summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Valchev <pvalchev@cvs.openbsd.org>2002-04-28 20:55:15 +0000
committerPeter Valchev <pvalchev@cvs.openbsd.org>2002-04-28 20:55:15 +0000
commitac8277407eec4f1f45a73b8462b4a807928dd1f0 (patch)
treee97e090b84d170144eb0ed99eeba0d7e1ab1ed5d
parent4433d79654bae3b6a03df679b3ace77f4b639331 (diff)
IEEE 754 floating point completion code, and implementation of the
FP_C (Floating Point Control Quadword). From ross@NetBSD. Added a way to disable it with option NO_IEEE, which appears on the ramdisks to save space. This affects only programs compiled with -mieee, and what it essentially does is enabling infinities and NaNs, instead of generating SIGFPE on division by zero, overflow, etc. ok art, deraadt
-rw-r--r--sys/arch/alpha/alpha/db_instruction.h25
-rw-r--r--sys/arch/alpha/alpha/fp_complete.c698
-rw-r--r--sys/arch/alpha/alpha/locore.s61
-rw-r--r--sys/arch/alpha/alpha/machdep.c146
-rw-r--r--sys/arch/alpha/alpha/process_machdep.c8
-rw-r--r--sys/arch/alpha/alpha/sys_machdep.c124
-rw-r--r--sys/arch/alpha/alpha/trap.c89
-rw-r--r--sys/arch/alpha/alpha/vm_machdep.c36
-rw-r--r--sys/arch/alpha/conf/RAMDISK4
-rw-r--r--sys/arch/alpha/conf/RAMDISKB4
-rw-r--r--sys/arch/alpha/conf/RAMDISKBIG4
-rw-r--r--sys/arch/alpha/conf/files.alpha3
-rw-r--r--sys/arch/alpha/include/cpu.h54
-rw-r--r--sys/arch/alpha/include/fpu.h121
-rw-r--r--sys/arch/alpha/include/ieeefp.h39
-rw-r--r--sys/arch/alpha/include/pcb.h3
-rw-r--r--sys/arch/alpha/include/proc.h23
-rw-r--r--sys/arch/alpha/include/sysarch.h69
-rw-r--r--sys/lib/libkern/arch/alpha/Makefile.inc6
-rw-r--r--sys/lib/libkern/milieu.h163
-rw-r--r--sys/lib/libkern/softfloat-macros.h753
-rw-r--r--sys/lib/libkern/softfloat-specialize.h495
-rw-r--r--sys/lib/libkern/softfloat.c5506
-rw-r--r--sys/lib/libkern/softfloat.h376
24 files changed, 8706 insertions, 104 deletions
diff --git a/sys/arch/alpha/alpha/db_instruction.h b/sys/arch/alpha/alpha/db_instruction.h
index 10994cff35c..6eb6a4faf7f 100644
--- a/sys/arch/alpha/alpha/db_instruction.h
+++ b/sys/arch/alpha/alpha/db_instruction.h
@@ -1,5 +1,5 @@
-/* $OpenBSD: db_instruction.h,v 1.3 2001/08/12 12:03:02 heko Exp $ */
-/* $NetBSD: db_instruction.h,v 1.6 2000/03/20 02:54:45 thorpej Exp $ */
+/* $OpenBSD: db_instruction.h,v 1.4 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: db_instruction.h,v 1.7 2001/04/26 03:10:44 ross Exp $ */
/*
* Copyright (c) 1999 Christopher G. Demetriou. All rights reserved.
@@ -185,6 +185,16 @@ typedef union {
opcode : 6;
} float_format;
+ struct {
+ unsigned fc : 5,
+ opclass : 4,
+ src : 2,
+ rnd : 2,
+ trp : 3,
+ fb : 5,
+ fa : 5,
+ opcode : 6;
+ } float_detail;
/*
* PAL instructions just define the major opcode
@@ -223,6 +233,7 @@ typedef union {
#define op_bit 0x12 /* see BIT sub-table */
#define op_mul 0x13 /* see MUL sub-table */
/* reserved */
+#define op_fix_float 0x14 /* if ALPHA_AMASK_FIX */
#define op_vax_float 0x15 /* see FLOAT sub-table */
#define op_ieee_float 0x16 /* see FLOAT sub-table */
#define op_any_float 0x17 /* see FLOAT sub-table */
@@ -412,6 +423,12 @@ typedef union {
* Load and store operations use opcodes op_ldf..op_stt
*/
+ /* src encoding from function, 9..10 */
+#define op_src_sf 0
+#define op_src_xd 1
+#define op_src_tg 2
+#define op_src_qq 3
+
/* any FLOAT, "function" opcodes (bits 5..11) */
#define op_cvtlq 0x010
@@ -428,7 +445,7 @@ typedef union {
#define op_fcmovgt 0x02f
#define op_cvtql 0x030
#define op_cvtql_v 0x130
-#define op_cvtql_sv 0x330
+#define op_cvtql_sv 0x530
/* ieee FLOAT, "function" opcodes (bits 5..11) */
@@ -521,6 +538,7 @@ typedef union {
#define op_mult_ud 0x1e2
#define op_divt_ud 0x1e3
#define op_cvtts_ud 0x1ec
+#define op_cvtst 0x2ac
#define op_adds_suc 0x500
#define op_subs_suc 0x501
#define op_muls_suc 0x502
@@ -563,6 +581,7 @@ typedef union {
#define op_mult_sud 0x5e2
#define op_divt_sud 0x5e3
#define op_cvtts_sud 0x5ec
+#define op_cvtst_u 0x6ac
#define op_adds_suic 0x700
#define op_subs_suic 0x701
#define op_muls_suic 0x702
diff --git a/sys/arch/alpha/alpha/fp_complete.c b/sys/arch/alpha/alpha/fp_complete.c
new file mode 100644
index 00000000000..80f295050e5
--- /dev/null
+++ b/sys/arch/alpha/alpha/fp_complete.c
@@ -0,0 +1,698 @@
+/* $OpenBSD: fp_complete.c,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: fp_complete.c,v 1.5 2002/01/18 22:15:56 ross Exp $ */
+
+/*-
+ * Copyright (c) 2001 Ross Harvey
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef NO_IEEE
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+
+#include <machine/cpu.h>
+#include <machine/fpu.h>
+#include <machine/reg.h>
+#include <machine/cpu.h>
+#include <alpha/alpha/db_instruction.h>
+
+#include <lib/libkern/softfloat.h>
+
+#define TSWINSIZE 4 /* size of trap shadow window in u_int32_t units */
+
+/* Set Name Opcodes AARM C.* Symbols */
+
+#define CPUREG_CLASS (0xfUL << 0x10) /* INT[ALSM] */
+#define FPUREG_CLASS (0xfUL << 0x14) /* ITFP, FLT[ILV] */
+#define CHECKFUNCTIONCODE (1UL << 0x18) /* MISC */
+#define TRAPSHADOWBOUNDARY (1UL << 0x00 | /* PAL */\
+ 1UL << 0x19 | /* \PAL\ */\
+ 1UL << 0x1a | /* JSR */\
+ 1UL << 0x1b | /* \PAL\ */\
+ 1UL << 0x1d | /* \PAL\ */\
+ 1UL << 0x1e | /* \PAL\ */\
+ 1UL << 0x1f | /* \PAL\ */\
+ 0xffffUL << 0x30 | /* branch ops */\
+ CHECKFUNCTIONCODE)
+
+#define MAKE_FLOATXX(width, expwidth, sign, exp, msb, rest_of_frac) \
+ (u_int ## width ## _t)(sign) << ((width) - 1) |\
+ (u_int ## width ## _t)(exp) << ((width) - 1 - (expwidth)) |\
+ (u_int ## width ## _t)(msb) << ((width) - 1 - (expwidth) - 1) |\
+ (u_int ## width ## _t)(rest_of_frac)
+
+#define FLOAT32QNAN MAKE_FLOATXX(32, 8, 0, 0xff, 1, 0)
+#define FLOAT64QNAN MAKE_FLOATXX(64, 11, 0, 0x7ff, 1, 0)
+
+#define IS_SUBNORMAL(v) ((v)->exp == 0 && (v)->frac != 0)
+
+#define PREFILTER_SUBNORMAL(p,v) if ((p)->p_md.md_flags & IEEE_MAP_DMZ \
+ && IS_SUBNORMAL(v)) \
+ (v)->frac = 0; else
+
+#define POSTFILTER_SUBNORMAL(p,v) if ((p)->p_md.md_flags & IEEE_MAP_UMZ \
+ && IS_SUBNORMAL(v)) \
+ (v)->frac = 0; else
+
+ /* Alpha returns 2.0 for true, all zeroes for false. */
+
+#define CMP_RESULT(flag) ((flag) ? 4UL << 60 : 0L)
+
+ /* Move bits from sw fp_c to hw fpcr. */
+
+#define CRBLIT(sw, hw, m, offs) (((sw) & ~(m)) | ((hw) >> (offs) & (m)))
+
+/*
+ * Temporary trap shadow instrumentation. The [un]resolved counters
+ * could be kept permanently, as they provide information on whether
+ * user code has met AARM trap shadow generation requirements.
+ */
+
+struct alpha_shadow {
+ u_int64_t resolved; /* cases trigger pc found */
+ u_int64_t unresolved; /* cases it wasn't, code problems? */
+ u_int64_t scans; /* trap shadow scans */
+ u_int64_t len; /* number of instructions examined */
+ u_int64_t uop; /* bit mask of unexpected opcodes */
+ u_int64_t sqrts; /* ev6+ square root single count */
+ u_int64_t sqrtt; /* ev6+ square root double count */
+ u_int32_t ufunc; /* bit mask of unexpected functions */
+ u_int32_t max; /* max trap shadow scan */
+ u_int32_t nilswop; /* unexpected op codes */
+ u_int32_t nilswfunc; /* unexpected function codes */
+ u_int32_t nilanyop; /* this "cannot happen" */
+ u_int32_t vax; /* sigs from vax fp opcodes */
+} alpha_shadow, alpha_shadow_zero;
+
+static float64 float64_unk(float64, float64);
+static float64 compare_un(float64, float64);
+static float64 compare_eq(float64, float64);
+static float64 compare_lt(float64, float64);
+static float64 compare_le(float64, float64);
+static void cvt_qs_ts_st_gf_qf(u_int32_t, struct proc *);
+static void cvt_gd(u_int32_t, struct proc *);
+static void cvt_qt_dg_qg(u_int32_t, struct proc *);
+static void cvt_tq_gq(u_int32_t, struct proc *);
+
+static float32 (*swfp_s[])(float32, float32) = {
+ float32_add, float32_sub, float32_mul, float32_div,
+};
+
+static float64 (*swfp_t[])(float64, float64) = {
+ float64_add, float64_sub, float64_mul, float64_div,
+ compare_un, compare_eq, compare_lt, compare_le,
+ float64_unk, float64_unk, float64_unk, float64_unk
+};
+
+static void (*swfp_cvt[])(u_int32_t, struct proc *) = {
+ cvt_qs_ts_st_gf_qf, cvt_gd, cvt_qt_dg_qg, cvt_tq_gq
+};
+
+static void
+this_cannot_happen(int what_cannot_happen, int64_t bits)
+{
+ static int total;
+ alpha_instruction inst;
+ static u_int64_t reported;
+
+ inst.bits = bits;
+ ++alpha_shadow.nilswfunc;
+ if (bits != -1)
+ alpha_shadow.uop |= 1UL << inst.generic_format.opcode;
+ if (1UL << what_cannot_happen & reported)
+ return;
+ reported |= 1UL << what_cannot_happen;
+ if (total >= 1000)
+ return; /* right now, this return "cannot happen" */
+ ++total;
+ if (bits)
+ printf("FP instruction %x\n", (unsigned int)bits);
+ printf("FP event %d/%lx/%lx\n", what_cannot_happen, reported,
+ alpha_shadow.uop);
+}
+
+static __inline void
+sts(unsigned int rn, s_float *v, struct proc *p)
+{
+ alpha_sts(rn, v);
+ PREFILTER_SUBNORMAL(p, v);
+}
+
+static __inline void
+stt(unsigned int rn, t_float *v, struct proc *p)
+{
+ alpha_stt(rn, v);
+ PREFILTER_SUBNORMAL(p, v);
+}
+
+static __inline void
+lds(unsigned int rn, s_float *v, struct proc *p)
+{
+ POSTFILTER_SUBNORMAL(p, v);
+ alpha_lds(rn, v);
+}
+
+static __inline void
+ldt(unsigned int rn, t_float *v, struct proc *p)
+{
+ POSTFILTER_SUBNORMAL(p, v);
+ alpha_ldt(rn, v);
+}
+
+static float64
+compare_lt(float64 a, float64 b)
+{
+ return CMP_RESULT(float64_lt(a, b));
+}
+
+static float64
+compare_le(float64 a, float64 b)
+{
+ return CMP_RESULT(float64_le(a, b));
+}
+
+static float64
+compare_un(float64 a, float64 b)
+{
+ if (float64_is_nan(a) | float64_is_nan(b)) {
+ if (float64_is_signaling_nan(a) | float64_is_signaling_nan(b))
+ float_set_invalid();
+ return CMP_RESULT(1);
+ }
+ return CMP_RESULT(0);
+}
+
+static float64
+compare_eq(float64 a, float64 b)
+{
+ return CMP_RESULT(float64_eq(a, b));
+}
+/*
+ * A note regarding the VAX FP ops.
+ *
+ * The AARM gives us complete leeway to set or not set status flags on VAX
+ * ops, but we do any subnorm, NaN and dirty zero fixups anyway, and we set
+ * flags by IEEE rules. Many ops are common to d/f/g and s/t source types.
+ * For the purely vax ones, it's hard to imagine ever running them.
+ * (Generated VAX fp ops with completion flags? Hmm.) We are careful never
+ * to panic, assert, or print unlimited output based on a path through the
+ * decoder, so weird cases don't become security issues.
+ */
+static void
+cvt_qs_ts_st_gf_qf(u_int32_t inst_bits, struct proc *p)
+{
+ t_float tfb, tfc;
+ s_float sfb, sfc;
+ alpha_instruction inst;
+
+ inst.bits = inst_bits;
+ /*
+ * cvtst and cvtts have the same opcode, function, and source. The
+ * distinction for cvtst is hidden in the illegal modifier combinations.
+ * We decode even the non-/s modifier, so that the fix-up-always mode
+ * works on ev6 and later. The rounding bits are unused and fixed for
+ * cvtst, so we check those too.
+ */
+ switch(inst.float_format.function) {
+ case op_cvtst:
+ case op_cvtst_u:
+ sts(inst.float_detail.fb, &sfb, p);
+ tfc.i = float32_to_float64(sfb.i);
+ ldt(inst.float_detail.fc, &tfc, p);
+ return;
+ }
+ if(inst.float_detail.src == 2) {
+ stt(inst.float_detail.fb, &tfb, p);
+ sfc.i = float64_to_float32(tfb.i);
+ lds(inst.float_detail.fc, &sfc, p);
+ return;
+ }
+ /* 0: S/F */
+ /* 1: /D */
+ /* 3: Q/Q */
+ this_cannot_happen(5, inst.generic_format.opcode);
+ tfc.i = FLOAT64QNAN;
+ ldt(inst.float_detail.fc, &tfc, p);
+ return;
+}
+
+static void
+cvt_gd(u_int32_t inst_bits, struct proc *p)
+{
+ t_float tfb, tfc;
+ alpha_instruction inst;
+
+ inst.bits = inst_bits;
+ stt(inst.float_detail.fb, &tfb, p);
+ (void) float64_to_float32(tfb.i);
+ p->p_md.md_flags &= ~OPENBSD_FLAG_TO_FP_C(FP_X_IMP);
+ tfc.i = float64_add(tfb.i, (float64)0);
+ ldt(inst.float_detail.fc, &tfc, p);
+}
+
+static void
+cvt_qt_dg_qg(u_int32_t inst_bits, struct proc *p)
+{
+ t_float tfb, tfc;
+ alpha_instruction inst;
+
+ inst.bits = inst_bits;
+ switch(inst.float_detail.src) {
+ case 0: /* S/F */
+ this_cannot_happen(3, inst.bits);
+ /* fall thru */
+ case 1: /* D */
+ /* VAX dirty 0's and reserved ops => UNPREDICTABLE */
+ /* We've done what's important by just not trapping */
+ tfc.i = 0;
+ break;
+ case 2: /* T/G */
+ this_cannot_happen(4, inst.bits);
+ tfc.i = 0;
+ break;
+ case 3: /* Q/Q */
+ stt(inst.float_detail.fb, &tfb, p);
+ tfc.i = int64_to_float64(tfb.i);
+ break;
+ }
+ alpha_ldt(inst.float_detail.fc, &tfc);
+}
+/*
+ * XXX: AARM and 754 seem to disagree here, also, beware of softfloat's
+ * unfortunate habit of always returning the nontrapping result.
+ * XXX: there are several apparent AARM/AAH disagreements, as well as
+ * the issue of trap handler pc and trapping results.
+ */
+static void
+cvt_tq_gq(u_int32_t inst_bits, struct proc *p)
+{
+ t_float tfb, tfc;
+ alpha_instruction inst;
+
+ inst.bits = inst_bits;
+ stt(inst.float_detail.fb, &tfb, p);
+ tfc.i = float64_to_int64(tfb.i);
+ alpha_ldt(inst.float_detail.fc, &tfc); /* yes, ldt */
+}
+
+static u_int64_t
+fp_c_to_fpcr_1(u_int64_t fpcr, u_int64_t fp_c)
+{
+ u_int64_t disables;
+
+ /*
+ * It's hard to arrange for conforming bit fields, because the FP_C
+ * and the FPCR are both architected, with specified (and relatively
+ * scrambled) bit numbers. Defining an internal unscrambled FP_C
+ * wouldn't help much, because every user exception requires the
+ * architected bit order in the sigcontext.
+ *
+ * Programs that fiddle with the fpcr exception bits (instead of fp_c)
+ * will lose, because those bits can be and usually are subsetted;
+ * the official home is in the fp_c. Furthermore, the kernel puts
+ * phony enables (it lies :-) in the fpcr in order to get control when
+ * it is necessary to initially set a sticky bit.
+ */
+
+ fpcr &= FPCR_DYN(3);
+
+ /*
+ * enable traps = case where flag bit is clear OR program wants a trap
+ * enables = ~flags | mask
+ * disables = ~(~flags | mask)
+ * disables = flags & ~mask. Thank you, Augustus De Morgan (1806-1871)
+ */
+ disables = FP_C_TO_OPENBSD_FLAG(fp_c) & ~FP_C_TO_OPENBSD_MASK(fp_c);
+
+ fpcr |= (disables & (FP_X_IMP | FP_X_UFL)) << (61 - 3);
+ fpcr |= (disables & (FP_X_OFL | FP_X_DZ | FP_X_INV)) << (49 - 0);
+
+# if !(FP_X_INV == 1 && FP_X_DZ == 2 && FP_X_OFL == 4 && \
+ FP_X_UFL == 8 && FP_X_IMP == 16 && FP_X_IOV == 32 && \
+ FP_X_UFL << (61 - 3) == FPCR_UNFD && \
+ FP_X_IMP << (61 - 3) == FPCR_INED && \
+ FP_X_OFL << (49 - 0) == FPCR_OVFD)
+# error "Assertion failed"
+ /*
+ * We don't care about the other built-in bit numbers because they
+ * have been architecturally specified.
+ */
+# endif
+
+ fpcr |= fp_c & FP_C_MIRRORED << (FPCR_MIR_START - FP_C_MIR_START);
+ fpcr |= (fp_c & IEEE_MAP_DMZ) << 36;
+ if (fp_c & FP_C_MIRRORED)
+ fpcr |= FPCR_SUM;
+ if (fp_c & IEEE_MAP_UMZ)
+ fpcr |= FPCR_UNDZ | FPCR_UNFD;
+ fpcr |= (~fp_c & IEEE_TRAP_ENABLE_DNO) << 41;
+ return fpcr;
+}
+
+static void
+fp_c_to_fpcr(struct proc *p)
+{
+ alpha_write_fpcr(fp_c_to_fpcr_1(alpha_read_fpcr(), p->p_md.md_flags));
+}
+
+void
+alpha_write_fp_c(struct proc *p, u_int64_t fp_c)
+{
+ u_int64_t md_flags;
+
+ fp_c &= MDP_FP_C;
+ md_flags = p->p_md.md_flags;
+ if ((md_flags & MDP_FP_C) == fp_c)
+ return;
+ p->p_md.md_flags = (md_flags & ~MDP_FP_C) | fp_c;
+ alpha_enable_fp(p, 1);
+ fp_c_to_fpcr(p);
+ alpha_pal_wrfen(0);
+}
+
+u_int64_t
+alpha_read_fp_c(struct proc *p)
+{
+ /*
+ * A possibly-desireable EV6-specific optimization would deviate from
+ * the Alpha Architecture spec and keep some FP_C bits in the FPCR,
+ * but in a transparent way. Some of the code for that would need to
+ * go right here.
+ */
+ return p->p_md.md_flags & MDP_FP_C;
+}
+
+static float64
+float64_unk(float64 a, float64 b)
+{
+ return 0;
+}
+
+/*
+ * The real function field encodings for IEEE and VAX FP instructions.
+ *
+ * Since there is only one operand type field, the cvtXX instructions
+ * require a variety of special cases, and these have to be analyzed as
+ * they don't always fit into the field descriptions in AARM section I.
+ *
+ * Lots of staring at bits in the appendix shows what's really going on.
+ *
+ * | |
+ * 15 14 13|12 11 10 09|08 07 06 05
+ * --------======------============
+ * TRAP : RND : SRC : FUNCTION :
+ * 0 0 0:. . .:. . . . . . . . . . . . Imprecise
+ * 0 0 1|. . .:. . . . . . . . . . . ./U underflow enable (if FP output)
+ * | /V overfloat enable (if int output)
+ * 0 1 0:. . .:. . . . . . . . . . . ."Unsupported", but used for CVTST
+ * 0 1 1|. . .:. . . . . . . . . . . . Unsupported
+ * 1 0 0:. . .:. . . . . . . . . . . ./S software completion (VAX only)
+ * 1 0 1|. . .:. . . . . . . . . . . ./SU
+ * | /SV
+ * 1 1 0:. . .:. . . . . . . . . . . ."Unsupported", but used for CVTST/S
+ * 1 1 1|. . .:. . . . . . . . . . . ./SUI (if FP output) (IEEE only)
+ * | /SVI (if int output) (IEEE only)
+ * S I UV: In other words: bits 15:13 are S:I:UV, except that _usually_
+ * | not all combinations are valid.
+ * | |
+ * 15 14 13|12 11 10 09|08 07 06 05
+ * --------======------============
+ * TRAP : RND : SRC : FUNCTION :
+ * | 0 0 . . . . . . . . . . . ./C Chopped
+ * : 0 1 . . . . . . . . . . . ./M Minus Infinity
+ * | 1 0 . . . . . . . . . . . . Normal
+ * : 1 1 . . . . . . . . . . . ./D Dynamic (in FPCR: Plus Infinity)
+ * | |
+ * 15 14 13|12 11 10 09|08 07 06 05
+ * --------======------============
+ * TRAP : RND : SRC : FUNCTION :
+ * 0 0. . . . . . . . . . S/F
+ * 0 1. . . . . . . . . . -/D
+ * 1 0. . . . . . . . . . T/G
+ * 1 1. . . . . . . . . . Q/Q
+ * | |
+ * 15 14 13|12 11 10 09|08 07 06 05
+ * --------======------============
+ * TRAP : RND : SRC : FUNCTION :
+ * 0 0 0 0 . . . addX
+ * 0 0 0 1 . . . subX
+ * 0 0 1 0 . . . mulX
+ * 0 0 1 1 . . . divX
+ * 0 1 0 0 . . . cmpXun
+ * 0 1 0 1 . . . cmpXeq
+ * 0 1 1 0 . . . cmpXlt
+ * 0 1 1 1 . . . cmpXle
+ * 1 0 0 0 . . . reserved
+ * 1 0 0 1 . . . reserved
+ * 1 0 1 0 . . . sqrt[fg] (op_fix, not exactly "vax")
+ * 1 0 1 1 . . . sqrt[st] (op_fix, not exactly "ieee")
+ * 1 1 0 0 . . . cvtXs/f (cvt[qt]s, cvtst(!), cvt[gq]f)
+ * 1 1 0 1 . . . cvtXd (vax only)
+ * 1 1 1 0 . . . cvtXt/g (cvtqt, cvt[dq]g only)
+ * 1 1 1 1 . . . cvtXq/q (cvttq, cvtgq)
+ * | |
+ * 15 14 13|12 11 10 09|08 07 06 05 the twilight zone
+ * --------======------============
+ * TRAP : RND : SRC : FUNCTION :
+ * /s /i /u x x 1 0 1 1 0 0 . . . cvtts, /siu only 0, 1, 5, 7
+ * 0 1 0 1 0 1 0 1 1 0 0 . . . cvtst (src == T (!)) 2ac NOT /S
+ * 1 1 0 1 0 1 0 1 1 0 0 . . . cvtst/s (src == T (!)) 6ac
+ * x 0 x x x x 0 1 1 1 1 . . . cvttq/_ (src == T)
+ */
+
+static void
+alpha_fp_interpret(alpha_instruction *pc, struct proc *p, u_int64_t bits)
+{
+ s_float sfa, sfb, sfc;
+ t_float tfa, tfb, tfc;
+ alpha_instruction inst;
+
+ inst.bits = bits;
+ switch(inst.generic_format.opcode) {
+ default:
+ /* this "cannot happen" */
+ this_cannot_happen(2, inst.bits);
+ return;
+ case op_any_float:
+ if (inst.float_format.function == op_cvtql_sv ||
+ inst.float_format.function == op_cvtql_v) {
+ alpha_stt(inst.float_detail.fb, &tfb);
+ sfc.i = (int64_t)tfb.i >= 0L ? INT_MAX : INT_MIN;
+ alpha_lds(inst.float_detail.fc, &sfc);
+ float_raise(FP_X_INV);
+ } else {
+ ++alpha_shadow.nilanyop;
+ this_cannot_happen(3, inst.bits);
+ }
+ break;
+ case op_vax_float:
+ ++alpha_shadow.vax; /* fall thru */
+ case op_ieee_float:
+ case op_fix_float:
+ switch(inst.float_detail.src) {
+ case op_src_sf:
+ sts(inst.float_detail.fb, &sfb, p);
+ if (inst.float_detail.opclass == 10)
+ sfc.i = float32_sqrt(sfb.i);
+ else if (inst.float_detail.opclass & ~3) {
+ this_cannot_happen(1, inst.bits);
+ sfc.i = FLOAT32QNAN;
+ } else {
+ sts(inst.float_detail.fa, &sfa, p);
+ sfc.i = (*swfp_s[inst.float_detail.opclass])(
+ sfa.i, sfb.i);
+ }
+ lds(inst.float_detail.fc, &sfc, p);
+ break;
+ case op_src_xd:
+ case op_src_tg:
+ if (inst.float_detail.opclass >= 12)
+ (*swfp_cvt[inst.float_detail.opclass - 12])(
+ inst.bits, p);
+ else {
+ stt(inst.float_detail.fb, &tfb, p);
+ if (inst.float_detail.opclass == 10)
+ tfc.i = float64_sqrt(tfb.i);
+ else {
+ stt(inst.float_detail.fa, &tfa, p);
+ tfc.i = (*swfp_t[inst.float_detail
+ .opclass])(tfa.i, tfb.i);
+ }
+ ldt(inst.float_detail.fc, &tfc, p);
+ }
+ break;
+ case op_src_qq:
+ float_raise(FP_X_IMP);
+ break;
+ }
+ }
+}
+
+static int
+alpha_fp_complete_at(alpha_instruction *trigger_pc, struct proc *p,
+ u_int64_t *ucode)
+{
+ int needsig;
+ alpha_instruction inst;
+ u_int64_t rm, fpcr, orig_fpcr;
+ u_int64_t orig_flags, new_flags, changed_flags, md_flags;
+
+ if (__predict_false(copyin(trigger_pc, &inst, sizeof inst))) {
+ this_cannot_happen(6, -1);
+ return SIGSEGV;
+ }
+ alpha_enable_fp(p, 1);
+ /*
+ * If necessary, lie about the dynamic rounding mode so emulation
+ * software need go to only one place for it, and so we don't have to
+ * lock any memory locations or pass a third parameter to every
+ * SoftFloat entry point.
+ */
+ orig_fpcr = fpcr = alpha_read_fpcr();
+ rm = inst.float_detail.rnd;
+ if (__predict_false(rm != 3 /* dynamic */ && rm != (fpcr >> 58 & 3))) {
+ fpcr = (fpcr & ~FPCR_DYN(3)) | FPCR_DYN(rm);
+ alpha_write_fpcr(fpcr);
+ }
+ orig_flags = FP_C_TO_OPENBSD_FLAG(p->p_md.md_flags);
+
+ alpha_fp_interpret(trigger_pc, p, inst.bits);
+
+ md_flags = p->p_md.md_flags;
+
+ new_flags = FP_C_TO_OPENBSD_FLAG(md_flags);
+ changed_flags = orig_flags ^ new_flags;
+ KASSERT((orig_flags | changed_flags) == new_flags); /* panic on 1->0 */
+ alpha_write_fpcr(fp_c_to_fpcr_1(orig_fpcr, md_flags));
+ needsig = changed_flags & FP_C_TO_OPENBSD_MASK(md_flags);
+ alpha_pal_wrfen(0);
+ if (__predict_false(needsig)) {
+ *ucode = needsig;
+ return SIGFPE;
+ }
+ return 0;
+}
+
+int
+alpha_fp_complete(u_long a0, u_long a1, struct proc *p, u_int64_t *ucode)
+{
+ int t;
+ int sig;
+ u_int64_t op_class;
+ alpha_instruction inst;
+ /* "trigger_pc" is Compaq's term for the earliest faulting op */
+ alpha_instruction *trigger_pc, *usertrap_pc;
+ alpha_instruction *pc, *win_begin, tsw[TSWINSIZE];
+
+ sig = SIGFPE;
+ pc = (alpha_instruction *)p->p_md.md_tf->tf_regs[FRAME_PC];
+ trigger_pc = pc - 1; /* for ALPHA_AMASK_PAT case */
+ if (cpu_amask & ALPHA_AMASK_PAT) {
+ if (a0 & 1 || alpha_fp_sync_complete) {
+ sig = alpha_fp_complete_at(trigger_pc, p, ucode);
+ goto done;
+ }
+ }
+ *ucode = a0;
+ if (!(a0 & 1))
+ return sig;
+/*
+ * At this point we are somwhere in the trap shadow of one or more instruc-
+ * tions that have trapped with software completion specified. We have a mask
+ * of the registers written by trapping instructions.
+ *
+ * Now step backwards through the trap shadow, clearing bits in the
+ * destination write mask until the trigger instruction is found, and
+ * interpret this one instruction in SW. If a SIGFPE is not required, back up
+ * the PC until just after this instruction and restart. This will execute all
+ * trap shadow instructions between the trigger pc and the trap pc twice.
+ *
+ * If a SIGFPE is generated from the OSF1 emulation, back up one more
+ * instruction to the trigger pc itself. Native binaries don't because it
+ * is non-portable and completely defeats the intended purpose of IEEE
+ * traps -- for example, to count the number of exponent wraps for a later
+ * correction.
+ */
+ trigger_pc = 0;
+ win_begin = pc;
+ ++alpha_shadow.scans;
+ t = alpha_shadow.len;
+ for (--pc; a1; --pc) {
+ ++alpha_shadow.len;
+ if (pc < win_begin) {
+ win_begin = pc - TSWINSIZE + 1;
+ if (copyin(win_begin, tsw, sizeof tsw)) {
+ /* sigh, try to get just one */
+ win_begin = pc;
+ if (copyin(win_begin, tsw, 4))
+ return SIGSEGV;
+ }
+ }
+ assert(win_begin <= pc && !((long)pc & 3));
+ inst = tsw[pc - win_begin];
+ op_class = 1UL << inst.generic_format.opcode;
+ if (op_class & FPUREG_CLASS) {
+ a1 &= ~(1UL << (inst.operate_generic_format.rc + 32));
+ trigger_pc = pc;
+ } else if (op_class & CPUREG_CLASS) {
+ a1 &= ~(1UL << inst.operate_generic_format.rc);
+ trigger_pc = pc;
+ } else if (op_class & TRAPSHADOWBOUNDARY) {
+ if (op_class & CHECKFUNCTIONCODE) {
+ if (inst.mem_format.displacement == op_trapb ||
+ inst.mem_format.displacement == op_excb)
+ break; /* code breaks AARM rules */
+ } else
+ break; /* code breaks AARM rules */
+ }
+ /* Some shadow-safe op, probably load, store, or FPTI class */
+ }
+ t = alpha_shadow.len - t;
+ if (t > alpha_shadow.max)
+ alpha_shadow.max = t;
+ if (__predict_true(trigger_pc != 0 && a1 == 0)) {
+ ++alpha_shadow.resolved;
+ sig = alpha_fp_complete_at(trigger_pc, p, ucode);
+ } else {
+ ++alpha_shadow.unresolved;
+ return sig;
+ }
+done:
+ if (sig) {
+ usertrap_pc = trigger_pc + 1;
+ p->p_md.md_tf->tf_regs[FRAME_PC] = (unsigned long)usertrap_pc;
+ return sig;
+ }
+ return 0;
+}
+#endif
diff --git a/sys/arch/alpha/alpha/locore.s b/sys/arch/alpha/alpha/locore.s
index 8c1d9ddc315..4d38766d884 100644
--- a/sys/arch/alpha/alpha/locore.s
+++ b/sys/arch/alpha/alpha/locore.s
@@ -1,5 +1,5 @@
-/* $OpenBSD: locore.s,v 1.17 2001/09/30 13:08:45 art Exp $ */
-/* $NetBSD: locore.s,v 1.80 2000/09/04 00:31:59 thorpej Exp $ */
+/* $OpenBSD: locore.s,v 1.18 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: locore.s,v 1.94 2001/04/26 03:10:44 ross Exp $ */
/*-
* Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
@@ -1906,6 +1906,63 @@ longjmp_botchmsg:
.text
END(longjmp)
+/*
+ * void sts(int rn, u_int32_t *rval);
+ * void stt(int rn, u_int64_t *rval);
+ * void lds(int rn, u_int32_t *rval);
+ * void ldt(int rn, u_int64_t *rval);
+ */
+
+#ifndef NO_IEEE
+.macro make_freg_util name, op
+ LEAF(alpha_\name, 2)
+ and a0, 0x1f, a0
+ s8addq a0, pv, pv
+ addq pv, 1f - alpha_\name, pv
+ jmp (pv)
+1:
+ rn = 0
+ .rept 32
+ \op $f0 + rn, 0(a1)
+ RET
+ rn = rn + 1
+ .endr
+ END(alpha_\name)
+.endm
+/*
+LEAF(alpha_sts, 2)
+LEAF(alpha_stt, 2)
+LEAF(alpha_lds, 2)
+LEAF(alpha_ldt, 2)
+ */
+ make_freg_util sts, sts
+ make_freg_util stt, stt
+ make_freg_util lds, lds
+ make_freg_util ldt, ldt
+
+LEAF(alpha_read_fpcr, 0); f30save = 0; rettmp = 8; framesz = 16
+ lda sp, -framesz(sp)
+ stt $f30, f30save(sp)
+ mf_fpcr $f30
+ stt $f30, rettmp(sp)
+ ldt $f30, f30save(sp)
+ ldq v0, rettmp(sp)
+ lda sp, framesz(sp)
+ RET
+END(alpha_read_fpcr)
+
+LEAF(alpha_write_fpcr, 1); f30save = 0; fpcrtmp = 8; framesz = 16
+ lda sp, -framesz(sp)
+ stq a0, fpcrtmp(sp)
+ stt $f30, f30save(sp)
+ ldt $f30, fpcrtmp(sp)
+ mt_fpcr $f30
+ ldt $f30, f30save(sp)
+ lda sp, framesz(sp)
+ RET
+END(alpha_write_fpcr)
+#endif
+
#if 0
NESTED(transfer_check,0,0,ra,0,0)
CALL(U_need_2_run_config)
diff --git a/sys/arch/alpha/alpha/machdep.c b/sys/arch/alpha/alpha/machdep.c
index 9918d85d027..9b56830e56b 100644
--- a/sys/arch/alpha/alpha/machdep.c
+++ b/sys/arch/alpha/alpha/machdep.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: machdep.c,v 1.70 2002/04/25 00:53:58 miod Exp $ */
+/* $OpenBSD: machdep.c,v 1.71 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: machdep.c,v 1.210 2000/06/01 17:12:38 thorpej Exp $ */
/*-
@@ -90,6 +90,9 @@
#include <sys/core.h>
#include <sys/kcore.h>
#include <machine/kcore.h>
+#ifndef NO_IEEE
+#include <machine/fpu.h>
+#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
@@ -113,6 +116,9 @@
#include <machine/rpb.h>
#include <machine/prom.h>
#include <machine/cpuconf.h>
+#ifndef NO_IEEE
+#include <machine/ieeefp.h>
+#endif
#include <dev/pci/pcivar.h>
@@ -201,6 +207,9 @@ struct platform platform;
int alpha_unaligned_print = 1; /* warn about unaligned accesses */
int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
int alpha_unaligned_sigbus = 1; /* SIGBUS on fixed-up accesses */
+#ifndef NO_IEEE
+int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
+#endif
/*
* XXX This should be dynamically sized, but we have the chicken-egg problem!
@@ -1597,19 +1606,18 @@ sendsig(catcher, sig, mask, code, type, val)
ksc.sc_regs[R_SP] = alpha_pal_rdusp();
/* save the floating-point state, if necessary, then copy it. */
- if (p == fpcurproc) {
- alpha_pal_wrfen(1);
- savefpstate(&p->p_addr->u_pcb.pcb_fp);
- alpha_pal_wrfen(0);
- fpcurproc = NULL;
- }
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 1);
ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
- bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
+ memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
sizeof(struct fpreg));
- ksc.sc_fp_control = 0; /* XXX ? */
- bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
- bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
-
+#ifndef NO_IEEE
+ ksc.sc_fp_control = alpha_read_fp_c(p);
+#else
+ ksc.sc_fp_control = 0;
+#endif
+ memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
+ memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
#ifdef COMPAT_OSF1
/*
@@ -1713,11 +1721,14 @@ sys_sigreturn(p, v, retval)
alpha_pal_wrusp(ksc.sc_regs[R_SP]);
/* XXX ksc.sc_ownedfp ? */
- if (p == fpcurproc)
- fpcurproc = NULL;
- bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 0);
+ memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
sizeof(struct fpreg));
- /* XXX ksc.sc_fp_control ? */
+#ifndef NO_IEEE
+ p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
+ p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
+#endif
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW)
@@ -1772,10 +1783,17 @@ cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
case CPU_BOOTED_KERNEL:
return (sysctl_rdstring(oldp, oldlenp, newp,
bootinfo.booted_kernel));
-
+
case CPU_CHIPSET:
return (alpha_sysctl_chipset(name + 1, namelen - 1, oldp,
oldlenp));
+
+#ifndef NO_IEEE
+ case CPU_FP_SYNC_COMPLETE:
+ return (sysctl_int(oldp, oldlenp, newp, newlen,
+ &alpha_fp_sync_complete));
+#endif
+
default:
return (EOPNOTSUPP);
}
@@ -1812,8 +1830,6 @@ setregs(p, pack, stack, retval)
bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
#endif
bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
-#define FP_RN 2 /* XXX */
- p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
alpha_pal_wrusp(stack);
tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
@@ -1823,10 +1839,96 @@ setregs(p, pack, stack, retval)
tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
p->p_md.md_flags &= ~MDP_FPUSED;
- if (fpcurproc == p)
- fpcurproc = NULL;
+#ifndef NO_IEEE
+ if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
+ p->p_md.md_flags &= ~MDP_FP_C;
+ p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
+ }
+#endif
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 0);
+}
+
+/*
+ * Release the FPU.
+ */
+void
+fpusave_cpu(struct cpu_info *ci, int save)
+{
+ struct proc *p;
+#if defined(MULTIPROCESSOR)
+ int s;
+#endif
+
+ KDASSERT(ci == curcpu());
+
+#if defined(MULTIPROCESSOR)
+ atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
+#endif
- retval[0] = retval[1] = 0;
+ p = ci->ci_fpcurproc;
+ if (p == NULL)
+ goto out;
+
+ if (save) {
+ alpha_pal_wrfen(1);
+ savefpstate(&p->p_addr->u_pcb.pcb_fp);
+ }
+
+ alpha_pal_wrfen(0);
+
+ p->p_addr->u_pcb.pcb_fpcpu = NULL;
+ ci->ci_fpcurproc = NULL;
+
+out:
+#if defined(MULTIPROCESSOR)
+ atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
+#endif
+ return;
+}
+
+/*
+ * Synchronize FP state for this process.
+ */
+void
+fpusave_proc(struct proc *p, int save)
+{
+ struct cpu_info *ci = curcpu();
+ struct cpu_info *oci;
+#if defined(MULTIPROCESSOR)
+ u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
+ int s, spincount;
+#endif
+
+ KDASSERT(p->p_addr != NULL);
+ KDASSERT(p->p_flag & P_INMEM);
+
+ oci = p->p_addr->u_pcb.pcb_fpcpu;
+ if (oci == NULL) {
+ return;
+ }
+
+#if defined(MULTIPROCESSOR)
+ if (oci == ci) {
+ KASSERT(ci->ci_fpcurproc == p);
+ fpusave_cpu(ci, save);
+ return;
+ }
+
+ KASSERT(oci->ci_fpcurproc == p);
+ alpha_send_ipi(oci->ci_cpuid, ipi);
+
+ spincount = 0;
+ while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
+ spincount++;
+ delay(1000); /* XXX */
+ if (spincount > 10000)
+ panic("fpsave ipi didn't");
+ }
+#else
+ KASSERT(ci->ci_fpcurproc == p);
+ fpusave_cpu(ci, save);
+#endif /* MULTIPROCESSOR */
}
int
diff --git a/sys/arch/alpha/alpha/process_machdep.c b/sys/arch/alpha/alpha/process_machdep.c
index ed6817e9bcd..a99c685acfb 100644
--- a/sys/arch/alpha/alpha/process_machdep.c
+++ b/sys/arch/alpha/alpha/process_machdep.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: process_machdep.c,v 1.8 2002/03/14 06:04:11 mickey Exp $ */
+/* $OpenBSD: process_machdep.c,v 1.9 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: process_machdep.c,v 1.7 1996/07/11 20:14:21 cgd Exp $ */
/*-
@@ -154,8 +154,8 @@ process_write_fpregs(p, regs)
struct fpreg *regs;
{
- if (p == fpcurproc)
- fpcurproc = NULL;
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 1);
bcopy(regs, process_fpframe(p), sizeof(struct fpreg));
return (0);
@@ -333,6 +333,8 @@ process_sstep(struct proc *p, int sstep)
count = 1;
}
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 0);
p->p_md.md_sstep[0].addr = addr[0];
error = ptrace_set_bpt(p, &p->p_md.md_sstep[0]);
if (error)
diff --git a/sys/arch/alpha/alpha/sys_machdep.c b/sys/arch/alpha/alpha/sys_machdep.c
index 5a2bc9f6f28..587cd20986e 100644
--- a/sys/arch/alpha/alpha/sys_machdep.c
+++ b/sys/arch/alpha/alpha/sys_machdep.c
@@ -1,5 +1,41 @@
-/* $OpenBSD: sys_machdep.c,v 1.5 1997/01/24 19:56:44 niklas Exp $ */
-/* $NetBSD: sys_machdep.c,v 1.5 1996/11/13 22:20:57 cgd Exp $ */
+/* $OpenBSD: sys_machdep.c,v 1.6 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: sys_machdep.c,v 1.14 2002/01/14 00:53:16 thorpej Exp $ */
+
+/*-
+ * Copyright (c) 2000 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Jason R. Thorpe.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
/*
* Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
@@ -30,22 +66,92 @@
#include <sys/param.h>
#include <sys/systm.h>
+#ifndef NO_IEEE
+#include <sys/device.h>
+#include <sys/proc.h>
+#endif
#include <sys/mount.h>
#include <sys/syscallargs.h>
+#ifndef NO_IEEE
+#include <machine/fpu.h>
+#include <machine/sysarch.h>
+
+#include <dev/pci/pcivar.h>
+
int
-sys_sysarch(p, v, retval)
- struct proc *p;
- void *v;
- register_t *retval;
+sys_sysarch(struct proc *p, void *v, register_t *retval)
{
-#if 0
struct sys_sysarch_args /* {
syscallarg(int) op;
- syscallarg(char *) parms;
+ syscallarg(void *) parms;
} */ *uap = v;
-#endif
+ int error = 0;
+
+ switch(SCARG(uap, op)) {
+ case ALPHA_FPGETMASK:
+ *retval = FP_C_TO_OPENBSD_MASK(p->p_md.md_flags);
+ break;
+ case ALPHA_FPGETSTICKY:
+ *retval = FP_C_TO_OPENBSD_FLAG(p->p_md.md_flags);
+ break;
+ case ALPHA_FPSETMASK:
+ case ALPHA_FPSETSTICKY:
+ {
+ fp_except m;
+ u_int64_t md_flags;
+ struct alpha_fp_except_args args;
+
+ error = copyin(SCARG(uap, parms), &args, sizeof args);
+ if (error)
+ return error;
+ m = args.mask;
+ md_flags = p->p_md.md_flags;
+ switch (SCARG(uap, op)) {
+ case ALPHA_FPSETMASK:
+ *retval = FP_C_TO_OPENBSD_MASK(md_flags);
+ md_flags = SET_FP_C_MASK(md_flags, m);
+ break;
+ case ALPHA_FPSETSTICKY:
+ *retval = FP_C_TO_OPENBSD_FLAG(md_flags);
+ md_flags = SET_FP_C_FLAG(md_flags, m);
+ break;
+ }
+ alpha_write_fp_c(p, md_flags);
+ break;
+ }
+ case ALPHA_GET_FP_C:
+ {
+ struct alpha_fp_c_args args;
+
+ args.fp_c = alpha_read_fp_c(p);
+ error = copyout(&args, SCARG(uap, parms), sizeof args);
+ break;
+ }
+ case ALPHA_SET_FP_C:
+ {
+ struct alpha_fp_c_args args;
+
+ error = copyin(SCARG(uap, parms), &args, sizeof args);
+ if (error)
+ return (error);
+ if ((args.fp_c >> 63) != 0)
+ args.fp_c |= IEEE_INHERIT;
+ alpha_write_fp_c(p, args.fp_c);
+ break;
+ }
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ return (error);
+}
+#else
+int sys_sysarch(struct proc *p, void *v, register_t *retval)
+{
return (ENOSYS);
}
+#endif
diff --git a/sys/arch/alpha/alpha/trap.c b/sys/arch/alpha/alpha/trap.c
index d6722a9c831..d6d06f2521e 100644
--- a/sys/arch/alpha/alpha/trap.c
+++ b/sys/arch/alpha/alpha/trap.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: trap.c,v 1.32 2002/03/16 03:21:28 art Exp $ */
+/* $OpenBSD: trap.c,v 1.33 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: trap.c,v 1.52 2000/05/24 16:48:33 thorpej Exp $ */
/*-
@@ -102,6 +102,9 @@
#include <sys/user.h>
#include <sys/syscall.h>
#include <sys/buf.h>
+#ifndef NO_IEEE
+#include <sys/device.h>
+#endif
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
@@ -114,7 +117,7 @@
#ifdef DDB
#include <machine/db_machdep.h>
#endif
-#include <alpha/alpha/db_instruction.h> /* for handle_opdec() */
+#include <alpha/alpha/db_instruction.h>
#ifdef COMPAT_OSF1
#include <compat/osf1/osf1_syscall.h>
@@ -135,6 +138,11 @@ int unaligned_fixup(unsigned long, unsigned long,
unsigned long, struct proc *);
int handle_opdec(struct proc *p, u_int64_t *ucodep);
+#ifndef NO_IEEE
+struct device fpevent_use;
+struct device fpevent_reuse;
+#endif
+
static void printtrap(const unsigned long, const unsigned long,
const unsigned long, const unsigned long, struct trapframe *, int, int);
@@ -331,21 +339,19 @@ trap(a0, a1, a2, entry, framep)
goto dopanic;
case ALPHA_KENTRY_ARITH:
- /*
- * If user-land, just give a SIGFPE. Should do
- * software completion and IEEE handling, if the
- * user has requested that.
+ /*
+ * Resolve trap shadows, interpret FP ops requiring infinities,
+ * NaNs, or denorms, and maintain FPCR corrections.
*/
if (user) {
-#ifdef COMPAT_OSF1
- extern struct emul emul_osf1;
-
- /* just punt on OSF/1. XXX THIS IS EVIL */
- if (p->p_emul == &emul_osf1)
+#ifndef NO_IEEE
+ i = alpha_fp_complete(a0, a1, p, &ucode);
+ if (i == 0)
goto out;
-#endif
+#else
i = SIGFPE;
- ucode = a0; /* exception summary */
+ ucode = a0;
+#endif
break;
}
@@ -401,6 +407,10 @@ trap(a0, a1, a2, entry, framep)
break;
case ALPHA_IF_CODE_FEN:
+#ifndef NO_IEEE
+ alpha_enable_fp(p, 0);
+ alpha_pal_wrfen(0);
+#else
/*
* on exit from the kernel, if proc == fpcurproc,
* FP is enabled.
@@ -410,7 +420,7 @@ trap(a0, a1, a2, entry, framep)
p);
goto dopanic;
}
-
+
alpha_pal_wrfen(1);
if (fpcurproc)
savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp);
@@ -419,6 +429,7 @@ trap(a0, a1, a2, entry, framep)
alpha_pal_wrfen(0);
p->p_md.md_flags |= MDP_FPUSED;
+#endif
goto out;
default:
@@ -751,6 +762,45 @@ child_return(arg)
#endif
}
+#ifndef NO_IEEE
+/*
+ * Set the float-point enable for the current process, and return
+ * the FPU context to the named process. If check == 0, it is an
+ * error for the named process to already be fpcurproc.
+ */
+void
+alpha_enable_fp(struct proc *p, int check)
+{
+ struct cpu_info *ci = curcpu();
+
+ if (check && ci->ci_fpcurproc == p) {
+ alpha_pal_wrfen(1);
+ return;
+ }
+ if (ci->ci_fpcurproc == p)
+ panic("trap: fp disabled for fpcurproc == %p", p);
+
+ if (ci->ci_fpcurproc != NULL)
+ fpusave_cpu(ci, 1);
+
+ KDASSERT(ci->ci_fpcurproc == NULL);
+
+#if defined(MULTIPROCESSOR)
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 1);
+#else
+ KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
+#endif
+
+ p->p_addr->u_pcb.pcb_fpcpu = ci;
+ ci->ci_fpcurproc = p;
+
+ p->p_md.md_flags |= MDP_FPUSED;
+ alpha_pal_wrfen(1);
+ restorefpstate(&p->p_addr->u_pcb.pcb_fp);
+}
+#endif
+
/*
* Process an asynchronous software trap.
* This is relatively easy.
@@ -804,12 +854,8 @@ const static int reg_to_framereg[32] = {
(&(p)->p_addr->u_pcb.pcb_fp.fpr_regs[(reg)])
#define dump_fp_regs() \
- if (p == fpcurproc) { \
- alpha_pal_wrfen(1); \
- savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp); \
- alpha_pal_wrfen(0); \
- fpcurproc = NULL; \
- }
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL) \
+ fpusave_proc(p, 1);
#define unaligned_load(storage, ptrf, mod) \
if (copyin((caddr_t)va, &(storage), sizeof (storage)) != 0) \
@@ -957,9 +1003,6 @@ Gfloat_reg_cvt(input)
}
#endif /* FIX_UNALIGNED_VAX_FP */
-extern int alpha_unaligned_print, alpha_unaligned_fix;
-extern int alpha_unaligned_sigbus;
-
struct unaligned_fixup_data {
const char *type; /* opcode name */
int fixable; /* fixable, 0 if fixup not supported */
diff --git a/sys/arch/alpha/alpha/vm_machdep.c b/sys/arch/alpha/alpha/vm_machdep.c
index 05d78106c69..afab58a822f 100644
--- a/sys/arch/alpha/alpha/vm_machdep.c
+++ b/sys/arch/alpha/alpha/vm_machdep.c
@@ -1,4 +1,4 @@
-/* $OpenBSD: vm_machdep.c,v 1.27 2001/12/08 02:24:05 art Exp $ */
+/* $OpenBSD: vm_machdep.c,v 1.28 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: vm_machdep.c,v 1.55 2000/03/29 03:49:48 simonb Exp $ */
/*
@@ -68,12 +68,9 @@ cpu_coredump(p, vp, cred, chdr)
cpustate.md_tf = *p->p_md.md_tf;
cpustate.md_tf.tf_regs[FRAME_SP] = alpha_pal_rdusp(); /* XXX */
if (p->p_md.md_flags & MDP_FPUSED) {
- if (p == fpcurproc) {
- alpha_pal_wrfen(1);
- savefpstate(&cpustate.md_fpstate);
- alpha_pal_wrfen(0);
- } else
- cpustate.md_fpstate = p->p_addr->u_pcb.pcb_fp;
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 1);
+ cpustate.md_fpstate = p->p_addr->u_pcb.pcb_fp;
} else
bzero(&cpustate.md_fpstate, sizeof(cpustate.md_fpstate));
@@ -108,8 +105,8 @@ cpu_exit(p)
struct proc *p;
{
- if (p == fpcurproc)
- fpcurproc = NULL;
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 0);
/*
* Deactivate the exiting address space before the vmspace
@@ -150,7 +147,12 @@ cpu_fork(p1, p2, stack, stacksize, func, arg)
struct user *up = p2->p_addr;
p2->p_md.md_tf = p1->p_md.md_tf;
+
+#ifndef NO_IEEE
+ p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_FP_C);
+#else
p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED;
+#endif
/*
* Cache the physical address of the pcb, so we can
@@ -162,11 +164,8 @@ cpu_fork(p1, p2, stack, stacksize, func, arg)
* Copy floating point state from the FP chip to the PCB
* if this process has state stored there.
*/
- if (p1 == fpcurproc) {
- alpha_pal_wrfen(1);
- savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp);
- alpha_pal_wrfen(0);
- }
+ if (p1->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p1, 1);
/*
* Copy pcb and stack from proc p1 to p2.
@@ -265,13 +264,8 @@ cpu_swapout(p)
struct proc *p;
{
- if (p != fpcurproc)
- return;
-
- alpha_pal_wrfen(1);
- savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp);
- alpha_pal_wrfen(0);
- fpcurproc = NULL;
+ if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
+ fpusave_proc(p, 1);
}
/*
diff --git a/sys/arch/alpha/conf/RAMDISK b/sys/arch/alpha/conf/RAMDISK
index 7c681de4f26..231d1c8a513 100644
--- a/sys/arch/alpha/conf/RAMDISK
+++ b/sys/arch/alpha/conf/RAMDISK
@@ -1,4 +1,4 @@
-# $OpenBSD: RAMDISK,v 1.55 2002/03/30 20:21:25 deraadt Exp $
+# $OpenBSD: RAMDISK,v 1.56 2002/04/28 20:55:14 pvalchev Exp $
# $NetBSD: RAMDISK,v 1.9 1996/12/03 17:25:33 cgd Exp $
machine alpha # architecture, used by config; REQUIRED
@@ -21,6 +21,8 @@ option DEC_550 # Miata: Digital Personal Workstation
option RAMDISK_HOOKS
option MINIROOTSIZE=5744 # 4 Megabytes!
+option NO_IEEE # Disable IEEE math
+
# Standard system options
maxusers 8 # estimated number of users
diff --git a/sys/arch/alpha/conf/RAMDISKB b/sys/arch/alpha/conf/RAMDISKB
index 7a7759e2b9a..d32a646f415 100644
--- a/sys/arch/alpha/conf/RAMDISKB
+++ b/sys/arch/alpha/conf/RAMDISKB
@@ -1,4 +1,4 @@
-# $OpenBSD: RAMDISKB,v 1.18 2002/03/30 20:21:25 deraadt Exp $
+# $OpenBSD: RAMDISKB,v 1.19 2002/04/28 20:55:14 pvalchev Exp $
# $NetBSD: RAMDISK,v 1.9 1996/12/03 17:25:33 cgd Exp $
machine alpha # architecture, used by config; REQUIRED
@@ -21,6 +21,8 @@ option API_UP1000 # EV6: Alpha Processor UP1000
option RAMDISK_HOOKS
option MINIROOTSIZE=5744 # 4 Megabytes!
+option NO_IEEE # Disable IEEE math
+
# Standard system options
maxusers 8 # estimated number of users
diff --git a/sys/arch/alpha/conf/RAMDISKBIG b/sys/arch/alpha/conf/RAMDISKBIG
index 364066a2c33..fc4d1cba8c2 100644
--- a/sys/arch/alpha/conf/RAMDISKBIG
+++ b/sys/arch/alpha/conf/RAMDISKBIG
@@ -1,4 +1,4 @@
-# $OpenBSD: RAMDISKBIG,v 1.24 2002/04/02 17:14:48 deraadt Exp $
+# $OpenBSD: RAMDISKBIG,v 1.25 2002/04/28 20:55:14 pvalchev Exp $
# $NetBSD: GENERIC,v 1.31 1996/12/03 17:25:29 cgd Exp $
#
# Generic Alpha kernel. Enough to get booted, etc., but not much more.
@@ -21,6 +21,8 @@ option API_UP1000 # EV6: Alpha Processor UP1000
option RAMDISK_HOOKS
option MINIROOTSIZE=5744 # 4 Megabytes!
+option NO_IEEE # Disable IEEE math
+
# Standard system options
maxusers 8 # estimated number of users
diff --git a/sys/arch/alpha/conf/files.alpha b/sys/arch/alpha/conf/files.alpha
index e643643f3d4..5249e2ecadd 100644
--- a/sys/arch/alpha/conf/files.alpha
+++ b/sys/arch/alpha/conf/files.alpha
@@ -1,4 +1,4 @@
-# $OpenBSD: files.alpha,v 1.56 2002/03/23 14:14:25 deraadt Exp $
+# $OpenBSD: files.alpha,v 1.57 2002/04/28 20:55:14 pvalchev Exp $
# $NetBSD: files.alpha,v 1.32 1996/11/25 04:03:21 cgd Exp $
#
# alpha-specific configuration info
@@ -288,6 +288,7 @@ file arch/alpha/alpha/process_machdep.c
file arch/alpha/alpha/prom.c
file arch/alpha/alpha/sys_machdep.c
file arch/alpha/alpha/trap.c
+file arch/alpha/alpha/fp_complete.c
file arch/alpha/alpha/vm_machdep.c
file arch/alpha/alpha/disksubr.c
file arch/alpha/dev/bus_dma.c
diff --git a/sys/arch/alpha/include/cpu.h b/sys/arch/alpha/include/cpu.h
index b599120df2e..4a4ff665401 100644
--- a/sys/arch/alpha/include/cpu.h
+++ b/sys/arch/alpha/include/cpu.h
@@ -1,4 +1,4 @@
-/* $OpenBSD: cpu.h,v 1.15 2001/11/06 18:41:09 art Exp $ */
+/* $OpenBSD: cpu.h,v 1.16 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: cpu.h,v 1.45 2000/08/21 02:03:12 thorpej Exp $ */
/*-
@@ -83,6 +83,22 @@
#ifndef _ALPHA_CPU_H_
#define _ALPHA_CPU_H_
+#ifndef NO_IEEE
+typedef union alpha_s_float {
+ u_int32_t i;
+ u_int32_t frac: 23,
+ exp: 8,
+ sign: 1;
+} s_float;
+
+typedef union alpha_t_float {
+ u_int64_t i;
+ u_int64_t frac: 52,
+ exp: 11,
+ sign: 1;
+} t_float;
+#endif
+
/*
* Exported definitions unique to Alpha cpu support.
*/
@@ -100,7 +116,11 @@ struct reg;
struct rpb;
struct trapframe;
+extern u_long cpu_implver; /* from IMPLVER instruction */
+extern u_long cpu_amask; /* from AMASK instruction */
extern int bootdev_debug;
+extern int alpha_fp_sync_complete;
+extern int alpha_unaligned_print, alpha_unaligned_fix, alpha_unaligned_sigbus;
void XentArith(u_int64_t, u_int64_t, u_int64_t); /* MAGIC */
void XentIF(u_int64_t, u_int64_t, u_int64_t); /* MAGIC */
@@ -195,6 +215,11 @@ struct cpu_info {
#define CPUF_PRIMARY 0x01 /* CPU is primary CPU */
#define CPUF_PRESENT 0x02 /* CPU is present */
#define CPUF_RUNNING 0x04 /* CPU is running */
+#define CPUF_PAUSED 0x08 /* CPU is paused */
+#define CPUF_FPUSAVE 0x10 /* CPU is currently in fpusave_cpu() */
+
+void fpusave_cpu(struct cpu_info *, int);
+void fpusave_proc(struct proc *, int);
#if defined(MULTIPROCESSOR)
extern __volatile u_long cpus_running;
@@ -218,9 +243,6 @@ extern struct cpu_info cpu_info_store;
#define fpcurproc curcpu()->ci_fpcurproc
#define curpcb curcpu()->ci_curpcb
-extern u_long cpu_implver; /* from IMPLVER instruction */
-extern u_long cpu_amask; /* from AMASK instruction */
-
/*
* definitions of cpu-dependent requirements
* referenced in generic code
@@ -309,8 +331,9 @@ do { \
#define CPU_UNALIGNED_FIX 4 /* int: fix unaligned accesses */
#define CPU_UNALIGNED_SIGBUS 5 /* int: SIGBUS unaligned accesses */
#define CPU_BOOTED_KERNEL 6 /* string: booted kernel name */
-#define CPU_CHIPSET 7 /* chipset information */
-#define CPU_MAXID 8 /* 6 valid machdep IDs */
+#define CPU_FP_SYNC_COMPLETE 7 /* int: always fixup sync fp traps */
+#define CPU_MAXID 8 /* 7 valid machdep IDs */
+#define CPU_CHIPSET 9 /* chipset information */
#define CPU_CHIPSET_MEM 1 /* PCI memory address */
#define CPU_CHIPSET_BWX 2 /* PCI supports BWX */
@@ -328,6 +351,7 @@ do { \
{ "unaligned_sigbus", CTLTYPE_INT }, \
{ "booted_kernel", CTLTYPE_STRING }, \
{ "chipset", CTLTYPE_NODE }, \
+ { "fp_sync_complete", CTLTYPE_INT }, \
}
#ifdef _KERNEL
@@ -338,5 +362,23 @@ struct reg;
struct rpb;
struct trapframe;
+/* IEEE and VAX FP completion */
+
+#ifndef NO_IEEE
+void alpha_sts(int, s_float *); /* MAGIC */
+void alpha_stt(int, t_float *); /* MAGIC */
+void alpha_lds(int, s_float *); /* MAGIC */
+void alpha_ldt(int, t_float *); /* MAGIC */
+
+uint64_t alpha_read_fpcr(void); /* MAGIC */
+void alpha_write_fpcr(u_int64_t); /* MAGIC */
+
+u_int64_t alpha_read_fp_c(struct proc *);
+void alpha_write_fp_c(struct proc *, u_int64_t);
+
+void alpha_enable_fp(struct proc *, int);
+int alpha_fp_complete(u_long, u_long, struct proc *, u_int64_t *);
+#endif
+
#endif /* _KERNEL */
#endif /* _ALPHA_CPU_H_ */
diff --git a/sys/arch/alpha/include/fpu.h b/sys/arch/alpha/include/fpu.h
new file mode 100644
index 00000000000..1aa71c1e765
--- /dev/null
+++ b/sys/arch/alpha/include/fpu.h
@@ -0,0 +1,121 @@
+/* $OpenBSD: fpu.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: fpu.h,v 1.4 2001/04/26 03:10:46 ross Exp $ */
+
+/*-
+ * Copyright (c) 2001 Ross Harvey
+ * All rights reserved.
+ *
+ * This software was written for NetBSD.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _ALPHA_FPU_H_
+#define _ALPHA_FPU_H_
+
+#define _FP_C_DEF(n) (1UL << (n))
+
+/*
+ * Most of these next definitions were moved from <ieeefp.h>. Apparently the
+ * names happen to match those exported by Compaq and Linux from their fpu.h
+ * files.
+ */
+
+#define FPCR_SUM _FP_C_DEF(63)
+#define FPCR_INED _FP_C_DEF(62)
+#define FPCR_UNFD _FP_C_DEF(61)
+#define FPCR_UNDZ _FP_C_DEF(60)
+#define FPCR_DYN(rm) ((unsigned long)(rm) << 58)
+#define FPCR_IOV _FP_C_DEF(57)
+#define FPCR_INE _FP_C_DEF(56)
+#define FPCR_UNF _FP_C_DEF(55)
+#define FPCR_OVF _FP_C_DEF(54)
+#define FPCR_DZE _FP_C_DEF(53)
+#define FPCR_INV _FP_C_DEF(52)
+#define FPCR_OVFD _FP_C_DEF(51)
+#define FPCR_DZED _FP_C_DEF(50)
+#define FPCR_INVD _FP_C_DEF(49)
+#define FPCR_DNZ _FP_C_DEF(48)
+#define FPCR_DNOD _FP_C_DEF(47)
+
+#define FPCR_MIRRORED (FPCR_INE | FPCR_UNF | FPCR_OVF | FPCR_DZE | FPCR_INV)
+#define FPCR_MIR_START 52
+
+/*
+ * The AARM specifies the bit positions of the software word used for
+ * user mode interface to the control and status of the kernel completion
+ * routines. Although it largely just redefines the FPCR, it shuffles
+ * the bit order. The names of the bits are defined in the AARM, and
+ * the definition prefix can easily be determined from public domain
+ * programs written to either the Compaq or Linux interfaces, which
+ * appear to be identical.
+ */
+
+#define IEEE_STATUS_DNO _FP_C_DEF(22)
+#define IEEE_STATUS_INE _FP_C_DEF(21)
+#define IEEE_STATUS_UNF _FP_C_DEF(20)
+#define IEEE_STATUS_OVF _FP_C_DEF(19)
+#define IEEE_STATUS_DZE _FP_C_DEF(18)
+#define IEEE_STATUS_INV _FP_C_DEF(17)
+
+#define IEEE_TRAP_ENABLE_DNO _FP_C_DEF(6)
+#define IEEE_TRAP_ENABLE_INE _FP_C_DEF(5)
+#define IEEE_TRAP_ENABLE_UNF _FP_C_DEF(4)
+#define IEEE_TRAP_ENABLE_OVF _FP_C_DEF(3)
+#define IEEE_TRAP_ENABLE_DZE _FP_C_DEF(2)
+#define IEEE_TRAP_ENABLE_INV _FP_C_DEF(1)
+
+#define IEEE_INHERIT _FP_C_DEF(14)
+#define IEEE_MAP_UMZ _FP_C_DEF(13)
+#define IEEE_MAP_DMZ _FP_C_DEF(12)
+
+#define FP_C_MIRRORED (IEEE_STATUS_INE | IEEE_STATUS_UNF | IEEE_STATUS_OVF\
+ | IEEE_STATUS_DZE | IEEE_STATUS_INV)
+#define FP_C_MIR_START 17
+
+#ifdef _KERNEL
+
+#define FLD_MASK(len) ((1UL << (len)) - 1)
+#define FLD_CLEAR(obj, origin, len) \
+ ((obj) & ~(FLD_MASK(len) << (origin)))
+#define FLD_INSERT(obj, origin, len, value) \
+ (FLD_CLEAR(obj, origin, len) | (value) << origin)
+
+#define FP_C_TO_OPENBSD_MASK(fp_c) ((fp_c) >> 1 & 0x3f)
+#define FP_C_TO_OPENBSD_FLAG(fp_c) ((fp_c) >> 17 & 0x3f)
+#define OPENBSD_MASK_TO_FP_C(m) (((m) & 0x3f) << 1)
+#define OPENBSD_FLAG_TO_FP_C(s) (((s) & 0x3f) << 17)
+#define CLEAR_FP_C_MASK(fp_c) ((fp_c) & ~(0x3f << 1))
+#define CLEAR_FP_C_FLAG(fp_c) ((fp_c) & ~(0x3f << 17))
+#define SET_FP_C_MASK(fp_c, m) (CLEAR_FP_C_MASK(fp_c) | OPENBSD_MASK_TO_FP_C(m))
+#define SET_FP_C_FLAG(fp_c, m) (CLEAR_FP_C_FLAG(fp_c) | OPENBSD_FLAG_TO_FP_C(m))
+
+#endif
+
+#endif
diff --git a/sys/arch/alpha/include/ieeefp.h b/sys/arch/alpha/include/ieeefp.h
index 4ebb20b0aa5..4cb8539a2c1 100644
--- a/sys/arch/alpha/include/ieeefp.h
+++ b/sys/arch/alpha/include/ieeefp.h
@@ -1,4 +1,4 @@
-/* $OpenBSD: ieeefp.h,v 1.3 1996/10/30 22:39:08 niklas Exp $ */
+/* $OpenBSD: ieeefp.h,v 1.4 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: ieeefp.h,v 1.1 1995/04/29 01:09:17 cgd Exp $ */
/*
@@ -10,18 +10,45 @@
#define _ALPHA_IEEEFP_H_
typedef int fp_except;
+
+#ifdef _KERNEL
+
+#include <sys/param.h>
+#include <sys/proc.h>
+#include <machine/fpu.h>
+#include <machine/cpu.h>
+
+/* FP_X_IOV is intentionally omitted from the architecture flags mask */
+
+#define FP_AA_FLAGS (FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL | FP_X_IMP)
+
+#define float_raise(f) \
+ do curproc->p_md.md_flags |= OPENBSD_FLAG_TO_FP_C(f); \
+ while(0)
+
+#define float_set_inexact() float_raise(FP_X_IMP)
+#define float_set_invalid() float_raise(FP_X_INV)
+#define fpgetround() (alpha_read_fpcr() >> 58 & 3)
+
+#endif
+
#define FP_X_INV 0x01 /* invalid operation exception */
#define FP_X_DZ 0x02 /* divide-by-zero exception */
#define FP_X_OFL 0x04 /* overflow exception */
#define FP_X_UFL 0x08 /* underflow exception */
#define FP_X_IMP 0x10 /* imprecise (loss of precision; "inexact") */
-#define FP_X_IOV 0x20 /* integer overflow XXX? */
+#define FP_X_IOV 0x20 /* integer overflow */
+/*
+ * fp_rnd bits match the fpcr, below, as well as bits 12:11
+ * in fp operate instructions
+ */
typedef enum {
- FP_RZ=0, /* round to zero (truncate) */
- FP_RM=1, /* round toward negative infinity */
- FP_RN=2, /* round to nearest representable number */
- FP_RP=3 /* round toward positive infinity */
+ FP_RZ = 0, /* round to zero (truncate) */
+ FP_RM = 1, /* round toward negative infinity */
+ FP_RN = 2, /* round to nearest representable number */
+ FP_RP = 3, /* round toward positive infinity */
+ _FP_DYNAMIC=FP_RP
} fp_rnd;
#endif /* _ALPHA_IEEEFP_H_ */
diff --git a/sys/arch/alpha/include/pcb.h b/sys/arch/alpha/include/pcb.h
index f7eb89491af..b91bdf22438 100644
--- a/sys/arch/alpha/include/pcb.h
+++ b/sys/arch/alpha/include/pcb.h
@@ -1,4 +1,4 @@
-/* $OpenBSD: pcb.h,v 1.5 2002/03/14 01:26:27 millert Exp $ */
+/* $OpenBSD: pcb.h,v 1.6 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: pcb.h,v 1.5 1996/11/13 22:21:00 cgd Exp $ */
/*
@@ -52,6 +52,7 @@ struct pcb {
struct fpreg pcb_fp; /* FP registers [SW] */
unsigned long pcb_onfault; /* for copy faults [SW] */
unsigned long pcb_accessaddr; /* for [fs]uswintr [SW] */
+ struct cpu_info *__volatile pcb_fpcpu; /* CPU with our FP state[SW] */
};
/*
diff --git a/sys/arch/alpha/include/proc.h b/sys/arch/alpha/include/proc.h
index fd698f6f9e1..dab1d4c78c0 100644
--- a/sys/arch/alpha/include/proc.h
+++ b/sys/arch/alpha/include/proc.h
@@ -1,4 +1,4 @@
-/* $OpenBSD: proc.h,v 1.7 2002/03/14 01:26:27 millert Exp $ */
+/* $OpenBSD: proc.h,v 1.8 2002/04/28 20:55:14 pvalchev Exp $ */
/* $NetBSD: proc.h,v 1.2 1995/03/24 15:01:36 cgd Exp $ */
/*
@@ -45,7 +45,28 @@ struct mdproc {
struct mdbpt md_sstep[2]; /* two breakpoints for sstep */
};
+/*
+ * md_flags usage
+ * --------------
+ * MDP_FPUSED
+ * A largely unused bit indicating the presence of FPU history.
+ * Cleared on exec. Set but not used by the fpu context switcher
+ * itself.
+ *
+ * MDP_FP_C
+ * The architected FP Control word. It should forever begin at bit 1,
+ * as the bits are AARM specified and this way it doesn't need to be
+ * shifted.
+ *
+ * Until C99 there was never an IEEE 754 API, making most of the
+ * standard useless. Because of overlapping AARM, OSF/1, NetBSD, and
+ * C99 API's, the use of the MDP_FP_C bits is defined variously in
+ * ieeefp.h and fpu.h.
+ */
#define MDP_FPUSED 0x0001 /* Process used the FPU */
+#ifndef NO_IEEE
+#define MDP_FP_C 0x7ffffe /* Extended FP_C Quadword bits */
+#endif
#define MDP_STEP1 0x0002 /* Single step normal */
#define MDP_STEP2 0x0003 /* Single step branch */
diff --git a/sys/arch/alpha/include/sysarch.h b/sys/arch/alpha/include/sysarch.h
new file mode 100644
index 00000000000..a439c52c7e2
--- /dev/null
+++ b/sys/arch/alpha/include/sysarch.h
@@ -0,0 +1,69 @@
+/* $OpenBSD: sysarch.h,v 1.3 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: sysarch.h,v 1.8 2001/04/26 03:10:46 ross Exp $ */
+
+/*-
+ * Copyright (c) 2000 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Jason R. Thorpe.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _ALPHA_SYSARCH_H_
+#define _ALPHA_SYSARCH_H_
+
+#include <machine/bus.h>
+#include <machine/ieeefp.h>
+
+/*
+ * Architecture specific syscalls (ALPHA)
+ */
+
+#define ALPHA_FPGETMASK 0
+#define ALPHA_FPSETMASK 1
+#define ALPHA_FPSETSTICKY 2
+#define ALPHA_FPGETSTICKY 6
+#define ALPHA_GET_FP_C 7
+#define ALPHA_SET_FP_C 8
+
+struct alpha_fp_except_args {
+ fp_except mask;
+};
+
+struct alpha_fp_c_args {
+ uint64_t fp_c;
+};
+
+#ifdef _KERNEL
+int sysarch(int, void *);
+#endif /* _KERNEL */
+
+#endif /* !_ALPHA_SYSARCH_H_ */
diff --git a/sys/lib/libkern/arch/alpha/Makefile.inc b/sys/lib/libkern/arch/alpha/Makefile.inc
index af056c8c99f..b984665e3a5 100644
--- a/sys/lib/libkern/arch/alpha/Makefile.inc
+++ b/sys/lib/libkern/arch/alpha/Makefile.inc
@@ -1,10 +1,10 @@
-# $OpenBSD: Makefile.inc,v 1.11 2000/12/18 18:40:45 provos Exp $
+# $OpenBSD: Makefile.inc,v 1.12 2002/04/28 20:55:14 pvalchev Exp $
# $NetBSD: Makefile.inc,v 1.9 1996/08/27 00:44:24 cgd Exp $
SRCS+= __main.c imax.c imin.c lmax.c lmin.c max.c min.c ulmax.c ulmin.c \
memchr.c memcmp.c memset.c \
- bcmp.c bzero.S ffs.S strcat.c strcmp.c strcpy.c strlcat.c strlcpy.c \
- strlen.c strncmp.c \
+ bcmp.c bzero.S ffs.S softfloat.c strcat.c strcmp.c strcpy.c \
+ strlcat.c strlcpy.c strlen.c strncmp.c \
strncpy.c scanc.c skpc.c htonl.S htons.S ntohl.S ntohs.S \
random.c strncasecmp.c
diff --git a/sys/lib/libkern/milieu.h b/sys/lib/libkern/milieu.h
new file mode 100644
index 00000000000..53538bf6e0d
--- /dev/null
+++ b/sys/lib/libkern/milieu.h
@@ -0,0 +1,163 @@
+/* $OpenBSD: milieu.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: milieu.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */
+
+/* This is a derivative work. */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Ross Harvey.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+===============================================================================
+
+This C header file is part of TestFloat, Release 2a, a package of programs
+for testing the correctness of floating-point arithmetic complying to the
+IEC/IEEE Standard for Floating-Point.
+
+Written by John R. Hauser. More information is available through the Web
+page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/TestFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable
+effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT
+WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
+RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL
+RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM
+THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY
+(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL
+COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS
+ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#ifndef NO_IEEE
+
+#ifndef MILIEU_H
+#define MILIEU_H
+
+#include <sys/types.h>
+#include <sys/endian.h>
+
+enum {
+ FALSE = 0,
+ TRUE = 1
+};
+
+
+/*
+-------------------------------------------------------------------------------
+One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
+-------------------------------------------------------------------------------
+*/
+
+#if _BYTE_ORDER == _LITTLE_ENDIAN
+#define LITTLEENDIAN
+#else
+#define BIGENDIAN
+#endif
+
+#define BITS64
+
+/*
+-------------------------------------------------------------------------------
+Each of the following `typedef's defines the most convenient type that holds
+integers of at least as many bits as specified. For example, `uint8' should
+be the most convenient type that can hold unsigned integers of as many as
+8 bits. The `flag' type must be able to hold either a 0 or 1. For most
+implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
+to the same as `int'.
+-------------------------------------------------------------------------------
+*/
+typedef int flag;
+typedef unsigned int uint8;
+typedef signed int int8;
+typedef unsigned int uint16;
+typedef int int16;
+typedef unsigned int uint32;
+typedef signed int int32;
+#ifdef BITS64
+typedef uint64_t uint64;
+typedef int64_t int64;
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Each of the following `typedef's defines a type that holds integers
+of _exactly_ the number of bits specified. For instance, for most
+implementation of C, `bits16' and `sbits16' should be `typedef'ed to
+`unsigned short int' and `signed short int' (or `short int'), respectively.
+-------------------------------------------------------------------------------
+*/
+typedef uint8_t bits8;
+typedef int8_t sbits8;
+typedef uint16_t bits16;
+typedef int16_t sbits16;
+typedef uint32_t bits32;
+typedef int32_t sbits32;
+#ifdef BITS64
+typedef uint64_t bits64;
+typedef int64_t sbits64;
+#endif
+
+#ifdef BITS64
+/*
+-------------------------------------------------------------------------------
+The `LIT64' macro takes as its argument a textual integer literal and
+if necessary ``marks'' the literal as having a 64-bit integer type.
+For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
+appended with the letters `LL' standing for `long long', which is `gcc's
+name for the 64-bit integer type. Some compilers may allow `LIT64' to be
+defined as the identity macro: `#define LIT64( a ) a'.
+-------------------------------------------------------------------------------
+*/
+#define LIT64( a ) a##LL
+#endif
+
+/*
+-------------------------------------------------------------------------------
+The macro `INLINE' can be used before functions that should be inlined. If
+a compiler does not support explicit inlining, this macro should be defined
+to be `static'.
+-------------------------------------------------------------------------------
+*/
+#define INLINE static inline
+
+#endif
+#endif /* !NO_IEEE */
diff --git a/sys/lib/libkern/softfloat-macros.h b/sys/lib/libkern/softfloat-macros.h
new file mode 100644
index 00000000000..b6dedb99f29
--- /dev/null
+++ b/sys/lib/libkern/softfloat-macros.h
@@ -0,0 +1,753 @@
+/* $OpenBSD: softfloat-macros.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: softfloat-macros.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */
+
+/*
+===============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable
+effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT
+WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
+RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL
+RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM
+THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY
+(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL
+COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS
+ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#ifndef NO_IEEE
+
+/*
+-------------------------------------------------------------------------------
+Shifts `a' right by the number of bits given in `count'. If any nonzero
+bits are shifted off, they are ``jammed'' into the least significant bit of
+the result by setting the least significant bit to 1. The value of `count'
+can be arbitrarily large; in particular, if `count' is greater than 32, the
+result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+The result is stored in the location pointed to by `zPtr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+{
+ bits32 z;
+
+ if ( count == 0 ) {
+ z = a;
+ }
+ else if ( count < 32 ) {
+ z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
+ }
+ else {
+ z = ( a != 0 );
+ }
+ *zPtr = z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts `a' right by the number of bits given in `count'. If any nonzero
+bits are shifted off, they are ``jammed'' into the least significant bit of
+the result by setting the least significant bit to 1. The value of `count'
+can be arbitrarily large; in particular, if `count' is greater than 64, the
+result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+The result is stored in the location pointed to by `zPtr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
+{
+ bits64 z;
+
+ if ( count == 0 ) {
+ z = a;
+ }
+ else if ( count < 64 ) {
+ z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
+ }
+ else {
+ z = ( a != 0 );
+ }
+ *zPtr = z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
+_plus_ the number of bits given in `count'. The shifted result is at most
+64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
+bits shifted off form a second 64-bit result as follows: The _last_ bit
+shifted off is the most-significant bit of the extra result, and the other
+63 bits of the extra result are all zero if and only if _all_but_the_last_
+bits shifted off were all zero. This extra result is stored in the location
+pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
+ (This routine makes more sense if `a0' and `a1' are considered to form a
+fixed-point value with binary point between `a0' and `a1'. This fixed-point
+value is shifted right by the number of bits given in `count', and the
+integer part of the result is returned at the location pointed to by
+`z0Ptr'. The fractional part of the result may be slightly corrupted as
+described above, and is returned at the location pointed to by `z1Ptr'.)
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift64ExtraRightJamming(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1 != 0 );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z1 = a0 | ( a1 != 0 );
+ }
+ else {
+ z1 = ( ( a0 | a1 ) != 0 );
+ }
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' can be arbitrarily large; in particular, if `count' is greater
+than 128, the result will be 0. The result is broken into two 64-bit pieces
+which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128Right(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. If any nonzero bits are shifted off, they
+are ``jammed'' into the least significant bit of the result by setting the
+least significant bit to 1. The value of `count' can be arbitrarily large;
+in particular, if `count' is greater than 128, the result will be either
+0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
+nonzero. The result is broken into two 64-bit pieces which are stored at
+the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128RightJamming(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z1 = a0 | ( a1 != 0 );
+ }
+ else if ( count < 128 ) {
+ z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
+ }
+ else {
+ z1 = ( ( a0 | a1 ) != 0 );
+ }
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
+by 64 _plus_ the number of bits given in `count'. The shifted result is
+at most 128 nonzero bits; these are broken into two 64-bit pieces which are
+stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
+off form a third 64-bit result as follows: The _last_ bit shifted off is
+the most-significant bit of the extra result, and the other 63 bits of the
+extra result are all zero if and only if _all_but_the_last_ bits shifted off
+were all zero. This extra result is stored in the location pointed to by
+`z2Ptr'. The value of `count' can be arbitrarily large.
+ (This routine makes more sense if `a0', `a1', and `a2' are considered
+to form a fixed-point value with binary point between `a1' and `a2'. This
+fixed-point value is shifted right by the number of bits given in `count',
+and the integer part of the result is returned at the locations pointed to
+by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
+corrupted as described above, and is returned at the location pointed to by
+`z2Ptr'.)
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128ExtraRightJamming(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ int16 count,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z2 = a2;
+ z1 = a1;
+ z0 = a0;
+ }
+ else {
+ if ( count < 64 ) {
+ z2 = a1<<negCount;
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z2 = a1;
+ z1 = a0;
+ }
+ else {
+ a2 |= a1;
+ if ( count < 128 ) {
+ z2 = a0<<negCount;
+ z1 = a0>>( count & 63 );
+ }
+ else {
+ z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
+ z1 = 0;
+ }
+ }
+ z0 = 0;
+ }
+ z2 |= ( a2 != 0 );
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' must be less than 64. The result is broken into two 64-bit
+pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift128Left(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+ *z1Ptr = a1<<count;
+ *z0Ptr =
+ ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
+by the number of bits given in `count'. Any bits shifted off are lost.
+The value of `count' must be less than 64. The result is broken into three
+64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift192Left(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ int16 count,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 negCount;
+
+ z2 = a2<<count;
+ z1 = a1<<count;
+ z0 = a0<<count;
+ if ( 0 < count ) {
+ negCount = ( ( - count ) & 63 );
+ z1 |= a2>>negCount;
+ z0 |= a1>>negCount;
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
+value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
+any carry out is lost. The result is broken into two 64-bit pieces which
+are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add128(
+ bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z1;
+
+ z1 = a1 + b1;
+ *z1Ptr = z1;
+ *z0Ptr = a0 + b0 + ( z1 < a1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
+192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
+modulo 2^192, so any carry out is lost. The result is broken into three
+64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add192(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ bits64 b0,
+ bits64 b1,
+ bits64 b2,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 carry0, carry1;
+
+ z2 = a2 + b2;
+ carry1 = ( z2 < a2 );
+ z1 = a1 + b1;
+ carry0 = ( z1 < a1 );
+ z0 = a0 + b0;
+ z1 += carry1;
+ z0 += ( z1 < carry1 );
+ z0 += carry0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
+128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
+2^128, so any borrow out (carry out) is lost. The result is broken into two
+64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
+`z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub128(
+ bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+ *z1Ptr = a1 - b1;
+ *z0Ptr = a0 - b0 - ( a1 < b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
+from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
+Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
+result is broken into three 64-bit pieces which are stored at the locations
+pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub192(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ bits64 b0,
+ bits64 b1,
+ bits64 b2,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 borrow0, borrow1;
+
+ z2 = a2 - b2;
+ borrow1 = ( a2 < b2 );
+ z1 = a1 - b1;
+ borrow0 = ( a1 < b1 );
+ z0 = a0 - b0;
+ z0 -= ( z1 < borrow1 );
+ z1 -= borrow1;
+ z0 -= borrow0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
+into two 64-bit pieces which are stored at the locations pointed to by
+`z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits32 aHigh, aLow, bHigh, bLow;
+ bits64 z0, zMiddleA, zMiddleB, z1;
+
+ aLow = a;
+ aHigh = a>>32;
+ bLow = b;
+ bHigh = b>>32;
+ z1 = ( (bits64) aLow ) * bLow;
+ zMiddleA = ( (bits64) aLow ) * bHigh;
+ zMiddleB = ( (bits64) aHigh ) * bLow;
+ z0 = ( (bits64) aHigh ) * bHigh;
+ zMiddleA += zMiddleB;
+ z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
+ zMiddleA <<= 32;
+ z1 += zMiddleA;
+ z0 += ( z1 < zMiddleA );
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
+`b' to obtain a 192-bit product. The product is broken into three 64-bit
+pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
+`z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul128By64To192(
+ bits64 a0,
+ bits64 a1,
+ bits64 b,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2, more1;
+
+ mul64To128( a1, b, &z1, &z2 );
+ mul64To128( a0, b, &z0, &more1 );
+ add128( z0, more1, 0, z1, &z0, &z1 );
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
+128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
+product. The product is broken into four 64-bit pieces which are stored at
+the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul128To256(
+ bits64 a0,
+ bits64 a1,
+ bits64 b0,
+ bits64 b1,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr,
+ bits64 *z3Ptr
+ )
+{
+ bits64 z0, z1, z2, z3;
+ bits64 more1, more2;
+
+ mul64To128( a1, b1, &z2, &z3 );
+ mul64To128( a1, b0, &z1, &more2 );
+ add128( z1, more2, 0, z2, &z1, &z2 );
+ mul64To128( a0, b0, &z0, &more1 );
+ add128( z0, more1, 0, z1, &z0, &z1 );
+ mul64To128( a0, b1, &more1, &more2 );
+ add128( more1, more2, 0, z2, &more1, &z2 );
+ add128( z0, z1, 0, more1, &z0, &z1 );
+ *z3Ptr = z3;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the 64-bit integer quotient obtained by dividing
+`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
+divisor `b' must be at least 2^63. If q is the exact quotient truncated
+toward zero, the approximation returned lies between q and q + 2 inclusive.
+If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
+unsigned integer is returned.
+-------------------------------------------------------------------------------
+*/
+static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
+{
+ bits64 b0, b1;
+ bits64 rem0, rem1, term0, term1;
+ bits64 z;
+
+ if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
+ b0 = b>>32;
+ z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
+ mul64To128( b, z, &term0, &term1 );
+ sub128( a0, a1, term0, term1, &rem0, &rem1 );
+ while ( ( (sbits64) rem0 ) < 0 ) {
+ z -= LIT64( 0x100000000 );
+ b1 = b<<32;
+ add128( rem0, rem1, b0, b1, &rem0, &rem1 );
+ }
+ rem0 = ( rem0<<32 ) | ( rem1>>32 );
+ z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
+ return z;
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not used */
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the square root of the 32-bit significand given
+by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
+`aExp' (the least significant bit) is 1, the integer returned approximates
+2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
+is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
+case, the approximation returned lies strictly within +/-2 of the exact
+value.
+-------------------------------------------------------------------------------
+*/
+static bits32 estimateSqrt32( int16 aExp, bits32 a )
+{
+ static const bits16 sqrtOddAdjustments[] = {
+ 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
+ 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
+ };
+ static const bits16 sqrtEvenAdjustments[] = {
+ 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
+ 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
+ };
+ int8 index;
+ bits32 z;
+
+ index = ( a>>27 ) & 15;
+ if ( aExp & 1 ) {
+ z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
+ z = ( ( a / z )<<14 ) + ( z<<15 );
+ a >>= 1;
+ }
+ else {
+ z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
+ z = a / z + z;
+ z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
+ if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+ }
+ return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the number of leading 0 bits before the most-significant 1 bit of
+`a'. If `a' is zero, 32 is returned.
+-------------------------------------------------------------------------------
+*/
+static int8 countLeadingZeros32( bits32 a )
+{
+ static const int8 countLeadingZerosHigh[] = {
+ 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ int8 shiftCount;
+
+ shiftCount = 0;
+ if ( a < 0x10000 ) {
+ shiftCount += 16;
+ a <<= 16;
+ }
+ if ( a < 0x1000000 ) {
+ shiftCount += 8;
+ a <<= 8;
+ }
+ shiftCount += countLeadingZerosHigh[ a>>24 ];
+ return shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the number of leading 0 bits before the most-significant 1 bit of
+`a'. If `a' is zero, 64 is returned.
+-------------------------------------------------------------------------------
+*/
+static int8 countLeadingZeros64( bits64 a )
+{
+ int8 shiftCount;
+
+ shiftCount = 0;
+ if ( a < ( (bits64) 1 )<<32 ) {
+ shiftCount += 32;
+ }
+ else {
+ a >>= 32;
+ }
+ shiftCount += countLeadingZeros32( a );
+ return shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
+is equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 == b0 ) && ( a1 == b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
+returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
+not equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 != b0 ) || ( a1 != b1 );
+
+}
+
+#endif /* !NO_IEEE */
diff --git a/sys/lib/libkern/softfloat-specialize.h b/sys/lib/libkern/softfloat-specialize.h
new file mode 100644
index 00000000000..db9fb08b4ed
--- /dev/null
+++ b/sys/lib/libkern/softfloat-specialize.h
@@ -0,0 +1,495 @@
+/* $OpenBSD: softfloat-specialize.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: softfloat-specialize.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */
+
+/* This is a derivative work. */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Ross Harvey.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+===============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable
+effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT
+WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
+RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL
+RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM
+THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY
+(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL
+COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS
+ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/*
+-------------------------------------------------------------------------------
+Underflow tininess-detection mode, statically initialized to default value.
+-------------------------------------------------------------------------------
+*/
+
+#ifndef NO_IEEE
+
+/* [ MP safe, does not change dynamically ] */
+int float_detect_tininess = float_tininess_after_rounding;
+
+/*
+-------------------------------------------------------------------------------
+Internal canonical NaN format.
+-------------------------------------------------------------------------------
+*/
+typedef struct {
+ flag sign;
+ bits64 high, low;
+} commonNaNT;
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated single-precision NaN.
+-------------------------------------------------------------------------------
+*/
+#define float32_default_nan 0xFFC00000
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is a NaN;
+otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+static flag float32_is_nan( float32 a )
+{
+
+ return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is a signaling
+NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float32_is_signaling_nan( float32 a )
+{
+
+ return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point NaN
+`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+ commonNaNT z;
+
+ if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a>>31;
+ z.low = 0;
+ z.high = ( (bits64) a )<<41;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the single-
+precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+ return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two single-precision floating-point values `a' and `b', one of which
+is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = float32_is_nan( a );
+ aIsSignalingNaN = float32_is_signaling_nan( a );
+ bIsNaN = float32_is_nan( b );
+ bIsSignalingNaN = float32_is_signaling_nan( b );
+ a |= 0x00400000;
+ b |= 0x00400000;
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsSignalingNaN ) {
+ if ( bIsSignalingNaN ) goto returnLargerSignificand;
+ return bIsNaN ? b : a;
+ }
+ else if ( aIsNaN ) {
+ if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+ if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
+ if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
+ return ( a < b ) ? a : b;
+ }
+ else {
+ return b;
+ }
+
+}
+
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point NaN
+`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+ commonNaNT z;
+
+ if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a>>63;
+ z.low = 0;
+ z.high = a<<12;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the double-
+precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+
+ return
+ ( ( (bits64) a.sign )<<63 )
+ | LIT64( 0x7FF8000000000000 )
+ | ( a.high>>12 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two double-precision floating-point values `a' and `b', one of which
+is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = float64_is_nan( a );
+ aIsSignalingNaN = float64_is_signaling_nan( a );
+ bIsNaN = float64_is_nan( b );
+ bIsSignalingNaN = float64_is_signaling_nan( b );
+ a |= LIT64( 0x0008000000000000 );
+ b |= LIT64( 0x0008000000000000 );
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsSignalingNaN ) {
+ if ( bIsSignalingNaN ) goto returnLargerSignificand;
+ return bIsNaN ? b : a;
+ }
+ else if ( aIsNaN ) {
+ if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+ if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
+ if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
+ return ( a < b ) ? a : b;
+ }
+ else {
+ return b;
+ }
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated extended double-precision NaN. The
+`high' and `low' values hold the most- and least-significant bits,
+respectively.
+-------------------------------------------------------------------------------
+*/
+#define floatx80_default_nan_high 0xFFFF
+#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is a
+NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+static flag floatx80_is_nan( floatx80 a )
+{
+
+ return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is a
+signaling NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_is_signaling_nan( floatx80 a )
+{
+ bits64 aLow;
+
+ aLow = a.low & ~ LIT64( 0x4000000000000000 );
+ return
+ ( ( a.high & 0x7FFF ) == 0x7FFF )
+ && (bits64) ( aLow<<1 )
+ && ( a.low == aLow );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
+invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT floatx80ToCommonNaN( floatx80 a )
+{
+ commonNaNT z;
+
+ if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a.high>>15;
+ z.low = 0;
+ z.high = a.low<<1;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the extended
+double-precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static floatx80 commonNaNToFloatx80( commonNaNT a )
+{
+ floatx80 z;
+
+ z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
+ z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two extended double-precision floating-point values `a' and `b', one
+of which is a NaN, and returns the appropriate NaN result. If either `a' or
+`b' is a signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = floatx80_is_nan( a );
+ aIsSignalingNaN = floatx80_is_signaling_nan( a );
+ bIsNaN = floatx80_is_nan( b );
+ bIsSignalingNaN = floatx80_is_signaling_nan( b );
+ a.low |= LIT64( 0xC000000000000000 );
+ b.low |= LIT64( 0xC000000000000000 );
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsSignalingNaN ) {
+ if ( bIsSignalingNaN ) goto returnLargerSignificand;
+ return bIsNaN ? b : a;
+ }
+ else if ( aIsNaN ) {
+ if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+ if ( a.low < b.low ) return b;
+ if ( b.low < a.low ) return a;
+ return ( a.high < b.high ) ? a : b;
+ }
+ else {
+ return b;
+ }
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated quadruple-precision NaN. The `high' and
+`low' values hold the most- and least-significant bits, respectively.
+-------------------------------------------------------------------------------
+*/
+#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
+#define float128_default_nan_low LIT64( 0x0000000000000000 )
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
+otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float128_is_nan( float128 a )
+{
+
+ return
+ ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+ && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is a
+signaling NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float128_is_signaling_nan( float128 a )
+{
+
+ return
+ ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+ && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point NaN
+`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT float128ToCommonNaN( float128 a )
+{
+ commonNaNT z;
+
+ if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a.high>>63;
+ shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the quadruple-
+precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static float128 commonNaNToFloat128( commonNaNT a )
+{
+ float128 z;
+
+ shift128Right( a.high, a.low, 16, &z.high, &z.low );
+ z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two quadruple-precision floating-point values `a' and `b', one of
+which is a NaN, and returns the appropriate NaN result. If either `a' or
+`b' is a signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static float128 propagateFloat128NaN( float128 a, float128 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = float128_is_nan( a );
+ aIsSignalingNaN = float128_is_signaling_nan( a );
+ bIsNaN = float128_is_nan( b );
+ bIsSignalingNaN = float128_is_signaling_nan( b );
+ a.high |= LIT64( 0x0000800000000000 );
+ b.high |= LIT64( 0x0000800000000000 );
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsSignalingNaN ) {
+ if ( bIsSignalingNaN ) goto returnLargerSignificand;
+ return bIsNaN ? b : a;
+ }
+ else if ( aIsNaN ) {
+ if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+ if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
+ if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
+ return ( a.high < b.high ) ? a : b;
+ }
+ else {
+ return b;
+ }
+
+}
+
+#endif
+
+#endif /* !NO_IEEE */
diff --git a/sys/lib/libkern/softfloat.c b/sys/lib/libkern/softfloat.c
new file mode 100644
index 00000000000..853f9fb4972
--- /dev/null
+++ b/sys/lib/libkern/softfloat.c
@@ -0,0 +1,5506 @@
+/* $OpenBSD: softfloat.c,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $ */
+
+/*
+ * This version hacked for use with gcc -msoft-float by bjh21.
+ * (Mostly a case of #ifdefing out things GCC doesn't need or provides
+ * itself).
+ */
+
+/*
+ * Things you may want to define:
+ *
+ * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
+ * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
+ * properly renamed.
+ */
+
+/*
+===============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable
+effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT
+WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
+RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL
+RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM
+THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY
+(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL
+COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS
+ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#ifndef NO_IEEE
+
+#include <sys/cdefs.h>
+#if defined(LIBC_SCCS) && !defined(lint)
+__RCSID("$NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $");
+#endif /* LIBC_SCCS and not lint */
+
+#ifdef SOFTFLOAT_FOR_GCC
+#include "softfloat-for-gcc.h"
+#endif
+
+#include "milieu.h"
+#include "softfloat.h"
+
+/*
+ * Conversions between floats as stored in memory and floats as
+ * SoftFloat uses them
+ */
+#ifndef FLOAT64_DEMANGLE
+#define FLOAT64_DEMANGLE(a) (a)
+#endif
+#ifndef FLOAT64_MANGLE
+#define FLOAT64_MANGLE(a) (a)
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Floating-point rounding mode, extended double-precision rounding precision,
+and exception flags.
+-------------------------------------------------------------------------------
+*/
+
+/*
+ * XXX: This may cause options-MULTIPROCESSOR or thread problems someday.
+ * Right now, it does not. I've removed all other dynamic global
+ * variables. [ross]
+ */
+#ifdef FLOATX80
+int8 floatx80_rounding_precision = 80;
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Primitive arithmetic functions, including multi-word arithmetic, and
+division and square root approximations. (Can be specialized to target if
+desired.)
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-macros.h"
+
+/*
+-------------------------------------------------------------------------------
+Functions and definitions to determine: (1) whether tininess for underflow
+is detected before or after rounding by default, (2) what (if anything)
+happens when exceptions are raised, (3) how signaling NaNs are distinguished
+from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
+are propagated from function inputs to output. These details are target-
+specific.
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-specialize.h"
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not used */
+/*
+-------------------------------------------------------------------------------
+Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
+and 7, and returns the properly rounded 32-bit integer corresponding to the
+input. If `zSign' is 1, the input is negated before being converted to an
+integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
+is simply rounded to an integer, with the inexact exception raised if the
+input cannot be represented exactly as an integer. However, if the fixed-
+point input is too large, the invalid exception is raised and the largest
+positive or negative integer is returned.
+-------------------------------------------------------------------------------
+*/
+static int32 roundAndPackInt32( flag zSign, bits64 absZ )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ int32 z;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x40;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x7F;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = absZ & 0x7F;
+ absZ = ( absZ + roundIncrement )>>7;
+ absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ z = absZ;
+ if ( zSign ) z = - z;
+ if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
+ float_raise( float_flag_invalid );
+ return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( roundBits ) float_set_inexact();
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
+`absZ1', with binary point between bits 63 and 64 (between the input words),
+and returns the properly rounded 64-bit integer corresponding to the input.
+If `zSign' is 1, the input is negated before being converted to an integer.
+Ordinarily, the fixed-point input is simply rounded to an integer, with
+the inexact exception raised if the input cannot be represented exactly as
+an integer. However, if the fixed-point input is too large, the invalid
+exception is raised and the largest positive or negative integer is
+returned.
+-------------------------------------------------------------------------------
+*/
+static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment;
+ int64 z;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ increment = ( (sbits64) absZ1 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && absZ1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && absZ1;
+ }
+ }
+ }
+ if ( increment ) {
+ ++absZ0;
+ if ( absZ0 == 0 ) goto overflow;
+ absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
+ }
+ z = absZ0;
+ if ( zSign ) z = - z;
+ if ( z && ( ( z < 0 ) ^ zSign ) ) {
+ overflow:
+ float_raise( float_flag_invalid );
+ return
+ zSign ? (sbits64) LIT64( 0x8000000000000000 )
+ : LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ if ( absZ1 ) float_set_inexact();
+ return z;
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits32 extractFloat32Frac( float32 a )
+{
+
+ return a & 0x007FFFFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat32Exp( float32 a )
+{
+
+ return ( a>>23 ) & 0xFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat32Sign( float32 a )
+{
+
+ return a>>31;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal single-precision floating-point value represented
+by the denormalized significand `aSig'. The normalized exponent and
+significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( aSig ) - 8;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+single-precision floating-point value, returning the result. After being
+shifted into the proper positions, the three fields are simply added
+together to form the result. This means that any integer portion of `zSig'
+will be added into the exponent. Since a properly normalized significand
+will have an integer portion equal to 1, the `zExp' input should be 1 less
+than the desired result exponent whenever `zSig' is a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+
+ return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. Ordinarily, the abstract
+value is simply rounded and packed into the single-precision format, with
+the inexact exception raised if the abstract input cannot be represented
+exactly. However, if the abstract value is too large, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal single-
+precision floating-point number.
+ The input significand `zSig' has its binary point between bits 30
+and 29, which is 7 bits to the left of the usual location. This shifted
+significand must be normalized or smaller. If `zSig' is not normalized,
+`zExp' must be 0; in that case, the result returned is a subnormal number,
+and it must not require rounding. In the usual case that `zSig' is
+normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+The handling of underflow and overflow follows the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x40;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x7F;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig & 0x7F;
+ if ( 0xFD <= (bits16) zExp ) {
+ if ( ( 0xFD < zExp )
+ || ( ( zExp == 0xFD )
+ && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < 0x80000000 );
+ shift32RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x7F;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ }
+ }
+ if ( roundBits ) float_set_inexact();
+ zSig = ( zSig + roundIncrement )>>7;
+ zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. This routine is just like
+`roundAndPackFloat32' except that `zSig' does not have to be normalized.
+Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+floating-point exponent.
+-------------------------------------------------------------------------------
+*/
+static float32
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( zSig ) - 1;
+ return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloat64Frac( float64 a )
+{
+
+ return FLOAT64_DEMANGLE(a) & LIT64( 0x000FFFFFFFFFFFFF );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat64Exp( float64 a )
+{
+
+ return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat64Sign( float64 a )
+{
+
+ return FLOAT64_DEMANGLE(a)>>63;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal double-precision floating-point value represented
+by the denormalized significand `aSig'. The normalized exponent and
+significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig ) - 11;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+double-precision floating-point value, returning the result. After being
+shifted into the proper positions, the three fields are simply added
+together to form the result. This means that any integer portion of `zSig'
+will be added into the exponent. Since a properly normalized significand
+will have an integer portion equal to 1, the `zExp' input should be 1 less
+than the desired result exponent whenever `zSig' is a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+
+ return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
+ ( ( (bits64) zExp )<<52 ) + zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper double-precision floating-
+point value corresponding to the abstract input. Ordinarily, the abstract
+value is simply rounded and packed into the double-precision format, with
+the inexact exception raised if the abstract input cannot be represented
+exactly. However, if the abstract value is too large, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal double-
+precision floating-point number.
+ The input significand `zSig' has its binary point between bits 62
+and 61, which is 10 bits to the left of the usual location. This shifted
+significand must be normalized or smaller. If `zSig' is not normalized,
+`zExp' must be 0; in that case, the result returned is a subnormal number,
+and it must not require rounding. In the usual case that `zSig' is
+normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+The handling of underflow and overflow follows the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int16 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x200;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x3FF;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig & 0x3FF;
+ if ( 0x7FD <= (bits16) zExp ) {
+ if ( ( 0x7FD < zExp )
+ || ( ( zExp == 0x7FD )
+ && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ return FLOAT64_MANGLE(
+ FLOAT64_DEMANGLE(packFloat64( zSign, 0x7FF, 0 )) -
+ ( roundIncrement == 0 ));
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
+ shift64RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x3FF;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ }
+ }
+ if ( roundBits ) float_set_inexact();
+ zSig = ( zSig + roundIncrement )>>10;
+ zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper double-precision floating-
+point value corresponding to the abstract input. This routine is just like
+`roundAndPackFloat64' except that `zSig' does not have to be normalized.
+Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+floating-point exponent.
+-------------------------------------------------------------------------------
+*/
+static float64
+ normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( zSig ) - 1;
+ return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the extended double-precision floating-point
+value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloatx80Frac( floatx80 a )
+{
+
+ return a.low;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the extended double-precision floating-point
+value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int32 extractFloatx80Exp( floatx80 a )
+{
+
+ return a.high & 0x7FFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the extended double-precision floating-point value
+`a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloatx80Sign( floatx80 a )
+{
+
+ return a.high>>15;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal extended double-precision floating-point value
+represented by the denormalized significand `aSig'. The normalized exponent
+and significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig );
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
+extended double-precision floating-point value, returning the result.
+-------------------------------------------------------------------------------
+*/
+INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
+{
+ floatx80 z;
+
+ z.low = zSig;
+ z.high = ( ( (bits16) zSign )<<15 ) + zExp;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and extended significand formed by the concatenation of `zSig0' and `zSig1',
+and returns the proper extended double-precision floating-point value
+corresponding to the abstract input. Ordinarily, the abstract value is
+rounded and packed into the extended double-precision format, with the
+inexact exception raised if the abstract input cannot be represented
+exactly. However, if the abstract value is too large, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal extended
+double-precision floating-point number.
+ If `roundingPrecision' is 32 or 64, the result is rounded to the same
+number of bits as single or double precision, respectively. Otherwise, the
+result is rounded to the full precision of the extended double-precision
+format.
+ The input significand must be normalized or smaller. If the input
+significand is not normalized, `zExp' must be 0; in that case, the result
+returned is a subnormal number, and it must not require rounding. The
+handling of underflow and overflow follows the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80
+ roundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+ int64 roundIncrement, roundMask, roundBits;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ if ( roundingPrecision == 80 ) goto precision80;
+ if ( roundingPrecision == 64 ) {
+ roundIncrement = LIT64( 0x0000000000000400 );
+ roundMask = LIT64( 0x00000000000007FF );
+ }
+ else if ( roundingPrecision == 32 ) {
+ roundIncrement = LIT64( 0x0000008000000000 );
+ roundMask = LIT64( 0x000000FFFFFFFFFF );
+ }
+ else {
+ goto precision80;
+ }
+ zSig0 |= ( zSig1 != 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = roundMask;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig0 & roundMask;
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
+ ) {
+ goto overflow;
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ( zSig0 <= zSig0 + roundIncrement );
+ shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
+ zExp = 0;
+ roundBits = zSig0 & roundMask;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ if ( roundBits ) float_set_inexact();
+ zSig0 += roundIncrement;
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( roundBits ) float_set_inexact();
+ zSig0 += roundIncrement;
+ if ( zSig0 < roundIncrement ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ if ( zSig0 == 0 ) zExp = 0;
+ return packFloatx80( zSign, zExp, zSig0 );
+ precision80:
+ increment = ( (sbits64) zSig1 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ }
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE )
+ && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
+ && increment
+ )
+ ) {
+ roundMask = 0;
+ overflow:
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return packFloatx80( zSign, 0x7FFE, ~ roundMask );
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ! increment
+ || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
+ shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
+ zExp = 0;
+ if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
+ if ( zSig1 ) float_set_inexact();
+ if ( roundNearestEven ) {
+ increment = ( (sbits64) zSig1 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ if ( increment ) {
+ ++zSig0;
+ zSig0 &=
+ ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( zSig1 ) float_set_inexact();
+ if ( increment ) {
+ ++zSig0;
+ if ( zSig0 == 0 ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ else {
+ zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ }
+ }
+ else {
+ if ( zSig0 == 0 ) zExp = 0;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent
+`zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
+and returns the proper extended double-precision floating-point value
+corresponding to the abstract input. This routine is just like
+`roundAndPackFloatx80' except that the input significand does not have to be
+normalized.
+-------------------------------------------------------------------------------
+*/
+static floatx80
+ normalizeRoundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 shiftCount;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 );
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ zExp -= shiftCount;
+ return
+ roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the least-significant 64 fraction bits of the quadruple-precision
+floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloat128Frac1( float128 a )
+{
+
+ return a.low;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the most-significant 48 fraction bits of the quadruple-precision
+floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloat128Frac0( float128 a )
+{
+
+ return a.high & LIT64( 0x0000FFFFFFFFFFFF );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the quadruple-precision floating-point value
+`a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int32 extractFloat128Exp( float128 a )
+{
+
+ return ( a.high>>48 ) & 0x7FFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the quadruple-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat128Sign( float128 a )
+{
+
+ return a.high>>63;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal quadruple-precision floating-point value
+represented by the denormalized significand formed by the concatenation of
+`aSig0' and `aSig1'. The normalized exponent is stored at the location
+pointed to by `zExpPtr'. The most significant 49 bits of the normalized
+significand are stored at the location pointed to by `zSig0Ptr', and the
+least significant 64 bits of the normalized significand are stored at the
+location pointed to by `zSig1Ptr'.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat128Subnormal(
+ bits64 aSig0,
+ bits64 aSig1,
+ int32 *zExpPtr,
+ bits64 *zSig0Ptr,
+ bits64 *zSig1Ptr
+ )
+{
+ int8 shiftCount;
+
+ if ( aSig0 == 0 ) {
+ shiftCount = countLeadingZeros64( aSig1 ) - 15;
+ if ( shiftCount < 0 ) {
+ *zSig0Ptr = aSig1>>( - shiftCount );
+ *zSig1Ptr = aSig1<<( shiftCount & 63 );
+ }
+ else {
+ *zSig0Ptr = aSig1<<shiftCount;
+ *zSig1Ptr = 0;
+ }
+ *zExpPtr = - shiftCount - 63;
+ }
+ else {
+ shiftCount = countLeadingZeros64( aSig0 ) - 15;
+ shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+ *zExpPtr = 1 - shiftCount;
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', the exponent `zExp', and the significand formed
+by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
+floating-point value, returning the result. After being shifted into the
+proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
+added together to form the most significant 32 bits of the result. This
+means that any integer portion of `zSig0' will be added into the exponent.
+Since a properly normalized significand will have an integer portion equal
+to 1, the `zExp' input should be 1 less than the desired result exponent
+whenever `zSig0' and `zSig1' concatenated form a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float128
+ packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+ float128 z;
+
+ z.low = zSig1;
+ z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and extended significand formed by the concatenation of `zSig0', `zSig1',
+and `zSig2', and returns the proper quadruple-precision floating-point value
+corresponding to the abstract input. Ordinarily, the abstract value is
+simply rounded and packed into the quadruple-precision format, with the
+inexact exception raised if the abstract input cannot be represented
+exactly. However, if the abstract value is too large, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal quadruple-
+precision floating-point number.
+ The input significand must be normalized or smaller. If the input
+significand is not normalized, `zExp' must be 0; in that case, the result
+returned is a subnormal number, and it must not require rounding. In the
+usual case that the input significand is normalized, `zExp' must be 1 less
+than the ``true'' floating-point exponent. The handling of underflow and
+overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float128
+ roundAndPackFloat128(
+ flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+
+ roundingMode = float_rounding_mode();
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ increment = ( (sbits64) zSig2 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ if ( 0x7FFD <= (bits32) zExp ) {
+ if ( ( 0x7FFD < zExp )
+ || ( ( zExp == 0x7FFD )
+ && eq128(
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF ),
+ zSig0,
+ zSig1
+ )
+ && increment
+ )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return
+ packFloat128(
+ zSign,
+ 0x7FFE,
+ LIT64( 0x0000FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ! increment
+ || lt128(
+ zSig0,
+ zSig1,
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+ zExp = 0;
+ if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
+ if ( roundNearestEven ) {
+ increment = ( (sbits64) zSig2 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ }
+ if ( zSig2 ) float_set_inexact();
+ if ( increment ) {
+ add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+ zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+ }
+ else {
+ if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+ }
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand formed by the concatenation of `zSig0' and `zSig1', and
+returns the proper quadruple-precision floating-point value corresponding
+to the abstract input. This routine is just like `roundAndPackFloat128'
+except that the input significand has fewer bits and does not have to be
+normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
+point exponent.
+-------------------------------------------------------------------------------
+*/
+static float128
+ normalizeRoundAndPackFloat128(
+ flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+ int8 shiftCount;
+ bits64 zSig2;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 ) - 15;
+ if ( 0 <= shiftCount ) {
+ zSig2 = 0;
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ }
+ else {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+ }
+ zExp -= shiftCount;
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a'
+to the single-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 int32_to_float32( int32 a )
+{
+ flag zSign;
+
+ if ( a == 0 ) return 0;
+ if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a'
+to the double-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 int32_to_float64( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig;
+
+ if ( a == 0 ) return 0;
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 21;
+ zSig = absA;
+ return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a'
+to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 int32_to_floatx80( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 32;
+ zSig = absA;
+ return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a' to
+the quadruple-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 int32_to_float128( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig0;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 17;
+ zSig0 = absA;
+ return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
+
+}
+
+#endif
+
+#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 64-bit two's complement integer `a'
+to the single-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 int64_to_float32( int64 a )
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+
+ if ( a == 0 ) return 0;
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA ) - 40;
+ if ( 0 <= shiftCount ) {
+ return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
+ }
+ else {
+ shiftCount += 7;
+ if ( shiftCount < 0 ) {
+ shift64RightJamming( absA, - shiftCount, &absA );
+ }
+ else {
+ absA <<= shiftCount;
+ }
+ return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 64-bit two's complement integer `a'
+to the double-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 int64_to_float64( int64 a )
+{
+ flag zSign;
+
+ if ( a == 0 ) return 0;
+ if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
+ return packFloat64( 1, 0x43E, 0 );
+ }
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 64-bit two's complement integer `a'
+to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 int64_to_floatx80( int64 a )
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA );
+ return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 64-bit two's complement integer `a' to
+the quadruple-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 int64_to_float128( int64 a )
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+ int32 zExp;
+ bits64 zSig0, zSig1;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA ) + 49;
+ zExp = 0x406E - shiftCount;
+ if ( 64 <= shiftCount ) {
+ zSig1 = 0;
+ zSig0 = absA;
+ shiftCount -= 64;
+ }
+ else {
+ zSig1 = absA;
+ zSig0 = 0;
+ }
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ bits64 aSig64;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= 0x00800000;
+ shiftCount = 0xAF - aExp;
+ aSig64 = aSig;
+ aSig64 <<= 32;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
+ return roundAndPackInt32( aSign, aSig64 );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32_round_to_zero( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x9E;
+ if ( 0 <= shiftCount ) {
+ if ( a != 0xCF000000 ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+ }
+ return (sbits32) 0x80000000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) float_set_inexact();
+ return 0;
+ }
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+ float_set_inexact();
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 64-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int64 float32_to_int64( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ bits64 aSig64, aSigExtra;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = 0xBE - aExp;
+ if ( shiftCount < 0 ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ if ( aExp ) aSig |= 0x00800000;
+ aSig64 = aSig;
+ aSig64 <<= 40;
+ shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
+ return roundAndPackInt64( aSign, aSig64, aSigExtra );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 64-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. Otherwise, if the
+conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int64 float32_to_int64_round_to_zero( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ bits64 aSig64;
+ int64 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0xBE;
+ if ( 0 <= shiftCount ) {
+ if ( a != 0xDF000000 ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) float_set_inexact();
+ return 0;
+ }
+ aSig64 = aSig | 0x00800000;
+ aSig64 <<= 40;
+ z = aSig64>>( - shiftCount );
+ if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
+ float_set_inexact();
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the double-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float32_to_float64( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 float32_to_floatx80( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ aSig |= 0x00800000;
+ return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the double-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float32_to_float128( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
+
+}
+
+#endif
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Rounds the single-precision floating-point value `a' to an integer, and
+returns the result as a single-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_round_to_int( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float32 z;
+
+ aExp = extractFloat32Exp( a );
+ if ( 0x96 <= aExp ) {
+ if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+ return propagateFloat32NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp <= 0x7E ) {
+ if ( (bits32) ( a<<1 ) == 0 ) return a;
+ float_set_inexact();
+ aSign = extractFloat32Sign( a );
+ switch ( float_rounding_mode() ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+ return packFloat32( aSign, 0x7F, 0 );
+ }
+ break;
+ case float_round_down:
+ return aSign ? 0xBF800000 : 0;
+ case float_round_up:
+ return aSign ? 0x80000000 : 0x3F800000;
+ }
+ return packFloat32( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x96 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode();
+ if ( roundingMode == float_round_nearest_even ) {
+ z += lastBitMask>>1;
+ if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z += roundBitsMask;
+ }
+ }
+ z &= ~ roundBitsMask;
+ if ( z != a ) float_set_inexact();
+ return z;
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the single-precision
+floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 6;
+ bSig <<= 6;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x20000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x20000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+ zSig = 0x40000000 + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= 0x20000000;
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (sbits32) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the single-
+precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 7;
+ bSig <<= 7;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat32( float_rounding_mode() == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign ^ 1, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x40000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ bSig |= 0x40000000;
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x40000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ aSig |= 0x40000000;
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the single-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_add( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sub( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_mul( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig;
+ bits64 zSig64;
+ bits32 zSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x7F;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
+ zSig = zSig64;
+ if ( 0 <= (sbits32) ( zSig<<1 ) ) {
+ zSig <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the single-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_div( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x7D;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = ( ( (bits64) aSig )<<32 ) / bSig;
+ if ( ( zSig & 0x3F ) == 0 ) {
+ zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the single-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_rem( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits32 aSig, bSig;
+ bits32 q;
+ bits64 aSig64, bSig64, q64;
+ bits32 alternateASig;
+ sbits32 sigMean;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig |= 0x00800000;
+ bSig |= 0x00800000;
+ if ( expDiff < 32 ) {
+ aSig <<= 8;
+ bSig <<= 8;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ if ( 0 < expDiff ) {
+ q = ( ( (bits64) aSig )<<32 ) / bSig;
+ q >>= 32 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ }
+ else {
+ if ( bSig <= aSig ) aSig -= bSig;
+ aSig64 = ( (bits64) aSig )<<40;
+ bSig64 = ( (bits64) bSig )<<40;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ aSig64 = - ( ( bSig * q64 )<<38 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ q = q64>>( 64 - expDiff );
+ bSig <<= 6;
+ aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (sbits32) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (sbits32) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the single-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sqrt( float32 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits32 aSig, zSig;
+ bits64 rem, term;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, 0 );
+ if ( ! aSign ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return 0;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+ aSig = ( aSig | 0x00800000 )<<8;
+ zSig = estimateSqrt32( aExp, aSig ) + 2;
+ if ( ( zSig & 0x7F ) <= 5 ) {
+ if ( zSig < 2 ) {
+ zSig = 0x7FFFFFFF;
+ goto roundAndPack;
+ }
+ aSig >>= aExp & 1;
+ term = ( (bits64) zSig ) * zSig;
+ rem = ( ( (bits64) aSig )<<32 ) - term;
+ while ( (sbits64) rem < 0 ) {
+ --zSig;
+ rem += ( ( (bits64) zSig )<<1 ) | 1;
+ }
+ zSig |= ( rem != 0 );
+ }
+ shift32RightJamming( zSig, 1, &zSig );
+ roundAndPack:
+ return roundAndPackFloat32( 0, zExp, zSig );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+or equal to the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq_signaling( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x42C - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( 0x41E < aExp ) {
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FF ) {
+ if ( aExp || aSig ) float_set_inexact();
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 64-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int64 float64_to_int64( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, aSigExtra;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( 0x43E < aExp ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FF )
+ && ( aSig != LIT64( 0x0010000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ aSigExtra = 0;
+ aSig <<= - shiftCount;
+ }
+ else {
+ shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ }
+ return roundAndPackInt64( aSign, aSig, aSigExtra );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 64-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int64 float64_to_int64_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig;
+ int64 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = aExp - 0x433;
+ if ( 0 <= shiftCount ) {
+ if ( 0x43E <= aExp ) {
+ if ( a != LIT64( 0xC3E0000000000000 ) ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FF )
+ && ( aSig != LIT64( 0x0010000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ z = aSig<<shiftCount;
+ }
+ else {
+ if ( aExp < 0x3FE ) {
+ if ( aExp | aSig ) float_set_inexact();
+ return 0;
+ }
+ z = aSig>>( - shiftCount );
+ if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+ float_set_inexact();
+ }
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the single-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float64_to_float32( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig;
+ bits32 zSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 22, &aSig );
+ zSig = aSig;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x381;
+ }
+ return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 float64_to_floatx80( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ return
+ packFloatx80(
+ aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the quadruple-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float64_to_float128( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig, zSig0, zSig1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Rounds the double-precision floating-point value `a' to an integer, and
+returns the result as a double-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_round_to_int( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float64 z;
+
+ aExp = extractFloat64Exp( a );
+ if ( 0x433 <= aExp ) {
+ if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
+ return propagateFloat64NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp < 0x3FF ) {
+ if ( (bits64) ( a<<1 ) == 0 ) return a;
+ float_set_inexact();
+ aSign = extractFloat64Sign( a );
+ switch ( float_rounding_mode() ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
+ return packFloat64( aSign, 0x3FF, 0 );
+ }
+ break;
+ case float_round_down:
+ return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
+ case float_round_up:
+ return
+ aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
+ }
+ return packFloat64( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x433 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode();
+ if ( roundingMode == float_round_nearest_even ) {
+ z += lastBitMask>>1;
+ if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z += roundBitsMask;
+ }
+ }
+ z &= ~ roundBitsMask;
+ if ( z != a ) float_set_inexact();
+ return z;
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the double-precision
+floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 9;
+ bSig <<= 9;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FF ) {
+ if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
+ zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= LIT64( 0x2000000000000000 );
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (sbits64) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the double-
+precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 10;
+ bSig <<= 10;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FF ) {
+ if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat64( float_rounding_mode() == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign ^ 1, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ bSig |= LIT64( 0x4000000000000000 );
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ aSig |= LIT64( 0x4000000000000000 );
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the double-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_add( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sub( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_mul( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FF;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ zSig0 |= ( zSig1 != 0 );
+ if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
+ zSig0 <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat64( zSign, zExp, zSig0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the double-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to
+the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_div( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ bits64 rem0, rem1;
+ bits64 term0, term1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FD;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = estimateDiv128To64( aSig, 0, bSig );
+ if ( ( zSig & 0x1FF ) <= 2 ) {
+ mul64To128( bSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig |= ( rem1 != 0 );
+ }
+ return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the double-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_rem( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits64 aSig, bSig;
+ bits64 q, alternateASig;
+ sbits64 sigMean;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ aSig = - ( ( bSig>>2 ) * q );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (sbits64) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (sbits64) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the double-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sqrt( float64 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits64 aSig, zSig, doubleZSig;
+ bits64 rem0, rem1, term0, term1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, a );
+ if ( ! aSign ) return a;
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return 0;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+ aSig |= LIT64( 0x0010000000000000 );
+ zSig = estimateSqrt32( aExp, aSig>>21 );
+ aSig <<= 9 - ( aExp & 1 );
+ zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
+ if ( ( zSig & 0x1FF ) <= 5 ) {
+ doubleZSig = zSig<<1;
+ mul64To128( zSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig;
+ doubleZSig -= 2;
+ add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
+ }
+ zSig |= ( ( rem0 | rem1 ) != 0 );
+ }
+ return roundAndPackFloat64( 0, zExp, zSig );
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) ||
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. The comparison is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign )
+ return aSign ||
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
+ 0 );
+ return ( a == b ) ||
+ ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign )
+ return aSign &&
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
+ 0 );
+ return ( a != b ) &&
+ ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The invalid exception is raised
+if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq_signaling( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+#endif
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 32-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic---which means in particular that the conversion
+is rounded according to the current rounding mode. If `a' is a NaN, the
+largest positive integer is returned. Otherwise, if the conversion
+overflows, the largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 floatx80_to_int32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ shiftCount = 0x4037 - aExp;
+ if ( shiftCount <= 0 ) shiftCount = 1;
+ shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 32-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic, except that the conversion is always rounded
+toward zero. If `a' is a NaN, the largest positive integer is returned.
+Otherwise, if the conversion overflows, the largest integer with the same
+sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 floatx80_to_int32_round_to_zero( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp || aSig ) float_set_inexact();
+ return 0;
+ }
+ shiftCount = 0x403E - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 64-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic---which means in particular that the conversion
+is rounded according to the current rounding mode. If `a' is a NaN,
+the largest positive integer is returned. Otherwise, if the conversion
+overflows, the largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int64 floatx80_to_int64( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig, aSigExtra;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = 0x403E - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( shiftCount ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig != LIT64( 0x8000000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ aSigExtra = 0;
+ }
+ else {
+ shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ }
+ return roundAndPackInt64( aSign, aSig, aSigExtra );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 64-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic, except that the conversion is always rounded
+toward zero. If `a' is a NaN, the largest positive integer is returned.
+Otherwise, if the conversion overflows, the largest integer with the same
+sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int64 floatx80_to_int64_round_to_zero( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig;
+ int64 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = aExp - 0x403E;
+ if ( 0 <= shiftCount ) {
+ aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
+ if ( ( a.high != 0xC03E ) || aSig ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp | aSig ) float_set_inexact();
+ return 0;
+ }
+ z = aSig>>( - shiftCount );
+ if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+ float_set_inexact();
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the single-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 floatx80_to_float32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 33, &aSig );
+ if ( aExp || aSig ) aExp -= 0x3F81;
+ return roundAndPackFloat32( aSign, aExp, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the double-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 floatx80_to_float64( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig, zSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shift64RightJamming( aSig, 1, &zSig );
+ if ( aExp || aSig ) aExp -= 0x3C01;
+ return roundAndPackFloat64( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the quadruple-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 floatx80_to_float128( floatx80 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig, zSig0, zSig1;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
+ }
+ shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Rounds the extended double-precision floating-point value `a' to an integer,
+and returns the result as an extended quadruple-precision floating-point
+value. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_round_to_int( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ floatx80 z;
+
+ aExp = extractFloatx80Exp( a );
+ if ( 0x403E <= aExp ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
+ return propagateFloatx80NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp < 0x3FFF ) {
+ if ( ( aExp == 0 )
+ && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+ return a;
+ }
+ float_set_inexact();
+ aSign = extractFloatx80Sign( a );
+ switch ( float_rounding_mode() ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
+ ) {
+ return
+ packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ?
+ packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
+ : packFloatx80( 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloatx80( 1, 0, 0 )
+ : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ return packFloatx80( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x403E - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode();
+ if ( roundingMode == float_round_nearest_even ) {
+ z.low += lastBitMask>>1;
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z.low += roundBitsMask;
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ if ( z.low == 0 ) {
+ ++z.high;
+ z.low = LIT64( 0x8000000000000000 );
+ }
+ if ( z.low != a.low ) float_set_inexact();
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the extended double-
+precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
+negated before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ return a;
+ }
+ zSig1 = 0;
+ zSig0 = aSig + bSig;
+ if ( aExp == 0 ) {
+ normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
+ goto roundAndPack;
+ }
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ zSig0 = aSig + bSig;
+ if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
+ shiftRight1:
+ shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= LIT64( 0x8000000000000000 );
+ ++zExp;
+ roundAndPack:
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the extended
+double-precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ zSig1 = 0;
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloatx80( float_rounding_mode() == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ bBigger:
+ sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ aBigger:
+ sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ return
+ normalizeRoundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the extended double-precision floating-point
+values `a' and `b'. The operation is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_add( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the extended double-precision floating-
+point values `a' and `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_sub( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the extended double-precision floating-
+point values `a' and `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_mul( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) goto invalid;
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FFE;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ if ( 0 < (sbits64) zSig0 ) {
+ shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ --zExp;
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the extended double-precision floating-point
+value `a' by the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_div( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ bits64 rem0, rem1, rem2, term0, term1, term2;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ goto invalid;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FFE;
+ rem1 = 0;
+ if ( bSig <= aSig ) {
+ shift128Right( aSig, 0, 1, &aSig, &rem1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig, rem1, bSig );
+ mul64To128( bSig, zSig0, &term0, &term1 );
+ sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, bSig );
+ if ( (bits64) ( zSig1<<1 ) <= 8 ) {
+ mul64To128( bSig, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
+ }
+ zSig1 |= ( ( rem1 | rem2 ) != 0 );
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the extended double-precision floating-point value
+`a' with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_rem( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, expDiff;
+ bits64 aSig0, aSig1, bSig;
+ bits64 q, term0, term1, alternateASig0, alternateASig1;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ bSig |= LIT64( 0x8000000000000000 );
+ zSign = aSign;
+ expDiff = aExp - bExp;
+ aSig1 = 0;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
+ expDiff = 0;
+ }
+ q = ( bSig <= aSig0 );
+ if ( q ) aSig0 -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ mul64To128( bSig, q, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
+ while ( le128( term0, term1, aSig0, aSig1 ) ) {
+ ++q;
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ }
+ }
+ else {
+ term1 = 0;
+ term0 = bSig;
+ }
+ sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
+ if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ && ( q & 1 ) )
+ ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ zSign = ! zSign;
+ }
+ return
+ normalizeRoundAndPackFloatx80(
+ 80, zSign, bExp + expDiff, aSig0, aSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the extended double-precision floating-point
+value `a'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_sqrt( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, zExp;
+ bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
+ zSig0 = estimateSqrt32( aExp, aSig0>>32 );
+ shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= doubleZSig0;
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+equal to the corresponding value `b', and 0 otherwise. The comparison is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_eq( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+less than or equal to the corresponding value `b', and 0 otherwise. The
+comparison is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_le( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+less than the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_lt( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is equal
+to the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_eq_signaling( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is less
+than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
+do not cause an exception. Otherwise, the comparison is performed according
+to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_le_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is less
+than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
+an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_lt_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the 32-bit two's complement integer format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float128_to_int32( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ aSig0 |= ( aSig1 != 0 );
+ shiftCount = 0x4028 - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
+ return roundAndPackInt32( aSign, aSig0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the 32-bit two's complement integer format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. Otherwise, if the
+conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float128_to_int32_round_to_zero( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1, savedASig;
+ int32 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ aSig0 |= ( aSig1 != 0 );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp || aSig0 ) float_set_inexact();
+ return 0;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ savedASig = aSig0;
+ aSig0 >>= shiftCount;
+ z = aSig0;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig0<<shiftCount ) != savedASig ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the 64-bit two's complement integer format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int64 float128_to_int64( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( 0x403E < aExp ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
+ )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
+ }
+ else {
+ shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
+ }
+ return roundAndPackInt64( aSign, aSig0, aSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the 64-bit two's complement integer format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int64 float128_to_int64_round_to_zero( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+ int64 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = aExp - 0x402F;
+ if ( 0 < shiftCount ) {
+ if ( 0x403E <= aExp ) {
+ aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
+ if ( ( a.high == LIT64( 0xC03E000000000000 ) )
+ && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
+ if ( aSig1 ) float_set_inexact();
+ }
+ else {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
+ if ( (bits64) ( aSig1<<shiftCount ) ) {
+ float_set_inexact();
+ }
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( aExp | aSig0 | aSig1 ) {
+ float_set_inexact();
+ }
+ return 0;
+ }
+ z = aSig0>>( - shiftCount );
+ if ( aSig1
+ || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
+ float_set_inexact();
+ }
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the single-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float128_to_float32( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+ bits32 zSig;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat32( float128ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ aSig0 |= ( aSig1 != 0 );
+ shift64RightJamming( aSig0, 18, &aSig0 );
+ zSig = aSig0;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x3F81;
+ }
+ return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float128_to_float64( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat64( float128ToCommonNaN( a ) );
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ aSig0 |= ( aSig1 != 0 );
+ if ( aExp || aSig0 ) {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aExp -= 0x3C01;
+ }
+ return roundAndPackFloat64( aSign, aExp, aSig0 );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the quadruple-precision floating-point
+value `a' to the extended double-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 float128_to_floatx80( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloatx80( float128ToCommonNaN( a ) );
+ }
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
+ return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Rounds the quadruple-precision floating-point value `a' to an integer, and
+returns the result as a quadruple-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_round_to_int( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float128 z;
+
+ aExp = extractFloat128Exp( a );
+ if ( 0x402F <= aExp ) {
+ if ( 0x406F <= aExp ) {
+ if ( ( aExp == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
+ ) {
+ return propagateFloat128NaN( a, a );
+ }
+ return a;
+ }
+ lastBitMask = 1;
+ lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode();
+ if ( roundingMode == float_round_nearest_even ) {
+ if ( lastBitMask ) {
+ add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else {
+ if ( (sbits64) z.low < 0 ) {
+ ++z.high;
+ if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
+ }
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat128Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+ float_set_inexact();
+ aSign = extractFloat128Sign( a );
+ switch ( float_rounding_mode() ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE )
+ && ( extractFloat128Frac0( a )
+ | extractFloat128Frac1( a ) )
+ ) {
+ return packFloat128( aSign, 0x3FFF, 0, 0 );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
+ : packFloat128( 0, 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloat128( 1, 0, 0, 0 )
+ : packFloat128( 0, 0x3FFF, 0, 0 );
+ }
+ return packFloat128( aSign, 0, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x402F - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z.low = 0;
+ z.high = a.high;
+ roundingMode = float_rounding_mode();
+ if ( roundingMode == float_round_nearest_even ) {
+ z.high += lastBitMask>>1;
+ if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+ z.high &= ~ lastBitMask;
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat128Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ z.high |= ( a.low != 0 );
+ z.high += roundBitsMask;
+ }
+ }
+ z.high &= ~ roundBitsMask;
+ }
+ if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the quadruple-precision
+floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ int32 expDiff;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN( a, b );
+ }
+ return a;
+ }
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
+ zSig2 = 0;
+ zSig0 |= LIT64( 0x0002000000000000 );
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ --zExp;
+ if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
+ ++zExp;
+ shiftRight1:
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the quadruple-
+precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+ int32 expDiff;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig0 < aSig0 ) goto aBigger;
+ if ( aSig0 < bSig0 ) goto bBigger;
+ if ( bSig1 < aSig1 ) goto aBigger;
+ if ( aSig1 < bSig1 ) goto bBigger;
+ return packFloat128( float_rounding_mode() == float_round_down, 0, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ bSig0 |= LIT64( 0x4000000000000000 );
+ bBigger:
+ sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aBigger:
+ sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the quadruple-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_add( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat128Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat128Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the quadruple-precision floating-point
+values `a' and `b'. The operation is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_sub( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat128Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat128Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the quadruple-precision floating-point
+values `a' and `b'. The operation is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_mul( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN( a, b );
+ }
+ if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ zExp = aExp + bExp - 0x4000;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
+ mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+ add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zSig2 |= ( zSig3 != 0 );
+ if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ ++zExp;
+ }
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the quadruple-precision floating-point value
+`a' by the corresponding value `b'. The operation is performed according to
+the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_div( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ goto invalid;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign, 0, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = aExp - bExp + 0x3FFD;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
+ shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+ sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+ }
+ zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
+ if ( ( zSig1 & 0x3FFF ) <= 4 ) {
+ mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+ sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the quadruple-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_rem( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, expDiff;
+ bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+ bits64 allZero, alternateASig0, alternateASig1, sigMean1;
+ sbits64 sigMean0;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return a;
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ expDiff = aExp - bExp;
+ if ( expDiff < -1 ) return a;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ),
+ aSig1,
+ 15 - ( expDiff < 0 ),
+ &aSig0,
+ &aSig1
+ );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ q = le128( bSig0, bSig1, aSig0, aSig1 );
+ if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
+ shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
+ sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+ expDiff -= 61;
+ }
+ if ( -64 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ q >>= - expDiff;
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ expDiff += 52;
+ if ( expDiff < 0 ) {
+ shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ }
+ else {
+ shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+ }
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+ }
+ else {
+ shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ }
+ do {
+ alternateASig0 = aSig0;
+ alternateASig1 = aSig1;
+ ++q;
+ sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ } while ( 0 <= (sbits64) aSig0 );
+ add128(
+ aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
+ if ( ( sigMean0 < 0 )
+ || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ }
+ zSign = ( (sbits64) aSig0 < 0 );
+ if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+ return
+ normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the quadruple-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float128 float128_sqrt( float128 a )
+{
+ flag aSign;
+ int32 aExp, zExp;
+ bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ zSig0 = estimateSqrt32( aExp, aSig0>>17 );
+ shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & 0x1FFF ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_eq( float128 a, float128 b )
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is less than
+or equal to the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_le( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_lt( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_eq_signaling( float128 a, float128 b )
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is less than
+or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_le_quiet( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the quadruple-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float128_lt_quiet( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
+
+#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
+
+/*
+ * These two routines are not part of the original softfloat distribution.
+ *
+ * They are based on the corresponding conversions to integer but return
+ * unsigned numbers instead since these functions are required by GCC.
+ *
+ * Added by Mark Brinicombe <mark@netbsd.org> 27/09/97
+ *
+ * float64 version overhauled for SoftFloat 2a [bjh21 2000-07-15]
+ */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit unsigned integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. If the conversion
+overflows, the largest integer positive is returned.
+-------------------------------------------------------------------------------
+*/
+uint32 float64_to_uint32_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ uint32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+
+ if (aSign) {
+ float_raise( float_flag_invalid );
+ return(0);
+ }
+
+ if ( 0x41E < aExp ) {
+ float_raise( float_flag_invalid );
+ return 0xffffffff;
+ }
+ else if ( aExp < 0x3FF ) {
+ if ( aExp || aSig ) float_set_inexact();
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x433 - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit unsigned integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. If the conversion
+overflows, the largest positive integer is returned.
+-------------------------------------------------------------------------------
+*/
+uint32 float32_to_uint32_round_to_zero( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ uint32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x9E;
+
+ if (aSign) {
+ float_raise( float_flag_invalid );
+ return(0);
+ }
+ if ( 0 < shiftCount ) {
+ float_raise( float_flag_invalid );
+ return 0xFFFFFFFF;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) float_set_inexact();
+ return 0;
+ }
+ aSig = ( aSig | 0x800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( aSig<<( shiftCount & 31 ) ) {
+ float_set_inexact();
+ }
+ return z;
+
+}
+
+#endif
+
+#endif /* !NO_IEEE */
diff --git a/sys/lib/libkern/softfloat.h b/sys/lib/libkern/softfloat.h
new file mode 100644
index 00000000000..032408f40c7
--- /dev/null
+++ b/sys/lib/libkern/softfloat.h
@@ -0,0 +1,376 @@
+/* $OpenBSD: softfloat.h,v 1.1 2002/04/28 20:55:14 pvalchev Exp $ */
+/* $NetBSD: softfloat.h,v 1.1 2001/04/26 03:10:48 ross Exp $ */
+
+/* This is a derivative work. */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Ross Harvey.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+===============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable
+effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT
+WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
+RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL
+RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM
+THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY
+(possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL
+COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS
+ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#ifndef NO_IEEE
+
+#include <sys/types.h>
+
+#if !defined(_KERNEL) && !defined(_STANDALONE)
+#include <ieeefp.h>
+#else
+#include "machine/ieeefp.h"
+#endif
+#include <sys/endian.h>
+
+/*
+-------------------------------------------------------------------------------
+The macro `FLOATX80' must be defined to enable the extended double-precision
+floating-point format `floatx80'. If this macro is not defined, the
+`floatx80' type will not be defined, and none of the functions that either
+input or output the `floatx80' type will be defined. The same applies to
+the `FLOAT128' macro and the quadruple-precision format `float128'.
+-------------------------------------------------------------------------------
+*/
+/* #define FLOATX80 */
+/* #define FLOAT128 */
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point types.
+-------------------------------------------------------------------------------
+*/
+typedef u_int32_t float32;
+typedef u_int64_t float64;
+#ifdef FLOATX80
+typedef struct {
+#if BYTE_ORDER == BIG_ENDIAN
+ u_int16_t high;
+ u_int64_t low;
+#else
+ u_int64_t low;
+ u_int16_t high;
+#endif
+} floatx80;
+#endif
+#ifdef FLOAT128
+typedef struct {
+ u_int64_t high, low;
+} float128;
+#endif
+
+/*
+ * Some of the global variables that used to be here have been removed for
+ * fairly obvious (defopt-MULTIPROCESSOR) reasons. The rest (which don't
+ * change dynamically) will be removed later. [ross]
+ */
+
+#define float_rounding_mode() fpgetround()
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point underflow tininess-detection mode.
+-------------------------------------------------------------------------------
+*/
+
+extern int float_detect_tininess;
+enum {
+ float_tininess_after_rounding = 1,
+ float_tininess_before_rounding = 0
+};
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point rounding mode.
+-------------------------------------------------------------------------------
+*/
+
+enum {
+ float_round_nearest_even = FP_RN,
+ float_round_to_zero = FP_RZ,
+ float_round_down = FP_RM,
+ float_round_up = FP_RP
+};
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point exception flags.
+-------------------------------------------------------------------------------
+*/
+
+enum {
+ float_flag_inexact = FP_X_IMP,
+ float_flag_underflow = FP_X_UFL,
+ float_flag_overflow = FP_X_OFL,
+ float_flag_divbyzero = FP_X_DZ,
+ float_flag_invalid = FP_X_INV
+};
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE integer-to-floating-point conversion routines.
+-------------------------------------------------------------------------------
+*/
+float32 int32_to_float32( int );
+float64 int32_to_float64( int );
+#ifdef FLOATX80
+floatx80 int32_to_floatx80( int );
+#endif
+#ifdef FLOAT128
+float128 int32_to_float128( int );
+#endif
+#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
+float32 int64_to_float32( int64_t );
+float64 int64_to_float64( int64_t );
+#ifdef FLOATX80
+floatx80 int64_to_floatx80( int64_t );
+#endif
+#ifdef FLOAT128
+float128 int64_to_float128( int64_t );
+#endif
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE single-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+int float32_to_int32( float32 );
+int float32_to_int32_round_to_zero( float32 );
+#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
+int64_t float32_to_int64( float32 );
+int64_t float32_to_int64_round_to_zero( float32 );
+#endif
+float64 float32_to_float64( float32 );
+#ifdef FLOATX80
+floatx80 float32_to_floatx80( float32 );
+#endif
+#ifdef FLOAT128
+float128 float32_to_float128( float32 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE single-precision operations.
+-------------------------------------------------------------------------------
+*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+int float32_eq( float32, float32 );
+int float32_le( float32, float32 );
+int float32_lt( float32, float32 );
+int float32_eq_signaling( float32, float32 );
+int float32_le_quiet( float32, float32 );
+int float32_lt_quiet( float32, float32 );
+#ifndef SOFTFLOAT_FOR_GCC
+int float32_is_signaling_nan( float32 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE double-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+int float64_to_int32( float64 );
+int float64_to_int32_round_to_zero( float64 );
+#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
+int64_t float64_to_int64( float64 );
+int64_t float64_to_int64_round_to_zero( float64 );
+#endif
+float32 float64_to_float32( float64 );
+#ifdef FLOATX80
+floatx80 float64_to_floatx80( float64 );
+#endif
+#ifdef FLOAT128
+float128 float64_to_float128( float64 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE double-precision operations.
+-------------------------------------------------------------------------------
+*/
+#define float64_default_nan 0xFFF8000000000000LL
+
+static __inline int
+float64_is_nan(float64 a)
+{
+ return 0xFFE0000000000000LL < a << 1;
+}
+
+static __inline int
+float64_is_signaling_nan(float64 a)
+{
+ return (a >> 51 & 0xFFF) == 0xFFE && (a & 0x0007FFFFFFFFFFFFLL);
+}
+
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+int float64_eq( float64, float64 );
+int float64_le( float64, float64 );
+int float64_lt( float64, float64 );
+int float64_eq_signaling( float64, float64 );
+int float64_le_quiet( float64, float64 );
+int float64_lt_quiet( float64, float64 );
+#ifndef SOFTFLOAT_FOR_GCC
+int float64_is_signaling_nan( float64 );
+#endif
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+int floatx80_to_int32( floatx80 );
+int floatx80_to_int32_round_to_zero( floatx80 );
+int64_t floatx80_to_int64( floatx80 );
+int64_t floatx80_to_int64_round_to_zero( floatx80 );
+float32 floatx80_to_float32( floatx80 );
+float64 floatx80_to_float64( floatx80 );
+#ifdef FLOAT128
+float128 floatx80_to_float128( floatx80 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision rounding precision. Valid
+values are 32, 64, and 80.
+-------------------------------------------------------------------------------
+*/
+extern int floatx80_rounding_precision;
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision operations.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_round_to_int( floatx80 );
+floatx80 floatx80_add( floatx80, floatx80 );
+floatx80 floatx80_sub( floatx80, floatx80 );
+floatx80 floatx80_mul( floatx80, floatx80 );
+floatx80 floatx80_div( floatx80, floatx80 );
+floatx80 floatx80_rem( floatx80, floatx80 );
+floatx80 floatx80_sqrt( floatx80 );
+int floatx80_eq( floatx80, floatx80 );
+int floatx80_le( floatx80, floatx80 );
+int floatx80_lt( floatx80, floatx80 );
+int floatx80_eq_signaling( floatx80, floatx80 );
+int floatx80_le_quiet( floatx80, floatx80 );
+int floatx80_lt_quiet( floatx80, floatx80 );
+int floatx80_is_signaling_nan( floatx80 );
+
+#endif
+
+#ifdef FLOAT128
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE quadruple-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+int float128_to_int32( float128 );
+int float128_to_int32_round_to_zero( float128 );
+int64_t float128_to_int64( float128 );
+int64_t float128_to_int64_round_to_zero( float128 );
+float32 float128_to_float32( float128 );
+float64 float128_to_float64( float128 );
+#ifdef FLOATX80
+floatx80 float128_to_floatx80( float128 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE quadruple-precision operations.
+-------------------------------------------------------------------------------
+*/
+float128 float128_round_to_int( float128 );
+float128 float128_add( float128, float128 );
+float128 float128_sub( float128, float128 );
+float128 float128_mul( float128, float128 );
+float128 float128_div( float128, float128 );
+float128 float128_rem( float128, float128 );
+float128 float128_sqrt( float128 );
+int float128_eq( float128, float128 );
+int float128_le( float128, float128 );
+int float128_lt( float128, float128 );
+int float128_eq_signaling( float128, float128 );
+int float128_le_quiet( float128, float128 );
+int float128_lt_quiet( float128, float128 );
+int float128_is_signaling_nan( float128 );
+
+#endif
+
+#endif /* !NO_IEEE */