diff options
author | Marc Espie <espie@cvs.openbsd.org> | 1999-05-26 13:38:57 +0000 |
---|---|---|
committer | Marc Espie <espie@cvs.openbsd.org> | 1999-05-26 13:38:57 +0000 |
commit | 0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch) | |
tree | f8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/config/mn10300 | |
parent | ff8e9a4356e55ed142306c3a375fa280800abc86 (diff) |
egcs projects compiler system
Exact copy of the snapshot, except for the removal of
texinfo/
gcc/ch/
libchill/
Diffstat (limited to 'gnu/egcs/gcc/config/mn10300')
-rw-r--r-- | gnu/egcs/gcc/config/mn10300/mn10300.c | 949 | ||||
-rw-r--r-- | gnu/egcs/gcc/config/mn10300/mn10300.h | 1045 | ||||
-rw-r--r-- | gnu/egcs/gcc/config/mn10300/mn10300.md | 1648 | ||||
-rw-r--r-- | gnu/egcs/gcc/config/mn10300/t-mn10300 | 23 | ||||
-rw-r--r-- | gnu/egcs/gcc/config/mn10300/xm-mn10300.h | 47 |
5 files changed, 3712 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/config/mn10300/mn10300.c b/gnu/egcs/gcc/config/mn10300/mn10300.c new file mode 100644 index 00000000000..9f1ff842ab3 --- /dev/null +++ b/gnu/egcs/gcc/config/mn10300/mn10300.c @@ -0,0 +1,949 @@ +/* Subroutines for insn-output.c for Matsushita MN10300 series + Copyright (C) 1996, 1997 Free Software Foundation, Inc. + Contributed by Jeff Law (law@cygnus.com). + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include <stdio.h> +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "insn-flags.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "recog.h" +#include "expr.h" +#include "tree.h" +#include "obstack.h" + +/* The size of the callee register save area. Right now we save everything + on entry since it costs us nothing in code size. It does cost us from a + speed standpoint, so we want to optimize this sooner or later. */ +#define REG_SAVE_BYTES (4 * regs_ever_live[2] \ + + 4 * regs_ever_live[3] \ + + 4 * regs_ever_live[6] \ + + 4 * regs_ever_live[7]) + +void +asm_file_start (file) + FILE *file; +{ + fprintf (file, "#\tGCC For the Matsushita MN10300\n"); + if (optimize) + fprintf (file, "# -O%d\n", optimize); + else + fprintf (file, "\n\n"); + output_file_directive (file, main_input_filename); +} + + +/* Print operand X using operand code CODE to assembly language output file + FILE. */ + +void +print_operand (file, x, code) + FILE *file; + rtx x; + int code; +{ + switch (code) + { + case 'b': + case 'B': + /* These are normal and reversed branches. */ + switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x))) + { + case NE: + fprintf (file, "ne"); + break; + case EQ: + fprintf (file, "eq"); + break; + case GE: + fprintf (file, "ge"); + break; + case GT: + fprintf (file, "gt"); + break; + case LE: + fprintf (file, "le"); + break; + case LT: + fprintf (file, "lt"); + break; + case GEU: + fprintf (file, "cc"); + break; + case GTU: + fprintf (file, "hi"); + break; + case LEU: + fprintf (file, "ls"); + break; + case LTU: + fprintf (file, "cs"); + break; + default: + abort (); + } + break; + case 'C': + /* This is used for the operand to a call instruction; + if it's a REG, enclose it in parens, else output + the operand normally. */ + if (GET_CODE (x) == REG) + { + fputc ('(', file); + print_operand (file, x, 0); + fputc (')', file); + } + else + print_operand (file, x, 0); + break; + + /* These are the least significant word in a 64bit value. */ + case 'L': + switch (GET_CODE (x)) + { + case MEM: + fputc ('(', file); + output_address (XEXP (x, 0)); + fputc (')', file); + break; + + case REG: + fprintf (file, "%s", reg_names[REGNO (x)]); + break; + + case SUBREG: + fprintf (file, "%s", + reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)]); + break; + + case CONST_DOUBLE: + { + long val[2]; + REAL_VALUE_TYPE rv; + + switch (GET_MODE (x)) + { + case DFmode: + REAL_VALUE_FROM_CONST_DOUBLE (rv, x); + REAL_VALUE_TO_TARGET_DOUBLE (rv, val); + print_operand_address (file, GEN_INT (val[0])); + break;; + case SFmode: + REAL_VALUE_FROM_CONST_DOUBLE (rv, x); + REAL_VALUE_TO_TARGET_SINGLE (rv, val[0]); + print_operand_address (file, GEN_INT (val[0])); + break;; + case VOIDmode: + case DImode: + print_operand_address (file, + GEN_INT (CONST_DOUBLE_LOW (x))); + break; + } + break; + } + + case CONST_INT: + print_operand_address (file, x); + break; + + default: + abort (); + } + break; + + /* Similarly, but for the most significant word. */ + case 'H': + switch (GET_CODE (x)) + { + case MEM: + fputc ('(', file); + x = adj_offsettable_operand (x, 4); + output_address (XEXP (x, 0)); + fputc (')', file); + break; + + case REG: + fprintf (file, "%s", reg_names[REGNO (x) + 1]); + break; + + case SUBREG: + fprintf (file, "%s", + reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)] + 1); + break; + + case CONST_DOUBLE: + { + long val[2]; + REAL_VALUE_TYPE rv; + + switch (GET_MODE (x)) + { + case DFmode: + REAL_VALUE_FROM_CONST_DOUBLE (rv, x); + REAL_VALUE_TO_TARGET_DOUBLE (rv, val); + print_operand_address (file, GEN_INT (val[1])); + break;; + case SFmode: + abort (); + case VOIDmode: + case DImode: + print_operand_address (file, + GEN_INT (CONST_DOUBLE_HIGH (x))); + break; + } + break; + } + + case CONST_INT: + if (INTVAL (x) < 0) + print_operand_address (file, GEN_INT (-1)); + else + print_operand_address (file, GEN_INT (0)); + break; + default: + abort (); + } + break; + + case 'A': + fputc ('(', file); + if (GET_CODE (XEXP (x, 0)) == REG) + output_address (gen_rtx (PLUS, SImode, XEXP (x, 0), GEN_INT (0))); + else + output_address (XEXP (x, 0)); + fputc (')', file); + break; + + case 'N': + output_address (GEN_INT ((~INTVAL (x)) & 0xff)); + break; + + /* For shift counts. The hardware ignores the upper bits of + any immediate, but the assembler will flag an out of range + shift count as an error. So we mask off the high bits + of the immediate here. */ + case 'S': + if (GET_CODE (x) == CONST_INT) + { + fprintf (file, "%d", INTVAL (x) & 0x1f); + break; + } + /* FALL THROUGH */ + + default: + switch (GET_CODE (x)) + { + case MEM: + fputc ('(', file); + output_address (XEXP (x, 0)); + fputc (')', file); + break; + + case PLUS: + output_address (x); + break; + + case REG: + fprintf (file, "%s", reg_names[REGNO (x)]); + break; + + case SUBREG: + fprintf (file, "%s", + reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)]); + break; + + /* This will only be single precision.... */ + case CONST_DOUBLE: + { + unsigned long val; + REAL_VALUE_TYPE rv; + + REAL_VALUE_FROM_CONST_DOUBLE (rv, x); + REAL_VALUE_TO_TARGET_SINGLE (rv, val); + print_operand_address (file, GEN_INT (val)); + break; + } + + case CONST_INT: + case SYMBOL_REF: + case CONST: + case LABEL_REF: + case CODE_LABEL: + print_operand_address (file, x); + break; + default: + abort (); + } + break; + } +} + +/* Output assembly language output for the address ADDR to FILE. */ + +void +print_operand_address (file, addr) + FILE *file; + rtx addr; +{ + switch (GET_CODE (addr)) + { + case REG: + if (addr == stack_pointer_rtx) + print_operand_address (file, gen_rtx (PLUS, SImode, + stack_pointer_rtx, + GEN_INT (0))); + else + print_operand (file, addr, 0); + break; + case PLUS: + { + rtx base, index; + if (REG_P (XEXP (addr, 0)) + && REG_OK_FOR_BASE_P (XEXP (addr, 0))) + base = XEXP (addr, 0), index = XEXP (addr, 1); + else if (REG_P (XEXP (addr, 1)) + && REG_OK_FOR_BASE_P (XEXP (addr, 1))) + base = XEXP (addr, 1), index = XEXP (addr, 0); + else + abort (); + print_operand (file, index, 0); + fputc (',', file); + print_operand (file, base, 0);; + break; + } + case SYMBOL_REF: + output_addr_const (file, addr); + break; + default: + output_addr_const (file, addr); + break; + } +} + +int +can_use_return_insn () +{ + /* size includes the fixed stack space needed for function calls. */ + int size = get_frame_size () + current_function_outgoing_args_size; + + /* And space for the return pointer. */ + size += current_function_outgoing_args_size ? 4 : 0; + + return (reload_completed + && size == 0 + && !regs_ever_live[2] + && !regs_ever_live[3] + && !regs_ever_live[6] + && !regs_ever_live[7] + && !frame_pointer_needed); +} + +void +expand_prologue () +{ + unsigned int size; + + /* SIZE includes the fixed stack space needed for function calls. */ + size = get_frame_size () + current_function_outgoing_args_size; + size += (current_function_outgoing_args_size ? 4 : 0); + + /* If this is an old-style varargs function, then its arguments + need to be flushed back to the stack. */ + if (current_function_varargs) + { + emit_move_insn (gen_rtx (MEM, SImode, + gen_rtx (PLUS, Pmode, stack_pointer_rtx, + GEN_INT (4))), + gen_rtx (REG, SImode, 0)); + emit_move_insn (gen_rtx (MEM, SImode, + gen_rtx (PLUS, Pmode, stack_pointer_rtx, + GEN_INT (8))), + gen_rtx (REG, SImode, 1)); + } + + /* And now store all the registers onto the stack with a + single two byte instruction. */ + if (regs_ever_live[2] || regs_ever_live[3] + || regs_ever_live[6] || regs_ever_live[7] + || frame_pointer_needed) + emit_insn (gen_store_movm ()); + + /* Now put the frame pointer into the frame pointer register. */ + if (frame_pointer_needed) + emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); + + /* Allocate stack for this frame. */ + if (size) + emit_insn (gen_addsi3 (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (-size))); +} + +void +expand_epilogue () +{ + unsigned int size; + + /* SIZE includes the fixed stack space needed for function calls. */ + size = get_frame_size () + current_function_outgoing_args_size; + size += (current_function_outgoing_args_size ? 4 : 0); + + /* Maybe cut back the stack, except for the register save area. + + If the frame pointer exists, then use the frame pointer to + cut back the stack. + + If the stack size + register save area is more than 255 bytes, + then the stack must be cut back here since the size + register + save size is too big for a ret/retf instruction. + + Else leave it alone, it will be cut back as part of the + ret/retf instruction, or there wasn't any stack to begin with. + + Under no circumstanes should the register save area be + deallocated here, that would leave a window where an interrupt + could occur and trash the register save area. */ + if (frame_pointer_needed) + { + emit_move_insn (stack_pointer_rtx, frame_pointer_rtx); + size = 0; + } + else if ((regs_ever_live[2] || regs_ever_live[3] + || regs_ever_live[6] || regs_ever_live[7]) + && size + REG_SAVE_BYTES > 255) + { + emit_insn (gen_addsi3 (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (size))); + size = 0; + } + + /* For simplicity, we just movm all the callee saved registers to + the stack with one instruction. + + ?!? Only save registers which are actually used. Reduces + stack requirements and is faster. */ + if (regs_ever_live[2] || regs_ever_live[3] + || regs_ever_live[6] || regs_ever_live[7] + || frame_pointer_needed) + emit_jump_insn (gen_return_internal_regs (GEN_INT (size + REG_SAVE_BYTES))); + else + { + if (size) + { + emit_insn (gen_addsi3 (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (size))); + emit_jump_insn (gen_return_internal ()); + } + else + { + emit_jump_insn (gen_return ()); + } + } +} + +/* Update the condition code from the insn. */ + +void +notice_update_cc (body, insn) + rtx body; + rtx insn; +{ + switch (get_attr_cc (insn)) + { + case CC_NONE: + /* Insn does not affect CC at all. */ + break; + + case CC_NONE_0HIT: + /* Insn does not change CC, but the 0'th operand has been changed. */ + if (cc_status.value1 != 0 + && reg_overlap_mentioned_p (recog_operand[0], cc_status.value1)) + cc_status.value1 = 0; + break; + + case CC_SET_ZN: + /* Insn sets the Z,N flags of CC to recog_operand[0]. + V,C are unusable. */ + CC_STATUS_INIT; + cc_status.flags |= CC_NO_CARRY | CC_OVERFLOW_UNUSABLE; + cc_status.value1 = recog_operand[0]; + break; + + case CC_SET_ZNV: + /* Insn sets the Z,N,V flags of CC to recog_operand[0]. + C is unusable. */ + CC_STATUS_INIT; + cc_status.flags |= CC_NO_CARRY; + cc_status.value1 = recog_operand[0]; + break; + + case CC_COMPARE: + /* The insn is a compare instruction. */ + CC_STATUS_INIT; + cc_status.value1 = SET_SRC (body); + break; + + case CC_INVERT: + /* The insn is a compare instruction. */ + CC_STATUS_INIT; + cc_status.value1 = SET_SRC (body); + cc_status.flags |= CC_INVERTED; + break; + + case CC_CLOBBER: + /* Insn doesn't leave CC in a usable state. */ + CC_STATUS_INIT; + break; + + default: + abort (); + } +} + +/* Return true if OP is a valid call operand. */ + +int +call_address_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG); +} + +/* What (if any) secondary registers are needed to move IN with mode + MODE into a register from in register class CLASS. + + We might be able to simplify this. */ +enum reg_class +secondary_reload_class (class, mode, in) + enum reg_class class; + enum machine_mode mode; + rtx in; +{ + int regno; + + /* Memory loads less than a full word wide can't have an + address or stack pointer destination. They must use + a data register as an intermediate register. */ + if (GET_CODE (in) == MEM + && (mode == QImode || mode == HImode) + && (class == ADDRESS_REGS || class == SP_REGS)) + { + return DATA_REGS; + } + + /* We can't directly load sp + const_int into a data register; + we must use an address register as an intermediate. */ + if (class != SP_REGS + && class != ADDRESS_REGS + && class != SP_OR_ADDRESS_REGS + && (in == stack_pointer_rtx + || (GET_CODE (in) == PLUS + && (XEXP (in, 0) == stack_pointer_rtx + || XEXP (in, 1) == stack_pointer_rtx)))) + return ADDRESS_REGS; + + if (GET_CODE (in) == PLUS + && (XEXP (in, 0) == stack_pointer_rtx + || XEXP (in, 1) == stack_pointer_rtx)) + { + return DATA_REGS; + } + + /* Otherwise assume no secondary reloads are needed. */ + return NO_REGS; +} + +int +initial_offset (from, to) + int from, to; +{ + /* The difference between the argument pointer and the frame pointer + is the size of the callee register save area. */ + if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM) + { + if (regs_ever_live[2] || regs_ever_live[3] + || regs_ever_live[6] || regs_ever_live[7] + || frame_pointer_needed) + return REG_SAVE_BYTES; + else + return 0; + } + + /* The difference between the argument pointer and the stack pointer is + the sum of the size of this function's frame, the callee register save + area, and the fixed stack space needed for function calls (if any). */ + if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + { + if (regs_ever_live[2] || regs_ever_live[3] + || regs_ever_live[6] || regs_ever_live[7] + || frame_pointer_needed) + return (get_frame_size () + REG_SAVE_BYTES + + (current_function_outgoing_args_size + ? current_function_outgoing_args_size + 4 : 0)); + else + return (get_frame_size () + + (current_function_outgoing_args_size + ? current_function_outgoing_args_size + 4 : 0)); + } + + /* The difference between the frame pointer and stack pointer is the sum + of the size of this function's frame and the fixed stack space needed + for function calls (if any). */ + if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return (get_frame_size () + + (current_function_outgoing_args_size + ? current_function_outgoing_args_size + 4 : 0)); + + abort (); +} + +/* Flush the argument registers to the stack for a stdarg function; + return the new argument pointer. */ +rtx +mn10300_builtin_saveregs (arglist) + tree arglist; +{ + rtx offset; + tree fntype = TREE_TYPE (current_function_decl); + int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0 + && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) + != void_type_node))) + ? UNITS_PER_WORD : 0); + + if (argadj) + offset = plus_constant (current_function_arg_offset_rtx, argadj); + else + offset = current_function_arg_offset_rtx; + + emit_move_insn (gen_rtx (MEM, SImode, current_function_internal_arg_pointer), + gen_rtx (REG, SImode, 0)); + emit_move_insn (gen_rtx (MEM, SImode, + plus_constant + (current_function_internal_arg_pointer, 4)), + gen_rtx (REG, SImode, 1)); + return copy_to_reg (expand_binop (Pmode, add_optab, + current_function_internal_arg_pointer, + offset, 0, 0, OPTAB_LIB_WIDEN)); +} + +/* Return an RTX to represent where a value with mode MODE will be returned + from a function. If the result is 0, the argument is pushed. */ + +rtx +function_arg (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ + rtx result = 0; + int size, align; + + /* We only support using 2 data registers as argument registers. */ + int nregs = 2; + + /* Figure out the size of the object to be passed. */ + if (mode == BLKmode) + size = int_size_in_bytes (type); + else + size = GET_MODE_SIZE (mode); + + /* Figure out the alignment of the object to be passed. */ + align = size; + + cum->nbytes = (cum->nbytes + 3) & ~3; + + /* Don't pass this arg via a register if all the argument registers + are used up. */ + if (cum->nbytes > nregs * UNITS_PER_WORD) + return 0; + + /* Don't pass this arg via a register if it would be split between + registers and memory. */ + if (type == NULL_TREE + && cum->nbytes + size > nregs * UNITS_PER_WORD) + return 0; + + switch (cum->nbytes / UNITS_PER_WORD) + { + case 0: + result = gen_rtx (REG, mode, 0); + break; + case 1: + result = gen_rtx (REG, mode, 1); + break; + default: + result = 0; + } + + return result; +} + +/* Return the number of registers to use for an argument passed partially + in registers and partially in memory. */ + +int +function_arg_partial_nregs (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ + int size, align; + + /* We only support using 2 data registers as argument registers. */ + int nregs = 2; + + /* Figure out the size of the object to be passed. */ + if (mode == BLKmode) + size = int_size_in_bytes (type); + else + size = GET_MODE_SIZE (mode); + + /* Figure out the alignment of the object to be passed. */ + align = size; + + cum->nbytes = (cum->nbytes + 3) & ~3; + + /* Don't pass this arg via a register if all the argument registers + are used up. */ + if (cum->nbytes > nregs * UNITS_PER_WORD) + return 0; + + if (cum->nbytes + size <= nregs * UNITS_PER_WORD) + return 0; + + /* Don't pass this arg via a register if it would be split between + registers and memory. */ + if (type == NULL_TREE + && cum->nbytes + size > nregs * UNITS_PER_WORD) + return 0; + + return (nregs * UNITS_PER_WORD - cum->nbytes) / UNITS_PER_WORD; +} + +/* Output a tst insn. */ +char * +output_tst (operand, insn) + rtx operand, insn; +{ + rtx temp; + int past_call = 0; + + /* We can save a byte if we can find a register which has the value + zero in it. */ + temp = PREV_INSN (insn); + while (optimize && temp) + { + rtx set; + + /* We allow the search to go through call insns. We record + the fact that we've past a CALL_INSN and reject matches which + use call clobbered registers. */ + if (GET_CODE (temp) == CODE_LABEL + || GET_CODE (temp) == JUMP_INSN + || GET_CODE (temp) == BARRIER) + break; + + if (GET_CODE (temp) == CALL_INSN) + past_call = 1; + + if (GET_CODE (temp) == NOTE) + { + temp = PREV_INSN (temp); + continue; + } + + /* It must be an insn, see if it is a simple set. */ + set = single_set (temp); + if (!set) + { + temp = PREV_INSN (temp); + continue; + } + + /* Are we setting a data register to zero (this does not win for + address registers)? + + If it's a call clobbered register, have we past a call? + + Make sure the register we find isn't the same as ourself; + the mn10300 can't encode that. + + ??? reg_set_between_p return nonzero anytime we pass a CALL_INSN + so the code to detect calls here isn't doing anything useful. */ + if (REG_P (SET_DEST (set)) + && SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set))) + && !reg_set_between_p (SET_DEST (set), temp, insn) + && (REGNO_REG_CLASS (REGNO (SET_DEST (set))) + == REGNO_REG_CLASS (REGNO (operand))) + && REGNO (SET_DEST (set)) != REGNO (operand) + && (!past_call + || !call_used_regs[REGNO (SET_DEST (set))])) + { + rtx xoperands[2]; + xoperands[0] = operand; + xoperands[1] = SET_DEST (set); + + output_asm_insn ("cmp %1,%0", xoperands); + return ""; + } + temp = PREV_INSN (temp); + } + return "cmp 0,%0"; +} + +int +impossible_plus_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + extern rtx *reg_equiv_mem; + rtx reg1, reg2; + + if (GET_CODE (op) != PLUS) + return 0; + + if (XEXP (op, 0) == stack_pointer_rtx + || XEXP (op, 1) == stack_pointer_rtx) + return 1; + + return 0; +} + +/* Return 1 if X is a CONST_INT that is only 8 bits wide. This is used + for the btst insn which may examine memory or a register (the memory + variant only allows an unsigned 8 bit integer). */ +int +const_8bit_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT + && INTVAL (op) >= 0 + && INTVAL (op) < 256); +} + +/* Similarly, but when using a zero_extract pattern for a btst where + the source operand might end up in memory. */ +int +mask_ok_for_mem_btst (len, bit) + int len; + int bit; +{ + int mask = 0; + + while (len > 0) + { + mask |= (1 << bit); + bit++; + len--; + } + + /* MASK must bit into an 8bit value. */ + return (((mask & 0xff) == mask) + || ((mask & 0xff00) == mask) + || ((mask & 0xff0000) == mask) + || ((mask & 0xff000000) == mask)); +} + +/* Return 1 if X contains a symbolic expression. We know these + expressions will have one of a few well defined forms, so + we need only check those forms. */ +int +symbolic_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + switch (GET_CODE (op)) + { + case SYMBOL_REF: + case LABEL_REF: + return 1; + case CONST: + op = XEXP (op, 0); + return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF + || GET_CODE (XEXP (op, 0)) == LABEL_REF) + && GET_CODE (XEXP (op, 1)) == CONST_INT); + default: + return 0; + } +} + +/* Try machine dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + Normally it is always safe for this macro to do nothing. It exists to + recognize opportunities to optimize the output. + + But on a few ports with segmented architectures and indexed addressing + (mn10300, hppa) it is used to rewrite certain problematical addresses. */ +rtx +legitimize_address (x, oldx, mode) + rtx x; + rtx oldx; + enum machine_mode mode; +{ + /* Uh-oh. We might have an address for x[n-100000]. This needs + special handling to avoid creating an indexed memory address + with x-100000 as the base. */ + if (GET_CODE (x) == PLUS + && symbolic_operand (XEXP (x, 1), VOIDmode)) + { + /* Ugly. We modify things here so that the address offset specified + by the index expression is computed first, then added to x to form + the entire address. */ + + rtx regx1, regx2, regy1, regy2, y; + + /* Strip off any CONST. */ + y = XEXP (x, 1); + if (GET_CODE (y) == CONST) + y = XEXP (y, 0); + + if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS) + { + regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0)); + regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0)); + regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0)); + regx1 = force_reg (Pmode, + gen_rtx (GET_CODE (y), Pmode, regx1, regy2)); + return force_reg (Pmode, gen_rtx (PLUS, Pmode, regx1, regy1)); + } + } + return x; +} diff --git a/gnu/egcs/gcc/config/mn10300/mn10300.h b/gnu/egcs/gcc/config/mn10300/mn10300.h new file mode 100644 index 00000000000..3c2a6a7c37a --- /dev/null +++ b/gnu/egcs/gcc/config/mn10300/mn10300.h @@ -0,0 +1,1045 @@ +/* Definitions of target machine for GNU compiler. Matsushita MN10300 series + Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc. + Contributed by Jeff Law (law@cygnus.com). + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "svr4.h" + +#undef ASM_SPEC +#undef ASM_FINAL_SPEC +#undef LIB_SPEC +#undef ENDFILE_SPEC +#undef LINK_SPEC +#undef STARTFILE_SPEC + +/* Names to predefine in the preprocessor for this target machine. */ + +#define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__" + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; + +/* Macros used in the machine description to test the flags. */ + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +/* Generate code to work around mul/mulq bugs on the mn10300. */ +#define TARGET_MULT_BUG (target_flags & 0x1) +#define TARGET_SWITCHES \ + {{ "mult-bug", 0x1, "Work around hardware multiply bug"}, \ + { "no-mult-bug", -0x1, "Do not work around hardware multiply bug"},\ + { "", TARGET_DEFAULT, NULL}} + +#ifndef TARGET_DEFAULT +#define TARGET_DEFAULT 0x1 +#endif + +/* Print subsidiary information on the compiler version in use. */ + +#define TARGET_VERSION fprintf (stderr, " (MN10300)"); + + +/* Target machine storage layout */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. + This is not true on the Matsushita MN1003. */ +#define BITS_BIG_ENDIAN 0 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* This is not true on the Matsushita MN10300. */ +#define BYTES_BIG_ENDIAN 0 + +/* Define this if most significant word of a multiword number is lowest + numbered. + This is not true on the Matsushita MN10300. */ +#define WORDS_BIG_ENDIAN 0 + +/* Number of bits in an addressable storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* The stack goes in 32 bit lumps. */ +#define STACK_BOUNDARY 32 + +/* Allocation boundary (in *bits*) for the code of a function. + 8 is the minimum boundary; it's unclear if bigger alignments + would improve performance. */ +#define FUNCTION_BOUNDARY 8 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 32 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Define this if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 1 + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 0 + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. */ + +#define FIRST_PSEUDO_REGISTER 10 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. */ + +#define FIXED_REGISTERS \ + { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1} + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you + like. */ + +#define CALL_USED_REGISTERS \ + { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1} + +#define REG_ALLOC_ORDER \ + { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9} + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. */ + +#define HARD_REGNO_NREGS(REGNO, MODE) \ + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode + MODE. */ + +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + (REGNO_REG_CLASS (REGNO) == DATA_REGS \ + ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \ + : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)) + +/* 4 data, and effectively 3 address registers is small as far as I'm + concerned. */ +#define SMALL_REGISTER_CLASSES 1 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +enum reg_class { + NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, + DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS, + GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES +}; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ +{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \ + "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \ + "GENERAL_REGS", "ALL_REGS", "LIM_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ 0, /* No regs */ \ + 0x00f, /* DATA_REGS */ \ + 0x1f0, /* ADDRESS_REGS */ \ + 0x200, /* SP_REGS */ \ + 0x1ff, /* DATA_OR_ADDRESS_REGS */\ + 0x1f0, /* SP_OR_ADDRESS_REGS */\ + 0x1ff, /* GENERAL_REGS */ \ + 0x3ff, /* ALL_REGS */ \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) \ + ((REGNO) < 4 ? DATA_REGS : \ + (REGNO) < 9 ? ADDRESS_REGS : \ + (REGNO) == 9 ? SP_REGS : 0) + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS DATA_REGS +#define BASE_REG_CLASS SP_OR_ADDRESS_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'd' ? DATA_REGS : \ + (C) == 'a' ? ADDRESS_REGS : \ + (C) == 'y' ? SP_REGS : NO_REGS) + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_BASE_P(regno) \ + (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \ + || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER)) + +#define REGNO_OK_FOR_BIT_BASE_P(regno) \ + (((regno) > 3 && regno < 10) \ + || (reg_renumber[regno] > 3 && reg_renumber[regno] < 10)) + +#define REGNO_OK_FOR_INDEX_P(regno) \ + (((regno) >= 0 && regno < 4) \ + || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4)) + + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS) + +#define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \ + (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS) + +#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ + ((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS) + +#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ + secondary_reload_class(CLASS,MODE,IN) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. */ + +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* The letters I, J, K, L, M, N, O, P in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. */ + +#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100) +#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000) + +#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0) +#define CONST_OK_FOR_J(VALUE) ((VALUE) == 1) +#define CONST_OK_FOR_K(VALUE) ((VALUE) == 2) +#define CONST_OK_FOR_L(VALUE) ((VALUE) == 4) +#define CONST_OK_FOR_M(VALUE) ((VALUE) == 3) +#define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535) + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \ + (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \ + (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \ + (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \ + (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \ + (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0) + + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. + + `G' is a floating-point zero. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ + && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0) + + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ + +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ + +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ + +#define STARTING_FRAME_OFFSET 0 + +/* Offset of first parameter from the argument pointer register value. */ +/* Is equal to the size of the saved fp + pc, even if an fp isn't + saved since the value is used before we know. */ + +#define FIRST_PARM_OFFSET(FNDECL) 4 + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 9 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 7 + +/* Base register for access to arguments of the function. This + is a fake register and will be eliminated into either the frame + pointer or stack pointer. */ +#define ARG_POINTER_REGNUM 8 + +/* Register in which static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM 5 + +#define ELIMINABLE_REGS \ +{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} + +#define CAN_ELIMINATE(FROM, TO) 1 + +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ + OFFSET = initial_offset (FROM, TO) + +/* We can debug without frame pointers on the mn10300, so eliminate + them whenever possible. */ +#define FRAME_POINTER_REQUIRED 0 +#define CAN_DEBUG_WITHOUT_FP + +/* A guess for the MN10300. */ +#define PROMOTE_PROTOTYPES 1 + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. */ + +#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 + +/* We use d0/d1 for passing parameters, so allocate 8 bytes of space + for a register flushback area. */ +#define REG_PARM_STACK_SPACE(DECL) 8 +#define OUTGOING_REG_PARM_STACK_SPACE +#define ACCUMULATE_OUTGOING_ARGS + +/* So we can allocate space for return pointers once for the function + instead of around every call. */ +#define STACK_POINTER_OFFSET 4 + +/* 1 if N is a possible register number for function argument passing. + On the MN10300, no registers are used in this way. */ + +#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1) + + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the MN10300, this is a single integer, which is a number of bytes + of arguments scanned so far. */ + +#define CUMULATIVE_ARGS struct cum_arg +struct cum_arg {int nbytes; }; + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On the MN10300, the offset starts at 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ + ((CUM).nbytes = 0) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + ((CUM).nbytes += ((MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ + : (int_size_in_bytes (TYPE) + 3) & ~3)) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). */ + +/* On the MN10300 all args are pushed. */ + +extern struct rtx_def *function_arg (); +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ + function_arg (&CUM, MODE, TYPE, NAMED) + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ + function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) + + +#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ + ((TYPE) && int_size_in_bytes (TYPE) > 8) + +#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \ + ((TYPE) && int_size_in_bytes (TYPE) > 8) + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) ? 4 : 0) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0) + +/* 1 if N is a possible register number for a function value. */ + +#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4) + +/* Return values > 8 bytes in length in memory. */ +#define DEFAULT_PCC_STRUCT_RETURN 0 +#define RETURN_IN_MEMORY(TYPE) \ + (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode) + +/* Register in which address to store a structure value + is passed to a function. On the MN10300 it's passed as + the first parameter. */ + +#define STRUCT_VALUE 0 + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ + +#define EXIT_IGNORE_STACK 1 + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) ; + +#define TRAMPOLINE_TEMPLATE(FILE) \ + do { \ + fprintf (FILE, "\tadd -4,sp\n"); \ + fprintf (FILE, "\t.long 0x0004fffa\n"); \ + fprintf (FILE, "\tmov (0,sp),a0\n"); \ + fprintf (FILE, "\tadd 4,sp\n"); \ + fprintf (FILE, "\tmov (13,a0),a1\n"); \ + fprintf (FILE, "\tmov (17,a0),a0\n"); \ + fprintf (FILE, "\tjmp (a0)\n"); \ + fprintf (FILE, "\t.long 0\n"); \ + fprintf (FILE, "\t.long 0\n"); \ + } while (0) + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 0x1b + +#define TRAMPOLINE_ALIGNMENT 32 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ +{ \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x14)), \ + (CXT)); \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x18)), \ + (FNADDR)); \ +} +/* A C expression whose value is RTL representing the value of the return + address for the frame COUNT steps up from the current frame. + + On the mn10300, the return address is not at a constant location + due to the frame layout. Luckily, it is at a constant offset from + the argument pointer, so we define RETURN_ADDR_RTX to return a + MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx + with a reference to the stack/frame pointer + an appropriate offset. */ + +#define RETURN_ADDR_RTX(COUNT, FRAME) \ + ((COUNT == 0) \ + ? gen_rtx (MEM, Pmode, arg_pointer_rtx) \ + : (rtx) 0) + +/* Emit code for a call to builtin_saveregs. We must emit USE insns which + reference the 2 integer arg registers. + Ordinarily they are not call used registers, but they are for + _builtin_saveregs, so we must make this explicit. */ + +extern struct rtx_def *mn10300_builtin_saveregs (); +#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) mn10300_builtin_saveregs (ARGLIST) + +/* Addressing modes, and classification of registers for them. */ + + +/* 1 if X is an rtx for a constant that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) + +/* Extra constraints. */ + +#define OK_FOR_R(OP) \ + (GET_CODE (OP) == MEM \ + && GET_MODE (OP) == QImode \ + && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \ + || (GET_CODE (XEXP (OP, 0)) == REG \ + && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \ + && XEXP (OP, 0) != stack_pointer_rtx) \ + || (GET_CODE (XEXP (OP, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \ + && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \ + && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \ + && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \ + && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1)))))) + +#define EXTRA_CONSTRAINT(OP, C) \ + ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0) + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 2 + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) \ + ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= 10) +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) \ + ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= 10) +#define REG_OK_FOR_BIT_BASE_P(X) \ + ((REGNO (X) >= 4 && REGNO(X) <= 9)) +#else +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X)) +#endif + + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, + except for CONSTANT_ADDRESS_P which is actually + machine-independent. + + On the mn10300, the value in the address register must be + in the same memory space/segment as the effective address. + + This is problematical for reload since it does not understand + that base+index != index+base in a memory reference. + + Note it is still possible to use reg+reg addressing modes, + it's just much more difficult. For a discussion of a possible + workaround and solution, see the comments in pa.c before the + function record_unscaled_index_insn_codes. */ + +/* Accept either REG or SUBREG where a register is valid. */ + +#define RTX_OK_FOR_BASE_P(X) \ + ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \ + || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \ + && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ \ + if (CONSTANT_ADDRESS_P (X)) \ + goto ADDR; \ + if (RTX_OK_FOR_BASE_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) == PLUS) \ + { \ + rtx base = 0, index = 0; \ + if (REG_P (XEXP (X, 0)) \ + && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ + base = XEXP (X, 0), index = XEXP (X, 1); \ + if (REG_P (XEXP (X, 1)) \ + && REG_OK_FOR_BASE_P (XEXP (X, 1))) \ + base = XEXP (X, 1), index = XEXP (X, 0); \ + if (base != 0 && index != 0) \ + { \ + if (GET_CODE (index) == CONST_INT) \ + goto ADDR; \ + } \ + } \ +} + + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. */ + +extern struct rtx_def *legitimize_address (); +#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ +{ rtx orig_x = (X); \ + (X) = legitimize_address (X, OLDX, MODE); \ + if ((X) != orig_x && memory_address_p (MODE, X)) \ + goto WIN; } + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +#define LEGITIMATE_CONSTANT_P(X) 1 + + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). No extra ones are needed for the vax. */ + +/* Store in cc_status the expressions + that the condition codes will describe + after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +#define CC_OVERFLOW_UNUSABLE 0x200 +#define CC_NO_CARRY CC_NO_OVERFLOW +#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN) + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. */ + +#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ + case CONST_INT: \ + /* Zeros are extremely cheap. */ \ + if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \ + return 0; \ + /* If it fits in 8 bits, then it's still relatively cheap. */ \ + if (INT_8_BITS (INTVAL (RTX))) \ + return 1; \ + /* This is the "base" cost, includes constants where either the \ + upper or lower 16bits are all zeros. */ \ + if (INT_16_BITS (INTVAL (RTX)) \ + || (INTVAL (RTX) & 0xffff) == 0 \ + || (INTVAL (RTX) & 0xffff0000) == 0) \ + return 2; \ + return 4; \ + /* These are more costly than a CONST_INT, but we can relax them, \ + so they're less costly than a CONST_DOUBLE. */ \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return 6; \ + /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \ + so their cost is very high. */ \ + case CONST_DOUBLE: \ + return 8; + + +#define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2) + +/* A crude cut at RTX_COSTS for the MN10300. */ + +/* Provide the costs of a rtl expression. This is in the body of a + switch on CODE. */ +#define RTX_COSTS(RTX,CODE,OUTER_CODE) \ + case UMOD: \ + case UDIV: \ + case MOD: \ + case DIV: \ + return 8; \ + case MULT: \ + return 8; + +/* Nonzero if access to memory by bytes or half words is no faster + than accessing full words. */ +#define SLOW_BYTE_ACCESS 1 + +/* Dispatch tables on the mn10300 are extremely expensive in terms of code + and readonly data size. So we crank up the case threshold value to + encourage a series of if/else comparisons to implement many small switch + statements. In theory, this value could be increased much more if we + were solely optimizing for space, but we keep it "reasonable" to avoid + serious code efficiency lossage. */ +#define CASE_VALUES_THRESHOLD 6 + +#define NO_FUNCTION_CSE + +/* According expr.c, a value of around 6 should minimize code size, and + for the MN10300 series, that's our primary concern. */ +#define MOVE_RATIO 6 + +#define TEXT_SECTION_ASM_OP "\t.section .text" +#define DATA_SECTION_ASM_OP "\t.section .data" +#define BSS_SECTION_ASM_OP "\t.section .bss" + +/* Output at beginning/end of assembler file. */ +#undef ASM_FILE_START +#define ASM_FILE_START(FILE) asm_file_start(FILE) + +#define ASM_COMMENT_START "#" + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "#APP\n" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "#NO_APP\n" + +/* This is how to output an assembler line defining a `double' constant. + It is .dfloat or .gfloat, depending. */ + +#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \ +do { char dstr[30]; \ + REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ + fprintf (FILE, "\t.double %s\n", dstr); \ + } while (0) + + +/* This is how to output an assembler line defining a `float' constant. */ +#define ASM_OUTPUT_FLOAT(FILE, VALUE) \ +do { char dstr[30]; \ + REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ + fprintf (FILE, "\t.float %s\n", dstr); \ + } while (0) + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE, VALUE) \ +( fprintf (FILE, "\t.long "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE, VALUE) \ +( fprintf (FILE, "\t.hword "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE, VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* This is how to output an assembler line for a numeric constant byte. */ +#define ASM_OUTPUT_BYTE(FILE, VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* This says how to output the assembler to define a global + uninitialized but not common symbol. + Try to use asm_output_bss to implement this macro. */ + +#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ + asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE, NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE, NAME) \ + do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* This is how to output a reference to a user-level label named NAME. + `assemble_name' uses this. */ + +#undef ASM_OUTPUT_LABELREF +#define ASM_OUTPUT_LABELREF(FILE, NAME) \ + do { \ + char* real_name; \ + STRIP_NAME_ENCODING (real_name, (NAME)); \ + fprintf (FILE, "_%s", real_name); \ + } while (0) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO))) + +/* This is how we tell the assembler that two symbols have the same value. */ + +#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \ + do { assemble_name(FILE, NAME1); \ + fputs(" = ", FILE); \ + assemble_name(FILE, NAME2); \ + fputc('\n', FILE); } while (0) + + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#define REGISTER_NAMES \ +{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp" } + +/* Print an instruction operand X on file FILE. + look in mn10300.c for details */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE) + +/* Print a memory operand whose address is X, on file FILE. + This uses a function in output-vax.c. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) +#define ASM_OUTPUT_REG_POP(FILE,REGNO) + +/* This is how to output an element of a case-vector that is absolute. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE) + +/* This is how to output an element of a case-vector that is relative. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ + fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL) + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf (FILE, "\t.align %d\n", (LOG)) + +/* We don't have to worry about dbx compatibility for the mn10300. */ +#define DEFAULT_GDB_EXTENSIONS 1 + +/* Use stabs debugging info by default. */ +#undef PREFERRED_DEBUGGING_TYPE +#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG + +#define DBX_REGISTER_NUMBER(REGNO) REGNO + +/* GDB always assumes the current function's frame begins at the value + of the stack pointer upon entry to the current function. Accessing + local variables and parameters passed on the stack is done using the + base of the frame + an offset provided by GCC. + + For functions which have frame pointers this method works fine; + the (frame pointer) == (stack pointer at function entry) and GCC provides + an offset relative to the frame pointer. + + This loses for functions without a frame pointer; GCC provides an offset + which is relative to the stack pointer after adjusting for the function's + frame size. GDB would prefer the offset to be relative to the value of + the stack pointer at the function's entry. Yuk! */ +#define DEBUGGER_AUTO_OFFSET(X) \ + ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \ + + (frame_pointer_needed \ + ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM))) + +#define DEBUGGER_ARG_OFFSET(OFFSET, X) \ + ((GET_CODE (X) == PLUS ? OFFSET : 0) \ + + (frame_pointer_needed \ + ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM))) + +/* We need to prepend underscores. */ +#define ASM_OUTPUT_DWARF2_ADDR_CONST(FILE,ADDR) \ + fprintf ((FILE), "\t%s\t_%s", UNALIGNED_WORD_ASM_OP, (ADDR)) + +/* Define to use software floating point emulator for REAL_ARITHMETIC and + decimal <-> binary conversion. */ +#define REAL_ARITHMETIC + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE Pmode + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This flag, if defined, says the same insns that convert to a signed fixnum + also convert validly to an unsigned one. */ +#define FIXUNS_TRUNC_LIKE_FIX_TRUNC + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Define if shifts truncate the shift count + which implies one can omit a sign-extension or zero-extension + of a shift count. */ +#define SHIFT_COUNT_TRUNCATED 1 + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* A function address in a call instruction + is a byte address (for indexing purposes) + so give the MEM rtx a byte's mode. */ +#define FUNCTION_MODE QImode + +/* The assembler op to get a word. */ + +#define FILE_ASM_OP "\t.file\n" + +extern void asm_file_start (); +extern int const_costs (); +extern void print_operand (); +extern void print_operand_address (); +extern void expand_prologue (); +extern void expand_epilogue (); +extern void notice_update_cc (); +extern int call_address_operand (); +extern int impossible_plus_operand (); +extern enum reg_class secondary_reload_class (); +extern int initial_offset (); +extern char *output_tst (); +int symbolic_operand (); diff --git a/gnu/egcs/gcc/config/mn10300/mn10300.md b/gnu/egcs/gcc/config/mn10300/mn10300.md new file mode 100644 index 00000000000..8c3e2ac3cc0 --- /dev/null +++ b/gnu/egcs/gcc/config/mn10300/mn10300.md @@ -0,0 +1,1648 @@ +;; GCC machine description for Matsushita MN10300 +;; Copyright (C) 1996, 1997 Free Software Foundation, Inc. + +;; Contributed by Jeff Law (law@cygnus.com). + +;; This file is part of GNU CC. + +;; GNU CC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 2, or (at your option) +;; any later version. + +;; GNU CC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU CC; see the file COPYING. If not, write to +;; the Free Software Foundation, 59 Temple Place - Suite 330, +;; Boston, MA 02111-1307, USA. + +;; The original PO technology requires these to be ordered by speed, +;; so that assigner will pick the fastest. + +;; See file "rtl.def" for documentation on define_insn, match_*, et. al. + +;; Condition code settings. +;; none - insn does not affect cc +;; none_0hit - insn does not affect cc but it does modify operand 0 +;; This attribute is used to keep track of when operand 0 changes. +;; See the description of NOTICE_UPDATE_CC for more info. +;; set_znv - insn sets z,n,v to usable values; c is unusable. +;; set_zn - insn sets z,n to usable values; v,c are unusable. +;; compare - compare instruction +;; invert -- like compare, but flags are inverted. +;; clobber - value of cc is unknown +(define_attr "cc" "none,none_0hit,set_znv,set_zn,compare,clobber,invert" + (const_string "clobber")) + +;; ---------------------------------------------------------------------- +;; MOVE INSTRUCTIONS +;; ---------------------------------------------------------------------- + +;; movqi + +(define_expand "movqi" + [(set (match_operand:QI 0 "general_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand0, QImode) + && !register_operand (operand1, QImode)) + operands[1] = copy_to_mode_reg (QImode, operand1); +}") + +(define_insn "" + [(set (match_operand:QI 0 "general_operand" "=dx,*a,dx,*a,dx,*a,dx,*a,dx,m") + (match_operand:QI 1 "general_operand" "0,0,I,I,a,dx,dxi,ia,m,dx"))] + "register_operand (operands[0], QImode) + || register_operand (operands[1], QImode)" + "* +{ + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + case 2: + return \"clr %0\"; + case 3: + case 4: + case 5: + case 6: + case 7: + if (GET_CODE (operands[1]) == CONST_DOUBLE) + { + rtx xoperands[2]; + xoperands[0] = operands[0]; + xoperands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1])); + output_asm_insn (\"mov %1,%0\", xoperands); + return \"\"; + } + + return \"mov %1,%0\"; + case 8: + case 9: + return \"movbu %1,%0\"; + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")]) + +;; movhi + +(define_expand "movhi" + [(set (match_operand:HI 0 "general_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand1, HImode) + && !register_operand (operand0, HImode)) + operands[1] = copy_to_mode_reg (HImode, operand1); +}") + +(define_insn "" + [(set (match_operand:HI 0 "general_operand" "=dx,*a,dx,*a,dx,*a,dx,*a,dx,m") + (match_operand:HI 1 "general_operand" "0,0,I,I,a,dx,dxi,ia,m,dx"))] + "register_operand (operands[0], HImode) + || register_operand (operands[1], HImode)" + "* +{ + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + case 2: + return \"clr %0\"; + case 3: + case 4: + case 5: + case 6: + case 7: + if (GET_CODE (operands[1]) == CONST_DOUBLE) + { + rtx xoperands[2]; + xoperands[0] = operands[0]; + xoperands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1])); + output_asm_insn (\"mov %1,%0\", xoperands); + return \"\"; + } + return \"mov %1,%0\"; + case 8: + case 9: + return \"movhu %1,%0\"; + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")]) + +;; movsi and helpers + +;; We use this to handle addition of two values when one operand is the +;; stack pointer and the other is a memory reference of some kind. Reload +;; does not handle them correctly without this expander. +(define_expand "reload_insi" + [(set (match_operand:SI 0 "register_operand" "=a") + (match_operand:SI 1 "impossible_plus_operand" "")) + (clobber (match_operand:SI 2 "register_operand" "=&r"))] + "" + " +{ + if (XEXP (operands[1], 0) == stack_pointer_rtx) + { + if (GET_CODE (XEXP (operands[1], 1)) == SUBREG + && (GET_MODE_SIZE (GET_MODE (XEXP (operands[1], 1))) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (operands[1], 1)))))) + emit_move_insn (operands[2], + gen_rtx (ZERO_EXTEND, GET_MODE (XEXP (operands[1], 1)), + SUBREG_REG (XEXP (operands[1], 1)))); + else + emit_move_insn (operands[2], XEXP (operands[1], 1)); + emit_move_insn (operands[0], XEXP (operands[1], 0)); + } + else + { + if (GET_CODE (XEXP (operands[1], 0)) == SUBREG + && (GET_MODE_SIZE (GET_MODE (XEXP (operands[1], 0))) + > GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (operands[1], 0)))))) + emit_move_insn (operands[2], + gen_rtx (ZERO_EXTEND, GET_MODE (XEXP (operands[1], 0)), + SUBREG_REG (XEXP (operands[1], 0)))); + else + emit_move_insn (operands[2], XEXP (operands[1], 0)); + emit_move_insn (operands[0], XEXP (operands[1], 1)); + } + emit_insn (gen_addsi3 (operands[0], operands[0], operands[2])); + DONE; +}") + +(define_expand "movsi" + [(set (match_operand:SI 0 "general_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand1, SImode) + && !register_operand (operand0, SImode)) + operands[1] = copy_to_mode_reg (SImode, operand1); +}") + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" + "=dx,ax,dx,a,dxm,dxm,axm,axm,dx,dx,ax,ax,axR,y") + (match_operand:SI 1 "general_operand" + "0,0,I,I,dx,ax,dx,ax,dixm,aixm,dixm,aixm,xy,axR"))] + "register_operand (operands[0], SImode) + || register_operand (operands[1], SImode)" + "* +{ + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + case 2: + return \"clr %0\"; + case 3: + case 4: + case 5: + case 6: + case 7: + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + if (GET_CODE (operands[1]) == CONST_DOUBLE) + { + rtx xoperands[2]; + xoperands[0] = operands[0]; + xoperands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1])); + output_asm_insn (\"mov %1,%0\", xoperands); + return \"\"; + } + return \"mov %1,%0\"; + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")]) + +(define_expand "movsf" + [(set (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand1, SFmode) + && !register_operand (operand0, SFmode)) + operands[1] = copy_to_mode_reg (SFmode, operand1); +}") + +(define_insn "" + [(set (match_operand:SF 0 "general_operand" "=dx,ax,dx,a,daxm,dax") + (match_operand:SF 1 "general_operand" "0,0,G,G,dax,daxim"))] + "register_operand (operands[0], SFmode) + || register_operand (operands[1], SFmode)" + "* +{ + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + case 2: + return \"clr %0\"; + case 3: + case 4: + case 5: + return \"mov %1,%0\"; + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit")]) + +(define_expand "movdi" + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand1, DImode) + && !register_operand (operand0, DImode)) + operands[1] = copy_to_mode_reg (DImode, operand1); +}") + +(define_insn "" + [(set (match_operand:DI 0 "general_operand" + "=dx,ax,dx,a,dxm,dxm,axm,axm,dx,dx,ax,ax") + (match_operand:DI 1 "general_operand" + "0,0,I,I,dx,ax,dx,ax,dxim,axim,dxim,axim"))] + "register_operand (operands[0], DImode) + || register_operand (operands[1], DImode)" + "* +{ + long val[2]; + REAL_VALUE_TYPE rv; + + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + + case 2: + return \"clr %L0\;clr %H0\"; + + case 3: + if (rtx_equal_p (operands[0], operands[1])) + return \"sub %L1,%L0\;mov %L0,%H0\"; + else + return \"mov %1,%L0\;mov %L0,%H0\"; + case 4: + case 5: + case 6: + case 7: + case 8: + case 9: + case 10: + case 11: + if (GET_CODE (operands[1]) == CONST_INT) + { + val[0] = INTVAL (operands[1]); + val[1] = val[0] < 0 ? -1 : 0; + } + if (GET_CODE (operands[1]) == CONST_DOUBLE) + { + if (GET_MODE (operands[1]) == DFmode) + { + REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]); + REAL_VALUE_TO_TARGET_DOUBLE (rv, val); + } + else if (GET_MODE (operands[1]) == VOIDmode + || GET_MODE (operands[1]) == DImode) + { + val[0] = CONST_DOUBLE_LOW (operands[1]); + val[1] = CONST_DOUBLE_HIGH (operands[1]); + } + } + + if (GET_CODE (operands[1]) == MEM + && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) + { + rtx temp = operands[0]; + + while (GET_CODE (temp) == SUBREG) + temp = SUBREG_REG (temp); + + if (GET_CODE (temp) != REG) + abort (); + + if (reg_overlap_mentioned_p (gen_rtx (REG, SImode, REGNO (temp)), + XEXP (operands[1], 0))) + return \"mov %H1,%H0\;mov %L1,%L0\"; + else + return \"mov %L1,%L0\;mov %H1,%H0\"; + + } + else if (GET_CODE (operands[1]) == MEM + && CONSTANT_ADDRESS_P (XEXP (operands[1], 0)) + && REGNO_REG_CLASS (REGNO (operands[0])) == ADDRESS_REGS) + { + rtx xoperands[2]; + + xoperands[0] = operands[0]; + xoperands[1] = XEXP (operands[1], 0); + + output_asm_insn (\"mov %1,%L0\;mov (4,%L0),%H0\;mov (%L0),%L0\", + xoperands); + return \"\"; + } + else + { + if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[0] == 0) + { + if (REGNO_REG_CLASS (REGNO (operands[0])) == DATA_REGS) + output_asm_insn (\"clr %L0\", operands); + else + output_asm_insn (\"mov %L1,%L0\", operands); + } + else + output_asm_insn (\"mov %L1,%L0\", operands); + + if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[1] == 0) + { + if (REGNO_REG_CLASS (REGNO (operands[0])) == DATA_REGS) + output_asm_insn (\"clr %H0\", operands); + else + output_asm_insn (\"mov %H1,%H0\", operands); + } + else if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[0] == val[1]) + output_asm_insn (\"mov %L0,%H0\", operands); + else + output_asm_insn (\"mov %H1,%H0\", operands); + return \"\"; + } + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")]) + +(define_expand "movdf" + [(set (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" ""))] + "" + " +{ + /* One of the ops has to be in a register */ + if (!register_operand (operand1, DFmode) + && !register_operand (operand0, DFmode)) + operands[1] = copy_to_mode_reg (DFmode, operand1); +}") + +(define_insn "" + [(set (match_operand:DF 0 "general_operand" + "=dx,ax,dx,a,dxm,dxm,axm,axm,dx,dx,ax,ax") + (match_operand:DF 1 "general_operand" + "0,0,G,G,dx,ax,dx,ax,dxim,axim,dxim,axim"))] + "register_operand (operands[0], DFmode) + || register_operand (operands[1], DFmode)" + "* +{ + long val[2]; + REAL_VALUE_TYPE rv; + + switch (which_alternative) + { + case 0: + case 1: + return \"nop\"; + + case 2: + return \"clr %L0\;clr %H0\"; + + case 3: + if (rtx_equal_p (operands[0], operands[1])) + return \"sub %L1,%L0\;mov %L0,%H0\"; + else + return \"mov %1,%L0\;mov %L0,%H0\"; + case 4: + case 5: + case 6: + case 7: + case 8: + case 9: + case 10: + case 11: + if (GET_CODE (operands[1]) == CONST_INT) + { + val[0] = INTVAL (operands[1]); + val[1] = val[0] < 0 ? -1 : 0; + } + if (GET_CODE (operands[1]) == CONST_DOUBLE) + { + if (GET_MODE (operands[1]) == DFmode) + { + REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]); + REAL_VALUE_TO_TARGET_DOUBLE (rv, val); + } + else if (GET_MODE (operands[1]) == VOIDmode + || GET_MODE (operands[1]) == DImode) + { + val[0] = CONST_DOUBLE_LOW (operands[1]); + val[1] = CONST_DOUBLE_HIGH (operands[1]); + } + } + + if (GET_CODE (operands[1]) == MEM + && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) + { + rtx temp = operands[0]; + + while (GET_CODE (temp) == SUBREG) + temp = SUBREG_REG (temp); + + if (GET_CODE (temp) != REG) + abort (); + + if (reg_overlap_mentioned_p (gen_rtx (REG, SImode, REGNO (temp)), + XEXP (operands[1], 0))) + return \"mov %H1,%H0\;mov %L1,%L0\"; + else + return \"mov %L1,%L0\;mov %H1,%H0\"; + + } + else if (GET_CODE (operands[1]) == MEM + && CONSTANT_ADDRESS_P (XEXP (operands[1], 0)) + && REGNO_REG_CLASS (REGNO (operands[0])) == ADDRESS_REGS) + { + rtx xoperands[2]; + + xoperands[0] = operands[0]; + xoperands[1] = XEXP (operands[1], 0); + + output_asm_insn (\"mov %1,%L0\;mov (4,%L0),%H0\;mov (%L0),%L0\", + xoperands); + return \"\"; + } + else + { + if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[0] == 0) + { + if (REGNO_REG_CLASS (REGNO (operands[0])) == DATA_REGS) + output_asm_insn (\"clr %L0\", operands); + else + output_asm_insn (\"mov %L1,%L0\", operands); + } + else + output_asm_insn (\"mov %L1,%L0\", operands); + + if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[1] == 0) + { + if (REGNO_REG_CLASS (REGNO (operands[0])) == DATA_REGS) + output_asm_insn (\"clr %H0\", operands); + else + output_asm_insn (\"mov %H1,%H0\", operands); + } + else if ((GET_CODE (operands[1]) == CONST_INT + || GET_CODE (operands[1]) == CONST_DOUBLE) + && val[0] == val[1]) + output_asm_insn (\"mov %L0,%H0\", operands); + else + output_asm_insn (\"mov %H1,%H0\", operands); + return \"\"; + } + } +}" + [(set_attr "cc" "none,none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")]) + + + +;; ---------------------------------------------------------------------- +;; TEST INSTRUCTIONS +;; ---------------------------------------------------------------------- + +;; Go ahead and define tstsi so we can eliminate redundant tst insns +;; when we start trying to optimize this port. +(define_insn "tstsi" + [(set (cc0) (match_operand:SI 0 "register_operand" "dax"))] + "" + "* return output_tst (operands[0], insn);" + [(set_attr "cc" "set_znv")]) + +(define_insn "" + [(set (cc0) (zero_extend:SI (match_operand:QI 0 "memory_operand" "dx")))] + "" + "* return output_tst (operands[0], insn);" + [(set_attr "cc" "set_znv")]) + +(define_insn "" + [(set (cc0) (zero_extend:SI (match_operand:HI 0 "memory_operand" "dx")))] + "" + "* return output_tst (operands[0], insn);" + [(set_attr "cc" "set_znv")]) + + +(define_insn "cmpsi" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "!*d*a*x,dax") + (match_operand:SI 1 "nonmemory_operand" "!*0,daxi")))] + "" + "@ + add 0,%0 + cmp %1,%0" + [(set_attr "cc" "invert,compare")]) + +;; ---------------------------------------------------------------------- +;; ADD INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "addsi3" + [(set (match_operand:SI 0 "register_operand" "") + (plus:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + " +{ + /* We can't add a variable amount directly to the stack pointer; + so do so via a temporary register. */ + if (operands[0] == stack_pointer_rtx + && GET_CODE (operands[1]) != CONST_INT + && GET_CODE (operands[2]) != CONST_INT) + { + rtx temp = gen_reg_rtx (SImode); + emit_move_insn (temp, gen_rtx (PLUS, SImode, operands[1], operands[2])); + emit_move_insn (operands[0], temp); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx,ax,ax,dax,xy,!dax") + (plus:SI (match_operand:SI 1 "register_operand" "%0,0,0,0,0,dax") + (match_operand:SI 2 "nonmemory_operand" "J,J,L,daxi,i,dax")))] + "" + "* +{ + switch (which_alternative) + { + case 0: + case 1: + return \"inc %0\"; + case 2: + return \"inc4 %0\"; + case 3: + case 4: + return \"add %2,%0\"; + case 5: + /* I'm not sure if this can happen or not. Might as well be prepared + and generate the best possible code if it does happen. */ + if (true_regnum (operands[0]) == true_regnum (operands[1])) + return \"add %2,%0\"; + if (true_regnum (operands[0]) == true_regnum (operands[2])) + return \"add %1,%0\"; + + /* We have to copy one of the sources into the destination, then add + the other source to the destination. + + Carefully select which source to copy to the destination; a naive + implementation will waste a byte when the source classes are different + and the destination is an address register. Selecting the lowest + cost register copy will optimize this sequence. */ + if (REGNO_REG_CLASS (true_regnum (operands[1])) + == REGNO_REG_CLASS (true_regnum (operands[0]))) + return \"mov %1,%0\;add %2,%0\"; + return \"mov %2,%0\;add %1,%0\"; + } +}" + [(set_attr "cc" "set_zn,none_0hit,none_0hit,set_zn,none_0hit,set_zn")]) + +;; ---------------------------------------------------------------------- +;; SUBTRACT INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "subsi3" + [(set (match_operand:SI 0 "register_operand" "") + (minus:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dax") + (minus:SI (match_operand:SI 1 "register_operand" "0") + (match_operand:SI 2 "nonmemory_operand" "daxi")))] + "" + "sub %2,%0" + [(set_attr "cc" "set_zn")]) + +(define_expand "negsi2" + [(set (match_operand:SI 0 "register_operand" "") + (neg:SI (match_operand:SI 1 "register_operand" "")))] + "" + " +{ + rtx target = gen_reg_rtx (SImode); + + emit_move_insn (target, GEN_INT (0)); + emit_insn (gen_subsi3 (target, target, operands[1])); + emit_move_insn (operands[0], target); + DONE; +}") + +;; ---------------------------------------------------------------------- +;; MULTIPLY INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "mulsi3" + [(set (match_operand:SI 0 "register_operand" "") + (mult:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (mult:SI (match_operand:SI 1 "register_operand" "%0") + (match_operand:SI 2 "register_operand" "dx")))] + "" + "* +{ + if (TARGET_MULT_BUG) + return \"nop\;nop\;mul %2,%0\"; + else + return \"mul %2,%0\"; +}" + [(set_attr "cc" "set_zn")]) + +(define_insn "udivmodsi4" + [(set (match_operand:SI 0 "general_operand" "=dx") + (udiv:SI (match_operand:SI 1 "general_operand" "0") + (match_operand:SI 2 "general_operand" "dx"))) + (set (match_operand:SI 3 "general_operand" "=&d") + (umod:SI (match_dup 1) (match_dup 2)))] + "" + "* +{ + output_asm_insn (\"sub %3,%3\;mov %3,mdr\", operands); + + if (find_reg_note (insn, REG_UNUSED, operands[3])) + return \"divu %2,%0\"; + else + return \"divu %2,%0\;mov mdr,%3\"; +}" + [(set_attr "cc" "set_zn")]) + +(define_insn "divmodsi4" + [(set (match_operand:SI 0 "general_operand" "=dx") + (div:SI (match_operand:SI 1 "general_operand" "0") + (match_operand:SI 2 "general_operand" "dx"))) + (set (match_operand:SI 3 "general_operand" "=d") + (mod:SI (match_dup 1) (match_dup 2)))] + "" + "* +{ + if (find_reg_note (insn, REG_UNUSED, operands[3])) + return \"ext %0\;div %2,%0\"; + else + return \"ext %0\;div %2,%0\;mov mdr,%3\"; +}" + [(set_attr "cc" "set_zn")]) + + +;; ---------------------------------------------------------------------- +;; AND INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "andsi3" + [(set (match_operand:SI 0 "register_operand" "") + (and:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx,dx") + (and:SI (match_operand:SI 1 "register_operand" "%0,0") + (match_operand:SI 2 "nonmemory_operand" "N,dxi")))] + "" + "* +{ + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xff) + return \"extbu %0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xffff) + return \"exthu %0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x7fffffff) + return \"add %0,%0\;lsr 1,%0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x3fffffff) + return \"asl2 %0\;lsr 2,%0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x1fffffff) + return \"add %0,%0\;asl2 %0\;lsr 3,%0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x0fffffff) + return \"asl2 %0\;asl2 %0\;lsr 4,%0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xfffffffe) + return \"lsr 1,%0\;add %0,%0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xfffffffc) + return \"lsr 2,%0\;asl2 %0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xfffffff8) + return \"lsr 3,%0\;add %0,%0\;asl2 %0\"; + if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xfffffff0) + return \"lsr 4,%0\;asl2 %0\;asl2 %0\"; + return \"and %2,%0\"; +}" + [(set_attr "cc" "none_0hit,set_znv")]) + +;; ---------------------------------------------------------------------- +;; OR INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "iorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (ior:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (ior:SI (match_operand:SI 1 "register_operand" "%0") + (match_operand:SI 2 "nonmemory_operand" "dxi")))] + "" + "or %2,%0" + [(set_attr "cc" "set_znv")]) + +;; ---------------------------------------------------------------------- +;; XOR INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "xorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (xor:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (xor:SI (match_operand:SI 1 "register_operand" "%0") + (match_operand:SI 2 "nonmemory_operand" "dxi")))] + "" + "xor %2,%0" + [(set_attr "cc" "set_znv")]) + +;; ---------------------------------------------------------------------- +;; NOT INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "one_cmplsi2" + [(set (match_operand:SI 0 "register_operand" "") + (not:SI (match_operand:SI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (not:SI (match_operand:SI 1 "register_operand" "0")))] + "" + "not %0" + [(set_attr "cc" "set_znv")]) + +;; ----------------------------------------------------------------- +;; BIT FIELDS +;; ----------------------------------------------------------------- + + +;; These set/clear memory in byte sized chunks. +;; +;; They are no smaller/faster than loading the value into a register +;; and storing the register, but they don't need a scratch register +;; which may allow for better code generation. +(define_insn "" + [(set (match_operand:QI 0 "general_operand" "=R,d") (const_int 0))] + "" + "@ + bclr 255,%A0 + clr %0" + [(set_attr "cc" "clobber")]) + +(define_insn "" + [(set (match_operand:QI 0 "general_operand" "=R,d") (const_int -1))] + "" + "@ + bset 255,%A0 + mov -1,%0" + [(set_attr "cc" "clobber,none_0hit")]) + +(define_insn "" + [(set (match_operand:QI 0 "general_operand" "+R,d") + (subreg:QI + (and:SI (subreg:SI (match_dup 0) 0) + (match_operand:SI 1 "const_int_operand" "i,i")) 0))] + "" + "@ + bclr %N1,%A0 + and %1,%0" + [(set_attr "cc" "clobber,set_znv")]) + +(define_insn "" + [(set (match_operand:QI 0 "general_operand" "+R,d") + (subreg:QI + (ior:SI (subreg:SI (match_dup 0) 0) + (match_operand:SI 1 "const_int_operand" "i,i")) 0))] + "" + "@ + bset %1,%A0 + or %1,%0" + [(set_attr "cc" "clobber,set_znv")]) + +(define_insn "" + [(set (cc0) + (zero_extract:SI (match_operand:SI 0 "register_operand" "dx") + (match_operand 1 "const_int_operand" "") + (match_operand 2 "const_int_operand" "")))] + "" + "* +{ + int len = INTVAL (operands[1]); + int bit = INTVAL (operands[2]); + int mask = 0; + rtx xoperands[2]; + + while (len > 0) + { + mask |= (1 << bit); + bit++; + len--; + } + + xoperands[0] = operands[0]; + xoperands[1] = GEN_INT (mask); + output_asm_insn (\"btst %1,%0\", xoperands); + return \"\"; +}" + [(set_attr "cc" "clobber")]) + +(define_insn "" + [(set (cc0) + (zero_extract:SI (match_operand:QI 0 "general_operand" "R,dx") + (match_operand 1 "const_int_operand" "") + (match_operand 2 "const_int_operand" "")))] + "mask_ok_for_mem_btst (INTVAL (operands[1]), INTVAL (operands[2]))" + "* +{ + int len = INTVAL (operands[1]); + int bit = INTVAL (operands[2]); + int mask = 0; + rtx xoperands[2]; + + while (len > 0) + { + mask |= (1 << bit); + bit++; + len--; + } + + /* If the source operand is not a reg (ie it is memory), then extract the + bits from mask that we actually want to test. Note that the mask will + never cross a byte boundary. */ + if (!REG_P (operands[0])) + { + if (mask & 0xff) + mask = mask & 0xff; + else if (mask & 0xff00) + mask = (mask >> 8) & 0xff; + else if (mask & 0xff0000) + mask = (mask >> 16) & 0xff; + else if (mask & 0xff000000) + mask = (mask >> 24) & 0xff; + } + + xoperands[0] = operands[0]; + xoperands[1] = GEN_INT (mask); + if (GET_CODE (operands[0]) == REG) + output_asm_insn (\"btst %1,%0\", xoperands); + else + output_asm_insn (\"btst %1,%A0\", xoperands); + return \"\"; +}" + [(set_attr "cc" "clobber")]) + +(define_insn "" + [(set (cc0) (and:SI (match_operand:SI 0 "register_operand" "dx") + (match_operand:SI 1 "const_int_operand" "")))] + "" + "btst %1,%0" + [(set_attr "cc" "clobber")]) + +(define_insn "" + [(set (cc0) + (and:SI + (subreg:SI (match_operand:QI 0 "general_operand" "R,dx") 0) + (match_operand:SI 1 "const_8bit_operand" "")))] + "" + "@ + btst %1,%A0 + btst %1,%0" + [(set_attr "cc" "clobber")]) + + +;; ---------------------------------------------------------------------- +;; JUMP INSTRUCTIONS +;; ---------------------------------------------------------------------- + +;; Conditional jump instructions + +(define_expand "ble" + [(set (pc) + (if_then_else (le (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bleu" + [(set (pc) + (if_then_else (leu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bge" + [(set (pc) + (if_then_else (ge (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgeu" + [(set (pc) + (if_then_else (geu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "blt" + [(set (pc) + (if_then_else (lt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bltu" + [(set (pc) + (if_then_else (ltu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgt" + [(set (pc) + (if_then_else (gt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgtu" + [(set (pc) + (if_then_else (gtu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "beq" + [(set (pc) + (if_then_else (eq (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bne" + [(set (pc) + (if_then_else (ne (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "* +{ + if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0 + && (GET_CODE (operands[1]) == GT + || GET_CODE (operands[1]) == GE + || GET_CODE (operands[1]) == LE + || GET_CODE (operands[1]) == LT)) + return 0; + return \"b%b1 %0\"; +}" + [(set_attr "cc" "none")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (pc) + (label_ref (match_operand 0 "" ""))))] + "" + "* +{ + if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0 + && (GET_CODE (operands[1]) == GT + || GET_CODE (operands[1]) == GE + || GET_CODE (operands[1]) == LE + || GET_CODE (operands[1]) == LT)) + return 0; + return \"b%B1 %0\"; +}" + [(set_attr "cc" "none")]) + +;; Unconditional and other jump instructions. + +(define_insn "jump" + [(set (pc) + (label_ref (match_operand 0 "" "")))] + "" + "jmp %l0" + [(set_attr "cc" "none")]) + +(define_insn "indirect_jump" + [(set (pc) (match_operand:SI 0 "register_operand" "a"))] + "" + "jmp (%0)" + [(set_attr "cc" "none")]) + +(define_insn "tablejump" + [(set (pc) (match_operand:SI 0 "register_operand" "a")) + (use (label_ref (match_operand 1 "" "")))] + "" + "jmp (%0)" + [(set_attr "cc" "none")]) + +;; Call subroutine with no return value. + +(define_expand "call" + [(call (match_operand:QI 0 "general_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ + if (! call_address_operand (XEXP (operands[0], 0))) + XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0)); + emit_call_insn (gen_call_internal (XEXP (operands[0], 0), operands[1])); + DONE; +}") + +(define_insn "call_internal" + [(call (mem:QI (match_operand:SI 0 "call_address_operand" "aS")) + (match_operand:SI 1 "general_operand" "g"))] + "" + "* +{ + if (REG_P (operands[0])) + return \"calls %C0\"; + else + return \"call %C0,[],0\"; +}" + [(set_attr "cc" "clobber")]) + +;; Call subroutine, returning value in operand 0 +;; (which must be a hard register). + +(define_expand "call_value" + [(set (match_operand 0 "" "") + (call (match_operand:QI 1 "general_operand" "") + (match_operand:SI 2 "general_operand" "")))] + "" + " +{ + if (! call_address_operand (XEXP (operands[1], 0))) + XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0)); + emit_call_insn (gen_call_value_internal (operands[0], + XEXP (operands[1], 0), + operands[2])); + DONE; +}") + +(define_insn "call_value_internal" + [(set (match_operand 0 "" "=dax") + (call (mem:QI (match_operand:SI 1 "call_address_operand" "aS")) + (match_operand:SI 2 "general_operand" "g")))] + "" + "* +{ + if (REG_P (operands[1])) + return \"calls %C1\"; + else + return \"call %C1,[],0\"; +}" + [(set_attr "cc" "clobber")]) + +(define_expand "untyped_call" + [(parallel [(call (match_operand 0 "" "") + (const_int 0)) + (match_operand 1 "" "") + (match_operand 2 "" "")])] + "" + " +{ + int i; + + emit_call_insn (gen_call (operands[0], const0_rtx)); + + for (i = 0; i < XVECLEN (operands[2], 0); i++) + { + rtx set = XVECEXP (operands[2], 0, i); + emit_move_insn (SET_DEST (set), SET_SRC (set)); + } + DONE; +}") + +(define_insn "nop" + [(const_int 0)] + "" + "nop" + [(set_attr "cc" "none")]) + +;; ---------------------------------------------------------------------- +;; EXTEND INSTRUCTIONS +;; ---------------------------------------------------------------------- + +(define_expand "zero_extendqisi2" + [(set (match_operand:SI 0 "general_operand" "") + (zero_extend:SI + (match_operand:QI 1 "general_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=dx,dx,dx") + (zero_extend:SI + (match_operand:QI 1 "general_operand" "0,d,m")))] + "" + "@ + extbu %0 + mov %1,%0\;extbu %0 + movbu %1,%0" + [(set_attr "cc" "none_0hit")]) + +(define_expand "zero_extendhisi2" + [(set (match_operand:SI 0 "general_operand" "") + (zero_extend:SI + (match_operand:HI 1 "general_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=dx,dx,dx") + (zero_extend:SI + (match_operand:HI 1 "general_operand" "0,dx,m")))] + "" + "@ + exthu %0 + mov %1,%0\;exthu %0 + movhu %1,%0" + [(set_attr "cc" "none_0hit")]) + +;;- sign extension instructions + +(define_expand "extendqisi2" + [(set (match_operand:SI 0 "general_operand" "") + (sign_extend:SI + (match_operand:QI 1 "general_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=dx,dx") + (sign_extend:SI + (match_operand:QI 1 "general_operand" "0,dx")))] + "" + "@ + extb %0 + mov %1,%0\;extb %0" + [(set_attr "cc" "none_0hit")]) + +(define_expand "extendhisi2" + [(set (match_operand:SI 0 "general_operand" "") + (sign_extend:SI + (match_operand:HI 1 "general_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=dx,dx") + (sign_extend:SI + (match_operand:HI 1 "general_operand" "0,dx")))] + "" + "@ + exth %0 + mov %1,%0\;exth %0" + [(set_attr "cc" "none_0hit")]) + +;; ---------------------------------------------------------------------- +;; SHIFTS +;; ---------------------------------------------------------------------- + +(define_expand "ashlsi3" + [(set (match_operand:SI 0 "register_operand" "") + (ashift:SI + (match_operand:SI 1 "register_operand" "") + (match_operand:QI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dax,dx,dx,dx,dx") + (ashift:SI + (match_operand:SI 1 "register_operand" "0,0,0,0,0") + (match_operand:QI 2 "nonmemory_operand" "J,K,M,L,dxi")))] + "" + "@ + add %0,%0 + asl2 %0 + asl2 %0\;add %0,%0 + asl2 %0\;asl2 %0 + asl %S2,%0" + [(set_attr "cc" "set_zn")]) + +(define_expand "lshrsi3" + [(set (match_operand:SI 0 "register_operand" "") + (lshiftrt:SI + (match_operand:SI 1 "register_operand" "") + (match_operand:QI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (lshiftrt:SI + (match_operand:SI 1 "register_operand" "0") + (match_operand:QI 2 "nonmemory_operand" "dxi")))] + "" + "lsr %S2,%0" + [(set_attr "cc" "set_zn")]) + +(define_expand "ashrsi3" + [(set (match_operand:SI 0 "register_operand" "") + (ashiftrt:SI + (match_operand:SI 1 "register_operand" "") + (match_operand:QI 2 "nonmemory_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=dx") + (ashiftrt:SI + (match_operand:SI 1 "register_operand" "0") + (match_operand:QI 2 "nonmemory_operand" "dxi")))] + "" + "asr %S2,%0" + [(set_attr "cc" "set_zn")]) + +;; ---------------------------------------------------------------------- +;; FP INSTRUCTIONS +;; ---------------------------------------------------------------------- +;; +;; The mn103 series does not have floating point instructions, but since +;; FP values are held in integer regs, we can clear the high bit easily +;; which gives us an efficient inline floating point absolute value. +;; +;; Similarly for negation of a FP value. +;; + +(define_expand "absdf2" + [(set (match_operand:DF 0 "register_operand" "") + (abs:DF (match_operand:DF 1 "register_operand" "")))] + "" + " +{ + rtx target, result, insns; + + start_sequence (); + target = operand_subword (operands[0], 1, 1, DFmode); + result = expand_binop (SImode, and_optab, + operand_subword_force (operands[1], 1, DFmode), + GEN_INT(0x7fffffff), target, 0, OPTAB_WIDEN); + + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + emit_move_insn (operand_subword (operands[0], 0, 1, DFmode), + operand_subword_force (operands[1], 0, DFmode)); + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, operands[0], operands[1], 0, 0); + DONE; +}") + +(define_expand "abssf2" + [(set (match_operand:SF 0 "register_operand" "") + (abs:SF (match_operand:SF 1 "register_operand" "")))] + "" + " +{ + rtx result; + rtx target; + + target = operand_subword_force (operands[0], 0, SFmode); + result = expand_binop (SImode, and_optab, + operand_subword_force (operands[1], 0, SFmode), + GEN_INT(0x7fffffff), target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + /* Make a place for REG_EQUAL. */ + emit_move_insn (operands[0], operands[0]); + DONE; +}") + + +(define_expand "negdf2" + [(set (match_operand:DF 0 "register_operand" "") + (neg:DF (match_operand:DF 1 "register_operand" "")))] + "" + " +{ + rtx target, result, insns; + + start_sequence (); + target = operand_subword (operands[0], 1, 1, DFmode); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 1, DFmode), + GEN_INT(0x80000000), target, 0, OPTAB_WIDEN); + + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + emit_move_insn (operand_subword (operands[0], 0, 1, DFmode), + operand_subword_force (operands[1], 0, DFmode)); + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, operands[0], operands[1], 0, 0); + DONE; +}") + +(define_expand "negsf2" + [(set (match_operand:SF 0 "register_operand" "") + (neg:SF (match_operand:SF 1 "register_operand" "")))] + "" + " +{ + rtx result; + rtx target; + + target = operand_subword_force (operands[0], 0, SFmode); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, SFmode), + GEN_INT(0x80000000), target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + /* Make a place for REG_EQUAL. */ + emit_move_insn (operands[0], operands[0]); + DONE; +}") + + +;; ---------------------------------------------------------------------- +;; PROLOGUE/EPILOGUE +;; ---------------------------------------------------------------------- +(define_expand "prologue" + [(const_int 0)] + "" + "expand_prologue (); DONE;") + +(define_expand "epilogue" + [(return)] + "" + " +{ + expand_epilogue (); + DONE; +}") + +(define_insn "return_internal" + [(const_int 2)] + "" + "rets" + [(set_attr "cc" "clobber")]) + +;; This insn restores the callee saved registers and does a return, it +;; can also deallocate stack space. +(define_insn "return_internal_regs" + [(const_int 0) + (match_operand:SI 0 "const_int_operand" "i") + (return)] + "" + "* +{ + int i, need_comma; + int d2, d3, a2, a3; + + need_comma = 0; + fputs (\"\\tret [\", asm_out_file); + if (regs_ever_live[2]) + { + fputs (\"d2\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[3]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"d3\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[6]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"a2\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[7]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"a3\", asm_out_file); + need_comma = 1; + } + fprintf (asm_out_file, \"],%d\\n\", INTVAL (operands[0])); + return \"\"; +}" + [(set_attr "cc" "clobber")]) + +(define_insn "store_movm" + [(const_int 1)] + "" + "* +{ + int i, need_comma; + int d2, d3, a2, a3; + + need_comma = 0; + fputs (\"\\tmovm [\", asm_out_file); + if (regs_ever_live[2]) + { + fputs (\"d2\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[3]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"d3\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[6]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"a2\", asm_out_file); + need_comma = 1; + } + if (regs_ever_live[7]) + { + if (need_comma) + fputc (',', asm_out_file); + fputs (\"a3\", asm_out_file); + need_comma = 1; + } + fputs (\"],(sp)\\n\", asm_out_file); + return \"\"; +}" + [(set_attr "cc" "clobber")]) + +(define_insn "return" + [(return)] + "can_use_return_insn ()" + "* +{ + rtx next = next_active_insn (insn); + + if (next + && GET_CODE (next) == JUMP_INSN + && GET_CODE (PATTERN (next)) == RETURN) + return \"\"; + else + return \"rets\"; +}" + [(set_attr "cc" "clobber")]) + +;; Try to combine consecutive updates of the stack pointer (or any +;; other register for that matter). +(define_peephole + [(set (match_operand:SI 0 "register_operand" "=dxay") + (plus:SI (match_dup 0) + (match_operand 1 "const_int_operand" ""))) + (set (match_dup 0) + (plus:SI (match_dup 0) + (match_operand 2 "const_int_operand" "")))] + "" + "* +{ + operands[1] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[1])); + return \"add %1,%0\"; +}" + [(set_attr "cc" "clobber")]) + +;; +;; We had patterns to check eq/ne, but the they don't work because +;; 0x80000000 + 0x80000000 = 0x0 with a carry out. +;; +;; The Z flag and C flag would be set, and we have no way to +;; check for the Z flag set and C flag clear. +;; +;; This will work on the mn10200 because we can check the ZX flag +;; if the comparison is in HImode. +(define_peephole + [(set (cc0) (match_operand:SI 0 "register_operand" "dx")) + (set (pc) (if_then_else (ge (cc0) (const_int 0)) + (match_operand 1 "" "") + (pc)))] + "dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])" + "add %0,%0\;bcc %1" + [(set_attr "cc" "clobber")]) + +(define_peephole + [(set (cc0) (match_operand:SI 0 "register_operand" "dx")) + (set (pc) (if_then_else (lt (cc0) (const_int 0)) + (match_operand 1 "" "") + (pc)))] + "dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])" + "add %0,%0\;bcs %1" + [(set_attr "cc" "clobber")]) + +(define_peephole + [(set (cc0) (match_operand:SI 0 "register_operand" "dx")) + (set (pc) (if_then_else (ge (cc0) (const_int 0)) + (pc) + (match_operand 1 "" "")))] + "dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])" + "add %0,%0\;bcs %1" + [(set_attr "cc" "clobber")]) + +(define_peephole + [(set (cc0) (match_operand:SI 0 "register_operand" "dx")) + (set (pc) (if_then_else (lt (cc0) (const_int 0)) + (pc) + (match_operand 1 "" "")))] + "dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])" + "add %0,%0\;bcc %1" + [(set_attr "cc" "clobber")]) + diff --git a/gnu/egcs/gcc/config/mn10300/t-mn10300 b/gnu/egcs/gcc/config/mn10300/t-mn10300 new file mode 100644 index 00000000000..7e94656c223 --- /dev/null +++ b/gnu/egcs/gcc/config/mn10300/t-mn10300 @@ -0,0 +1,23 @@ +LIBGCC1=libgcc1.null +CROSS_LIBGCC1=libgcc1.null + +# These are really part of libgcc1, but this will cause them to be +# built correctly, so... + +# We want fine grained libraries, so use the new code to build the +# floating point emulation libraries. +FPBIT = fp-bit.c +DPBIT = dp-bit.c + +dp-bit.c: $(srcdir)/config/fp-bit.c + echo '#ifdef __LITTLE_ENDIAN__' > dp-bit.c + echo '#define FLOAT_BIT_ORDER_MISMATCH' >>dp-bit.c + echo '#endif' >> dp-bit.c + cat $(srcdir)/config/fp-bit.c >> dp-bit.c + +fp-bit.c: $(srcdir)/config/fp-bit.c + echo '#define FLOAT' > fp-bit.c + echo '#ifdef __LITTLE_ENDIAN__' >> fp-bit.c + echo '#define FLOAT_BIT_ORDER_MISMATCH' >>fp-bit.c + echo '#endif' >> fp-bit.c + cat $(srcdir)/config/fp-bit.c >> fp-bit.c diff --git a/gnu/egcs/gcc/config/mn10300/xm-mn10300.h b/gnu/egcs/gcc/config/mn10300/xm-mn10300.h new file mode 100644 index 00000000000..63d61c276c2 --- /dev/null +++ b/gnu/egcs/gcc/config/mn10300/xm-mn10300.h @@ -0,0 +1,47 @@ +/* Configuration for Matsushita MN10300. + Copyright (C) 1996 Free Software Foundation, Inc. + Contributed by Cygnus Support. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* #defines that need visibility everywhere. */ +#define FALSE 0 +#define TRUE 1 + +/* This describes the machine the compiler is hosted on. */ +#define HOST_BITS_PER_CHAR 8 +#define HOST_BITS_PER_SHORT 16 +#define HOST_BITS_PER_INT 32 +#define HOST_BITS_PER_LONG 32 +#define HOST_BITS_PER_LONGLONG 64 + +/* Arguments to use with `exit'. */ +#define SUCCESS_EXIT_CODE 0 +#define FATAL_EXIT_CODE 33 + +/* target machine dependencies. + tm.h is a symbolic link to the actual target specific file. */ + +#include "tm.h" + +#ifndef __STDC__ +extern char *malloc (), *realloc (), *calloc (); +#else +extern void *malloc (), *realloc (), *calloc (); +#endif +extern void free (); |