summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/config/fx80
diff options
context:
space:
mode:
authorMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
committerMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
commit0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch)
treef8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/config/fx80
parentff8e9a4356e55ed142306c3a375fa280800abc86 (diff)
egcs projects compiler system
Exact copy of the snapshot, except for the removal of texinfo/ gcc/ch/ libchill/
Diffstat (limited to 'gnu/egcs/gcc/config/fx80')
-rw-r--r--gnu/egcs/gcc/config/fx80/fx80.c300
-rw-r--r--gnu/egcs/gcc/config/fx80/fx80.h1446
-rw-r--r--gnu/egcs/gcc/config/fx80/fx80.md2516
-rw-r--r--gnu/egcs/gcc/config/fx80/xm-fx80.h39
4 files changed, 4301 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/config/fx80/fx80.c b/gnu/egcs/gcc/config/fx80/fx80.c
new file mode 100644
index 00000000000..4e8f42086d3
--- /dev/null
+++ b/gnu/egcs/gcc/config/fx80/fx80.c
@@ -0,0 +1,300 @@
+/* Subroutines for insn-output.c for Alliant FX computers.
+ Copyright (C) 1989, 1991, 1997 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* Some output-actions in alliant.md need these. */
+#include "config.h"
+#include <stdio.h>
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+
+/* Index into this array by (register number >> 3) to find the
+ smallest class which contains that register. */
+enum reg_class regno_reg_class[]
+ = { DATA_REGS, ADDR_REGS, FP_REGS };
+
+static rtx find_addr_reg ();
+
+char *
+output_btst (operands, countop, dataop, insn, signpos)
+ rtx *operands;
+ rtx countop, dataop;
+ rtx insn;
+ int signpos;
+{
+ operands[0] = countop;
+ operands[1] = dataop;
+
+ if (GET_CODE (countop) == CONST_INT)
+ {
+ register int count = INTVAL (countop);
+ /* If COUNT is bigger than size of storage unit in use,
+ advance to the containing unit of same size. */
+ if (count > signpos)
+ {
+ int offset = (count & ~signpos) / 8;
+ count = count & signpos;
+ operands[1] = dataop = adj_offsettable_operand (dataop, offset);
+ }
+ if (count == signpos)
+ cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
+ else
+ cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
+
+ /* These three statements used to use next_insns_test_no...
+ but it appears that this should do the same job. */
+ if (count == 31
+ && next_insn_tests_no_inequality (insn))
+ return "tst%.l %1";
+ if (count == 15
+ && next_insn_tests_no_inequality (insn))
+ return "tst%.w %1";
+ if (count == 7
+ && next_insn_tests_no_inequality (insn))
+ return "tst%.b %1";
+
+ cc_status.flags = CC_NOT_NEGATIVE;
+ }
+ return "btst %0,%1";
+}
+
+/* Return the best assembler insn template
+ for moving operands[1] into operands[0] as a fullword. */
+
+static char *
+singlemove_string (operands)
+ rtx *operands;
+{
+ if (operands[1] != const0_rtx)
+ return "mov%.l %1,%0";
+ if (! ADDRESS_REG_P (operands[0]))
+ return "clr%.l %0";
+ return "sub%.l %0,%0";
+}
+
+/* Output assembler code to perform a doubleword move insn
+ with operands OPERANDS. */
+
+char *
+output_move_double (operands)
+ rtx *operands;
+{
+ enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
+ rtx latehalf[2];
+ rtx addreg0 = 0, addreg1 = 0;
+
+ /* First classify both operands. */
+
+ if (REG_P (operands[0]))
+ optype0 = REGOP;
+ else if (offsettable_memref_p (operands[0]))
+ optype0 = OFFSOP;
+ else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
+ optype0 = POPOP;
+ else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
+ optype0 = PUSHOP;
+ else if (GET_CODE (operands[0]) == MEM)
+ optype0 = MEMOP;
+ else
+ optype0 = RNDOP;
+
+ if (REG_P (operands[1]))
+ optype1 = REGOP;
+ else if (CONSTANT_P (operands[1]))
+ optype1 = CNSTOP;
+ else if (offsettable_memref_p (operands[1]))
+ optype1 = OFFSOP;
+ else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
+ optype1 = POPOP;
+ else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
+ optype1 = PUSHOP;
+ else if (GET_CODE (operands[1]) == MEM)
+ optype1 = MEMOP;
+ else
+ optype1 = RNDOP;
+
+ /* Check for the cases that the operand constraints are not
+ supposed to allow to happen. Abort if we get one,
+ because generating code for these cases is painful. */
+
+ if (optype0 == RNDOP || optype1 == RNDOP)
+ abort ();
+
+ /* If one operand is decrementing and one is incrementing
+ decrement the former register explicitly
+ and change that operand into ordinary indexing. */
+
+ if (optype0 == PUSHOP && optype1 == POPOP)
+ {
+ operands[0] = XEXP (XEXP (operands[0], 0), 0);
+ output_asm_insn ("subq%.l %#8,%0", operands);
+ operands[0] = gen_rtx (MEM, DImode, operands[0]);
+ optype0 = OFFSOP;
+ }
+ if (optype0 == POPOP && optype1 == PUSHOP)
+ {
+ operands[1] = XEXP (XEXP (operands[1], 0), 0);
+ output_asm_insn ("subq%.l %#8,%1", operands);
+ operands[1] = gen_rtx (MEM, DImode, operands[1]);
+ optype1 = OFFSOP;
+ }
+
+ /* If an operand is an unoffsettable memory ref, find a register
+ we can increment temporarily to make it refer to the second word. */
+
+ if (optype0 == MEMOP)
+ addreg0 = find_addr_reg (XEXP (operands[0], 0));
+
+ if (optype1 == MEMOP)
+ addreg1 = find_addr_reg (XEXP (operands[1], 0));
+
+ /* Ok, we can do one word at a time.
+ Normally we do the low-numbered word first,
+ but if either operand is autodecrementing then we
+ do the high-numbered word first.
+
+ In either case, set up in LATEHALF the operands to use
+ for the high-numbered word and in some cases alter the
+ operands in OPERANDS to be suitable for the low-numbered word. */
+
+ if (optype0 == REGOP)
+ latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ else if (optype0 == OFFSOP)
+ latehalf[0] = adj_offsettable_operand (operands[0], 4);
+ else
+ latehalf[0] = operands[0];
+
+ if (optype1 == REGOP)
+ latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+ else if (optype1 == OFFSOP)
+ latehalf[1] = adj_offsettable_operand (operands[1], 4);
+ else if (optype1 == CNSTOP)
+ {
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
+ split_double (operands[1], &operands[1], &latehalf[1]);
+ else if (CONSTANT_P (operands[1]))
+ {
+ latehalf[1] = operands[1];
+ operands[1] = const0_rtx;
+ }
+ }
+ else
+ latehalf[1] = operands[1];
+
+ /* If insn is effectively movd N(sp),-(sp) then we will do the
+ high word first. We should use the adjusted operand 1 (which is N+4(sp))
+ for the low word as well, to compensate for the first decrement of sp. */
+ if (optype0 == PUSHOP
+ && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
+ && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
+ operands[1] = latehalf[1];
+
+ /* If one or both operands autodecrementing,
+ do the two words, high-numbered first. */
+
+ /* Likewise, the first move would clobber the source of the second one,
+ do them in the other order. This happens only for registers;
+ such overlap can't happen in memory unless the user explicitly
+ sets it up, and that is an undefined circumstance. */
+
+ if (optype0 == PUSHOP || optype1 == PUSHOP
+ || (optype0 == REGOP && optype1 == REGOP
+ && REGNO (operands[0]) == REGNO (latehalf[1])))
+ {
+ /* Make any unoffsettable addresses point at high-numbered word. */
+ if (addreg0)
+ output_asm_insn ("addql %#4,%0", &addreg0);
+ if (addreg1)
+ output_asm_insn ("addql %#4,%0", &addreg1);
+
+ /* Do that word. */
+ output_asm_insn (singlemove_string (latehalf), latehalf);
+
+ /* Undo the adds we just did. */
+ if (addreg0)
+ output_asm_insn ("subql %#4,%0", &addreg0);
+ if (addreg1)
+ output_asm_insn ("subql %#4,%0", &addreg1);
+
+ /* Do low-numbered word. */
+ return singlemove_string (operands);
+ }
+
+ /* Normal case: do the two words, low-numbered first. */
+
+ output_asm_insn (singlemove_string (operands), operands);
+
+ /* Make any unoffsettable addresses point at high-numbered word. */
+ if (addreg0)
+ output_asm_insn ("addql %#4,%0", &addreg0);
+ if (addreg1)
+ output_asm_insn ("addql %#4,%0", &addreg1);
+
+ /* Do that word. */
+ output_asm_insn (singlemove_string (latehalf), latehalf);
+
+ /* Undo the adds we just did. */
+ if (addreg0)
+ output_asm_insn ("subql %#4,%0", &addreg0);
+ if (addreg1)
+ output_asm_insn ("subql %#4,%0", &addreg1);
+
+ return "";
+}
+
+/* Return a REG that occurs in ADDR with coefficient 1.
+ ADDR can be effectively incremented by incrementing REG. */
+
+static rtx
+find_addr_reg (addr)
+ rtx addr;
+{
+ while (GET_CODE (addr) == PLUS)
+ {
+ if (GET_CODE (XEXP (addr, 0)) == REG)
+ addr = XEXP (addr, 0);
+ else if (GET_CODE (XEXP (addr, 1)) == REG)
+ addr = XEXP (addr, 1);
+ else if (CONSTANT_P (XEXP (addr, 0)))
+ addr = XEXP (addr, 1);
+ else if (CONSTANT_P (XEXP (addr, 1)))
+ addr = XEXP (addr, 0);
+ else
+ abort ();
+ }
+ if (GET_CODE (addr) == REG)
+ return addr;
+ abort ();
+}
+
+int
+standard_SunFPA_constant_p (x)
+ rtx x;
+{
+ return( 0 );
+}
+
diff --git a/gnu/egcs/gcc/config/fx80/fx80.h b/gnu/egcs/gcc/config/fx80/fx80.h
new file mode 100644
index 00000000000..3b5d5807ee6
--- /dev/null
+++ b/gnu/egcs/gcc/config/fx80/fx80.h
@@ -0,0 +1,1446 @@
+/* Definitions of target machine for GNU compiler. Alliant FX version.
+ Copyright (C) 1989, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
+ and Joe Weening (weening@gang-of-four.stanford.edu).
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This file is based on m68k.h, simplified by removing support for
+ the Sun FPA and other things not applicable to the Alliant. Some
+ remnants of these features remain. */
+
+/* Names to predefine in the preprocessor for this target machine. */
+
+#define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)"
+
+/* Print subsidiary information on the compiler version in use. */
+
+#define TARGET_VERSION fprintf (stderr, " (Alliant)");
+
+/* Run-time compilation parameters selecting different hardware
+ subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs
+ are no longer supported.) The Alliant CE is 68020-compatible, and
+ also has floating point, vector and concurrency instructions.
+
+ Although the IP doesn't have floating point, it emulates it in the
+ operating system. Using this generally is faster than running code
+ compiled with -msoft-float, because the soft-float code still uses
+ (simulated) FP registers and ends up emulating several fmove{s,d}
+ instructions per call. So I don't recommend using soft-float for
+ any Alliant code. -- JSW
+*/
+
+extern int target_flags;
+
+/* Macros used in the machine description to test the flags. */
+
+/* Compile for a 68020 (not a 68000 or 68010). */
+#define TARGET_68020 (target_flags & 1)
+/* Compile CE insns for floating point (not library calls). */
+#define TARGET_CE (target_flags & 2)
+/* Compile using 68020 bitfield insns. */
+#define TARGET_BITFIELD (target_flags & 4)
+/* Compile with 16-bit `int'. */
+#define TARGET_SHORT (target_flags & 040)
+
+/* Default 3 means compile 68020 and CE instructions. We don't use
+ bitfield instructions because there appears to be a bug in the
+ implementation of bfins on the CE. */
+
+#define TARGET_DEFAULT 3
+
+/* Define __HAVE_CE__ in preprocessor according to the -m flags.
+ This will control the use of inline FP insns in certain macros.
+ Also inform the program which CPU this is for. */
+
+#if TARGET_DEFAULT & 02
+
+/* -mce is the default */
+#define CPP_SPEC \
+"%{!msoft-float:-D__HAVE_CE__ }\
+%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
+
+#else
+
+/* -msoft-float is the default */
+#define CPP_SPEC \
+"%{mce:-D__HAVE_CE__ }\
+%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
+
+#endif
+
+/* Link with libg.a when debugging, for dbx's sake. */
+
+#define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
+
+/* Make the linker remove temporary labels, since the Alliant assembler
+ doesn't. */
+
+#define LINK_SPEC "-X"
+
+/* Every structure or union's size must be a multiple of 2 bytes. */
+
+#define STRUCTURE_SIZE_BOUNDARY 16
+
+/* This is BSD, so it wants DBX format. */
+
+#define DBX_DEBUGGING_INFO
+
+/* Macro to define tables used to set the flags.
+ This is a list in braces of pairs in braces,
+ each pair being { "NAME", VALUE }
+ where VALUE is the bits to set or minus the bits to clear.
+ An empty string NAME is used to identify the default VALUE. */
+
+#define TARGET_SWITCHES \
+ { { "68020", 5, "Generate code for a mc68020"}, \
+ { "c68020", 5, "Generate code for a mc68020"}, \
+ { "bitfield", 4, "Use bitfield instructions"}, \
+ { "68000", -7, "Generate code for a mc68000"}, \
+ { "c68000", -7, "Generate code for a mc68000"}, \
+ { "soft-float", -2, "Generate software FP code"}, \
+ { "nobitfield", -4, "Do not generate bitfield insns"}, \
+ { "short", 040, "Use 16bit integers"}, \
+ { "noshort", -040, "Use 32bit integers"}, \
+ { "", TARGET_DEFAULT, NULL}}
+
+/* target machine storage layout */
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields.
+ This is true for 68020 insns such as bfins and bfexts.
+ We make it true always by avoiding using the single-bit insns
+ except in special cases with constant bit numbers. */
+#define BITS_BIG_ENDIAN 1
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is true on the 68000. */
+#define BYTES_BIG_ENDIAN 1
+
+/* Define this if most significant word of a multiword number is the lowest
+ numbered. */
+/* For 68000 we can decide arbitrarily
+ since there are no machine instructions for them. */
+#define WORDS_BIG_ENDIAN 0
+
+/* number of bits in an addressable storage unit */
+#define BITS_PER_UNIT 8
+
+/* Width in bits of a "word", which is the contents of a machine register.
+ Note that this is not necessarily the width of data type `int';
+ if using 16-bit ints on a 68000, this would still be 32.
+ But on a machine with 16-bit registers, this would be 16. */
+#define BITS_PER_WORD 32
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 4
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+#define POINTER_SIZE 32
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 16
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 16
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 16
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 16
+
+/* Set this non-zero if move instructions will actually fail to work
+ when given unaligned data. */
+#define STRICT_ALIGNMENT 1
+
+/* Define number of bits in most basic integer type.
+ (If undefined, default is BITS_PER_WORD). */
+
+#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
+
+/* Define these to avoid dependence on meaning of `int'.
+ Note that WCHAR_TYPE_SIZE is used in cexp.y,
+ where TARGET_SHORT is not available. */
+
+#define WCHAR_TYPE "long int"
+#define WCHAR_TYPE_SIZE 32
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+ For the Alliant, we give the data registers numbers 0-7,
+ the address registers numbers 010-017,
+ and the floating point registers numbers 020-027. */
+#define FIRST_PSEUDO_REGISTER 24
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+ On the Alliant, these are a0 (argument pointer),
+ a6 (frame pointer) and a7 (stack pointer). */
+#define FIXED_REGISTERS \
+ {0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 0, 0, 0, 0, 0, 1, 1, \
+ 0, 0, 0, 0, 0, 0, 0, 0 }
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like.
+ The Alliant calling sequence allows a function to use any register,
+ so we include them all here. */
+
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 1 }
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers.
+
+ On the Alliant, ordinary registers hold 32 bits worth;
+ for the FP registers, a single register is always enough for
+ any floating-point value. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On the Alliant, the cpu registers can hold any mode but the FP registers
+ can hold only floating point. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
+ || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output. */
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ (((MODE1) == SFmode || (MODE1) == DFmode \
+ || (MODE1) == SCmode || (MODE1) == DCmode) \
+ == ((MODE2) == SFmode || (MODE2) == DFmode \
+ || (MODE2) == SCmode || (MODE2) == DCmode))
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* m68000 pc isn't overloaded on a register. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 15
+
+/* Base register for access to local variables of the function. */
+#define FRAME_POINTER_REGNUM 14
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms
+ may be accessed via the stack pointer) in functions that seem suitable.
+ This is computed in `reload', in reload1.c. */
+/* Set for now on Alliant until we find a way to make this work with
+ their calling sequence. */
+#define FRAME_POINTER_REQUIRED 1
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 8
+
+/* Register in which static-chain is passed to a function. */
+#define STATIC_CHAIN_REGNUM 10
+
+/* Register in which address to store a structure value
+ is passed to a function. */
+#define STRUCT_VALUE_REGNUM 9
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+/* The Alliant has three kinds of registers, so eight classes would be
+ a complete set. One of them is not needed. */
+
+enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS,
+ ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \
+ "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" }
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS \
+{ \
+ 0, /* NO_REGS */ \
+ 0x00ff0000, /* FP_REGS */ \
+ 0x000000ff, /* DATA_REGS */ \
+ 0x00ff00ff, /* DATA_OR_FP_REGS */ \
+ 0x0000ff00, /* ADDR_REGS */ \
+ 0x0000ffff, /* GENERAL_REGS */ \
+ 0x00ffffff /* ALL_REGS */ \
+}
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+extern enum reg_class regno_reg_class[];
+#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
+
+/* The class value for index registers, and the one for base regs. */
+
+#define INDEX_REG_CLASS GENERAL_REGS
+#define BASE_REG_CLASS ADDR_REGS
+
+/* Get reg_class from a letter such as appears in the machine description. */
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'a' ? ADDR_REGS : \
+ ((C) == 'd' ? DATA_REGS : \
+ ((C) == 'f' ? FP_REGS : \
+ NO_REGS)))
+
+/* The letters I, J, K, L and M in a register constraint string
+ can be used to stand for particular ranges of immediate operands.
+ This macro defines what the ranges are.
+ C is the letter, and VALUE is a constant value.
+ Return 1 if VALUE is in the range specified by C.
+
+ For the 68000, `I' is used for the range 1 to 8
+ allowed as immediate shift counts and in addq.
+ `J' is used for the range of signed numbers that fit in 16 bits.
+ `K' is for numbers that moveq can't handle.
+ `L' is for range -8 to -1, range of values that can be added with subq. */
+
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
+ (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
+ (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
+ (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class.
+ On the 68000 series, use a data reg if possible when the
+ value is a constant in the range where moveq could be used
+ and we ensure that QImodes are reloaded into data regs. */
+
+#define PREFERRED_RELOAD_CLASS(X,CLASS) \
+ ((GET_CODE (X) == CONST_INT \
+ && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
+ && (CLASS) != ADDR_REGS) \
+ ? DATA_REGS \
+ : GET_MODE (X) == QImode \
+ ? DATA_REGS \
+ : (CLASS))
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+/* On the 68000, this is the size of MODE in words,
+ except in the FP regs, where a single reg is always enough. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((CLASS) == FP_REGS ? 1 \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Moves between fp regs and other regs are two insns. */
+#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
+ ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
+ || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \
+ ? 4 : 2)
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+#define FRAME_GROWS_DOWNWARD
+
+/* The Alliant uses -fcaller-saves by default. */
+#define DEFAULT_CALLER_SAVES
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated. */
+#define STARTING_FRAME_OFFSET -4
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On the 68000, sp@- in a byte insn really pushes a word. */
+#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
+
+/* Offset of first parameter from the argument pointer register value. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNDECL is the declaration node of the function (as a tree),
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack.
+
+ On the Alliant we define this as SIZE and make the calling sequence
+ (in alliant.md) pop the args. This wouldn't be necessary if we
+ could add to the pending stack adjustment the size of the argument
+ descriptors that are pushed after the arguments. */
+
+#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0. */
+
+/* On the Alliant the return value is in FP0 if real, else D0. */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ (TREE_CODE (VALTYPE) == REAL_TYPE \
+ ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
+ : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+/* On the Alliant the return value is in FP0 if real, else D0. The
+ Alliant library functions for floating-point emulation return their
+ values both in FP0 and in D0/D1. But since not all libgcc functions
+ return the results of these directly, we cannot assume that D0/D1
+ contain the values we expect on return from a libgcc function. */
+
+#define LIBCALL_VALUE(MODE) \
+ (((MODE) == DFmode || (MODE) == SFmode) \
+ ? gen_rtx (REG, MODE, 16) \
+ : gen_rtx (REG, MODE, 0))
+
+/* 1 if N is a possible register number for a function value.
+ On the Alliant, D0 and FP0 are the only registers thus used.
+ (No need to mention D1 when used as a pair with D0.) */
+
+#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0)
+
+/* Define this if PCC uses the nonreentrant convention for returning
+ structure and union values. */
+
+#define PCC_STATIC_STRUCT_RETURN
+
+/* 1 if N is a possible register number for function argument passing.
+ On the Alliant, no registers are used in this way. */
+
+#define FUNCTION_ARG_REGNO_P(N) 0
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On the Alliant, this is a single integer, which is a number of bytes
+ of arguments scanned so far. */
+
+#define CUMULATIVE_ARGS int
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0.
+
+ On the Alliant, the offset starts at 0. */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
+ ((CUM) = 0)
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ ((CUM) += ((MODE) != BLKmode \
+ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
+ : (int_size_in_bytes (TYPE) + 3) & ~3))
+
+/* Define where to put the arguments to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis). */
+
+/* On the Alliant all args are pushed. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
+
+/* For an arg passed partly in registers and partly in memory,
+ this is the number of registers used.
+ For args passed entirely in registers or entirely in memory, zero. */
+
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
+
+/* This macro generates the assembly code for function entry.
+ FILE is a stdio stream to output the code to.
+ SIZE is an int: how many units of temporary storage to allocate.
+ Refer to the array `regs_ever_live' to determine which registers
+ to save; `regs_ever_live[I]' is nonzero if register number I
+ is ever used in the function. This macro is responsible for
+ knowing which registers should not be saved even if used.
+ The Alliant uses caller-saves, so this macro is very simple. */
+
+#define FUNCTION_PROLOGUE(FILE, SIZE) \
+{ int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \
+ if (frame_pointer_needed) \
+ { \
+ if (fsize < 0x8000) \
+ fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \
+ else if (TARGET_68020) \
+ fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \
+ else \
+ fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \
+ fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }}
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+ fprintf (FILE, "\tjbsr __mcount_\n")
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+
+#define EXIT_IGNORE_STACK 1
+
+/* This macro generates the assembly code for function exit,
+ on machines that need it. If FUNCTION_EPILOGUE is not defined
+ then individual return instructions are generated for each
+ return statement. Args are same as for FUNCTION_PROLOGUE.
+
+ The function epilogue should not depend on the current stack pointer!
+ It should use the frame pointer only. This is mandatory because
+ of alloca; we also take advantage of it to omit stack adjustments
+ before returning. */
+
+#define FUNCTION_EPILOGUE(FILE, SIZE) \
+{ if (frame_pointer_needed) \
+ fprintf (FILE, "\tunlk a6\n"); \
+ fprintf (FILE, "\trts\n"); }
+
+/* Store in the variable DEPTH the initial difference between the
+ frame pointer reg contents and the stack pointer reg contents,
+ as of the start of the function body. This depends on the layout
+ of the fixed parts of the stack frame and on how registers are saved. */
+
+#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
+{ \
+ int regno; \
+ int offset = -4; \
+ for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
+ if (regs_ever_live[regno] && ! call_used_regs[regno]) \
+ offset += 12; \
+ for (regno = 0; regno < 16; regno++) \
+ if (regs_ever_live[regno] && ! call_used_regs[regno]) \
+ offset += 4; \
+ (DEPTH) = offset - ((get_frame_size () + 3) & -4); \
+}
+
+/* Addressing modes, and classification of registers for them. */
+
+#define HAVE_POST_INCREMENT 1
+/* #define HAVE_POST_DECREMENT 0 */
+
+#define HAVE_PRE_DECREMENT 1
+/* #define HAVE_PRE_INCREMENT 0 */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) \
+((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
+#define REGNO_OK_FOR_DATA_P(REGNO) \
+((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
+#define REGNO_OK_FOR_FP_P(REGNO) \
+(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
+
+/* Now macros that check whether X is a register and also,
+ strictly, whether it is in a specified class.
+
+ These macros are specific to the 68000, and may be used only
+ in code for printing assembler insns and in conditions for
+ define_optimization. */
+
+/* 1 if X is a data register. */
+
+#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
+
+/* 1 if X is an fp register. */
+
+#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
+
+/* 1 if X is an address register */
+
+#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
+
+/* Maximum number of registers that can appear in a valid memory address. */
+
+#define MAX_REGS_PER_ADDRESS 2
+
+/* Recognize any constant value that is a valid address. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
+ || GET_CODE (X) == HIGH)
+
+/* Nonzero if the constant value X is a legitimate general operand.
+ It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+/* Alliant FP instructions don't take immediate operands, so this
+ forces them into memory. */
+#define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+#ifndef REG_OK_STRICT
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
+
+#else
+
+/* Nonzero if X is a hard reg that can be used as an index. */
+#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
+/* Nonzero if X is a hard reg that can be used as a base reg. */
+#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#endif
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
+
+#define INDIRECTABLE_1_ADDRESS_P(X) \
+ (CONSTANT_ADDRESS_P (X) \
+ || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
+ || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
+ && REG_P (XEXP (X, 0)) \
+ && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
+ || (GET_CODE (X) == PLUS \
+ && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
+
+#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
+{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
+
+#define GO_IF_INDEXABLE_BASE(X, ADDR) \
+{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \
+ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
+
+#define GO_IF_INDEXING(X, ADDR) \
+{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
+ { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
+ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
+ { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
+
+#define GO_IF_INDEXED_ADDRESS(X, ADDR) \
+{ GO_IF_INDEXING (X, ADDR); \
+ if (GET_CODE (X) == PLUS) \
+ { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
+ { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
+ if (GET_CODE (XEXP (X, 0)) == CONST_INT \
+ && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
+ { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
+
+#define LEGITIMATE_INDEX_REG_P(X) \
+ ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
+ || (GET_CODE (X) == SIGN_EXTEND \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && GET_MODE (XEXP (X, 0)) == HImode \
+ && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
+
+#define LEGITIMATE_INDEX_P(X) \
+ (LEGITIMATE_INDEX_REG_P (X) \
+ || (TARGET_68020 && GET_CODE (X) == MULT \
+ && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (INTVAL (XEXP (X, 1)) == 2 \
+ || INTVAL (XEXP (X, 1)) == 4 \
+ || INTVAL (XEXP (X, 1)) == 8)))
+
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
+ GO_IF_INDEXED_ADDRESS (X, ADDR); }
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE and WIN are passed so that this macro can use
+ GO_IF_LEGITIMATE_ADDRESS.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output.
+
+ For the 68000, we handle X+REG by loading X into a register R and
+ using R+REG. R will go in an address reg and indexing will be used.
+ However, if REG is a broken-out memory address or multiplication,
+ nothing needs to be done because REG can certainly go in an address reg. */
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+{ register int ch = (X) != (OLDX); \
+ if (GET_CODE (X) == PLUS) \
+ { if (GET_CODE (XEXP (X, 0)) == MULT) \
+ ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
+ if (GET_CODE (XEXP (X, 1)) == MULT) \
+ ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
+ if (ch && GET_CODE (XEXP (X, 1)) == REG \
+ && GET_CODE (XEXP (X, 0)) == REG) \
+ goto WIN; \
+ if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
+ if (GET_CODE (XEXP (X, 0)) == REG \
+ || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
+ && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
+ && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
+ { register rtx temp = gen_reg_rtx (Pmode); \
+ register rtx val = force_operand (XEXP (X, 1), 0); \
+ emit_move_insn (temp, val); \
+ XEXP (X, 1) = temp; \
+ goto WIN; } \
+ else if (GET_CODE (XEXP (X, 1)) == REG \
+ || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
+ && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
+ && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
+ { register rtx temp = gen_reg_rtx (Pmode); \
+ register rtx val = force_operand (XEXP (X, 0), 0); \
+ emit_move_insn (temp, val); \
+ XEXP (X, 0) = temp; \
+ goto WIN; }}}
+
+/* Go to LABEL if ADDR (a legitimate address expression)
+ has an effect that depends on the machine mode it is used for.
+ On the 68000, only predecrement and postincrement address depend thus
+ (the amount of decrement or increment being the length of the operand). */
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
+ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE HImode
+
+/* Define as C expression which evaluates to nonzero if the tablejump
+ instruction expects the table to contain offsets from the address of the
+ table.
+ Do not define this if the table should contain absolute addresses. */
+#define CASE_VECTOR_PC_RELATIVE 1
+
+/* Specify the tree operation to be used to convert reals to integers. */
+#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
+
+/* This is the kind of divide that is easiest to do in the general case. */
+#define EASY_DIV_EXPR TRUNC_DIV_EXPR
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 1
+
+/* Max number of bytes we can move from memory to memory
+ in one reasonably fast instruction. */
+#define MOVE_MAX 4
+
+/* Define this if zero-extension is slow (more than one real instruction). */
+#define SLOW_ZERO_EXTEND
+
+/* Nonzero if access to memory by bytes is slow and undesirable. */
+#define SLOW_BYTE_ACCESS 0
+
+/* Define this to be nonzero if shift instructions ignore all but the low-order
+ few bits. */
+#define SHIFT_COUNT_TRUNCATED 1
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* We assume that the store-condition-codes instructions store 0 for false
+ and some other value for true. This is the value stored for true. */
+
+#define STORE_FLAG_VALUE -1
+
+/* When a prototype says `char' or `short', really pass an `int'. */
+#define PROMOTE_PROTOTYPES
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode SImode
+
+/* A function address in a call instruction
+ is a byte address (for indexing purposes)
+ so give the MEM rtx a byte's mode. */
+#define FUNCTION_MODE QImode
+
+/* Compute the cost of computing a constant rtl expression RTX
+ whose rtx-code is CODE. The body of this macro is a portion
+ of a switch statement. If the code is computed here,
+ return it with a return statement. Otherwise, break from the switch. */
+
+#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
+ case CONST_INT: \
+ /* Constant zero is super cheap due to clr instruction. */ \
+ if (RTX == const0_rtx) return 0; \
+ if ((unsigned) INTVAL (RTX) < 077) return 1; \
+ case CONST: \
+ case LABEL_REF: \
+ case SYMBOL_REF: \
+ return 3; \
+ case CONST_DOUBLE: \
+ return 5;
+
+/* Check a `double' value for validity for a particular machine mode.
+ This is defined to avoid crashes outputting certain constants. */
+
+#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
+ if (OVERFLOW) \
+ (D) = 3.4028234663852890e+38; \
+ else if ((MODE) == SFmode) \
+ { \
+ if ((d) > 3.4028234663852890e+38) \
+ (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \
+ else if ((D) < -3.4028234663852890e+38) \
+ (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \
+ else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \
+ (OVERFLOW) = 1, (D) = 0.0; \
+ else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \
+ (OVERFLOW) = 1, (D) = 0.0; \
+ }
+
+/* Tell final.c how to eliminate redundant test instructions. */
+
+/* Here we define machine-dependent flags and fields in cc_status
+ (see `conditions.h'). */
+
+/* On the Alliant, floating-point instructions do not modify the
+ ordinary CC register. Only fcmp and ftest instructions modify the
+ floating-point CC register. We should actually keep track of what
+ both kinds of CC registers contain, but for now we only consider
+ the most recent instruction that has set either register. */
+
+/* Set if the cc value came from a floating point test, so a floating
+ point conditional branch must be output. */
+#define CC_IN_FP 04000
+
+/* Store in cc_status the expressions
+ that the condition codes will describe
+ after execution of an instruction whose pattern is EXP.
+ Do not alter them if the instruction would not alter the cc's. */
+
+/* On the 68000, all the insns to store in an address register
+ fail to set the cc's. However, in some cases these instructions
+ can make it possibly invalid to use the saved cc's. In those
+ cases we clear out some or all of the saved cc's so they won't be used. */
+
+#define NOTICE_UPDATE_CC(EXP, INSN) \
+{ \
+ if (GET_CODE (EXP) == SET) \
+ { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \
+ { if (cc_status.value1 \
+ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
+ cc_status.value1 = 0; \
+ if (cc_status.value2 \
+ && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
+ cc_status.value2 = 0; } \
+ else if (GET_CODE (SET_SRC (EXP)) == MOD \
+ || GET_CODE (SET_SRC (EXP)) == UMOD \
+ || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \
+ && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \
+ || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \
+ /* The swap insn produces cc's that don't correspond to the \
+ result. */ \
+ CC_STATUS_INIT; \
+ else if (SET_DEST (EXP) != cc0_rtx \
+ && (FP_REG_P (SET_SRC (EXP)) \
+ || GET_CODE (SET_SRC (EXP)) == FIX \
+ || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \
+ || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \
+ { CC_STATUS_INIT; } \
+ /* A pair of move insns doesn't produce a useful overall cc. */ \
+ else if (!FP_REG_P (SET_DEST (EXP)) \
+ && !FP_REG_P (SET_SRC (EXP)) \
+ && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \
+ && (GET_CODE (SET_SRC (EXP)) == REG \
+ || GET_CODE (SET_SRC (EXP)) == MEM \
+ || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\
+ { CC_STATUS_INIT; } \
+ else if (GET_CODE (SET_SRC (EXP)) == CALL) \
+ { CC_STATUS_INIT; } \
+ else if (XEXP (EXP, 0) != pc_rtx) \
+ { cc_status.flags = 0; \
+ cc_status.value1 = XEXP (EXP, 0); \
+ cc_status.value2 = XEXP (EXP, 1); } } \
+ else if (GET_CODE (EXP) == PARALLEL \
+ && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
+ { \
+ if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
+ CC_STATUS_INIT; \
+ else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
+ { cc_status.flags = 0; \
+ cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
+ cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
+ else CC_STATUS_INIT; \
+ if (cc_status.value2 != 0 \
+ && ADDRESS_REG_P (cc_status.value2) \
+ && GET_MODE (cc_status.value2) == QImode) \
+ CC_STATUS_INIT; \
+ if (cc_status.value2 != 0) \
+ switch (GET_CODE (cc_status.value2)) \
+ { case PLUS: case MINUS: case MULT: \
+ case DIV: case UDIV: case MOD: case UMOD: case NEG: \
+ case ASHIFT: case ASHIFTRT: case LSHIFTRT: \
+ case ROTATE: case ROTATERT: \
+ if (GET_MODE (cc_status.value2) != VOIDmode) \
+ cc_status.flags |= CC_NO_OVERFLOW; \
+ break; \
+ case ZERO_EXTEND: \
+ /* (SET r1 (ZERO_EXTEND r2)) on this machine
+ ends with a move insn moving r2 in r2's mode.
+ Thus, the cc's are set for r2.
+ This can set N bit spuriously. */ \
+ cc_status.flags |= CC_NOT_NEGATIVE; } \
+ if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
+ && cc_status.value2 \
+ && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
+ cc_status.value2 = 0; \
+ if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
+ || (cc_status.value2 && FP_REG_P (cc_status.value2))) \
+ cc_status.flags = CC_IN_FP; }
+
+#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
+{ if (cc_prev_status.flags & CC_IN_FP) \
+ return FLOAT; \
+ if (cc_prev_status.flags & CC_NO_OVERFLOW) \
+ return NO_OV; \
+ return NORMAL; }
+
+/* Control the assembler format that we output. */
+
+/* Output at beginning of assembler file. */
+
+#define ASM_FILE_START(FILE) \
+ fprintf (FILE, "#NO_APP\n");
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+
+#define ASM_APP_ON "#APP\n"
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+
+#define ASM_APP_OFF "#NO_APP\n"
+
+/* Output before read-only data. */
+
+#define TEXT_SECTION_ASM_OP ".text"
+
+/* Output before writable data. */
+
+#define DATA_SECTION_ASM_OP ".data"
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
+ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
+ "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
+
+/* How to renumber registers for dbx and gdb.
+ On the Sun-3, the floating point registers have numbers
+ 18 to 25, not 16 to 23 as they do in the compiler. */
+/* (On the Alliant, dbx isn't working yet at all. */
+
+#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
+
+/* This is how to output the definition of a user-level label named NAME,
+ such as the label on a static function or variable NAME. */
+
+#define ASM_OUTPUT_LABEL(FILE,NAME) \
+ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
+
+/* This is how to output a command to make the user-level label named NAME
+ defined for reference from other files. */
+
+#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
+ do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
+
+/* The prefix to add to user-visible assembler symbols. */
+
+#define USER_LABEL_PREFIX "_"
+
+/* This is how to output an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class. */
+
+#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
+ fprintf (FILE, "%s%d:\n", PREFIX, NUM)
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'. */
+
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ sprintf (LABEL, "*%s%d", PREFIX, NUM)
+
+/* This is how to output an assembler line defining a `double' constant. */
+
+#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
+do { union { double d; long v[2];} tem; \
+ tem.d = (VALUE); \
+ fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \
+ } while (0)
+
+/* This is how to output an assembler line defining a `float' constant. */
+
+#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
+do { union { float f; long l;} tem; \
+ tem.f = (VALUE); \
+ fprintf (FILE, "\t.long 0x%x\n", tem.l); \
+ } while (0)
+
+/* This is how to output an assembler line defining an `int' constant. */
+
+#define ASM_OUTPUT_INT(FILE,VALUE) \
+( fprintf (FILE, "\t.long "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* Likewise for `char' and `short' constants. */
+
+#define ASM_OUTPUT_SHORT(FILE,VALUE) \
+( fprintf (FILE, "\t.word "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+#define ASM_OUTPUT_CHAR(FILE,VALUE) \
+( fprintf (FILE, "\t.byte "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+#define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \
+do { int i; unsigned char *pp = (unsigned char *) (PTR); \
+ fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \
+ for (i = 1; i < (SIZE); ++i, ++pp) { \
+ if ((i % 8) == 0) \
+ fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \
+ else \
+ fprintf((FILE), ",%d", (unsigned int) *pp); } \
+ fprintf ((FILE), "\n"); } while (0)
+
+/* This is how to output an assembler line for a numeric constant byte. */
+
+#define ASM_OUTPUT_BYTE(FILE,VALUE) \
+ fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
+
+/* This is how to output an insn to push a register on the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
+ fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO])
+
+/* This is how to output an insn to pop a register from the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
+ fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO])
+
+/* This is how to output an element of a case-vector that is absolute.
+ (The 68000 does not use such vectors,
+ but we must define this macro anyway.) */
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
+ fprintf (FILE, "\t.long L%d\n", VALUE)
+
+/* This is how to output an element of a case-vector that is relative. */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) == 1) \
+ fprintf (FILE, "\t.even\n"); \
+ else if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %dn", (LOG));
+
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t. = . + %u\n", (SIZE))
+
+/* This says how to output an assembler line
+ to define a global common symbol. */
+
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+( fputs ("\t.comm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%u\n", (ROUNDED)))
+
+/* This says how to output an assembler line
+ to define a local common symbol. */
+
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
+( fputs ("\t.lcomm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%u\n", (ROUNDED)))
+
+/* Store in OUTPUT a string (made with alloca) containing
+ an assembler-name for a local static variable named NAME.
+ LABELNO is an integer which is different for each call. */
+
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
+( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
+ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
+
+/* Define the parentheses used to group arithmetic operations
+ in assembler code. */
+
+#define ASM_OPEN_PAREN "("
+#define ASM_CLOSE_PAREN ")"
+
+/* Define results of standard character escape sequences. */
+#define TARGET_BELL 007
+#define TARGET_BS 010
+#define TARGET_TAB 011
+#define TARGET_NEWLINE 012
+#define TARGET_VT 013
+#define TARGET_FF 014
+#define TARGET_CR 015
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null.
+
+ On the Alliant, we use several CODE characters:
+ '.' for dot needed in Motorola-style opcode names.
+ '-' for an operand pushing on the stack:
+ sp@-, -(sp) or -(%sp) depending on the style of syntax.
+ '+' for an operand pushing on the stack:
+ sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
+ '@' for a reference to the top word on the stack:
+ sp@, (sp) or (%sp) depending on the style of syntax.
+ '#' for an immediate operand prefix (# in MIT and Motorola syntax
+ but & in SGS syntax).
+ '!' for the cc register (used in an `and to cc' insn).
+
+ 'b' for byte insn (no effect, on the Sun; this is for the ISI).
+ 'd' to force memory addressing to be absolute, not relative.
+ 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
+ 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
+ or print pair of registers as rx:ry. */
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
+ ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
+ || (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
+
+#define PRINT_OPERAND(FILE, X, CODE) \
+{ int i; \
+ if (CODE == '.') ; \
+ else if (CODE == '#') fprintf (FILE, "#"); \
+ else if (CODE == '-') fprintf (FILE, "sp@-"); \
+ else if (CODE == '+') fprintf (FILE, "sp@+"); \
+ else if (CODE == '@') fprintf (FILE, "sp@"); \
+ else if (CODE == '!') fprintf (FILE, "cc"); \
+ else if ((X) == 0 ) ; \
+ else if (GET_CODE (X) == REG) \
+ { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \
+ fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \
+ else \
+ fprintf (FILE, "%s", reg_names[REGNO (X)]); \
+ } \
+ else if (GET_CODE (X) == MEM) \
+ { \
+ output_address (XEXP (X, 0)); \
+ if (CODE == 'd' && ! TARGET_68020 \
+ && CONSTANT_ADDRESS_P (XEXP (X, 0)) \
+ && !(GET_CODE (XEXP (X, 0)) == CONST_INT \
+ && INTVAL (XEXP (X, 0)) < 0x8000 \
+ && INTVAL (XEXP (X, 0)) >= -0x8000)) \
+ fprintf (FILE, ":l"); \
+ } \
+ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
+ { union { double d; int i[2]; } u; \
+ union { float f; int i; } u1; \
+ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
+ u1.f = u.d; \
+ if (CODE == 'f') \
+ fprintf (FILE, "#0r%.9g", u1.f); \
+ else \
+ fprintf (FILE, "#0x%x", u1.i); } \
+ else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \
+ { union { double d; int i[2]; } u; \
+ u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
+ fprintf (FILE, "#0r%.20g", u.d); } \
+ else { putc ('#', FILE); output_addr_const (FILE, X); }}
+
+/* Note that this contains a kludge that knows that the only reason
+ we have an address (plus (label_ref...) (reg...))
+ is in the insn before a tablejump, and we know that m68k.md
+ generates a label LInnn: on such an insn. */
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+{ register rtx reg1, reg2, breg, ireg; \
+ register rtx addr = ADDR; \
+ static char *sz = ".BW.L...D"; \
+ rtx offset; \
+ switch (GET_CODE (addr)) \
+ { \
+ case REG: \
+ fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \
+ break; \
+ case PRE_DEC: \
+ fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \
+ break; \
+ case POST_INC: \
+ fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \
+ break; \
+ case PLUS: \
+ reg1 = 0; reg2 = 0; \
+ ireg = 0; breg = 0; \
+ offset = 0; \
+ if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
+ { \
+ offset = XEXP (addr, 0); \
+ addr = XEXP (addr, 1); \
+ } \
+ else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
+ { \
+ offset = XEXP (addr, 1); \
+ addr = XEXP (addr, 0); \
+ } \
+ if (GET_CODE (addr) != PLUS) ; \
+ else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
+ { \
+ reg1 = XEXP (addr, 0); \
+ addr = XEXP (addr, 1); \
+ } \
+ else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
+ { \
+ reg1 = XEXP (addr, 1); \
+ addr = XEXP (addr, 0); \
+ } \
+ else if (GET_CODE (XEXP (addr, 0)) == MULT) \
+ { \
+ reg1 = XEXP (addr, 0); \
+ addr = XEXP (addr, 1); \
+ } \
+ else if (GET_CODE (XEXP (addr, 1)) == MULT) \
+ { \
+ reg1 = XEXP (addr, 1); \
+ addr = XEXP (addr, 0); \
+ } \
+ else if (GET_CODE (XEXP (addr, 0)) == REG) \
+ { \
+ reg1 = XEXP (addr, 0); \
+ addr = XEXP (addr, 1); \
+ } \
+ else if (GET_CODE (XEXP (addr, 1)) == REG) \
+ { \
+ reg1 = XEXP (addr, 1); \
+ addr = XEXP (addr, 0); \
+ } \
+ if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
+ || GET_CODE (addr) == SIGN_EXTEND) \
+ { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
+/* for OLD_INDEXING \
+ else if (GET_CODE (addr) == PLUS) \
+ { \
+ if (GET_CODE (XEXP (addr, 0)) == REG) \
+ { \
+ reg2 = XEXP (addr, 0); \
+ addr = XEXP (addr, 1); \
+ } \
+ else if (GET_CODE (XEXP (addr, 1)) == REG) \
+ { \
+ reg2 = XEXP (addr, 1); \
+ addr = XEXP (addr, 0); \
+ } \
+ } \
+ */ \
+ if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
+ if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
+ || GET_CODE (reg1) == MULT)) \
+ || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
+ { breg = reg2; ireg = reg1; } \
+ else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
+ { breg = reg1; ireg = reg2; } \
+ if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
+ { int scale = 1; \
+ if (GET_CODE (ireg) == MULT) \
+ { scale = INTVAL (XEXP (ireg, 1)); \
+ ireg = XEXP (ireg, 0); } \
+ if (GET_CODE (ireg) == SIGN_EXTEND) \
+ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ reg_names[REGNO (XEXP (ireg, 0))]); \
+ else \
+ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ reg_names[REGNO (ireg)]); \
+ fprintf (FILE, ":%c", sz[scale]); \
+ putc (']', FILE); \
+ break; } \
+ if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \
+ { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ reg_names[REGNO (breg)]); \
+ break; } \
+ if (ireg != 0 || breg != 0) \
+ { int scale = 1; \
+ if (breg == 0) \
+ abort (); \
+ if (addr && GET_CODE (addr) == LABEL_REF) abort (); \
+ fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \
+ if (addr != 0) { \
+ putc( '(', FILE ); \
+ output_addr_const (FILE, addr); \
+ if (ireg != 0) { \
+ if (GET_CODE(addr) == CONST_INT) { \
+ int size_of = 1, val = INTVAL(addr); \
+ if (val < -0x8000 || val >= 0x8000) \
+ size_of = 4; \
+ else if (val < -0x80 || val >= 0x80) \
+ size_of = 2; \
+ fprintf(FILE, ":%c", sz[size_of]); \
+ } \
+ else \
+ fprintf(FILE, ":L"); } \
+ putc( ')', FILE ); } \
+ if (ireg != 0) { \
+ putc ('[', FILE); \
+ if (ireg != 0 && GET_CODE (ireg) == MULT) \
+ { scale = INTVAL (XEXP (ireg, 1)); \
+ ireg = XEXP (ireg, 0); } \
+ if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
+ fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \
+ else if (ireg != 0) \
+ fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \
+ fprintf (FILE, ":%c", sz[scale]); \
+ putc (']', FILE); \
+ } \
+ break; \
+ } \
+ else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
+ { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ CODE_LABEL_NUMBER (XEXP (addr, 0)), \
+ reg_names[REGNO (reg1)]); \
+ break; } \
+ default: \
+ if (GET_CODE (addr) == CONST_INT \
+ && INTVAL (addr) < 0x8000 \
+ && INTVAL (addr) >= -0x8000) \
+ fprintf (FILE, "%d:W", INTVAL (addr)); \
+ else \
+ output_addr_const (FILE, addr); \
+ }}
+
+/*
+Local variables:
+version-control: t
+End:
+*/
+
diff --git a/gnu/egcs/gcc/config/fx80/fx80.md b/gnu/egcs/gcc/config/fx80/fx80.md
new file mode 100644
index 00000000000..cec863bfd6f
--- /dev/null
+++ b/gnu/egcs/gcc/config/fx80/fx80.md
@@ -0,0 +1,2516 @@
+;;- Machine description for GNU C compiler for Alliant FX systems
+;; Copyright (C) 1989, 1994, 1996 Free Software Foundation, Inc.
+;; Adapted from m68k.md by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
+;; and Joe Weening (weening@gang-of-four.stanford.edu).
+
+;; This file is part of GNU CC.
+
+;; GNU CC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; GNU CC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU CC; see the file COPYING. If not, write to
+;; the Free Software Foundation, 59 Temple Place - Suite 330,
+;; Boston, MA 02111-1307, USA.
+
+
+;;- instruction definitions
+
+;;- @@The original PO technology requires these to be ordered by speed,
+;;- @@ so that assigner will pick the fastest.
+
+;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
+
+;;- When naming insn's (operand 0 of define_insn) be careful about using
+;;- names from other targets machine descriptions.
+
+;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
+;;- updates for most instructions.
+
+;;- Operand classes for the register allocator:
+;;- 'a' one of the address registers can be used.
+;;- 'd' one of the data registers can be used.
+;;- 'f' one of the CE floating point registers can be used
+;;- 'r' either a data or an address register can be used.
+
+;;- Immediate integer operand constraints:
+;;- 'I' 1 .. 8
+;;- 'J' -32768 .. 32767
+;;- 'K' -128 .. 127
+;;- 'L' -8 .. -1
+
+;;- Some remnants of constraint codes for the m68k ('x','y','G','H')
+;;- may remain in the insn definitions.
+
+;;- Some of these insn's are composites of several Alliant op codes.
+;;- The assembler (or final @@??) insures that the appropriate one is
+;;- selected.
+
+;; We don't want to allow a constant operand for test insns because
+;; (set (cc0) (const_int foo)) has no mode information. Such insns will
+;; be folded while optimizing anyway.
+
+(define_insn "tstsi"
+ [(set (cc0)
+ (match_operand:SI 0 "nonimmediate_operand" "rm"))]
+ ""
+ "*
+{
+ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
+ return \"tst%.l %0\";
+ /* If you think that the 68020 does not support tstl a0,
+ reread page B-167 of the 68020 manual more carefully. */
+ /* On an address reg, cmpw may replace cmpl. */
+ return \"cmp%.w %#0,%0\";
+}")
+
+(define_insn "tsthi"
+ [(set (cc0)
+ (match_operand:HI 0 "nonimmediate_operand" "rm"))]
+ ""
+ "*
+{
+ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
+ return \"tst%.w %0\";
+ return \"cmp%.w %#0,%0\";
+}")
+
+(define_insn "tstqi"
+ [(set (cc0)
+ (match_operand:QI 0 "nonimmediate_operand" "dm"))]
+ ""
+ "tst%.b %0")
+
+(define_insn "tstsf"
+ [(set (cc0)
+ (match_operand:SF 0 "nonimmediate_operand" "fm"))]
+ "TARGET_CE"
+ "*
+{
+ cc_status.flags = CC_IN_FP;
+ return \"ftest%.s %0\";
+}")
+
+(define_insn "tstdf"
+ [(set (cc0)
+ (match_operand:DF 0 "nonimmediate_operand" "fm"))]
+ "TARGET_CE"
+ "*
+{
+ cc_status.flags = CC_IN_FP;
+ return \"ftest%.d %0\";
+}")
+
+;; compare instructions.
+
+;; A composite of the cmp, cmpa, & cmpi m68000 op codes.
+(define_insn "cmpsi"
+ [(set (cc0)
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rKs,mr,>")
+ (match_operand:SI 1 "general_operand" "mr,Ksr,>")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
+ return \"cmpm%.l %1,%0\";
+ if (REG_P (operands[1])
+ || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
+ {
+ cc_status.flags |= CC_REVERSED;
+ return \"cmp%.l %d0,%d1\";
+ }
+ return \"cmp%.l %d1,%d0\";
+}")
+
+(define_insn "cmphi"
+ [(set (cc0)
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rnm,d,n,m")
+ (match_operand:HI 1 "general_operand" "d,rnm,m,n")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
+ return \"cmpm%.w %1,%0\";
+ if ((REG_P (operands[1]) && !ADDRESS_REG_P (operands[1]))
+ || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
+ { cc_status.flags |= CC_REVERSED;
+ return \"cmp%.w %d0,%d1\";
+ }
+ return \"cmp%.w %d1,%d0\";
+}")
+
+(define_insn "cmpqi"
+ [(set (cc0)
+ (compare (match_operand:QI 0 "nonimmediate_operand" "dn,md,>")
+ (match_operand:QI 1 "general_operand" "dm,nd,>")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
+ return \"cmpm%.b %1,%0\";
+ if (REG_P (operands[1])
+ || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
+ {
+ cc_status.flags |= CC_REVERSED;
+ return \"cmp%.b %d0,%d1\";
+ }
+ return \"cmp%.b %d1,%d0\";
+}")
+
+(define_insn "cmpdf"
+ [(set (cc0)
+ (compare (match_operand:DF 0 "nonimmediate_operand" "f,m")
+ (match_operand:DF 1 "nonimmediate_operand" "fm,f")))]
+ "TARGET_CE"
+ "*
+{
+ cc_status.flags = CC_IN_FP;
+ if (FP_REG_P (operands[0]))
+ return \"fcmp%.d %1,%0\";
+ cc_status.flags |= CC_REVERSED;
+ return \"fcmp%.d %0,%1\";
+}")
+
+(define_insn "cmpsf"
+ [(set (cc0)
+ (compare (match_operand:SF 0 "nonimmediate_operand" "f,m")
+ (match_operand:SF 1 "nonimmediate_operand" "fm,f")))]
+ "TARGET_CE"
+ "*
+{
+ cc_status.flags = CC_IN_FP;
+ if (FP_REG_P (operands[0]))
+ return \"fcmp%.s %1,%0\";
+ cc_status.flags |= CC_REVERSED;
+ return \"fcmp%.s %0,%1\";
+}")
+
+;; Recognizers for btst instructions.
+
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:QI 0 "memory_operand" "o")
+ (const_int 1)
+ (minus:SI (const_int 7)
+ (match_operand:SI 1 "general_operand" "di"))))]
+ ""
+ "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")
+
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "d")
+ (const_int 1)
+ (minus:SI (const_int 31)
+ (match_operand:SI 1 "general_operand" "di"))))]
+ ""
+ "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")
+
+;; The following two patterns are like the previous two
+;; except that they use the fact that bit-number operands
+;; are automatically masked to 3 or 5 bits.
+
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:QI 0 "memory_operand" "o")
+ (const_int 1)
+ (minus:SI (const_int 7)
+ (and:SI
+ (match_operand:SI 1 "general_operand" "d")
+ (const_int 7)))))]
+ ""
+ "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")
+
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "d")
+ (const_int 1)
+ (minus:SI (const_int 31)
+ (and:SI
+ (match_operand:SI 1 "general_operand" "d")
+ (const_int 31)))))]
+ ""
+ "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")
+
+;; Nonoffsettable mem refs are ok in this one pattern
+;; since we don't try to adjust them.
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:QI 0 "memory_operand" "m")
+ (const_int 1)
+ (match_operand:SI 1 "general_operand" "i")))]
+ "GET_CODE (operands[1]) == CONST_INT
+ && (unsigned) INTVAL (operands[1]) < 8"
+ "*
+{
+ operands[1] = GEN_INT (7 - INTVAL (operands[1]));
+ return output_btst (operands, operands[1], operands[0], insn, 7);
+}")
+
+
+(define_insn ""
+ [(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "do")
+ (const_int 1)
+ (match_operand:SI 1 "general_operand" "i")))]
+ "GET_CODE (operands[1]) == CONST_INT"
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM)
+ {
+ operands[0] = adj_offsettable_operand (operands[0],
+ INTVAL (operands[1]) / 8);
+ operands[1] = GEN_INT (7 - INTVAL (operands[1]) % 8);
+ return output_btst (operands, operands[1], operands[0], insn, 7);
+ }
+ operands[1] = GEN_INT (31 - INTVAL (operands[1]));
+ return output_btst (operands, operands[1], operands[0], insn, 31);
+}")
+
+
+;; move instructions
+
+;; A special case in which it is not desirable
+;; to reload the constant into a data register.
+(define_insn ""
+ [(set (match_operand:SI 0 "push_operand" "=m")
+ (match_operand:SI 1 "general_operand" "J"))]
+ "GET_CODE (operands[1]) == CONST_INT
+ && INTVAL (operands[1]) >= -0x8000
+ && INTVAL (operands[1]) < 0x8000"
+ "*
+{
+ if (operands[1] == const0_rtx)
+ return \"clr%.l %0\";
+ return \"pea %a1\";
+}")
+
+;This is never used.
+;(define_insn "swapsi"
+; [(set (match_operand:SI 0 "general_operand" "r")
+; (match_operand:SI 1 "general_operand" "r"))
+; (set (match_dup 1) (match_dup 0))]
+; ""
+; "exg %1,%0")
+
+;; Special case of fullword move when source is zero.
+;; The reason this is special is to avoid loading a zero
+;; into a data reg with moveq in order to store it elsewhere.
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=a,g")
+ (const_int 0))]
+ ""
+ "@
+ sub%.l %0,%0
+ clr%.l %0")
+
+;; General case of fullword move. The register constraints
+;; force integer constants in range for a moveq to be reloaded
+;; if they are headed for memory.
+(define_insn "movsi"
+ ;; Notes: make sure no alternative allows g vs g.
+ ;; We don't allow f-regs since fixed point cannot go in them.
+ ;; We do allow y and x regs since fixed point is allowed in them.
+ [(set (match_operand:SI 0 "general_operand" "=g,da,y,!*x*r*m")
+ (match_operand:SI 1 "general_operand" "daymKs,i,g,*x*r*m"))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[1]) == CONST_INT)
+ {
+ if (operands[1] == const0_rtx
+ && (DATA_REG_P (operands[0])
+ || GET_CODE (operands[0]) == MEM))
+ return \"clr%.l %0\";
+ else if (DATA_REG_P (operands[0])
+ && INTVAL (operands[1]) < 128
+ && INTVAL (operands[1]) >= -128)
+ return \"moveq %1,%0\";
+ else if (ADDRESS_REG_P (operands[0])
+ && INTVAL (operands[1]) < 0x8000
+ && INTVAL (operands[1]) >= -0x8000)
+ return \"mov%.w %1,%0\";
+ else if (push_operand (operands[0], SImode)
+ && INTVAL (operands[1]) < 0x8000
+ && INTVAL (operands[1]) >= -0x8000)
+ return \"pea %a1\";
+ }
+ else if ((GET_CODE (operands[1]) == SYMBOL_REF
+ || GET_CODE (operands[1]) == CONST)
+ && push_operand (operands[0], SImode))
+ return \"pea %a1\";
+ else if ((GET_CODE (operands[1]) == SYMBOL_REF
+ || GET_CODE (operands[1]) == CONST)
+ && ADDRESS_REG_P (operands[0]))
+ return \"lea %a1,%0\";
+ return \"mov%.l %1,%0\";
+}")
+
+(define_insn "movhi"
+ [(set (match_operand:HI 0 "general_operand" "=g")
+ (match_operand:HI 1 "general_operand" "g"))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[1]) == CONST_INT)
+ {
+ if (operands[1] == const0_rtx
+ && (DATA_REG_P (operands[0])
+ || GET_CODE (operands[0]) == MEM))
+ return \"clr%.w %0\";
+ else if (DATA_REG_P (operands[0])
+ && INTVAL (operands[1]) < 128
+ && INTVAL (operands[1]) >= -128)
+ {
+ return \"moveq %1,%0\";
+ }
+ else if (INTVAL (operands[1]) < 0x8000
+ && INTVAL (operands[1]) >= -0x8000)
+ return \"mov%.w %1,%0\";
+ }
+ else if (CONSTANT_P (operands[1]))
+ return \"mov%.l %1,%0\";
+ /* Recognize the insn before a tablejump, one that refers
+ to a table of offsets. Such an insn will need to refer
+ to a label on the insn. So output one. Use the label-number
+ of the table of offsets to generate this label. */
+ if (GET_CODE (operands[1]) == MEM
+ && GET_CODE (XEXP (operands[1], 0)) == PLUS
+ && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
+ || GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF)
+ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS
+ && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) != PLUS)
+ {
+ rtx labelref;
+ if (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF)
+ labelref = XEXP (XEXP (operands[1], 0), 0);
+ else
+ labelref = XEXP (XEXP (operands[1], 0), 1);
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"LI\",
+ CODE_LABEL_NUMBER (XEXP (labelref, 0)));
+ }
+ return \"mov%.w %1,%0\";
+}")
+
+(define_insn "movstricthi"
+ [(set (strict_low_part (match_operand:HI 0 "general_operand" "+dm"))
+ (match_operand:HI 1 "general_operand" "rmn"))]
+ ""
+ "*
+{
+ if (operands[1] == const0_rtx)
+ return \"clr%.w %0\";
+ return \"mov%.w %1,%0\";
+}")
+
+(define_insn "movqi"
+ [(set (match_operand:QI 0 "general_operand" "=d,*a,m,m,?*a")
+ (match_operand:QI 1 "general_operand" "dmi*a,d*a,dmi,?*a,m"))]
+ ""
+ "*
+{
+ rtx xoperands[4];
+ if (ADDRESS_REG_P (operands[0]) && GET_CODE (operands[1]) == MEM)
+ {
+ xoperands[1] = operands[1];
+ xoperands[2]
+ = gen_rtx (MEM, QImode,
+ gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx));
+ xoperands[3] = stack_pointer_rtx;
+ /* Just pushing a byte puts it in the high byte of the halfword. */
+ /* We must put it in the low half, the second byte. */
+ output_asm_insn (\"subq%.w %#2,%3\;mov%.b %1,%2\", xoperands);
+ return \"mov%.w %+,%0\";
+ }
+ if (ADDRESS_REG_P (operands[1]) && GET_CODE (operands[0]) == MEM)
+ {
+ xoperands[0] = operands[0];
+ xoperands[1] = operands[1];
+ xoperands[2]
+ = gen_rtx (MEM, QImode,
+ gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx));
+ xoperands[3] = stack_pointer_rtx;
+ output_asm_insn (\"mov%.w %1,%-\;mov%.b %2,%0\;addq%.w %#2,%3\", xoperands);
+ return \"\";
+ }
+ if (operands[1] == const0_rtx)
+ return \"clr%.b %0\";
+ if (GET_CODE (operands[1]) == CONST_INT
+ && INTVAL (operands[1]) == -1)
+ return \"st %0\";
+ if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
+ return \"mov%.l %1,%0\";
+ if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
+ return \"mov%.w %1,%0\";
+ return \"mov%.b %1,%0\";
+}")
+
+(define_insn "movstrictqi"
+ [(set (strict_low_part (match_operand:QI 0 "general_operand" "+dm"))
+ (match_operand:QI 1 "general_operand" "dmn"))]
+ ""
+ "*
+{
+ if (operands[1] == const0_rtx)
+ return \"clr%.b %0\";
+ return \"mov%.b %1,%0\";
+}")
+
+;; Floating-point moves on a CE are faster using an FP register than
+;; with movl instructions. (Especially for double floats, but also
+;; for single floats, even though it takes an extra instruction.) But
+;; on an IP, the FP registers are simulated and so should be avoided.
+;; We do this by using define_expand for movsf and movdf, and using
+;; different constraints for each target type. The constraints for
+;; TARGET_CE allow general registers because they sometimes need to
+;; hold floats, but they are not preferable.
+
+(define_expand "movsf"
+ [(set (match_operand:SF 0 "general_operand" "")
+ (match_operand:SF 1 "nonimmediate_operand" ""))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SF 0 "general_operand" "=f,m,!*r,!f*m")
+ (match_operand:SF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))]
+ "TARGET_CE"
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return \"fmove%.s %1,%0\";
+ if (REG_P (operands[1]))
+ return \"mov%.l %1,%-\;fmove%.s %+,%0\";
+ return \"fmove%.s %1,%0\";
+ }
+ if (FP_REG_P (operands[1]))
+ {
+ if (REG_P (operands[0]))
+ return \"fmove%.s %1,%-\;mov%.l %+,%0\";
+ return \"fmove%.s %1,%0\";
+ }
+ return \"mov%.l %1,%0\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SF 0 "general_operand" "=frm")
+ (match_operand:SF 1 "nonimmediate_operand" "frm"))]
+ "!TARGET_CE"
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return \"fmove%.s %1,%0\";
+ if (REG_P (operands[1]))
+ return \"mov%.l %1,%-\;fmove%.s %+,%0\";
+ return \"fmove%.s %1,%0\";
+ }
+ if (FP_REG_P (operands[1]))
+ {
+ if (REG_P (operands[0]))
+ return \"fmove%.s %1,%-\;mov%.l %+,%0\";
+ return \"fmove%.s %1,%0\";
+ }
+ return \"mov%.l %1,%0\";
+}")
+
+(define_expand "movdf"
+ [(set (match_operand:DF 0 "general_operand" "")
+ (match_operand:DF 1 "nonimmediate_operand" ""))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:DF 0 "general_operand" "=f,m,!*r,!f*m")
+ (match_operand:DF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))]
+ "TARGET_CE"
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return \"fmove%.d %1,%0\";
+ if (REG_P (operands[1]))
+ {
+ rtx xoperands[2];
+ xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+ output_asm_insn (\"mov%.l %1,%-\", xoperands);
+ output_asm_insn (\"mov%.l %1,%-\", operands);
+ return \"fmove%.d %+,%0\";
+ }
+ return \"fmove%.d %1,%0\";
+ }
+ else if (FP_REG_P (operands[1]))
+ {
+ if (REG_P (operands[0]))
+ {
+ output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands);
+ operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ return \"mov%.l %+,%0\";
+ }
+ return \"fmove%.d %1,%0\";
+ }
+ return output_move_double (operands);
+}")
+
+(define_insn ""
+ [(set (match_operand:DF 0 "general_operand" "=frm")
+ (match_operand:DF 1 "nonimmediate_operand" "frm"))]
+ "!TARGET_CE"
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return \"fmove%.d %1,%0\";
+ if (REG_P (operands[1]))
+ {
+ rtx xoperands[2];
+ xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+ output_asm_insn (\"mov%.l %1,%-\", xoperands);
+ output_asm_insn (\"mov%.l %1,%-\", operands);
+ return \"fmove%.d %+,%0\";
+ }
+ return \"fmove%.d %1,%0\";
+ }
+ else if (FP_REG_P (operands[1]))
+ {
+ if (REG_P (operands[0]))
+ {
+ output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands);
+ operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ return \"mov%.l %+,%0\";
+ }
+ return \"fmove%.d %1,%0\";
+ }
+ return output_move_double (operands);
+}")
+
+(define_insn "movdi"
+ [(set (match_operand:DI 0 "general_operand" "=rm,&r,&ro<>")
+ (match_operand:DI 1 "general_operand" "r,m,roi<>"))]
+ ""
+ "*
+{
+ return output_move_double (operands);
+}
+")
+
+;; This goes after the move instructions
+;; because the move instructions are better (require no spilling)
+;; when they can apply. It goes before the add/sub insns
+;; so we will prefer it to them.
+
+(define_insn "pushasi"
+ [(set (match_operand:SI 0 "push_operand" "=m")
+ (match_operand:SI 1 "address_operand" "p"))]
+ ""
+ "pea %a1")
+
+;; truncation instructions
+(define_insn "truncsiqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm,d")
+ (truncate:QI
+ (match_operand:SI 1 "general_operand" "doJ,i")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == REG)
+ return \"mov%.l %1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ operands[1] = adj_offsettable_operand (operands[1], 3);
+ return \"mov%.b %1,%0\";
+}")
+
+(define_insn "trunchiqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm,d")
+ (truncate:QI
+ (match_operand:HI 1 "general_operand" "doJ,i")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == REG
+ && (GET_CODE (operands[1]) == MEM
+ || GET_CODE (operands[1]) == CONST_INT))
+ return \"mov%.w %1,%0\";
+ if (GET_CODE (operands[0]) == REG)
+ return \"mov%.l %1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ operands[1] = adj_offsettable_operand (operands[1], 1);
+ return \"mov%.b %1,%0\";
+}")
+
+(define_insn "truncsihi2"
+ [(set (match_operand:HI 0 "general_operand" "=dm,d")
+ (truncate:HI
+ (match_operand:SI 1 "general_operand" "roJ,i")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == REG)
+ return \"mov%.l %1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ operands[1] = adj_offsettable_operand (operands[1], 2);
+ return \"mov%.w %1,%0\";
+}")
+
+;; zero extension instructions
+
+(define_expand "zero_extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (const_int 0))
+ (set (strict_low_part (subreg:HI (match_dup 0) 0))
+ (match_operand:HI 1 "general_operand" ""))]
+ ""
+ "operands[1] = make_safe_from (operands[1], operands[0]);")
+
+(define_expand "zero_extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (const_int 0))
+ (set (strict_low_part (subreg:QI (match_dup 0) 0))
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ "operands[1] = make_safe_from (operands[1], operands[0]);")
+
+(define_expand "zero_extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (const_int 0))
+ (set (strict_low_part (subreg:QI (match_dup 0) 0))
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ " operands[1] = make_safe_from (operands[1], operands[0]); ")
+
+;; Patterns to recognize zero-extend insns produced by the combiner.
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=do<>")
+ (zero_extend:SI
+ (match_operand:HI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "*
+{
+ if (DATA_REG_P (operands[0]))
+ {
+ if (GET_CODE (operands[1]) == REG
+ && REGNO (operands[0]) == REGNO (operands[1]))
+ return \"and%.l %#0xFFFF,%0\";
+ if (reg_mentioned_p (operands[0], operands[1]))
+ return \"mov%.w %1,%0\;and%.l %#0xFFFF,%0\";
+ return \"clr%.l %0\;mov%.w %1,%0\";
+ }
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
+ return \"mov%.w %1,%0\;clr%.w %0\";
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
+ return \"clr%.w %0\;mov%.w %1,%0\";
+ else
+ {
+ output_asm_insn (\"clr%.w %0\", operands);
+ operands[0] = adj_offsettable_operand (operands[0], 2);
+ return \"mov%.w %1,%0\";
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=do<>")
+ (zero_extend:HI
+ (match_operand:QI 1 "nonimmediate_operand" "dm")))]
+ ""
+ "*
+{
+ if (DATA_REG_P (operands[0]))
+ {
+ if (GET_CODE (operands[1]) == REG
+ && REGNO (operands[0]) == REGNO (operands[1]))
+ return \"and%.w %#0xFF,%0\";
+ if (reg_mentioned_p (operands[0], operands[1]))
+ return \"mov%.b %1,%0\;and%.w %#0xFF,%0\";
+ return \"clr%.w %0\;mov%.b %1,%0\";
+ }
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
+ {
+ if (REGNO (XEXP (XEXP (operands[0], 0), 0))
+ == STACK_POINTER_REGNUM)
+ return \"clr%.w %-\;mov%.b %1,%0\";
+ else
+ return \"mov%.b %1,%0\;clr%.b %0\";
+ }
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
+ return \"clr%.b %0\;mov%.b %1,%0\";
+ else
+ {
+ output_asm_insn (\"clr%.b %0\", operands);
+ operands[0] = adj_offsettable_operand (operands[0], 1);
+ return \"mov%.b %1,%0\";
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=do<>")
+ (zero_extend:SI
+ (match_operand:QI 1 "nonimmediate_operand" "dm")))]
+ ""
+ "*
+{
+ if (DATA_REG_P (operands[0]))
+ {
+ if (GET_CODE (operands[1]) == REG
+ && REGNO (operands[0]) == REGNO (operands[1]))
+ return \"and%.l %#0xFF,%0\";
+ if (reg_mentioned_p (operands[0], operands[1]))
+ return \"mov%.b %1,%0\;and%.l %#0xFF,%0\";
+ return \"clr%.l %0\;mov%.b %1,%0\";
+ }
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
+ {
+ operands[0] = XEXP (XEXP (operands[0], 0), 0);
+ return \"clr%.l %0@-\;mov%.b %1,%0@(3)\";
+ }
+ else if (GET_CODE (operands[0]) == MEM
+ && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
+ {
+ operands[0] = XEXP (XEXP (operands[0], 0), 0);
+ return \"clr%.l %0@+\;mov%.b %1,%0@(-1)\";
+ }
+ else
+ {
+ output_asm_insn (\"clr%.l %0\", operands);
+ operands[0] = adj_offsettable_operand (operands[0], 3);
+ return \"mov%.b %1,%0\";
+ }
+}")
+
+;; sign extension instructions
+
+(define_insn "extendhisi2"
+ [(set (match_operand:SI 0 "general_operand" "=*d,a")
+ (sign_extend:SI
+ (match_operand:HI 1 "nonimmediate_operand" "0,rmn")))]
+ ""
+ "@
+ ext%.l %0
+ mov%.w %1,%0")
+
+(define_insn "extendqihi2"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (sign_extend:HI
+ (match_operand:QI 1 "nonimmediate_operand" "0")))]
+ ""
+ "ext%.w %0")
+
+(define_insn "extendqisi2"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (sign_extend:SI
+ (match_operand:QI 1 "nonimmediate_operand" "0")))]
+ "TARGET_68020"
+ "extb%.l %0")
+
+;; Conversions between float and double.
+
+(define_insn "extendsfdf2"
+ [(set (match_operand:DF 0 "general_operand" "=f,m")
+ (float_extend:DF
+ (match_operand:SF 1 "nonimmediate_operand" "fm,f")))]
+ "TARGET_CE"
+ "fmovesd %1,%0")
+
+(define_insn "truncdfsf2"
+ [(set (match_operand:SF 0 "general_operand" "=f,m")
+ (float_truncate:SF
+ (match_operand:DF 1 "nonimmediate_operand" "fm,f")))]
+ "TARGET_CE"
+ "fmoveds %1,%0")
+
+;; Conversion between fixed point and floating point.
+;; Note that among the fix-to-float insns
+;; the ones that start with SImode come first.
+;; That is so that an operand that is a CONST_INT
+;; (and therefore lacks a specific machine mode).
+;; will be recognized as SImode (which is always valid)
+;; rather than as QImode or HImode.
+
+(define_insn "floatsisf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (float:SF (match_operand:SI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmovels %1,%0")
+
+(define_insn "floatsidf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (float:DF (match_operand:SI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmoveld %1,%0")
+
+(define_insn "floathisf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (float:SF (match_operand:HI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmovews %1,%0")
+
+(define_insn "floathidf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (float:DF (match_operand:HI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmovewd %1,%0")
+
+(define_insn "floatqisf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (float:SF (match_operand:QI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmovebs %1,%0")
+
+(define_insn "floatqidf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (float:DF (match_operand:QI 1 "nonimmediate_operand" "dm")))]
+ "TARGET_CE"
+ "fmovebd %1,%0")
+
+;; Float-to-fix conversion insns.
+
+(define_insn "fix_truncsfqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm")
+ (fix:QI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovesb %1,%0")
+
+(define_insn "fix_truncsfhi2"
+ [(set (match_operand:HI 0 "general_operand" "=dm")
+ (fix:HI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovesw %1,%0")
+
+(define_insn "fix_truncsfsi2"
+ [(set (match_operand:SI 0 "general_operand" "=dm")
+ (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovesl %1,%0")
+
+(define_insn "fix_truncdfqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm")
+ (fix:QI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovedb %1,%0")
+
+(define_insn "fix_truncdfhi2"
+ [(set (match_operand:HI 0 "general_operand" "=dm")
+ (fix:HI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovedw %1,%0")
+
+(define_insn "fix_truncdfsi2"
+ [(set (match_operand:SI 0 "general_operand" "=dm")
+ (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
+ "TARGET_CE"
+ "fmovedl %1,%0")
+
+;; add instructions
+
+(define_insn "addsi3"
+ [(set (match_operand:SI 0 "general_operand" "=m,r,!a,!a")
+ (plus:SI (match_operand:SI 1 "general_operand" "%0,0,a,rJK")
+ (match_operand:SI 2 "general_operand" "dIKLs,mrIKLs,rJK,a")))]
+ ""
+ "*
+{
+ if (! operands_match_p (operands[0], operands[1]))
+ {
+ if (!ADDRESS_REG_P (operands[1]))
+ {
+ rtx tmp = operands[1];
+
+ operands[1] = operands[2];
+ operands[2] = tmp;
+ }
+
+ /* These insns can result from reloads to access
+ stack slots over 64k from the frame pointer. */
+ if (GET_CODE (operands[2]) == CONST_INT
+ && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
+ return \"mov%.l %2,%0\;add%.l %1,%0\";
+ if (GET_CODE (operands[2]) == REG)
+ return \"lea %1@[%2:L:B],%0\";
+ else
+ return \"lea %1@(%c2),%0\";
+ }
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ if (INTVAL (operands[2]) > 0
+ && INTVAL (operands[2]) <= 8)
+ return (ADDRESS_REG_P (operands[0])
+ ? \"addq%.w %2,%0\"
+ : \"addq%.l %2,%0\");
+ if (INTVAL (operands[2]) < 0
+ && INTVAL (operands[2]) >= -8)
+ {
+ operands[2] = GEN_INT (- INTVAL (operands[2]));
+ return (ADDRESS_REG_P (operands[0])
+ ? \"subq%.w %2,%0\"
+ : \"subq%.l %2,%0\");
+ }
+ if (ADDRESS_REG_P (operands[0])
+ && INTVAL (operands[2]) >= -0x8000
+ && INTVAL (operands[2]) < 0x8000)
+ return \"add%.w %2,%0\";
+ }
+ return \"add%.l %2,%0\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=a")
+ (plus:SI (match_operand:SI 1 "general_operand" "0")
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))]
+ ""
+ "add%.w %2,%0")
+
+(define_insn "addhi3"
+ [(set (match_operand:HI 0 "general_operand" "=mr,mr,m,r")
+ (plus:HI (match_operand:HI 1 "general_operand" "%0,0,0,0")
+ (match_operand:HI 2 "general_operand" "I,L,dn,rmn")))]
+ ""
+ "@
+ addq%.w %2,%0
+ subq%.w #%n2,%0
+ add%.w %2,%0
+ add%.w %2,%0")
+
+(define_insn ""
+ [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
+ (plus:HI (match_dup 0)
+ (match_operand:HI 1 "general_operand" "dn,rmn")))]
+ ""
+ "add%.w %1,%0")
+
+(define_insn "addqi3"
+ [(set (match_operand:QI 0 "general_operand" "=md,mr,m,d")
+ (plus:QI (match_operand:QI 1 "general_operand" "%0,0,0,0")
+ (match_operand:QI 2 "general_operand" "I,L,dn,dmn")))]
+ ""
+ "@
+ addq%.b %2,%0
+ subq%.b #%n2,%0
+ add%.b %2,%0
+ add%.b %2,%0")
+
+(define_insn ""
+ [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
+ (plus:QI (match_dup 0)
+ (match_operand:QI 1 "general_operand" "dn,dmn")))]
+ ""
+ "add%.b %1,%0")
+
+(define_insn "adddf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (plus:DF (match_operand:DF 1 "nonimmediate_operand" "%f")
+ (match_operand:DF 2 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fadd%.d %2,%1,%0")
+
+(define_insn "addsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (plus:SF (match_operand:SF 1 "nonimmediate_operand" "%f")
+ (match_operand:SF 2 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fadd%.s %2,%1,%0")
+
+;; subtract instructions
+
+(define_insn "subsi3"
+ [(set (match_operand:SI 0 "general_operand" "=m,r,!a,?d")
+ (minus:SI (match_operand:SI 1 "general_operand" "0,0,a,mrIKs")
+ (match_operand:SI 2 "general_operand" "dIKs,mrIKs,J,0")))]
+ ""
+ "*
+{
+ if (! operands_match_p (operands[0], operands[1]))
+ {
+ if (operands_match_p (operands[0], operands[2]))
+ {
+ if (GET_CODE (operands[1]) == CONST_INT)
+ {
+ if (INTVAL (operands[1]) > 0
+ && INTVAL (operands[1]) <= 8)
+ return \"subq%.l %1,%0\;neg%.l %0\";
+ }
+ return \"sub%.l %1,%0\;neg%.l %0\";
+ }
+ /* This case is matched by J, but negating -0x8000
+ in an lea would give an invalid displacement.
+ So do this specially. */
+ if (INTVAL (operands[2]) == -0x8000)
+ return \"mov%.l %1,%0\;sub%.l %2,%0\";
+ return \"lea %1@(%n2),%0\";
+ }
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ if (INTVAL (operands[2]) > 0
+ && INTVAL (operands[2]) <= 8)
+ return \"subq%.l %2,%0\";
+ if (ADDRESS_REG_P (operands[0])
+ && INTVAL (operands[2]) >= -0x8000
+ && INTVAL (operands[2]) < 0x8000)
+ return \"sub%.w %2,%0\";
+ }
+ return \"sub%.l %2,%0\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=a")
+ (minus:SI (match_operand:SI 1 "general_operand" "0")
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))]
+ ""
+ "sub%.w %2,%0")
+
+(define_insn "subhi3"
+ [(set (match_operand:HI 0 "general_operand" "=m,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "0,0")
+ (match_operand:HI 2 "general_operand" "dn,rmn")))]
+ ""
+ "sub%.w %2,%0")
+
+(define_insn ""
+ [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
+ (minus:HI (match_dup 0)
+ (match_operand:HI 1 "general_operand" "dn,rmn")))]
+ ""
+ "sub%.w %1,%0")
+
+(define_insn "subqi3"
+ [(set (match_operand:QI 0 "general_operand" "=m,d")
+ (minus:QI (match_operand:QI 1 "general_operand" "0,0")
+ (match_operand:QI 2 "general_operand" "dn,dmn")))]
+ ""
+ "sub%.b %2,%0")
+
+(define_insn ""
+ [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
+ (minus:QI (match_dup 0)
+ (match_operand:QI 1 "general_operand" "dn,dmn")))]
+ ""
+ "sub%.b %1,%0")
+
+(define_insn "subdf3"
+ [(set (match_operand:DF 0 "register_operand" "=f,f,f")
+ (minus:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m")
+ (match_operand:DF 2 "nonimmediate_operand" "f,m,f")))]
+ "TARGET_CE"
+ "@
+ fsub%.d %2,%1,%0
+ fsub%.d %2,%1,%0
+ frsub%.d %1,%2,%0")
+
+(define_insn "subsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f,f,f")
+ (minus:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m")
+ (match_operand:SF 2 "nonimmediate_operand" "f,m,f")))]
+ "TARGET_CE"
+ "@
+ fsub%.s %2,%1,%0
+ fsub%.s %2,%1,%0
+ frsub%.s %1,%2,%0")
+
+;; multiply instructions
+
+(define_insn "mulhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (mult:HI (match_operand:HI 1 "general_operand" "%0")
+ (match_operand:HI 2 "general_operand" "dmn")))]
+ ""
+ "muls %2,%0")
+
+(define_insn "mulhisi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0"))
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm"))))]
+ ""
+ "muls %2,%0")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0"))
+ (match_operand:SI 2 "const_int_operand" "n")))]
+ ""
+ "muls %2,%0")
+
+(define_insn "mulsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (mult:SI (match_operand:SI 1 "general_operand" "%0")
+ (match_operand:SI 2 "general_operand" "dmsK")))]
+ "TARGET_68020"
+ "muls%.l %2,%0")
+
+(define_insn "umulhisi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (mult:SI (zero_extend:SI
+ (match_operand:HI 1 "nonimmediate_operand" "%0"))
+ (zero_extend:SI
+ (match_operand:HI 2 "nonimmediate_operand" "dm"))))]
+ ""
+ "mulu %2,%0")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (mult:SI (zero_extend:SI
+ (match_operand:HI 1 "nonimmediate_operand" "%0"))
+ (match_operand:SI 2 "const_int_operand" "n")))]
+ ""
+ "mulu %2,%0")
+
+(define_insn "muldf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (mult:DF (match_operand:DF 1 "nonimmediate_operand" "%f")
+ (match_operand:DF 2 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fmul%.d %2,%1,%0")
+
+(define_insn "mulsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (mult:SF (match_operand:SF 1 "nonimmediate_operand" "%f")
+ (match_operand:SF 2 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fmul%.s %2,%1,%0")
+
+;; divide instructions
+
+(define_insn "divhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (div:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dmn")))]
+ ""
+ "extl %0\;divs %2,%0")
+
+(define_insn "divhisi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI
+ (div:SI
+ (match_operand:SI 1 "general_operand" "0")
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
+ ""
+ "divs %2,%0")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI (div:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "const_int_operand" "n"))))]
+ ""
+ "divs %2,%0")
+
+(define_insn "divsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (div:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dmsK")))]
+ "TARGET_68020"
+ "divs%.l %2,%0,%0")
+
+(define_insn "udivhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (udiv:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dmn")))]
+ ""
+ "and%.l %#0xFFFF,%0\;divu %2,%0")
+
+(define_insn "udivhisi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI
+ (udiv:SI
+ (match_operand:SI 1 "general_operand" "0")
+ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
+ ""
+ "divu %2,%0")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "0")
+ (match_operand:HI 2 "const_int_operand" "n"))))]
+ ""
+ "divu %2,%0")
+
+(define_insn "udivsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (udiv:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dmsK")))]
+ "TARGET_68020"
+ "divu%.l %2,%0,%0")
+
+(define_insn "divdf3"
+ [(set (match_operand:DF 0 "register_operand" "=f,f,f")
+ (div:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m")
+ (match_operand:DF 2 "nonimmediate_operand" "f,m,f")))]
+ "TARGET_CE"
+ "@
+ fdiv%.d %2,%1,%0
+ fdiv%.d %2,%1,%0
+ frdiv%.d %1,%2,%0")
+
+(define_insn "divsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f,f,f")
+ (div:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m")
+ (match_operand:SF 2 "nonimmediate_operand" "f,m,f")))]
+ "TARGET_CE"
+ "@
+ fdiv%.s %2,%1,%0
+ fdiv%.s %2,%1,%0
+ frdiv%.s %1,%2,%0")
+
+;; Remainder instructions.
+
+(define_insn "modhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (mod:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dmn")))]
+ ""
+ "extl %0\;divs %2,%0\;swap %0")
+
+(define_insn "modhisi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI
+ (mod:SI
+ (match_operand:SI 1 "general_operand" "0")
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
+ ""
+ "divs %2,%0\;swap %0")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI (mod:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "const_int_operand" "n"))))]
+ ""
+ "divs %2,%0\;swap %0")
+
+(define_insn "umodhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (umod:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dmn")))]
+ ""
+ "and%.l %#0xFFFF,%0\;divu %2,%0\;swap %0")
+
+(define_insn "umodhisi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI
+ (umod:SI
+ (match_operand:SI 1 "general_operand" "0")
+ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
+ ""
+ "divu %2,%0\;swap %0")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (truncate:HI (umod:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "const_int_operand" "n"))))]
+ ""
+ "divu %2,%0\;swap %0")
+
+(define_insn "divmodsi4"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (div:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dmsK")))
+ (set (match_operand:SI 3 "general_operand" "=d")
+ (mod:SI (match_dup 1) (match_dup 2)))]
+ "TARGET_68020"
+ "divs%.l %2,%0,%3")
+
+(define_insn "udivmodsi4"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (udiv:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dmsK")))
+ (set (match_operand:SI 3 "general_operand" "=d")
+ (umod:SI (match_dup 1) (match_dup 2)))]
+ "TARGET_68020"
+ "divu%.l %2,%0,%3")
+
+;; logical-and instructions
+
+(define_insn "andsi3"
+ [(set (match_operand:SI 0 "general_operand" "=m,d")
+ (and:SI (match_operand:SI 1 "general_operand" "%0,0")
+ (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[2]) == CONST_INT
+ && (INTVAL (operands[2]) | 0xffff) == 0xffffffff
+ && (DATA_REG_P (operands[0])
+ || offsettable_memref_p (operands[0])))
+ {
+ if (GET_CODE (operands[0]) != REG)
+ operands[0] = adj_offsettable_operand (operands[0], 2);
+ operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
+ /* Do not delete a following tstl %0 insn; that would be incorrect. */
+ CC_STATUS_INIT;
+ if (operands[2] == const0_rtx)
+ return \"clr%.w %0\";
+ return \"and%.w %2,%0\";
+ }
+ return \"and%.l %2,%0\";
+}")
+
+(define_insn "andhi3"
+ [(set (match_operand:HI 0 "general_operand" "=m,d")
+ (and:HI (match_operand:HI 1 "general_operand" "%0,0")
+ (match_operand:HI 2 "general_operand" "dn,dmn")))]
+ ""
+ "and%.w %2,%0")
+
+(define_insn "andqi3"
+ [(set (match_operand:QI 0 "general_operand" "=m,d")
+ (and:QI (match_operand:QI 1 "general_operand" "%0,0")
+ (match_operand:QI 2 "general_operand" "dn,dmn")))]
+ ""
+ "and%.b %2,%0")
+
+
+;; inclusive-or instructions
+
+(define_insn "iorsi3"
+ [(set (match_operand:SI 0 "general_operand" "=m,d")
+ (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
+ (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
+ ""
+ "*
+{
+ register int logval;
+ if (GET_CODE (operands[2]) == CONST_INT
+ && INTVAL (operands[2]) >> 16 == 0
+ && (DATA_REG_P (operands[0])
+ || offsettable_memref_p (operands[0])))
+ {
+ if (GET_CODE (operands[0]) != REG)
+ operands[0] = adj_offsettable_operand (operands[0], 2);
+ /* Do not delete a following tstl %0 insn; that would be incorrect. */
+ CC_STATUS_INIT;
+ return \"or%.w %2,%0\";
+ }
+ if (GET_CODE (operands[2]) == CONST_INT
+ && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
+ && (DATA_REG_P (operands[0])
+ || offsettable_memref_p (operands[0])))
+ {
+ if (DATA_REG_P (operands[0]))
+ operands[1] = GEN_INT (logval);
+ else
+ {
+ operands[0] = adj_offsettable_operand (operands[0], 3 - (logval / 8));
+ operands[1] = GEN_INT (logval % 8);
+ }
+ return \"bset %1,%0\";
+ }
+ return \"or%.l %2,%0\";
+}")
+
+(define_insn "iorhi3"
+ [(set (match_operand:HI 0 "general_operand" "=m,d")
+ (ior:HI (match_operand:HI 1 "general_operand" "%0,0")
+ (match_operand:HI 2 "general_operand" "dn,dmn")))]
+ ""
+ "or%.w %2,%0")
+
+(define_insn "iorqi3"
+ [(set (match_operand:QI 0 "general_operand" "=m,d")
+ (ior:QI (match_operand:QI 1 "general_operand" "%0,0")
+ (match_operand:QI 2 "general_operand" "dn,dmn")))]
+ ""
+ "or%.b %2,%0")
+
+;; xor instructions
+
+(define_insn "xorsi3"
+ [(set (match_operand:SI 0 "general_operand" "=do,m")
+ (xor:SI (match_operand:SI 1 "general_operand" "%0,0")
+ (match_operand:SI 2 "general_operand" "di,dKs")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[2]) == CONST_INT
+ && INTVAL (operands[2]) >> 16 == 0
+ && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0])))
+ {
+ if (! DATA_REG_P (operands[0]))
+ operands[0] = adj_offsettable_operand (operands[0], 2);
+ /* Do not delete a following tstl %0 insn; that would be incorrect. */
+ CC_STATUS_INIT;
+ return \"eor%.w %2,%0\";
+ }
+ return \"eor%.l %2,%0\";
+}")
+
+(define_insn "xorhi3"
+ [(set (match_operand:HI 0 "general_operand" "=dm")
+ (xor:HI (match_operand:HI 1 "general_operand" "%0")
+ (match_operand:HI 2 "general_operand" "dn")))]
+ ""
+ "eor%.w %2,%0")
+
+(define_insn "xorqi3"
+ [(set (match_operand:QI 0 "general_operand" "=dm")
+ (xor:QI (match_operand:QI 1 "general_operand" "%0")
+ (match_operand:QI 2 "general_operand" "dn")))]
+ ""
+ "eor%.b %2,%0")
+
+;; negation instructions
+
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "general_operand" "=dm")
+ (neg:SI (match_operand:SI 1 "general_operand" "0")))]
+ ""
+ "neg%.l %0")
+
+(define_insn "neghi2"
+ [(set (match_operand:HI 0 "general_operand" "=dm")
+ (neg:HI (match_operand:HI 1 "general_operand" "0")))]
+ ""
+ "neg%.w %0")
+
+(define_insn "negqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm")
+ (neg:QI (match_operand:QI 1 "general_operand" "0")))]
+ ""
+ "neg%.b %0")
+
+(define_insn "negsf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (neg:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fneg%.s %1,%0")
+
+(define_insn "negdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (neg:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fneg%.d %1,%0")
+
+;; Absolute value instructions
+
+(define_insn "abssf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (abs:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fabs%.s %1,%0")
+
+(define_insn "absdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (abs:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fabs%.d %1,%0")
+
+;; Square root instructions
+
+(define_insn "sqrtsf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (sqrt:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fsqrt%.s %1,%0")
+
+(define_insn "sqrtdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (sqrt:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
+ "TARGET_CE"
+ "fsqrt%.d %1,%0")
+
+;; one complement instructions
+
+(define_insn "one_cmplsi2"
+ [(set (match_operand:SI 0 "general_operand" "=dm")
+ (not:SI (match_operand:SI 1 "general_operand" "0")))]
+ ""
+ "not%.l %0")
+
+(define_insn "one_cmplhi2"
+ [(set (match_operand:HI 0 "general_operand" "=dm")
+ (not:HI (match_operand:HI 1 "general_operand" "0")))]
+ ""
+ "not%.w %0")
+
+(define_insn "one_cmplqi2"
+ [(set (match_operand:QI 0 "general_operand" "=dm")
+ (not:QI (match_operand:QI 1 "general_operand" "0")))]
+ ""
+ "not%.b %0")
+
+
+;; arithmetic shift instructions
+;; We don't need the shift memory by 1 bit instruction
+
+(define_insn "ashlsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (ashift:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dI")))]
+ ""
+ "asl%.l %2,%0")
+
+(define_insn "ashlhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (ashift:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dI")))]
+ ""
+ "asl%.w %2,%0")
+
+(define_insn "ashlqi3"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (ashift:QI (match_operand:QI 1 "general_operand" "0")
+ (match_operand:QI 2 "general_operand" "dI")))]
+ ""
+ "asl%.b %2,%0")
+
+(define_insn "ashrsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (ashiftrt:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dI")))]
+ ""
+ "asr%.l %2,%0")
+
+(define_insn "ashrhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (ashiftrt:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dI")))]
+ ""
+ "asr%.w %2,%0")
+
+(define_insn "ashrqi3"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (ashiftrt:QI (match_operand:QI 1 "general_operand" "0")
+ (match_operand:QI 2 "general_operand" "dI")))]
+ ""
+ "asr%.b %2,%0")
+
+;; logical shift instructions
+
+(define_insn "lshrsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (lshiftrt:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dI")))]
+ ""
+ "lsr%.l %2,%0")
+
+(define_insn "lshrhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (lshiftrt:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dI")))]
+ ""
+ "lsr%.w %2,%0")
+
+(define_insn "lshrqi3"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (lshiftrt:QI (match_operand:QI 1 "general_operand" "0")
+ (match_operand:QI 2 "general_operand" "dI")))]
+ ""
+ "lsr%.b %2,%0")
+
+;; rotate instructions
+
+(define_insn "rotlsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (rotate:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dI")))]
+ ""
+ "rol%.l %2,%0")
+
+(define_insn "rotlhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (rotate:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dI")))]
+ ""
+ "rol%.w %2,%0")
+
+(define_insn "rotlqi3"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (rotate:QI (match_operand:QI 1 "general_operand" "0")
+ (match_operand:QI 2 "general_operand" "dI")))]
+ ""
+ "rol%.b %2,%0")
+
+(define_insn "rotrsi3"
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (rotatert:SI (match_operand:SI 1 "general_operand" "0")
+ (match_operand:SI 2 "general_operand" "dI")))]
+ ""
+ "ror%.l %2,%0")
+
+(define_insn "rotrhi3"
+ [(set (match_operand:HI 0 "general_operand" "=d")
+ (rotatert:HI (match_operand:HI 1 "general_operand" "0")
+ (match_operand:HI 2 "general_operand" "dI")))]
+ ""
+ "ror%.w %2,%0")
+
+(define_insn "rotrqi3"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (rotatert:QI (match_operand:QI 1 "general_operand" "0")
+ (match_operand:QI 2 "general_operand" "dI")))]
+ ""
+ "ror%.b %2,%0")
+
+;; Special cases of bit-field insns which we should
+;; recognize in preference to the general case.
+;; These handle aligned 8-bit and 16-bit fields,
+;; which can usually be done with move instructions.
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+do")
+ (match_operand:SI 1 "const_int_operand" "i")
+ (match_operand:SI 2 "const_int_operand" "i"))
+ (match_operand:SI 3 "general_operand" "d"))]
+ "TARGET_68020 && TARGET_BITFIELD
+ && (INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16)
+ && INTVAL (operands[2]) % INTVAL (operands[1]) == 0
+ && (GET_CODE (operands[0]) == REG
+ || ! mode_dependent_address_p (XEXP (operands[0], 0)))"
+ "*
+{
+ if (REG_P (operands[0]))
+ {
+ if (INTVAL (operands[1]) + INTVAL (operands[2]) != 32)
+ return \"bfins %3,[%c2,%c1]%0\";
+ }
+ else
+ operands[0]
+ = adj_offsettable_operand (operands[0], INTVAL (operands[2]) / 8);
+
+ if (GET_CODE (operands[3]) == MEM)
+ operands[3] = adj_offsettable_operand (operands[3],
+ (32 - INTVAL (operands[1])) / 8);
+ if (INTVAL (operands[1]) == 8)
+ return \"mov%.b %3,%0\";
+ return \"mov%.w %3,%0\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=&d")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "do")
+ (match_operand:SI 2 "const_int_operand" "i")
+ (match_operand:SI 3 "const_int_operand" "i")))]
+ "TARGET_68020 && TARGET_BITFIELD
+ && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
+ && INTVAL (operands[3]) % INTVAL (operands[2]) == 0
+ && (GET_CODE (operands[1]) == REG
+ || ! mode_dependent_address_p (XEXP (operands[1], 0)))"
+ "*
+{
+ if (REG_P (operands[1]))
+ {
+ if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
+ return \"bfextu [%c3,%c2]%1,%0\";
+ }
+ else
+ operands[1]
+ = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);
+
+ output_asm_insn (\"clrl %0\", operands);
+ if (GET_CODE (operands[0]) == MEM)
+ operands[0] = adj_offsettable_operand (operands[0],
+ (32 - INTVAL (operands[1])) / 8);
+ if (INTVAL (operands[2]) == 8)
+ return \"mov%.b %1,%0\";
+ return \"mov%.w %1,%0\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (sign_extract:SI (match_operand:SI 1 "register_operand" "do")
+ (match_operand:SI 2 "const_int_operand" "i")
+ (match_operand:SI 3 "const_int_operand" "i")))]
+ "TARGET_68020 && TARGET_BITFIELD
+ && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
+ && INTVAL (operands[3]) % INTVAL (operands[2]) == 0
+ && (GET_CODE (operands[1]) == REG
+ || ! mode_dependent_address_p (XEXP (operands[1], 0)))"
+ "*
+{
+ if (REG_P (operands[1]))
+ {
+ if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
+ return \"bfexts [%c3,%c2]%1,%0\";
+ }
+ else
+ operands[1]
+ = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);
+
+ if (INTVAL (operands[2]) == 8)
+ return \"mov%.b %1,%0\;extb%.l %0\";
+ return \"mov%.w %1,%0\;ext%.l %0\";
+}")
+
+;; Bit field instructions, general cases.
+;; "o,d" constraint causes a nonoffsettable memref to match the "o"
+;; so that its address is reloaded.
+
+(define_expand "extv"
+ [(set (match_operand:SI 0 "general_operand" "")
+ (sign_extract:SI (match_operand:SI 1 "general_operand" "")
+ (match_operand:SI 2 "general_operand" "")
+ (match_operand:SI 3 "general_operand" "")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (sign_extract:SI (match_operand:QI 1 "memory_operand" "o")
+ (match_operand:SI 2 "general_operand" "di")
+ (match_operand:SI 3 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "bfexts [%c3,%c2]%1,%0")
+
+(define_expand "extzv"
+ [(set (match_operand:SI 0 "general_operand" "")
+ (zero_extract:SI (match_operand:SI 1 "general_operand" "")
+ (match_operand:SI 2 "general_operand" "")
+ (match_operand:SI 3 "general_operand" "")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (zero_extract:SI (match_operand:QI 1 "memory_operand" "o")
+ (match_operand:SI 2 "general_operand" "di")
+ (match_operand:SI 3 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "bfextu [%c3,%c2]%1,%0")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "+o")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (xor:SI (zero_extract:SI (match_dup 0) (match_dup 1) (match_dup 2))
+ (match_operand:SI 3 "const_int_operand" "i,i")))]
+ "TARGET_68020 && TARGET_BITFIELD
+ && (INTVAL (operands[3]) == -1
+ || (GET_CODE (operands[1]) == CONST_INT
+ && (~ INTVAL (operands[3]) & ((1 << INTVAL (operands[1]))- 1)) == 0))"
+ "*
+{
+ CC_STATUS_INIT;
+ return \"bfchg [%c2,%c1]%0\";
+}")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "+o")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (const_int 0))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ CC_STATUS_INIT;
+ return \"bfclr [%c2,%c1]%0\";
+}")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "+o")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (const_int -1))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ CC_STATUS_INIT;
+ return \"bfset [%c2,%c1]%0\";
+}")
+
+(define_expand "insv"
+ [(set (zero_extract:SI (match_operand:SI 0 "general_operand" "")
+ (match_operand:SI 1 "general_operand" "")
+ (match_operand:SI 2 "general_operand" ""))
+ (match_operand:SI 3 "general_operand" ""))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "+o")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (match_operand:SI 3 "general_operand" "d"))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "bfins %3,[%c2,%c1]%0")
+
+;; Now recognize bit field insns that operate on registers
+;; (or at least were intended to do so).
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (sign_extract:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "general_operand" "di")
+ (match_operand:SI 3 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "bfexts [%c3,%c2]%1,%0")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=d")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "general_operand" "di")
+ (match_operand:SI 3 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "bfextu [%c3,%c2]%1,%0")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+d")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (const_int 0))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ CC_STATUS_INIT;
+ return \"bfclr [%c2,%c1]%0\";
+}")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+d")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (const_int -1))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ CC_STATUS_INIT;
+ return \"bfset [%c2,%c1]%0\";
+}")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+d")
+ (match_operand:SI 1 "general_operand" "di")
+ (match_operand:SI 2 "general_operand" "di"))
+ (match_operand:SI 3 "general_operand" "d"))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ return \"bfins %3,[%c2,%c1]%0\";
+}")
+
+;; Special patterns for optimizing bit-field instructions.
+
+(define_insn ""
+ [(set (cc0)
+ (zero_extract:SI (match_operand:QI 0 "memory_operand" "o")
+ (match_operand:SI 1 "const_int_operand" "i")
+ (match_operand:SI 2 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ if (operands[1] == const1_rtx
+ && GET_CODE (operands[2]) == CONST_INT)
+ {
+ int width = GET_CODE (operands[0]) == REG ? 31 : 7;
+ return output_btst (operands,
+ GEN_INT (width - INTVAL (operands[2])),
+ operands[0],
+ insn, 1000);
+ /* Pass 1000 as SIGNPOS argument so that btst will
+ not think we are testing the sign bit for an `and'
+ and assume that nonzero implies a negative result. */
+ }
+ if (INTVAL (operands[1]) != 32)
+ cc_status.flags = CC_NOT_NEGATIVE;
+ return \"bftst [%c2,%c1]%0\";
+}")
+
+;;; now handle the register cases
+(define_insn ""
+ [(set (cc0)
+ (zero_extract:SI (match_operand:SI 0 "register_operand" "d")
+ (match_operand:SI 1 "const_int_operand" "i")
+ (match_operand:SI 2 "general_operand" "di")))]
+ "TARGET_68020 && TARGET_BITFIELD"
+ "*
+{
+ if (operands[1] == const1_rtx
+ && GET_CODE (operands[2]) == CONST_INT)
+ {
+ int width = GET_CODE (operands[0]) == REG ? 31 : 7;
+ return output_btst (operands,
+ GEN_INT (width - INTVAL (operands[2])),
+ operands[0],
+ insn, 1000);
+ /* Pass 1000 as SIGNPOS argument so that btst will
+ not think we are testing the sign bit for an `and'
+ and assume that nonzero implies a negative result. */
+ }
+ if (INTVAL (operands[1]) != 32)
+ cc_status.flags = CC_NOT_NEGATIVE;
+ return \"bftst [%c2,%c1]%0\";
+}")
+
+
+(define_insn "seq"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (eq:QI (cc0) (const_int 0)))]
+ ""
+ "*
+ cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"seq %0\", \"fseq %0\", \"seq %0\");
+")
+
+(define_insn "sne"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (ne:QI (cc0) (const_int 0)))]
+ ""
+ "*
+ cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"sne %0\", \"fsneq %0\", \"sne %0\");
+")
+
+(define_insn "sgt"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (gt:QI (cc0) (const_int 0)))]
+ ""
+ "*
+ cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"sgt %0\", \"fsgt %0\", \"and%.b %#0xc,%!\;sgt %0\");
+")
+
+(define_insn "sgtu"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (gtu:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ return \"shi %0\"; ")
+
+(define_insn "slt"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (lt:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"slt %0\", \"fslt %0\", \"smi %0\"); ")
+
+(define_insn "sltu"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (ltu:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ return \"scs %0\"; ")
+
+(define_insn "sge"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (ge:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"sge %0\", \"fsge %0\", \"spl %0\"); ")
+
+(define_insn "sgeu"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (geu:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ return \"scc %0\"; ")
+
+(define_insn "sle"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (le:QI (cc0) (const_int 0)))]
+ ""
+ "*
+ cc_status = cc_prev_status;
+ OUTPUT_JUMP (\"sle %0\", \"fsle %0\", \"and%.b %#0xc,%!\;sle %0\");
+")
+
+(define_insn "sleu"
+ [(set (match_operand:QI 0 "general_operand" "=d")
+ (leu:QI (cc0) (const_int 0)))]
+ ""
+ "* cc_status = cc_prev_status;
+ return \"sls %0\"; ")
+
+;; Basic conditional jump instructions.
+
+(define_insn "beq"
+ [(set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\");
+}")
+
+(define_insn "bne"
+ [(set (pc)
+ (if_then_else (ne (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\");
+}")
+
+(define_insn "bgt"
+ [(set (pc)
+ (if_then_else (gt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jgt %l0\", \"fbgt %l0\", \"and%.b %#0xc,%!\;jgt %l0\");
+")
+
+(define_insn "bgtu"
+ [(set (pc)
+ (if_then_else (gtu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ return \"jhi %l0\";
+")
+
+(define_insn "blt"
+ [(set (pc)
+ (if_then_else (lt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jlt %l0\", \"fblt %l0\", \"jmi %l0\");
+")
+
+(define_insn "bltu"
+ [(set (pc)
+ (if_then_else (ltu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ return \"jcs %l0\";
+")
+
+(define_insn "bge"
+ [(set (pc)
+ (if_then_else (ge (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jge %l0\", \"fbge %l0\", \"jpl %l0\");
+")
+
+(define_insn "bgeu"
+ [(set (pc)
+ (if_then_else (geu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ return \"jcc %l0\";
+")
+
+(define_insn "ble"
+ [(set (pc)
+ (if_then_else (le (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jle %l0\", \"fble %l0\", \"and%.b %#0xc,%!\;jle %l0\");
+")
+
+(define_insn "bleu"
+ [(set (pc)
+ (if_then_else (leu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ return \"jls %l0\";
+")
+
+;; Negated conditional jump instructions.
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+{
+ OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\");
+}")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ne (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+{
+ OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\");
+}")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (gt (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jle %l0\", \"fbngt %l0\", \"and%.b %#0xc,%!\;jle %l0\");
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (gtu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ return \"jls %l0\";
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (lt (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jge %l0\", \"fbnlt %l0\", \"jpl %l0\");
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ltu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ return \"jcc %l0\";
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ge (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jlt %l0\", \"fbnge %l0\", \"jmi %l0\");
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (geu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ return \"jcs %l0\";
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (le (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ OUTPUT_JUMP (\"jgt %l0\", \"fbnle %l0\", \"and%.b %#0xc,%!\;jgt %l0\");
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (leu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "*
+ return \"jhi %l0\";
+")
+
+;; Subroutines of "casesi".
+
+(define_expand "casesi_1"
+ [(set (match_operand:SI 3 "general_operand" "")
+ (plus:SI (match_operand:SI 0 "general_operand" "")
+ ;; Note operand 1 has been negated!
+ (match_operand:SI 1 "immediate_operand" "")))
+ (set (cc0) (compare (match_operand:SI 2 "nonimmediate_operand" "")
+ (match_dup 3)))
+ (set (pc) (if_then_else (ltu (cc0) (const_int 0))
+ (label_ref (match_operand 4 "" "")) (pc)))]
+ ""
+ "")
+
+(define_expand "casesi_2"
+ [(set (match_operand:HI 0 "" "") (mem:HI (match_operand:SI 1 "" "")))
+ ;; The USE here is so that at least one jump-insn will refer to the label,
+ ;; to keep it alive in jump_optimize.
+ (parallel [(set (pc)
+ (plus:SI (pc) (sign_extend:SI (match_dup 0))))
+ (use (label_ref (match_operand 2 "" "")))])]
+ ""
+ "")
+
+;; Operand 0 is index (in bytes); operand 1 is minimum, operand 2 the maximum;
+;; operand 3 is CODE_LABEL for the table;
+;; operand 4 is the CODE_LABEL to go to if index out of range.
+(define_expand "casesi"
+ ;; We don't use these for generating the RTL, but we must describe
+ ;; the operands here.
+ [(match_operand:HI 0 "general_operand" "")
+ (match_operand:SI 1 "immediate_operand" "")
+ (match_operand:SI 2 "general_operand" "")
+ (match_operand 3 "" "")
+ (match_operand 4 "" "")]
+ ""
+ "
+{
+ rtx table_elt_addr;
+ rtx index_diff;
+
+ operands[1] = negate_rtx (SImode, operands[1]);
+ index_diff = gen_reg_rtx (SImode);
+ /* Emit the first few insns. */
+ emit_insn (gen_casesi_1 (operands[0], operands[1], operands[2],
+ index_diff, operands[4]));
+ /* Construct a memory address. This may emit some insns. */
+ table_elt_addr
+ = memory_address_noforce
+ (HImode,
+ gen_rtx (PLUS, Pmode,
+ gen_rtx (MULT, Pmode, index_diff,
+ GEN_INT (2)),
+ gen_rtx (LABEL_REF, VOIDmode, operands[3])));
+ /* Emit the last few insns. */
+ emit_insn (gen_casesi_2 (gen_reg_rtx (HImode), table_elt_addr, operands[3]));
+ DONE;
+}")
+
+;; Recognize one of the insns resulting from casesi_2.
+(define_insn ""
+ [(set (pc)
+ (plus:SI (pc)
+ (sign_extend:SI (match_operand:HI 0 "general_operand" "r"))))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "*
+ return \"jmp pc@(2:B)[%0:W:B]\";
+")
+
+;; Unconditional and other jump instructions
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "*
+ return \"jra %l0\";
+")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ne (match_operand:HI 0 "general_operand" "d,m,g")
+ (const_int 0))
+ (label_ref (match_operand 1 "" ""))
+ (pc)))
+ (set (match_dup 0)
+ (plus:HI (match_dup 0)
+ (const_int -1)))]
+ ""
+ "@
+ dbra %0,%l1
+ subq%.w %#1,%0\;jcc %l1
+ subq%.w %#1,%0\;cmp%.w %#-1,%0\;jne %l1")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ne (match_operand:SI 0 "general_operand" "d,m,g")
+ (const_int 0))
+ (label_ref (match_operand 1 "" ""))
+ (pc)))
+ (set (match_dup 0)
+ (plus:SI (match_dup 0)
+ (const_int -1)))]
+ ""
+ "@
+ dbra %0,%l1\;clr%.w %0\;subq%.l %#1,%0\;jcc %l1
+ subq%.l %#1,%0\;jcc %l1
+ subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1")
+
+;; dbra patterns that use REG_NOTES info generated by strength_reduce.
+
+(define_expand "decrement_and_branch_until_zero"
+ [(parallel [(set (pc)
+ (if_then_else
+ (ge (match_operand:SI 0 "general_operand" "")
+ (const_int 1))
+ (label_ref (match_operand 1 "" ""))
+ (pc)))
+ (set (match_dup 0)
+ (plus:SI (match_dup 0)
+ (const_int -1)))])]
+ ""
+ "")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ge (match_operand:SI 0 "general_operand" "d,m,g")
+ (const_int 1))
+ (label_ref (match_operand 1 "" ""))
+ (pc)))
+ (set (match_dup 0)
+ (plus:SI (match_dup 0)
+ (const_int -1)))]
+ "find_reg_note (insn, REG_NONNEG, 0)"
+ "@
+ dbra %0,%l1\;clrw %0\;subql %#1,%0\;jcc %l1
+ subq%.l %#1,%0\;jcc %l1
+ subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1")
+
+;; Call subroutine with no return value.
+(define_insn "call"
+ [(call (match_operand:QI 0 "memory_operand" "o")
+ (match_operand:SI 1 "general_operand" "g"))]
+ ""
+ "*
+{
+ rtx xoperands[2];
+ int size = XINT(operands[1],0);
+
+ if (size == 0)
+ output_asm_insn (\"sub%.l a0,a0\;jbsr %0\", operands);
+ else
+ {
+ xoperands[1] = GEN_INT (size/4);
+ output_asm_insn (\"mov%.l sp,a0\;pea %a1\", xoperands);
+ output_asm_insn (\"jbsr %0\", operands);
+ size = size + 4;
+ xoperands[1] = GEN_INT (size);
+ if (size <= 8)
+ output_asm_insn (\"addq%.l %1,sp\", xoperands);
+ else if (size < 0x8000)
+ output_asm_insn (\"add%.w %1,sp\", xoperands);
+ else
+ output_asm_insn (\"add%.l %1,sp\", xoperands);
+ }
+ return \"mov%.l a6@(-4),a0\";
+}")
+
+;; Call subroutine, returning value in operand 0
+;; (which must be a hard register).
+(define_insn "call_value"
+ [(set (match_operand 0 "" "=rf")
+ (call (match_operand:QI 1 "memory_operand" "o")
+ (match_operand:SI 2 "general_operand" "g")))]
+ ""
+ "*
+{
+ rtx xoperands[3];
+ int size = XINT(operands[2],0);
+
+ if (size == 0)
+ output_asm_insn(\"sub%.l a0,a0\;jbsr %1\", operands);
+ else
+ {
+ xoperands[2] = GEN_INT (size/4);
+ output_asm_insn (\"mov%.l sp,a0\;pea %a2\", xoperands);
+ output_asm_insn (\"jbsr %1\", operands);
+ size = size + 4;
+ xoperands[2] = GEN_INT (size);
+ if (size <= 8)
+ output_asm_insn (\"addq%.l %2,sp\", xoperands);
+ else if (size < 0x8000)
+ output_asm_insn (\"add%.w %2,sp\", xoperands);
+ else
+ output_asm_insn (\"add%.l %2,sp\", xoperands);
+ }
+ return \"mov%.l a6@(-4),a0\";
+}")
+
+;; Call subroutine returning any type.
+
+(define_expand "untyped_call"
+ [(parallel [(call (match_operand 0 "" "")
+ (const_int 0))
+ (match_operand 1 "" "")
+ (match_operand 2 "" "")])]
+ ""
+ "
+{
+ int i;
+
+ emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx));
+
+ for (i = 0; i < XVECLEN (operands[2], 0); i++)
+ {
+ rtx set = XVECEXP (operands[2], 0, i);
+ emit_move_insn (SET_DEST (set), SET_SRC (set));
+ }
+
+ /* The optimizer does not know that the call sets the function value
+ registers we stored in the result block. We avoid problems by
+ claiming that all hard registers are used and clobbered at this
+ point. */
+ emit_insn (gen_blockage ());
+
+ DONE;
+}")
+
+;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
+;; all of memory. This blocks insns from being moved across this point.
+
+(define_insn "blockage"
+ [(unspec_volatile [(const_int 0)] 0)]
+ ""
+ "")
+
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "nop")
+
+;; This should not be used unless the add/sub insns can't be.
+
+(define_insn ""
+ [(set (match_operand:SI 0 "general_operand" "=a")
+ (match_operand:QI 1 "address_operand" "p"))]
+ ""
+ "lea %a1,%0")
+
+;; This is the first machine-dependent peephole optimization.
+;; It is useful when a floating value is returned from a function call
+;; and then is moved into an FP register.
+;; But it is mainly intended to test the support for these optimizations.
+
+;Not applicable to Alliant -- floating results are returned in fp0
+;(define_peephole
+; [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
+; (set (match_operand:DF 0 "register_operand" "f")
+; (match_operand:DF 1 "register_operand" "ad"))]
+; "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
+; "*
+;{
+; rtx xoperands[2];
+; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+; output_asm_insn (\"mov%.l %1,%@\", xoperands);
+; output_asm_insn (\"mov%.l %1,%-\", operands);
+; return \"fmove%.d %+,%0\";
+;}
+;")
diff --git a/gnu/egcs/gcc/config/fx80/xm-fx80.h b/gnu/egcs/gcc/config/fx80/xm-fx80.h
new file mode 100644
index 00000000000..178d76253f5
--- /dev/null
+++ b/gnu/egcs/gcc/config/fx80/xm-fx80.h
@@ -0,0 +1,39 @@
+/* Configuration for GNU C-compiler for Alliant FX computers.
+ Copyright (C) 1989, 1993 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* #defines that need visibility everywhere. */
+#define FALSE 0
+#define TRUE 1
+
+/* This describes the machine the compiler is hosted on. */
+#define HOST_BITS_PER_CHAR 8
+#define HOST_BITS_PER_SHORT 16
+#define HOST_BITS_PER_INT 32
+#define HOST_BITS_PER_LONG 32
+#define HOST_BITS_PER_LONGLONG 64
+
+/* target machine dependencies.
+ tm.h is a symbolic link to the actual target specific file. */
+#include "tm.h"
+
+/* Arguments to use with `exit'. */
+#define SUCCESS_EXIT_CODE 0
+#define FATAL_EXIT_CODE 33