndPackFloat64( aSign, aExp, aSig0 ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the quadruple-precision floating-point +value `a' to the extended double-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float128_to_floatx80( float128 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig0, aSig1; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) { + return commonNaNToFloatx80( float128ToCommonNaN( a ) ); + } + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + else { + aSig0 |= LIT64( 0x0001000000000000 ); + } + shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); + return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the quadruple-precision floating-point value `a' to an integer, and +returns the result as a quadruple-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_round_to_int( float128 a ) +{ + flag aSign; + int32 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + float128 z; + + aExp = extractFloat128Exp( a ); + if ( 0x402F <= aExp ) { + if ( 0x406F <= aExp ) { + if ( ( aExp == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) + ) { + return propagateFloat128NaN( a, a ); + } + return a; + } + lastBitMask = 1; + lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode(); + if ( roundingMode == float_round_nearest_even ) { + if ( lastBitMask ) { + add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else { + if ( (sbits64) z.low < 0 ) { + ++z.high; + if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; + } + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat128Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); + } + } + z.low &= ~ roundBitsMask; + } + else { + if ( aExp < 0x3FFF ) { + if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; + float_set_inexact(); + aSign = extractFloat128Sign( a ); + switch ( float_rounding_mode() ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FFE ) + && ( extractFloat128Frac0( a ) + | extractFloat128Frac1( a ) ) + ) { + return packFloat128( aSign, 0x3FFF, 0, 0 ); + } + break; + case float_round_down: + return + aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) + : packFloat128( 0, 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloat128( 1, 0, 0, 0 ) + : packFloat128( 0, 0x3FFF, 0, 0 ); + } + return packFloat128( aSign, 0, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x402F - aExp; + roundBitsMask = lastBitMask - 1; + z.low = 0; + z.high = a.high; + roundingMode = float_rounding_mode(); + if ( roundingMode == float_round_nearest_even ) { + z.high += lastBitMask>>1; + if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { + z.high &= ~ lastBitMask; + } + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat128Sign( z ) + ^ ( roundingMode == float_round_up ) ) { + z.high |= ( a.low != 0 ); + z.high += roundBitsMask; + } + } + z.high &= ~ roundBitsMask; + } + if ( ( z.low != a.low ) || ( z.high != a.high ) ) { + float_set_inexact(); + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the quadruple-precision +floating-point values `a' and `b'. If `zSign' is 1, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float128 addFloat128Sigs( float128 a, float128 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + int32 expDiff; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + bSig1 = extractFloat128Frac1( b ); + bSig0 = extractFloat128Frac0( b ); + bExp = extractFloat128Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= LIT64( 0x0001000000000000 ); + } + shift128ExtraRightJamming( + bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= LIT64( 0x0001000000000000 ); + } + shift128ExtraRightJamming( + aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat128NaN( a, b ); + } + return a; + } + add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); + zSig2 = 0; + zSig0 |= LIT64( 0x0002000000000000 ); + zExp = aExp; + goto shiftRight1; + } + aSig0 |= LIT64( 0x0001000000000000 ); + add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + --zExp; + if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; + ++zExp; + shiftRight1: + shift128ExtraRightJamming( + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + roundAndPack: + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the quadruple- +precision floating-point values `a' and `b'. If `zSign' is 1, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float128 subFloat128Sigs( float128 a, float128 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; + int32 expDiff; + float128 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + bSig1 = extractFloat128Frac1( b ); + bSig0 = extractFloat128Frac0( b ); + bExp = extractFloat128Exp( b ); + expDiff = aExp - bExp; + shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); + shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { + return propagateFloat128NaN( a, b ); + } + float_raise( float_flag_invalid ); + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig0 < aSig0 ) goto aBigger; + if ( aSig0 < bSig0 ) goto bBigger; + if ( bSig1 < aSig1 ) goto aBigger; + if ( aSig1 < bSig1 ) goto bBigger; + return packFloat128( float_rounding_mode() == float_round_down, 0, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig0 |= LIT64( 0x4000000000000000 ); + } + shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + bSig0 |= LIT64( 0x4000000000000000 ); + bBigger: + sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig0 |= LIT64( 0x4000000000000000 ); + } + shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); + aSig0 |= LIT64( 0x4000000000000000 ); + aBigger: + sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the quadruple-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_add( float128 a, float128 b ) +{ + flag aSign, bSign; + + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign == bSign ) { + return addFloat128Sigs( a, b, aSign ); + } + else { + return subFloat128Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the quadruple-precision floating-point +values `a' and `b'. The operation is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_sub( float128 a, float128 b ) +{ + flag aSign, bSign; + + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign == bSign ) { + return subFloat128Sigs( a, b, aSign ); + } + else { + return addFloat128Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the quadruple-precision floating-point +values `a' and `b'. The operation is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_mul( float128 a, float128 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; + float128 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + bSig1 = extractFloat128Frac1( b ); + bSig0 = extractFloat128Frac0( b ); + bExp = extractFloat128Exp( b ); + bSign = extractFloat128Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat128NaN( a, b ); + } + if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + zExp = aExp + bExp - 0x4000; + aSig0 |= LIT64( 0x0001000000000000 ); + shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); + mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); + add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); + zSig2 |= ( zSig3 != 0 ); + if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { + shift128ExtraRightJamming( + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); + ++zExp; + } + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the quadruple-precision floating-point value +`a' by the corresponding value `b'. The operation is performed according to +the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_div( float128 a, float128 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + float128 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + bSig1 = extractFloat128Frac1( b ); + bSig0 = extractFloat128Frac0( b ); + bExp = extractFloat128Exp( b ); + bSign = extractFloat128Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + goto invalid; + } + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + return packFloat128( zSign, 0, 0, 0 ); + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + float_raise( float_flag_divbyzero ); + return packFloat128( zSign, 0x7FFF, 0, 0 ); + } + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = aExp - bExp + 0x3FFD; + shortShift128Left( + aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); + shortShift128Left( + bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); + if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { + shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); + ++zExp; + } + zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); + mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); + sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); + } + zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); + if ( ( zSig1 & 0x3FFF ) <= 4 ) { + mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); + sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the quadruple-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_rem( float128 a, float128 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, expDiff; + bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; + bits64 allZero, alternateASig0, alternateASig1, sigMean1; + sbits64 sigMean0; + float128 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + bSig1 = extractFloat128Frac1( b ); + bSig0 = extractFloat128Frac0( b ); + bExp = extractFloat128Exp( b ); + bSign = extractFloat128Sign( b ); + if ( aExp == 0x7FFF ) { + if ( ( aSig0 | aSig1 ) + || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { + return propagateFloat128NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FFF ) { + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( ( bSig0 | bSig1 ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return a; + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + expDiff = aExp - bExp; + if ( expDiff < -1 ) return a; + shortShift128Left( + aSig0 | LIT64( 0x0001000000000000 ), + aSig1, + 15 - ( expDiff < 0 ), + &aSig0, + &aSig1 + ); + shortShift128Left( + bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); + q = le128( bSig0, bSig1, aSig0, aSig1 ); + if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); + shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); + shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); + sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); + expDiff -= 61; + } + if ( -64 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig0 ); + q = ( 4 < q ) ? q - 4 : 0; + q >>= - expDiff; + shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); + expDiff += 52; + if ( expDiff < 0 ) { + shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); + } + else { + shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); + } + mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); + sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); + } + else { + shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); + shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); + } + do { + alternateASig0 = aSig0; + alternateASig1 = aSig1; + ++q; + sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); + } while ( 0 <= (sbits64) aSig0 ); + add128( + aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); + if ( ( sigMean0 < 0 ) + || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + } + zSign = ( (sbits64) aSig0 < 0 ); + if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); + return + normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the quadruple-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +float128 float128_sqrt( float128 a ) +{ + flag aSign; + int32 aExp, zExp; + bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + float128 z; + + aSig1 = extractFloat128Frac1( a ); + aSig0 = extractFloat128Frac0( a ); + aExp = extractFloat128Exp( a ); + aSign = extractFloat128Sign( a ); + if ( aExp == 0x7FFF ) { + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + z.low = float128_default_nan_low; + z.high = float128_default_nan_high; + return z; + } + if ( aExp == 0 ) { + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); + } + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; + aSig0 |= LIT64( 0x0001000000000000 ); + zSig0 = estimateSqrt32( aExp, aSig0>>17 ); + shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); + doubleZSig0 = zSig0<<1; + mul64To128( zSig0, zSig0, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + doubleZSig0 -= 2; + add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); + } + zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); + if ( ( zSig1 & 0x1FFF ) <= 5 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul64To128( doubleZSig0, zSig1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + mul64To128( zSig1, zSig1, &term2, &term3 ); + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + shortShift128Left( 0, zSig1, 1, &term2, &term3 ); + term3 |= 1; + term2 |= doubleZSig0; + add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); + return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_eq( float128 a, float128 b ) +{ + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + if ( float128_is_signaling_nan( a ) + || float128_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-Point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_le( float128 a, float128 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_lt( float128 a, float128 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is equal to +the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_eq_signaling( float128 a, float128 b ) +{ + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is less than +or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_le_quiet( float128 a, float128 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + if ( float128_is_signaling_nan( a ) + || float128_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the quadruple-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-Point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float128_lt_quiet( float128 a, float128 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) + || ( ( extractFloat128Exp( b ) == 0x7FFF ) + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) + ) { + if ( float128_is_signaling_nan( a ) + || float128_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat128Sign( a ); + bSign = extractFloat128Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +#endif + + +#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS) + +/* + * These two routines are not part of the original softfloat distribution. + * + * They are based on the corresponding conversions to integer but return + * unsigned numbers instead since these functions are required by GCC. + * + * Added by Mark Brinicombe <mark@netbsd.org> 27/09/97 + * + * float64 version overhauled for SoftFloat 2a [bjh21 2000-07-15] + */ + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit unsigned integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. If the conversion +overflows, the largest integer positive is returned. +------------------------------------------------------------------------------- +*/ +uint32 float64_to_uint32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + uint32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + + if (aSign) { + float_raise( float_flag_invalid ); + return(0); + } + + if ( 0x41E < aExp ) { + float_raise( float_flag_invalid ); + return 0xffffffff; + } + else if ( aExp < 0x3FF ) { + if ( aExp || aSig ) float_set_inexact(); + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x433 - aExp; + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( ( aSig<<shiftCount ) != savedASig ) { + float_set_inexact(); + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit unsigned integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. If the conversion +overflows, the largest positive integer is returned. +------------------------------------------------------------------------------- +*/ +uint32 float32_to_uint32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + uint32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + + if (aSign) { + float_raise( float_flag_invalid ); + return(0); + } + if ( 0 < shiftCount ) { + float_raise( float_flag_invalid ); + return 0xFFFFFFFF; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_set_inexact(); + return 0; + } + aSig = ( aSig | 0x800000 )<<8; + z = aSig>>( - shiftCount ); + if ( aSig<<( shiftCount & 31 ) ) { + float_set_inexact(); + } + return z; + +} + +#endif + +#endif /* !NO_IEEE */ diff --git a/sys/lib/libkern/softfloat.h b/sys/lib/libkern/softfloat.h new file mode 100644 index 00000000000..032408f40c7 --- /dev/null +++ b/sys/lib/libkern/softfloat.h @@ -0,0 +1,376 @@ +/* $OpenBSD: softfloat.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */ +/* $NetBSD: softfloat.h,v 1.1 2001/04/26 03:10:48 ross Exp $ */ + +/* This is a derivative work. */ + +/*- + * Copyright (c) 2001 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Ross Harvey. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* +=============================================================================== + +This C header file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable +effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT +WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS +RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL +RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM +THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY +(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL +COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS +ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#ifndef NO_IEEE + +#include <sys/types.h> + +#if !defined(_KERNEL) && !defined(_STANDALONE) +#include <ieeefp.h> +#else +#include "machine/ieeefp.h" +#endif +#include <sys/endian.h> + +/* +------------------------------------------------------------------------------- +The macro `FLOATX80' must be defined to enable the extended double-precision +floating-point format `floatx80'. If this macro is not defined, the +`floatx80' type will not be defined, and none of the functions that either +input or output the `floatx80' type will be defined. The same applies to +the `FLOAT128' macro and the quadruple-precision format `float128'. +------------------------------------------------------------------------------- +*/ +/* #define FLOATX80 */ +/* #define FLOAT128 */ + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point types. +------------------------------------------------------------------------------- +*/ +typedef u_int32_t float32; +typedef u_int64_t float64; +#ifdef FLOATX80 +typedef struct { +#if BYTE_ORDER == BIG_ENDIAN + u_int16_t high; + u_int64_t low; +#else + u_int64_t low; + u_int16_t high; +#endif +} floatx80; +#endif +#ifdef FLOAT128 +typedef struct { + u_int64_t high, low; +} float128; +#endif + +/* + * Some of the global variables that used to be here have been removed for + * fairly obvious (defopt-MULTIPROCESSOR) reasons. The rest (which don't + * change dynamically) will be removed later. [ross] + */ + +#define float_rounding_mode() fpgetround() + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point underflow tininess-detection mode. +------------------------------------------------------------------------------- +*/ + +extern int float_detect_tininess; +enum { + float_tininess_after_rounding = 1, + float_tininess_before_rounding = 0 +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point rounding mode. +------------------------------------------------------------------------------- +*/ + +enum { + float_round_nearest_even = FP_RN, + float_round_to_zero = FP_RZ, + float_round_down = FP_RM, + float_round_up = FP_RP +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point exception flags. +------------------------------------------------------------------------------- +*/ + +enum { + float_flag_inexact = FP_X_IMP, + float_flag_underflow = FP_X_UFL, + float_flag_overflow = FP_X_OFL, + float_flag_divbyzero = FP_X_DZ, + float_flag_invalid = FP_X_INV +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE integer-to-floating-point conversion routines. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int ); +float64 int32_to_float64( int ); +#ifdef FLOATX80 +floatx80 int32_to_floatx80( int ); +#endif +#ifdef FLOAT128 +float128 int32_to_float128( int ); +#endif +#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */ +float32 int64_to_float32( int64_t ); +float64 int64_to_float64( int64_t ); +#ifdef FLOATX80 +floatx80 int64_to_floatx80( int64_t ); +#endif +#ifdef FLOAT128 +float128 int64_to_float128( int64_t ); +#endif +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float32_to_int32( float32 ); +int float32_to_int32_round_to_zero( float32 ); +#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ +int64_t float32_to_int64( float32 ); +int64_t float32_to_int64_round_to_zero( float32 ); +#endif +float64 float32_to_float64( float32 ); +#ifdef FLOATX80 +floatx80 float32_to_floatx80( float32 ); +#endif +#ifdef FLOAT128 +float128 float32_to_float128( float32 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision operations. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 ); +float32 float32_add( float32, float32 ); +float32 float32_sub( float32, float32 ); +float32 float32_mul( float32, float32 ); +float32 float32_div( float32, float32 ); +float32 float32_rem( float32, float32 ); +float32 float32_sqrt( float32 ); +int float32_eq( float32, float32 ); +int float32_le( float32, float32 ); +int float32_lt( float32, float32 ); +int float32_eq_signaling( float32, float32 ); +int float32_le_quiet( float32, float32 ); +int float32_lt_quiet( float32, float32 ); +#ifndef SOFTFLOAT_FOR_GCC +int float32_is_signaling_nan( float32 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float64_to_int32( float64 ); +int float64_to_int32_round_to_zero( float64 ); +#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ +int64_t float64_to_int64( float64 ); +int64_t float64_to_int64_round_to_zero( float64 ); +#endif +float32 float64_to_float32( float64 ); +#ifdef FLOATX80 +floatx80 float64_to_floatx80( float64 ); +#endif +#ifdef FLOAT128 +float128 float64_to_float128( float64 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision operations. +------------------------------------------------------------------------------- +*/ +#define float64_default_nan 0xFFF8000000000000LL + +static __inline int +float64_is_nan(float64 a) +{ + return 0xFFE0000000000000LL < a << 1; +} + +static __inline int +float64_is_signaling_nan(float64 a) +{ + return (a >> 51 & 0xFFF) == 0xFFE && (a & 0x0007FFFFFFFFFFFFLL); +} + +float64 float64_round_to_int( float64 ); +float64 float64_add( float64, float64 ); +float64 float64_sub( float64, float64 ); +float64 float64_mul( float64, float64 ); +float64 float64_div( float64, float64 ); +float64 float64_rem( float64, float64 ); +float64 float64_sqrt( float64 ); +int float64_eq( float64, float64 ); +int float64_le( float64, float64 ); +int float64_lt( float64, float64 ); +int float64_eq_signaling( float64, float64 ); +int float64_le_quiet( float64, float64 ); +int float64_lt_quiet( float64, float64 ); +#ifndef SOFTFLOAT_FOR_GCC +int float64_is_signaling_nan( float64 ); +#endif + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int floatx80_to_int32( floatx80 ); +int floatx80_to_int32_round_to_zero( floatx80 ); +int64_t floatx80_to_int64( floatx80 ); +int64_t floatx80_to_int64_round_to_zero( floatx80 ); +float32 floatx80_to_float32( floatx80 ); +float64 floatx80_to_float64( floatx80 ); +#ifdef FLOAT128 +float128 floatx80_to_float128( floatx80 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision rounding precision. Valid +values are 32, 64, and 80. +------------------------------------------------------------------------------- +*/ +extern int floatx80_rounding_precision; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision operations. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 ); +floatx80 floatx80_add( floatx80, floatx80 ); +floatx80 floatx80_sub( floatx80, floatx80 ); +floatx80 floatx80_mul( floatx80, floatx80 ); +floatx80 floatx80_div( floatx80, floatx80 ); +floatx80 floatx80_rem( floatx80, floatx80 ); +floatx80 floatx80_sqrt( floatx80 ); +int floatx80_eq( floatx80, floatx80 ); +int floatx80_le( floatx80, floatx80 ); +int floatx80_lt( floatx80, floatx80 ); +int floatx80_eq_signaling( floatx80, floatx80 ); +int floatx80_le_quiet( floatx80, floatx80 ); +int floatx80_lt_quiet( floatx80, floatx80 ); +int floatx80_is_signaling_nan( floatx80 ); + +#endif + +#ifdef FLOAT128 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE quadruple-precision conversion routines. +------------------------------------------------------------------------------- +*/ +int float128_to_int32( float128 ); +int float128_to_int32_round_to_zero( float128 ); +int64_t float128_to_int64( float128 ); +int64_t float128_to_int64_round_to_zero( float128 ); +float32 float128_to_float32( float128 ); +float64 float128_to_float64( float128 ); +#ifdef FLOATX80 +floatx80 float128_to_floatx80( float128 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE quadruple-precision operations. +------------------------------------------------------------------------------- +*/ +float128 float128_round_to_int( float128 ); +float128 float128_add( float128, float128 ); +float128 float128_sub( float128, float128 ); +float128 float128_mul( float128, float128 ); +float128 float128_div( float128, float128 ); +float128 float128_rem( float128, float128 ); +float128 float128_sqrt( float128 ); +int float128_eq( float128, float128 ); +int float128_le( float128, float128 ); +int float128_lt( float128, float128 ); +int float128_eq_signaling( float128, float128 ); +int float128_le_quiet( float128, float128 ); +int float128_lt_quiet( float128, float128 ); +int float128_is_signaling_nan( float128 ); + +#endif + +#endif /* !NO_IEEE */ |