summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/config/spur
diff options
context:
space:
mode:
authorMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
committerMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
commit0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch)
treef8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/config/spur
parentff8e9a4356e55ed142306c3a375fa280800abc86 (diff)
egcs projects compiler system
Exact copy of the snapshot, except for the removal of texinfo/ gcc/ch/ libchill/
Diffstat (limited to 'gnu/egcs/gcc/config/spur')
-rw-r--r--gnu/egcs/gcc/config/spur/spur.c326
-rw-r--r--gnu/egcs/gcc/config/spur/spur.h1051
-rw-r--r--gnu/egcs/gcc/config/spur/spur.md1092
-rw-r--r--gnu/egcs/gcc/config/spur/xm-spur.h39
4 files changed, 2508 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/config/spur/spur.c b/gnu/egcs/gcc/config/spur/spur.c
new file mode 100644
index 00000000000..83e37b8aeef
--- /dev/null
+++ b/gnu/egcs/gcc/config/spur/spur.c
@@ -0,0 +1,326 @@
+/* Subroutines for insn-output.c for SPUR. Adapted from routines for
+ the Motorola 68000 family.
+ Copyright (C) 1988, 1991, 1997 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include <stdio.h>
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+
+static rtx find_addr_reg ();
+
+char *
+output_compare (operands, opcode, exchange_opcode,
+ neg_opcode, neg_exchange_opcode)
+ rtx *operands;
+ char *opcode;
+ char *exchange_opcode;
+ char *neg_opcode;
+ char *neg_exchange_opcode;
+{
+ static char buf[100];
+ operands[2] = operands[0];
+ if (GET_CODE (cc_prev_status.value1) == CONST_INT)
+ {
+ operands[1] = cc_prev_status.value1;
+ operands[0] = cc_prev_status.value2;
+ opcode = exchange_opcode, neg_opcode = neg_exchange_opcode;
+ }
+ else
+ {
+ operands[0] = cc_prev_status.value1;
+ operands[1] = cc_prev_status.value2;
+ }
+ if (TARGET_LONG_JUMPS)
+ sprintf (buf,
+ "cmp_br_delayed %s,%%0,%%1,1f\n\tnop\n\tjump %%l2\n\tnop\n1:",
+ neg_opcode);
+ else
+ sprintf (buf, "cmp_br_delayed %s,%%0,%%1,%%l2\n\tnop", opcode);
+ return buf;
+}
+
+/* Return the best assembler insn template
+ for moving operands[1] into operands[0] as a fullword. */
+
+static char *
+singlemove_string (operands)
+ rtx *operands;
+{
+ if (GET_CODE (operands[0]) == MEM)
+ return "st_32 %r1,%0";
+ if (GET_CODE (operands[1]) == MEM)
+ return "ld_32 %0,%1\n\tnop";
+ if (GET_CODE (operands[1]) == REG)
+ return "add_nt %0,%1,$0";
+ return "add_nt %0,r0,%1";
+}
+
+/* Output assembler code to perform a doubleword move insn
+ with operands OPERANDS. */
+
+char *
+output_move_double (operands)
+ rtx *operands;
+{
+ enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
+ rtx latehalf[2];
+ rtx addreg0 = 0, addreg1 = 0;
+
+ /* First classify both operands. */
+
+ if (REG_P (operands[0]))
+ optype0 = REGOP;
+ else if (offsettable_memref_p (operands[0]))
+ optype0 = OFFSOP;
+ else if (GET_CODE (operands[0]) == MEM)
+ optype0 = MEMOP;
+ else
+ optype0 = RNDOP;
+
+ if (REG_P (operands[1]))
+ optype1 = REGOP;
+ else if (CONSTANT_P (operands[1]))
+ optype1 = CNSTOP;
+ else if (offsettable_memref_p (operands[1]))
+ optype1 = OFFSOP;
+ else if (GET_CODE (operands[1]) == MEM)
+ optype1 = MEMOP;
+ else
+ optype1 = RNDOP;
+
+ /* Check for the cases that the operand constraints are not
+ supposed to allow to happen. Abort if we get one,
+ because generating code for these cases is painful. */
+
+ if (optype0 == RNDOP || optype1 == RNDOP)
+ abort ();
+
+ /* If an operand is an unoffsettable memory ref, find a register
+ we can increment temporarily to make it refer to the second word. */
+
+ if (optype0 == MEMOP)
+ addreg0 = find_addr_reg (XEXP (operands[0], 0));
+
+ if (optype1 == MEMOP)
+ addreg1 = find_addr_reg (XEXP (operands[1], 0));
+
+ /* Ok, we can do one word at a time.
+ Normally we do the low-numbered word first,
+ but if either operand is autodecrementing then we
+ do the high-numbered word first.
+
+ In either case, set up in LATEHALF the operands to use
+ for the high-numbered word and in some cases alter the
+ operands in OPERANDS to be suitable for the low-numbered word. */
+
+ if (optype0 == REGOP)
+ latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ else if (optype0 == OFFSOP)
+ latehalf[0] = adj_offsettable_operand (operands[0], 4);
+ else
+ latehalf[0] = operands[0];
+
+ if (optype1 == REGOP)
+ latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+ else if (optype1 == OFFSOP)
+ latehalf[1] = adj_offsettable_operand (operands[1], 4);
+ else if (optype1 == CNSTOP)
+ {
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
+ {
+ latehalf[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
+ operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
+ }
+ else if (CONSTANT_P (operands[1]))
+ latehalf[1] = const0_rtx;
+ }
+ else
+ latehalf[1] = operands[1];
+
+ /* If the first move would clobber the source of the second one,
+ do them in the other order. This happens only for registers;
+ such overlap can't happen in memory unless the user explicitly
+ sets it up, and that is an undefined circumstance. */
+
+ if (optype0 == REGOP && optype1 == REGOP
+ && REGNO (operands[0]) == REGNO (latehalf[1]))
+ {
+ /* Make any unoffsettable addresses point at high-numbered word. */
+ if (addreg0)
+ output_asm_insn ("add_nt %0,%0,$4", &addreg0);
+ if (addreg1)
+ output_asm_insn ("add_nt %0,%0,$4", &addreg1);
+
+ /* Do that word. */
+ output_asm_insn (singlemove_string (latehalf), latehalf);
+
+ /* Undo the adds we just did. */
+ if (addreg0)
+ output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
+ if (addreg1)
+ output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
+
+ /* Do low-numbered word. */
+ return singlemove_string (operands);
+ }
+
+ /* Normal case: do the two words, low-numbered first. */
+
+ output_asm_insn (singlemove_string (operands), operands);
+
+ /* Make any unoffsettable addresses point at high-numbered word. */
+ if (addreg0)
+ output_asm_insn ("add_nt %0,%0,$4", &addreg0);
+ if (addreg1)
+ output_asm_insn ("add_nt %0,%0,$4", &addreg1);
+
+ /* Do that word. */
+ output_asm_insn (singlemove_string (latehalf), latehalf);
+
+ /* Undo the adds we just did. */
+ if (addreg0)
+ output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
+ if (addreg1)
+ output_asm_insn ("add_nt %0,%0,$-4", &addreg1);
+
+ return "";
+}
+
+static char *
+output_fp_move_double (operands)
+ rtx *operands;
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return "fmov %0,%1";
+ if (GET_CODE (operands[1]) == REG)
+ {
+ rtx xoperands[2];
+ int offset = - get_frame_size () - 8;
+ xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
+ xoperands[0] = GEN_INT (offset + 4);
+ output_asm_insn ("st_32 %1,r25,%0", xoperands);
+ xoperands[1] = operands[1];
+ xoperands[0] = GEN_INT (offset);
+ output_asm_insn ("st_32 %1,r25,%0", xoperands);
+ xoperands[1] = operands[0];
+ output_asm_insn ("ld_dbl %1,r25,%0\n\tnop", xoperands);
+ return "";
+ }
+ return "ld_dbl %0,%1\n\tnop";
+ }
+ else if (FP_REG_P (operands[1]))
+ {
+ if (GET_CODE (operands[0]) == REG)
+ {
+ rtx xoperands[2];
+ int offset = - get_frame_size () - 8;
+ xoperands[0] = GEN_INT (offset);
+ xoperands[1] = operands[1];
+ output_asm_insn ("st_dbl %1,r25,%0", xoperands);
+ xoperands[1] = operands[0];
+ output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
+ xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ xoperands[0] = GEN_INT (offset + 4);
+ output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
+ return "";
+ }
+ return "st_dbl %1,%0";
+ }
+}
+
+/* Return a REG that occurs in ADDR with coefficient 1.
+ ADDR can be effectively incremented by incrementing REG. */
+
+static rtx
+find_addr_reg (addr)
+ rtx addr;
+{
+ while (GET_CODE (addr) == PLUS)
+ {
+ if (GET_CODE (XEXP (addr, 0)) == REG)
+ addr = XEXP (addr, 0);
+ else if (GET_CODE (XEXP (addr, 1)) == REG)
+ addr = XEXP (addr, 1);
+ else if (CONSTANT_P (XEXP (addr, 0)))
+ addr = XEXP (addr, 1);
+ else if (CONSTANT_P (XEXP (addr, 1)))
+ addr = XEXP (addr, 0);
+ else
+ abort ();
+ }
+ if (GET_CODE (addr) == REG)
+ return addr;
+ abort ();
+}
+
+/* Generate code to add a large integer constant to register, reg, storing
+ * the result in a register, target. Offset must be 27-bit signed quantity */
+
+static char *
+output_add_large_offset (target, reg, offset)
+ rtx target, reg;
+ int offset;
+{
+ rtx operands[3];
+ int high, n, i;
+ operands[0] = target, operands[1] = reg;
+
+ for (high = offset, n = 0;
+ (unsigned) (high + 0x2000) >= 0x4000;
+ high >>= 1, n += 1)
+ ;
+ operands[2] = GEN_INT (high);
+ output_asm_insn ("add_nt r2,r0,%2", operands);
+ i = n;
+ while (i >= 3)
+ output_asm_insn ("sll r2,r2,$3", operands), i -= 3;
+ if (i == 2)
+ output_asm_insn ("sll r2,r2,$2", operands);
+ else if (i == 1)
+ output_asm_insn ("sll r2,r2,$1", operands);
+ output_asm_insn ("add_nt %0,r2,%1", operands);
+ if (offset - (high << n) != 0)
+ {
+ operands[2] = GEN_INT (offset - (high << n));
+ output_asm_insn ("add_nt %0,%0,%2", operands);
+ }
+ return "";
+}
+
+/* Additional TESTFN for matching. Like immediate_operand, but matches big
+ * constants */
+
+int
+big_immediate_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (GET_CODE (op) == CONST_INT);
+}
diff --git a/gnu/egcs/gcc/config/spur/spur.h b/gnu/egcs/gcc/config/spur/spur.h
new file mode 100644
index 00000000000..e6d058a4491
--- /dev/null
+++ b/gnu/egcs/gcc/config/spur/spur.h
@@ -0,0 +1,1051 @@
+/* Definitions of target machine for GNU compiler, for SPUR chip.
+ Copyright (C) 1988, 1995, 1996 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* Note that some other tm.h files include this one and then override
+ many of the definitions that relate to assembler syntax. */
+
+
+/* Names to predefine in the preprocessor for this target machine. */
+
+#define CPP_PREDEFINES "-Dspur -Acpu(spur) -Amachine(spur)"
+
+/* Link with libg.a when debugging, for dbx's sake. */
+
+#define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
+
+/* Print subsidiary information on the compiler version in use. */
+#define TARGET_VERSION fprintf (stderr, " (spur)");
+
+/* Run-time compilation parameters selecting different hardware subsets.
+
+ On the SPUR, we don't yet need any. */
+
+extern int target_flags;
+
+/* Nonzero if we should generate code to use the fpu. */
+#define TARGET_FPU (target_flags & 1)
+
+/* Nonzero if we should expand constant shifts into series of shift
+ instructions. */
+#define TARGET_EXPAND_SHIFTS (target_flags & 2)
+
+/* Nonzero if we should generate long jumps for compares. */
+#define TARGET_LONG_JUMPS (target_flags & 4)
+
+/* Macro to define tables used to set the flags.
+ This is a list in braces of pairs in braces,
+ each pair being { "NAME", VALUE }
+ where VALUE is the bits to set or minus the bits to clear.
+ An empty string NAME is used to identify the default VALUE. */
+
+#define TARGET_SWITCHES \
+ { {"fpu", 1}, \
+ {"soft-float", -1}, \
+ {"expand-shifts", 2}, \
+ {"lib-shifts", -2}, \
+ {"long-jumps", 4}, \
+ {"short-jumps", -4}, \
+ { "", TARGET_DEFAULT}}
+
+#define TARGET_DEFAULT 0
+
+/* target machine storage layout */
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields.
+ This is a moot question on the SPUR due to the lack of bit-field insns. */
+#define BITS_BIG_ENDIAN 0
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is not true on SPUR. */
+#define BYTES_BIG_ENDIAN 0
+
+/* Define this if most significant word of a multiword number is the lowest
+ numbered. */
+/* For SPUR we can decide arbitrarily
+ since there are no machine instructions for them. */
+#define WORDS_BIG_ENDIAN 0
+
+/* number of bits in an addressable storage unit */
+#define BITS_PER_UNIT 8
+
+/* Width in bits of a "word", which is the contents of a machine register.
+ Note that this is not necessarily the width of data type `int';
+ if using 16-bit ints on a 68000, this would still be 32.
+ But on a machine with 16-bit registers, this would be 16. */
+#define BITS_PER_WORD 32
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 4
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+#define POINTER_SIZE 32
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY 64
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 64
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 32
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* Every structure's size must be a multiple of this. */
+#define STRUCTURE_SIZE_BOUNDARY 32
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 64
+
+/* Set this nonzero if move instructions will actually fail to work
+ when given unaligned data. */
+#define STRICT_ALIGNMENT 1
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ SPUR has 32 fullword registers and 15 floating point registers. */
+
+#define FIRST_PSEUDO_REGISTER 47
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+ On SPUR, this includes all the global registers
+ and the callee return address register. */
+#define FIXED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
+ 1, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \
+ 1, 0, 0, 0, 0, 0, \
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
+ 1, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \
+ 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers.
+
+ On SPUR, ordinary registers hold 32 bits worth;
+ a single floating point register is always enough for
+ anything that can be stored in them at all. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((REGNO) >= 32 ? GET_MODE_NUNITS ((MODE)) \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On SPUR, the cpu registers can hold any mode but the float registers
+ can hold only floating point. And they can't hold anything if use
+ of hardware floating point is disabled. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ (((REGNO) < 32 \
+ && (REGNO) + ((GET_MODE_UNIT_SIZE ((MODE)) + 3) / 4) <= 32) \
+ || (TARGET_FPU && ((MODE) == SFmode || (MODE) == DFmode \
+ || (MODE) == SCmode || (MODE) == DCmode)))
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output. */
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ (((MODE1) == SFmode || (MODE1) == DFmode \
+ || (MODE1) == SCmode || (MODE1) == DCmode) \
+ == ((MODE2) == SFmode || (MODE2) == DFmode \
+ || (MODE2) == SCmode || (MODE2) == DCmode))
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* SPUR pc isn't overloaded on a register that the compiler knows about. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 4
+
+/* Base register for access to local variables of the function. */
+#define FRAME_POINTER_REGNUM 25
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms
+ may be accessed via the stack pointer) in functions that seem suitable.
+ This is computed in `reload', in reload1.c. */
+#define FRAME_POINTER_REQUIRED 1
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 25
+
+/* Register in which static-chain is passed to a function. */
+/* ??? */
+#define STATIC_CHAIN_REGNUM 8
+
+/* Register in which address to store a structure value
+ is passed to a function. */
+#define STRUCT_VALUE_REGNUM 27
+#define STRUCT_VALUE_INCOMING_REGNUM 11
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+/* The 68000 has two kinds of registers, hence four classes. */
+
+enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS {{0, 0}, {-1, 0}, {0, 0x7fff}, {-1, 0x7fff}}
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) \
+ ((REGNO) >= 32 ? FP_REGS : GENERAL_REGS)
+
+/* The class value for index registers, and the one for base regs. */
+#define INDEX_REG_CLASS GENERAL_REGS
+#define BASE_REG_CLASS GENERAL_REGS
+
+/* Get reg_class from a letter such as appears in the machine description. */
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'f' ? FP_REGS : NO_REGS)
+
+/* The letters I, J, K, L and M in a register constraint string
+ can be used to stand for particular ranges of immediate operands.
+ This macro defines what the ranges are.
+ C is the letter, and VALUE is a constant value.
+ Return 1 if VALUE is in the range specified by C.
+
+ For SPUR, `I' is used for the range of constants an insn
+ can actually contain.
+ `J' is used for the range which is just zero (since that is R0).
+ `K' is used for the 5-bit operand of a compare insns. */
+
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'I' ? (unsigned) ((VALUE) + 0x2000) < 0x4000 \
+ : (C) == 'J' ? (VALUE) == 0 \
+ : (C) == 'K' ? (unsigned) (VALUE) < 0x20 \
+ : 0)
+
+/* Similar, but for floating constants, and defining letters G and H.
+ Here VALUE is the CONST_DOUBLE rtx itself. */
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'G' && CONST_DOUBLE_HIGH (VALUE) == 0 \
+ && CONST_DOUBLE_LOW (VALUE) == 0)
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class. */
+#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+/* On SPUR, this is the size of MODE in words,
+ except in the FP regs, where a single reg is always enough. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((CLASS) == FP_REGS ? 1 \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+#define FRAME_GROWS_DOWNWARD
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated. */
+#define STARTING_FRAME_OFFSET 0
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On SPUR, don't define this because there are no push insns. */
+/* #define PUSH_ROUNDING(BYTES) */
+
+/* Offset of first parameter from the argument pointer register value. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNDECL is the declaration node of the function (as a tree),
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack. */
+
+#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0. */
+
+/* On SPUR the value is found in the second "output" register. */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ gen_rtx (REG, TYPE_MODE (VALTYPE), 27)
+
+/* But the called function leaves it in the second "input" register. */
+
+#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
+ gen_rtx (REG, TYPE_MODE (VALTYPE), 11)
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 27)
+
+/* 1 if N is a possible register number for a function value
+ as seen by the caller.
+ On SPUR, the first "output" reg is the only register thus used. */
+
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == 27)
+
+/* 1 if N is a possible register number for function argument passing.
+ On SPUR, these are the "output" registers. */
+
+#define FUNCTION_ARG_REGNO_P(N) ((N) < 32 && (N) > 26)
+
+/* Define this macro if the target machine has "register windows". This
+ C expression returns the register number as seen by the called function
+ corresponding to register number OUT as seen by the calling function.
+ Return OUT if register number OUT is not an outbound register. */
+
+#define INCOMING_REGNO(OUT) \
+ (((OUT) < 27 || (OUT) > 31) ? (OUT) : (OUT) - 16)
+
+/* Define this macro if the target machine has "register windows". This
+ C expression returns the register number as seen by the calling function
+ corresponding to register number IN as seen by the called function.
+ Return IN if register number IN is not an inbound register. */
+
+#define OUTGOING_REGNO(IN) \
+ (((IN) < 11 || (IN) > 15) ? (IN) : (IN) + 16)
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On SPUR, this is a single integer, which is a number of words
+ of arguments scanned so far (including the invisible argument,
+ if any, which holds the structure-value-address).
+ Thus 5 or more means all following args should go on the stack. */
+
+#define CUMULATIVE_ARGS int
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0.
+
+ On SPUR, the offset normally starts at 0, but starts at 4 bytes
+ when the function gets a structure-value-address as an
+ invisible first argument. */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
+ ((CUM) = ((FNTYPE) != 0 && aggregate_value_p (TREE_TYPE ((FNTYPE)))))
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ ((CUM) += ((MODE) != BLKmode \
+ ? (GET_MODE_SIZE (MODE) + 3) / 4 \
+ : (int_size_in_bytes (TYPE) + 3) / 4))
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis). */
+
+/* On SPUR the first five words of args are normally in registers
+ and the rest are pushed. But any arg that won't entirely fit in regs
+ is pushed. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+(5 >= ((CUM) \
+ + ((MODE) == BLKmode \
+ ? (int_size_in_bytes (TYPE) + 3) / 4 \
+ : (GET_MODE_SIZE (MODE) + 3) / 4)) \
+ ? gen_rtx (REG, (MODE), 27 + (CUM)) \
+ : 0)
+
+/* Define where a function finds its arguments.
+ This is different from FUNCTION_ARG because of register windows. */
+
+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
+(5 >= ((CUM) \
+ + ((MODE) == BLKmode \
+ ? (int_size_in_bytes (TYPE) + 3) / 4 \
+ : (GET_MODE_SIZE (MODE) + 3) / 4)) \
+ ? gen_rtx (REG, (MODE), 11 + (CUM)) \
+ : 0)
+
+/* For an arg passed partly in registers and partly in memory,
+ this is the number of registers used.
+ For args passed entirely in registers or entirely in memory, zero. */
+
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
+
+/* This macro generates the assembly code for function entry.
+ FILE is a stdio stream to output the code to.
+ SIZE is an int: how many units of temporary storage to allocate.
+ Refer to the array `regs_ever_live' to determine which registers
+ to save; `regs_ever_live[I]' is nonzero if register number I
+ is ever used in the function. This macro is responsible for
+ knowing which registers should not be saved even if used. */
+
+/* On spur, move-double insns between fpu and cpu need an 8-byte block
+ of memory. If any fpu reg is used in the function, we allocate
+ such a block here, at the bottom of the frame, just in case it's needed. */
+
+#define FUNCTION_PROLOGUE(FILE, SIZE) \
+{ \
+ extern char call_used_regs[]; \
+ extern int current_function_pretend_args_size; \
+ int fsize = ((SIZE) + 7) & ~7; \
+ int nregs, i, fp_used = 0; \
+ for (i = 32, nregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
+ { \
+ if (regs_ever_live[i] && ! call_used_regs[i]) \
+ nregs++; \
+ if (regs_ever_live[i]) fp_used = 1; \
+ } \
+ if (fp_used) fsize += 8; \
+ fprintf (FILE, "0:\trd_special r24,pc\n"); \
+ fprintf (FILE, "\tand r24,r24,$~0x3\n"); \
+ fprintf (FILE, "\tadd_nt r25,r4,$%d\n", \
+ - current_function_pretend_args_size); \
+ if (fsize + nregs != 0 || current_function_pretend_args_size > 0)\
+ { \
+ int n = - fsize - nregs * 16; \
+ if (n >= -8192) \
+ fprintf (FILE, "\tadd_nt r4,r25,$%d\n", n); \
+ else \
+ { \
+ fprintf (FILE, "\tadd_nt r4,r25,$-8192\n"); \
+ n += 8192; \
+ while (n < -8192) \
+ fprintf (FILE, "\tadd_nt r4,r4,$-8192\n"), n += 8192; \
+ if (n != 0) \
+ fprintf (FILE, "\tadd_nt r4,r4,$%d\n", n); \
+ } \
+ } \
+ for (i = 32, nregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
+ if (regs_ever_live[i] && ! call_used_regs[i]) \
+ { \
+ fprintf (FILE, "\tst_ext1 %s,r4,$%d\n", \
+ reg_names[i], 8 * nregs++); \
+ fprintf (FILE, "\tst_ext2 %s,r4,$%d\n", \
+ reg_names[i], 8 * nregs++); \
+ } \
+}
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+ abort ();
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+
+extern int current_function_calls_alloca;
+extern int current_function_pretend_args_size;
+
+#define EXIT_IGNORE_STACK \
+ (get_frame_size () != 0 \
+ || current_function_calls_alloca || current_function_pretend_args_size)
+
+/* This macro generates the assembly code for function exit,
+ on machines that need it. If FUNCTION_EPILOGUE is not defined
+ then individual return instructions are generated for each
+ return statement. Args are same as for FUNCTION_PROLOGUE.
+
+ The function epilogue should not depend on the current stack pointer!
+ It should use the frame pointer only. This is mandatory because
+ of alloca; we also take advantage of it to omit stack adjustments
+ before returning. */
+
+#define FUNCTION_EPILOGUE(FILE, SIZE) \
+{ \
+ extern char call_used_regs[]; \
+ extern int current_function_calls_alloca; \
+ extern int current_function_pretend_args_size; \
+ int fsize = ((SIZE) + 7) & ~7; \
+ int nregs, i, fp_used = 0; \
+ for (i = 32, nregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
+ { \
+ if (regs_ever_live[i] && ! call_used_regs[i]) \
+ nregs++; \
+ if (regs_ever_live[i]) fp_used = 1; \
+ } \
+ if (fp_used) fsize += 8; \
+ if (nregs != 0) \
+ { \
+ fprintf (FILE, "\tadd_nt r4,r25,$%d\n", - fsize - nregs * 16); \
+ for (i = 32, nregs = 0; i < FIRST_PSEUDO_REGISTER; i++) \
+ if (regs_ever_live[i] && ! call_used_regs[i]) \
+ { \
+ fprintf (FILE, "\tld_ext1 %s,r4,$%d\n\tnop\n", \
+ reg_names[i], 8 * nregs++); \
+ fprintf (FILE, "\tld_ext2 %s,r4,$%d\n\tnop\n", \
+ reg_names[i], 8 * nregs++); \
+ } \
+ } \
+ if (fsize != 0 || nregs != 0 || current_function_calls_alloca \
+ || current_function_pretend_args_size > 0) \
+ fprintf (FILE, "\tadd_nt r4,r25,$%d\n", \
+ current_function_pretend_args_size); \
+ fprintf (FILE, "\treturn r10,$8\n\tnop\n"); \
+}
+
+/* Addressing modes, and classification of registers for them. */
+
+/* #define HAVE_POST_INCREMENT 0 */
+/* #define HAVE_POST_DECREMENT 0 */
+
+/* #define HAVE_PRE_DECREMENT 0 */
+/* #define HAVE_PRE_INCREMENT 0 */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) \
+((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
+#define REGNO_OK_FOR_FP_P(REGNO) \
+(((REGNO) ^ 0x20) < 14 || (unsigned) (reg_renumber[REGNO] ^ 0x20) < 14)
+
+/* Now macros that check whether X is a register and also,
+ strictly, whether it is in a specified class.
+
+ These macros are specific to the SPUR, and may be used only
+ in code for printing assembler insns and in conditions for
+ define_optimization. */
+
+/* 1 if X is an fp register. */
+
+#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
+
+/* Maximum number of registers that can appear in a valid memory address. */
+
+#define MAX_REGS_PER_ADDRESS 2
+
+/* Recognize any constant value that is a valid address. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
+ || GET_CODE (X) == HIGH)
+
+/* Nonzero if the constant value X is a legitimate general operand.
+ It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+#define LEGITIMATE_CONSTANT_P(X) \
+ ((GET_CODE (X) == CONST_INT \
+ && (unsigned) (INTVAL (X) + 0x2000) < 0x4000)\
+ || (GET_CODE (X) == SYMBOL_REF && (X)->unchanging))
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+#ifndef REG_OK_STRICT
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 14)
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 14)
+
+#else
+
+/* Nonzero if X is a hard reg that can be used as an index. */
+#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
+/* Nonzero if X is a hard reg that can be used as a base reg. */
+#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#endif
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ On SPUR, the actual legitimate addresses must be REG+SMALLINT or REG+REG.
+ Actually, REG+REG is not legitimate for stores, so
+ it is obtained only by combination on loads.
+ We can treat a SYMBOL_REF as legitimate if it is part of this
+ function's constant-pool, because such addresses can actually
+ be output as REG+SMALLINT. */
+
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ if (GET_CODE (X) == REG \
+ && REG_OK_FOR_BASE_P (X)) \
+ goto ADDR; \
+ if (GET_CODE (X) == SYMBOL_REF && (X)->unchanging) \
+ goto ADDR; \
+ if (GET_CODE (X) == PLUS \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
+ { \
+ if (GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && INTVAL (XEXP (X, 1)) >= -0x2000 \
+ && INTVAL (XEXP (X, 1)) < 0x2000) \
+ goto ADDR; \
+ } \
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE and WIN are passed so that this macro can use
+ GO_IF_LEGITIMATE_ADDRESS.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output. */
+
+/* On SPUR, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+{ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
+ (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
+ copy_to_mode_reg (SImode, XEXP (X, 1))); \
+ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
+ (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
+ copy_to_mode_reg (SImode, XEXP (X, 0))); \
+ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
+ (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
+ force_operand (XEXP (X, 0), 0)); \
+ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
+ (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
+ force_operand (XEXP (X, 1), 0)); \
+ if (memory_address_p (MODE, X)) \
+ goto WIN; }
+
+/* Go to LABEL if ADDR (a legitimate address expression)
+ has an effect that depends on the machine mode it is used for.
+ On the SPUR this is never true. */
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define as C expression which evaluates to nonzero if the tablejump
+ instruction expects the table to contain offsets from the address of the
+ table.
+ Do not define this if the table should contain absolute addresses. */
+/* #define CASE_VECTOR_PC_RELATIVE 1 */
+
+/* Specify the tree operation to be used to convert reals to integers. */
+#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
+
+/* This is the kind of divide that is easiest to do in the general case. */
+#define EASY_DIV_EXPR TRUNC_DIV_EXPR
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 0
+
+/* Max number of bytes we can move from memory to memory
+ in one reasonably fast instruction. */
+#define MOVE_MAX 4
+
+/* Nonzero if access to memory by bytes is slow and undesirable. */
+#define SLOW_BYTE_ACCESS 1
+
+/* This is BSD, so it wants DBX format. */
+#define DBX_DEBUGGING_INFO
+
+/* Do not break .stabs pseudos into continuations. */
+#define DBX_CONTIN_LENGTH 0
+
+/* Don't try to use the `x' type-cross-reference character in DBX data.
+ Also has the consequence of putting each struct, union or enum
+ into a separate .stabs, containing only cross-refs to the others. */
+#define DBX_NO_XREFS
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode SImode
+
+/* A function address in a call instruction
+ is a byte address (for indexing purposes)
+ so give the MEM rtx a byte's mode. */
+#define FUNCTION_MODE SImode
+
+/* Define this if addresses of constant functions
+ shouldn't be put through pseudo regs where they can be cse'd.
+ Desirable on machines where ordinary constants are expensive
+ but a CALL with constant address is cheap. */
+#define NO_FUNCTION_CSE
+
+/* Compute the cost of computing a constant rtl expression RTX
+ whose rtx-code is CODE. The body of this macro is a portion
+ of a switch statement. If the code is computed here,
+ return it with a return statement. Otherwise, break from the switch. */
+
+#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
+ case CONST_INT: \
+ if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) return 1; \
+ case CONST: \
+ case LABEL_REF: \
+ case SYMBOL_REF: \
+ return 2; \
+ case CONST_DOUBLE: \
+ return 4;
+
+/* Tell final.c how to eliminate redundant test instructions. */
+
+/* Here we define machine-dependent flags and fields in cc_status
+ (see `conditions.h'). */
+
+/* (None are needed on SPUR.) */
+
+/* Store in cc_status the expressions
+ that the condition codes will describe
+ after execution of an instruction whose pattern is EXP.
+ Do not alter them if the instruction would not alter the cc's. */
+
+/* The SPUR does not really have a condition code. */
+
+#define NOTICE_UPDATE_CC(EXP, INSN) \
+{ CC_STATUS_INIT; }
+
+/* Control the assembler format that we output. */
+
+/* Output at beginning of assembler file. */
+
+#define ASM_FILE_START(FILE)
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+
+#define ASM_APP_ON ""
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+
+#define ASM_APP_OFF ""
+
+/* Output before read-only data. */
+
+#define TEXT_SECTION_ASM_OP ".text"
+
+/* Output before writable data. */
+
+#define DATA_SECTION_ASM_OP ".data"
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
+ "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
+ "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
+ "r30", "r31", \
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
+ "f10", "f11", "f12", "f13", "f14" }
+
+/* How to renumber registers for dbx and gdb. */
+
+#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
+
+/* This is how to output the definition of a user-level label named NAME,
+ such as the label on a static function or variable NAME. */
+
+#define ASM_OUTPUT_LABEL(FILE,NAME) \
+ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
+
+/* This is how to output a command to make the user-level label named NAME
+ defined for reference from other files. */
+
+#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
+ do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
+
+/* The prefix to add to user-visible assembler symbols. */
+
+#define USER_LABEL_PREFIX "_"
+
+/* This is how to output an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class. */
+
+#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
+ fprintf (FILE, "%s%d:\n", PREFIX, NUM)
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'. */
+
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ sprintf (LABEL, "*%s%d", PREFIX, NUM)
+
+/* This is how to output an assembler line defining a `double' constant. */
+
+#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
+ fprintf (FILE, "\t.double %.20e\n", (VALUE))
+
+/* This is how to output an assembler line defining a `float' constant. */
+
+#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
+ fprintf (FILE, "\t.single %.12e\n", (VALUE))
+
+/* This is how to output an assembler line defining an `int' constant. */
+
+#define ASM_OUTPUT_INT(FILE,VALUE) \
+( fprintf (FILE, "\t.long "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* Likewise for `char' and `short' constants. */
+
+#define ASM_OUTPUT_SHORT(FILE,VALUE) \
+( fprintf (FILE, "\t.word "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+#define ASM_OUTPUT_CHAR(FILE,VALUE) \
+( fprintf (FILE, "\t.byte "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* This is how to output an assembler line for a numeric constant byte. */
+
+#define ASM_OUTPUT_BYTE(FILE,VALUE) \
+ fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
+
+/* This is how to output code to push a register on the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
+ fprintf (FILE, "\tadd_nt r4,r4,$-4\n\tst_32 %s,r4,$0\n", reg_names[REGNO])
+
+/* This is how to output an insn to pop a register from the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
+ fprintf (FILE, "\tld_32 %s,r4,$0\n\tadd_nt r4,r4,$4\n", reg_names[REGNO])
+
+/* This is how to output an element of a case-vector that is absolute. */
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
+ fprintf (FILE, "\t.long L%d\n", VALUE)
+
+/* This is how to output an element of a case-vector that is relative.
+ (SPUR does not use such vectors,
+ but we must define this macro anyway.) */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", (LOG))
+
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t.space %u\n", (SIZE))
+
+/* This says how to output an assembler line
+ to define a global common symbol. */
+
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+( fputs (".comm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%u\n", (ROUNDED)))
+
+/* This says how to output an assembler line
+ to define a local common symbol. */
+
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
+( fputs (".lcomm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%u\n", (ROUNDED)))
+
+/* Store in OUTPUT a string (made with alloca) containing
+ an assembler-name for a local static variable named NAME.
+ LABELNO is an integer which is different for each call. */
+
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
+( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
+ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
+
+/* Define the parentheses used to group arithmetic operations
+ in assembler code. */
+
+#define ASM_OPEN_PAREN "("
+#define ASM_CLOSE_PAREN ")"
+
+/* Define results of standard character escape sequences. */
+#define TARGET_BELL 007
+#define TARGET_BS 010
+#define TARGET_TAB 011
+#define TARGET_NEWLINE 012
+#define TARGET_VT 013
+#define TARGET_FF 014
+#define TARGET_CR 015
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null.
+
+ On SPUR, the CODE can be `r', meaning this is a register-only operand
+ and an immediate zero should be represented as `r0'. */
+
+#define PRINT_OPERAND(FILE, X, CODE) \
+{ if (GET_CODE (X) == REG) \
+ fprintf (FILE, "%s", reg_names[REGNO (X)]); \
+ else if (GET_CODE (X) == MEM) \
+ output_address (XEXP (X, 0)); \
+ else if (GET_CODE (X) == CONST_DOUBLE) \
+ abort (); \
+ else if ((CODE) == 'r' && (X) == const0_rtx) \
+ fprintf (FILE, "r0"); \
+ else { putc ('$', FILE); output_addr_const (FILE, X); }}
+
+/* Print a memory address as an operand to reference that memory location. */
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+{ register rtx base, index = 0; \
+ int offset = 0; \
+ register rtx addr = ADDR; \
+ if (GET_CODE (addr) == REG) \
+ { \
+ fprintf (FILE, "%s,$0", reg_names[REGNO (addr)]); \
+ } \
+ else if (GET_CODE (addr) == PLUS) \
+ { \
+ if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
+ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
+ else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
+ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
+ else \
+ base = XEXP (addr, 0), index = XEXP (addr, 1); \
+ fprintf (FILE, "%s,", reg_names[REGNO (base)]); \
+ if (index == 0) \
+ fprintf (FILE, "$%d", offset); \
+ else \
+ fprintf (FILE, "%s,", reg_names[REGNO (index)]); \
+ } \
+ else \
+ { \
+ fprintf (FILE, "r24,$("); \
+ output_addr_const (FILE, addr); \
+ fprintf (FILE, "-0b)"); \
+ } \
+}
diff --git a/gnu/egcs/gcc/config/spur/spur.md b/gnu/egcs/gcc/config/spur/spur.md
new file mode 100644
index 00000000000..7ad4af5b342
--- /dev/null
+++ b/gnu/egcs/gcc/config/spur/spur.md
@@ -0,0 +1,1092 @@
+;;- Machine description for SPUR chip for GNU C compiler
+;; Copyright (C) 1988 Free Software Foundation, Inc.
+
+;; This file is part of GNU CC.
+
+;; GNU CC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; GNU CC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU CC; see the file COPYING. If not, write to
+;; the Free Software Foundation, 59 Temple Place - Suite 330,
+;; Boston, MA 02111-1307, USA.
+
+
+;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
+
+;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
+;;- updates for most instructions.
+
+;;- Operand classes for the register allocator:
+
+;; Compare instructions.
+;; This pattern is used for generating an "insn"
+;; which does just a compare and sets a (fictitious) condition code.
+
+;; The actual SPUR insns are compare-and-conditional-jump.
+;; The define_peephole's below recognize the combinations of
+;; compares and jumps, and output each pair as a single assembler insn.
+
+;; This controls RTL generation and register allocation.
+(define_insn "cmpsi"
+ [(set (cc0)
+ (compare (match_operand:SI 0 "register_operand" "rK")
+ (match_operand:SI 1 "nonmemory_operand" "rK")))]
+ ""
+ "*
+{
+ cc_status.value1 = operands[0], cc_status.value2 = operands[1];
+ return \"\";
+}")
+
+;; We have to have this because cse can optimize the previous pattern
+;; into this one.
+
+(define_insn "tstsi"
+ [(set (cc0)
+ (match_operand:SI 0 "register_operand" "r"))]
+ ""
+ "*
+{
+ cc_status.value1 = operands[0], cc_status.value2 = const0_rtx;
+ return \"\";
+}")
+
+
+;; These control RTL generation for conditional jump insns
+;; and match them for register allocation.
+
+(define_insn "beq"
+ [(set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"eq\", \"eq\", \"ne\", \"ne\"); ")
+
+(define_insn "bne"
+ [(set (pc)
+ (if_then_else (ne (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"ne\", \"ne\", \"eq\", \"eq\"); ")
+
+(define_insn "bgt"
+ [(set (pc)
+ (if_then_else (gt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"gt\", \"lt\", \"le\", \"ge\"); ")
+
+(define_insn "bgtu"
+ [(set (pc)
+ (if_then_else (gtu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"ugt\", \"ult\", \"ule\", \"uge\"); ")
+
+(define_insn "blt"
+ [(set (pc)
+ (if_then_else (lt (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"lt\", \"gt\", \"ge\", \"le\"); ")
+
+(define_insn "bltu"
+ [(set (pc)
+ (if_then_else (ltu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"ult\", \"ugt\", \"uge\", \"ule\"); ")
+
+(define_insn "bge"
+ [(set (pc)
+ (if_then_else (ge (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"ge\", \"le\", \"lt\", \"gt\"); ")
+
+(define_insn "bgeu"
+ [(set (pc)
+ (if_then_else (geu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"uge\", \"ule\", \"ult\", \"ugt\"); ")
+
+(define_insn "ble"
+ [(set (pc)
+ (if_then_else (le (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"le\", \"ge\", \"gt\", \"lt\"); ")
+
+(define_insn "bleu"
+ [(set (pc)
+ (if_then_else (leu (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "* return output_compare (operands, \"ule\", \"uge\", \"ugt\", \"ult\"); ")
+
+;; These match inverted jump insns for register allocation.
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"ne\", \"ne\", \"eq\", \"eq\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ne (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"eq\", \"eq\", \"ne\", \"ne\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (gt (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"le\", \"ge\", \"gt\", \"lt\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (gtu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"ule\", \"uge\", \"ugt\", \"ult\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (lt (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"ge\", \"le\", \"lt\", \"gt\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ltu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"uge\", \"ule\", \"ult\", \"ugt\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (ge (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"lt\", \"gt\", \"ge\", \"le\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (geu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"ult\", \"ugt\", \"uge\", \"ule\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (le (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"gt\", \"lt\", \"le\", \"ge\"); ")
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else (leu (cc0)
+ (const_int 0))
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "* return output_compare (operands, \"ugt\", \"ult\", \"ule\", \"uge\"); ")
+
+;; Move instructions
+
+(define_insn "movsi"
+ [(set (match_operand:SI 0 "general_operand" "=r,m")
+ (match_operand:SI 1 "general_operand" "rmi,rJ"))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM)
+ return \"st_32 %r1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ return \"ld_32 %0,%1\;nop\";
+ if (GET_CODE (operands[1]) == REG)
+ return \"add_nt %0,%1,$0\";
+ if (GET_CODE (operands[1]) == SYMBOL_REF && operands[1]->unchanging)
+ return \"add_nt %0,r24,$(%1-0b)\";
+ return \"add_nt %0,r0,%1\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (mem:SI (plus:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "register_operand" "r"))))]
+ ""
+ "ld_32 %0,%1,%2\;nop")
+
+;; Generate insns for moving single bytes.
+
+(define_expand "movqi"
+ [(set (match_operand:QI 0 "general_operand" "")
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
+ operands[1] = copy_to_reg (operands[1]);
+
+ if (GET_CODE (operands[1]) == MEM)
+ {
+ rtx tem = gen_reg_rtx (SImode);
+ rtx addr = force_reg (SImode, XEXP (operands[1], 0));
+ rtx subreg;
+
+ emit_move_insn (tem, gen_rtx (MEM, SImode, addr));
+ if (GET_CODE (operands[0]) == SUBREG)
+ subreg = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[0]),
+ SUBREG_WORD (operands[0]));
+ else
+ subreg = gen_rtx (SUBREG, SImode, operands[0], 0);
+
+ emit_insn (gen_rtx (SET, VOIDmode, subreg,
+ gen_rtx (ZERO_EXTRACT, SImode, tem,
+ GEN_INT (8),
+ addr)));
+ }
+ else if (GET_CODE (operands[0]) == MEM)
+ {
+ rtx tem = gen_reg_rtx (SImode);
+ rtx addr = force_reg (SImode, XEXP (operands[0], 0));
+ rtx subreg;
+
+ emit_move_insn (tem, gen_rtx (MEM, SImode, addr));
+ if (! CONSTANT_ADDRESS_P (operands[1]))
+ {
+ if (GET_CODE (operands[1]) == SUBREG)
+ subreg = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ subreg = gen_rtx (SUBREG, SImode, operands[1], 0);
+ }
+
+ emit_insn (gen_rtx (SET, VOIDmode,
+ gen_rtx (ZERO_EXTRACT, SImode, tem,
+ GEN_INT (8),
+ addr),
+ subreg));
+ emit_move_insn (gen_rtx (MEM, SImode, addr), tem);
+ }
+ else
+ {
+ emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
+ }
+ DONE;
+}")
+
+;; Recognize insns generated for moving single bytes.
+
+(define_insn ""
+ [(set (match_operand:QI 0 "general_operand" "=r,m")
+ (match_operand:QI 1 "general_operand" "rmi,r"))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM)
+ return \"st_32 %1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ return \"ld_32 %0,%1\;nop\";
+ if (GET_CODE (operands[1]) == REG)
+ return \"add_nt %0,%1,$0\";
+ return \"add_nt %0,r0,%1\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
+ (const_int 8)
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "extract %0,%1,%2")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
+ (const_int 8)
+ (match_operand:SI 1 "nonmemory_operand" "rI"))
+ (match_operand:SI 2 "nonmemory_operand" "ri"))]
+ ""
+ "wr_insert %1\;insert %0,%0,%2")
+
+;; Constant propagation can optimize the previous pattern into this pattern.
+;[Not any more. It could when the position-operand contains a MULT.]
+
+;(define_insn ""
+; [(set (zero_extract:QI (match_operand:SI 0 "register_operand" "+r")
+; (const_int 8)
+; (match_operand:SI 1 "immediate_operand" "I"))
+; (match_operand:QI 2 "register_operand" "r"))]
+; "GET_CODE (operands[1]) == CONST_INT
+; && INTVAL (operands[1]) % 8 == 0
+; && (unsigned) INTVAL (operands[1]) < 32"
+; "*
+;{
+; operands[1] = GEN_INT (INTVAL (operands[1]) / 8);
+; return \"wr_insert 0,0,%1\;insert %0,%0,%2\";
+;}")
+
+;; The three define_expand patterns on this page
+;; serve as subroutines of "movhi".
+
+;; Generate code to fetch an aligned halfword from memory.
+;; Operand 0 is the destination register (HImode).
+;; Operand 1 is the memory address (SImode).
+;; Operand 2 is a temporary (SImode).
+;; Operand 3 is a temporary (SImode).
+;; Operand 4 is a temporary (QImode).
+
+;; Operand 5 is an internal temporary (HImode).
+
+(define_expand "loadhi"
+ [(set (match_operand:SI 2 "register_operand" "")
+ (mem:SI (match_operand:SI 1 "register_operand" "")))
+ ;; Extract the low byte.
+ (set (subreg:SI (match_dup 5) 0)
+ (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 1)))
+ ;; Form address of high byte.
+ (set (match_operand:SI 3 "register_operand" "")
+ (plus:SI (match_dup 1) (const_int 1)))
+ ;; Extract the high byte.
+ (set (subreg:SI (match_operand:QI 4 "register_operand" "") 0)
+ (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 3)))
+ ;; Put the high byte in with the low one.
+ (set (zero_extract:SI (match_dup 5) (const_int 8) (const_int 1))
+ (subreg:SI (match_dup 4) 0))
+ (set (match_operand:HI 0 "register_operand" "") (match_dup 5))]
+ ""
+ "operands[5] = gen_reg_rtx (HImode);")
+
+;; Generate code to store an aligned halfword into memory.
+;; Operand 0 is the destination address (SImode).
+;; Operand 1 is the source register (HImode, not constant).
+;; Operand 2 is a temporary (SImode).
+;; Operand 3 is a temporary (SImode).
+;; Operand 4 is a temporary (QImode).
+
+;; Operand 5 is an internal variable made from operand 1.
+
+(define_expand "storehi"
+ [(set (match_operand:SI 2 "register_operand" "")
+ (mem:SI (match_operand:SI 0 "register_operand" "")))
+ ;; Insert the low byte.
+ (set (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 0))
+ (match_dup 5))
+ ;; Form address of high byte.
+ (set (match_operand:SI 3 "register_operand" "")
+ (plus:SI (match_dup 0) (const_int 1)))
+ ;; Extract the high byte from the source.
+ (set (subreg:SI (match_operand:QI 4 "register_operand" "") 0)
+ (zero_extract:SI (match_operand:HI 1 "register_operand" "")
+ (const_int 8) (const_int 1)))
+ ;; Store high byte into the memory word
+ (set (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 3))
+ (subreg:SI (match_dup 4) 0))
+ ;; Put memory word back into memory.
+ (set (mem:SI (match_dup 0))
+ (match_dup 2))]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) == SUBREG)
+ operands[5] = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ operands[5] = gen_rtx (SUBREG, SImode, operands[1], 0);
+}")
+
+;; Like storehi but operands[1] is a CONST_INT.
+
+(define_expand "storeinthi"
+ [(set (match_operand:SI 2 "register_operand" "")
+ (mem:SI (match_operand:SI 0 "register_operand" "")))
+ ;; Insert the low byte.
+ (set (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 0))
+ (match_dup 5))
+ ;; Form address of high byte.
+ (set (match_operand:SI 3 "register_operand" "")
+ (plus:SI (match_dup 0) (const_int 1)))
+ ;; Store high byte into the memory word
+ (set (zero_extract:SI (match_dup 2) (const_int 8) (match_dup 3))
+ (match_dup 6))
+ ;; Put memory word back into memory.
+ (set (mem:SI (match_dup 0))
+ (match_dup 2))]
+ ""
+ " operands[5] = GEN_INT (INTVAL (operands[1]) & 255);
+ operands[6] = GEN_INT ((INTVAL (operands[1]) >> 8) & 255);
+")
+
+;; Main entry for generating insns to move halfwords.
+
+(define_expand "movhi"
+ [(set (match_operand:HI 0 "general_operand" "")
+ (match_operand:HI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
+ operands[1] = copy_to_reg (operands[1]);
+
+ if (GET_CODE (operands[1]) == MEM)
+ {
+ rtx insn =
+ emit_insn (gen_loadhi (operands[0],
+ force_reg (SImode, XEXP (operands[1], 0)),
+ gen_reg_rtx (SImode), gen_reg_rtx (SImode),
+ gen_reg_rtx (QImode)));
+ /* Tell cse what value the loadhi produces, so it detect duplicates. */
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, operands[1],
+ REG_NOTES (insn));
+ }
+ else if (GET_CODE (operands[0]) == MEM)
+ {
+ if (GET_CODE (operands[1]) == CONST_INT)
+ emit_insn (gen_storeinthi (force_reg (SImode, XEXP (operands[0], 0)),
+ operands[1],
+ gen_reg_rtx (SImode), gen_reg_rtx (SImode),
+ gen_reg_rtx (QImode)));
+ else
+ {
+ if (CONSTANT_P (operands[1]))
+ operands[1] = force_reg (HImode, operands[1]);
+ emit_insn (gen_storehi (force_reg (SImode, XEXP (operands[0], 0)),
+ operands[1],
+ gen_reg_rtx (SImode), gen_reg_rtx (SImode),
+ gen_reg_rtx (QImode)));
+ }
+ }
+ else
+ emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
+ DONE;
+}")
+
+;; Recognize insns generated for moving halfwords.
+;; (Note that the extract and insert patterns for single-byte moves
+;; are also involved in recognizing some of the insns used for this purpose.)
+
+(define_insn ""
+ [(set (match_operand:HI 0 "general_operand" "=r,m")
+ (match_operand:HI 1 "general_operand" "rmi,r"))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == MEM)
+ return \"st_32 %1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ return \"ld_32 %0,%1\;nop\";
+ if (GET_CODE (operands[1]) == REG)
+ return \"add_nt %0,%1,$0\";
+ return \"add_nt %0,r0,%1\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extract:SI (match_operand:HI 1 "register_operand" "r")
+ (const_int 8)
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "extract %0,%1,%2")
+
+(define_insn ""
+ [(set (zero_extract:SI (match_operand:HI 0 "register_operand" "+r")
+ (const_int 8)
+ (match_operand:SI 1 "nonmemory_operand" "rI"))
+ (match_operand:SI 2 "nonmemory_operand" "ri"))]
+ ""
+ "wr_insert %1\;insert %0,%0,%2")
+
+;; Constant propagation can optimize the previous pattern into this pattern.
+
+;(define_insn ""
+; [(set (zero_extract:QI (match_operand:HI 0 "register_operand" "+r")
+; (const_int 8)
+; (match_operand:SI 1 "immediate_operand" "I"))
+; (match_operand:QI 2 "register_operand" "r"))]
+; "GET_CODE (operands[1]) == CONST_INT
+; && INTVAL (operands[1]) % 8 == 0
+; && (unsigned) INTVAL (operands[1]) < 32"
+; "*
+;{
+; operands[1] = GEN_INT (INTVAL (operands[1]) / 8);
+; return \"wr_insert 0,0,%1\;insert %0,%0,%2\";
+;}")
+
+;; This pattern forces (set (reg:DF ...) (const_double ...))
+;; to be reloaded by putting the constant into memory.
+;; It must come before the more general movdf pattern.
+(define_insn ""
+ [(set (match_operand:DF 0 "general_operand" "=&r,f,&o")
+ (match_operand:DF 1 "" "mG,m,G"))]
+ "GET_CODE (operands[1]) == CONST_DOUBLE"
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ return output_fp_move_double (operands);
+ if (operands[1] == CONST0_RTX (DFmode) && GET_CODE (operands[0]) == REG)
+ {
+ operands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
+ return \"add_nt %0,r0,$0\;add_nt %1,r0,$0\";
+ }
+ if (operands[1] == CONST0_RTX (DFmode) && GET_CODE (operands[0]) == MEM)
+ {
+ operands[1] = adj_offsettable_operand (operands[0], 4);
+ return \"st_32 r0,%0\;st_32 r0,%1\";
+ }
+ return output_move_double (operands);
+}
+")
+
+(define_insn "movdf"
+ [(set (match_operand:DF 0 "general_operand" "=r,&r,m,?f,?rm")
+ (match_operand:DF 1 "general_operand" "r,m,r,rfm,f"))]
+ ""
+ "*
+{
+ if (FP_REG_P (operands[0]) || FP_REG_P (operands[1]))
+ return output_fp_move_double (operands);
+ return output_move_double (operands);
+}
+")
+
+(define_insn "movdi"
+ [(set (match_operand:DI 0 "general_operand" "=r,&r,m,?f,?rm")
+ (match_operand:DI 1 "general_operand" "r,m,r,rfm,f"))]
+ ""
+ "*
+{
+ if (FP_REG_P (operands[0]) || FP_REG_P (operands[1]))
+ return output_fp_move_double (operands);
+ return output_move_double (operands);
+}
+")
+
+(define_insn "movsf"
+ [(set (match_operand:SF 0 "general_operand" "=rf,m")
+ (match_operand:SF 1 "general_operand" "rfm,rf"))]
+ ""
+ "*
+{
+ if (FP_REG_P (operands[0]))
+ {
+ if (FP_REG_P (operands[1]))
+ return \"fmov %0,%1\";
+ if (GET_CODE (operands[1]) == REG)
+ {
+ rtx xoperands[2];
+ int offset = - get_frame_size () - 8;
+ xoperands[1] = operands[1];
+ xoperands[0] = GEN_INT (offset);
+ output_asm_insn (\"st_32 %1,r25,%0\", xoperands);
+ xoperands[1] = operands[0];
+ output_asm_insn (\"ld_sgl %1,r25,%0\;nop\", xoperands);
+ return \"\";
+ }
+ return \"ld_sgl %0,%1\;nop\";
+ }
+ if (FP_REG_P (operands[1]))
+ {
+ if (GET_CODE (operands[0]) == REG)
+ {
+ rtx xoperands[2];
+ int offset = - get_frame_size () - 8;
+ xoperands[0] = GEN_INT (offset);
+ xoperands[1] = operands[1];
+ output_asm_insn (\"st_sgl %1,r25,%0\", xoperands);
+ xoperands[1] = operands[0];
+ output_asm_insn (\"ld_32 %1,r25,%0\;nop\", xoperands);
+ return \"\";
+ }
+ return \"st_sgl %1,%0\";
+ }
+ if (GET_CODE (operands[0]) == MEM)
+ return \"st_32 %r1,%0\";
+ if (GET_CODE (operands[1]) == MEM)
+ return \"ld_32 %0,%1\;nop\";
+ if (GET_CODE (operands[1]) == REG)
+ return \"add_nt %0,%1,$0\";
+ return \"add_nt %0,r0,%1\";
+}")
+
+;;- truncation instructions
+(define_insn "truncsiqi2"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (truncate:QI
+ (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "add_nt %0,%1,$0")
+
+(define_insn "trunchiqi2"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (truncate:QI
+ (match_operand:HI 1 "register_operand" "r")))]
+ ""
+ "add_nt %0,%1,$0")
+
+(define_insn "truncsihi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (truncate:HI
+ (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "add_nt %0,%1,$0")
+
+;;- zero extension instructions
+
+;; Note that the one starting from HImode comes before those for QImode
+;; so that a constant operand will match HImode, not QImode.
+(define_expand "zero_extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (and:SI (match_operand:HI 1 "register_operand" "") ;Changed to SI below
+ ;; This constant is invalid, but reloading will handle it.
+ ;; It's useless to generate here the insns to construct it
+ ;; because constant propagation would simplify them anyway.
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) == SUBREG)
+ operands[1] = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ operands[1] = gen_rtx (SUBREG, SImode, operands[1], 0);
+
+ operands[2] = force_reg (SImode, GEN_INT (65535));
+}")
+
+(define_insn "zero_extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (zero_extend:HI
+ (match_operand:QI 1 "register_operand" "r")))]
+ ""
+ "extract %0,%1,$0")
+
+(define_insn "zero_extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extend:SI
+ (match_operand:QI 1 "register_operand" "r")))]
+ ""
+ "extract %0,%1,$0")
+
+;;- sign extension instructions
+;; Note that the one starting from HImode comes before those for QImode
+;; so that a constant operand will match HImode, not QImode.
+
+(define_expand "extendhisi2"
+ [(set (match_dup 2)
+ (and:SI (match_operand:HI 1 "register_operand" "") ;Changed to SI below
+ (match_dup 4)))
+ (set (match_dup 3) (plus:SI (match_dup 2) (match_dup 5)))
+ (set (match_operand:SI 0 "register_operand" "")
+ (xor:SI (match_dup 3) (match_dup 5)))]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) == SUBREG)
+ operands[1] = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ operands[1] = gen_rtx (SUBREG, SImode, operands[1], 0);
+
+ operands[2] = gen_reg_rtx (SImode);
+ operands[3] = gen_reg_rtx (SImode);
+ operands[4] = force_reg (SImode, GEN_INT (65535));
+ operands[5] = force_reg (SImode, GEN_INT (-32768));
+}")
+
+(define_expand "extendqihi2"
+ [(set (match_dup 2)
+ (and:HI (match_operand:QI 1 "register_operand" "") ;Changed to SI below
+ (const_int 255)))
+ (set (match_dup 3)
+ (plus:SI (match_dup 2) (const_int -128)))
+ (set (match_operand:HI 0 "register_operand" "")
+ (xor:SI (match_dup 3) (const_int -128)))]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) == SUBREG)
+ operands[1] = gen_rtx (SUBREG, HImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ operands[1] = gen_rtx (SUBREG, HImode, operands[1], 0);
+
+ operands[2] = gen_reg_rtx (HImode);
+ operands[3] = gen_reg_rtx (HImode);
+}")
+
+(define_expand "extendqisi2"
+ [(set (match_dup 2)
+ (and:SI (match_operand:QI 1 "register_operand" "") ;Changed to SI below
+ (const_int 255)))
+ (set (match_dup 3) (plus:SI (match_dup 2) (const_int -128)))
+ (set (match_operand:SI 0 "register_operand" "")
+ (xor:SI (match_dup 3) (const_int -128)))]
+ ""
+ "
+{
+ if (GET_CODE (operands[1]) == SUBREG)
+ operands[1] = gen_rtx (SUBREG, SImode, SUBREG_REG (operands[1]),
+ SUBREG_WORD (operands[1]));
+ else
+ operands[1] = gen_rtx (SUBREG, SImode, operands[1], 0);
+
+ operands[2] = gen_reg_rtx (SImode);
+ operands[3] = gen_reg_rtx (SImode);
+}")
+
+;;- arithmetic instructions
+
+(define_insn "addsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (plus:SI (match_operand:SI 1 "nonmemory_operand" "%r")
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "add %0,%1,%2")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (plus:SI (match_operand:SI 1 "nonmemory_operand" "%r")
+ (match_operand:SI 2 "big_immediate_operand" "g")))]
+ "GET_CODE (operands[2]) == CONST_INT
+ && (unsigned) (INTVAL (operands[2]) + 0x8000000) < 0x10000000"
+ "*
+{
+ return
+ output_add_large_offset (operands[0], operands[1], INTVAL (operands[2]));
+}")
+
+(define_insn "subsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (minus:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "sub %0,%1,%2")
+
+(define_insn "andsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (and:SI (match_operand:SI 1 "nonmemory_operand" "%r")
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "and %0,%1,%2")
+
+(define_insn "iorsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (ior:SI (match_operand:SI 1 "nonmemory_operand" "%r")
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "or %0,%1,%2")
+
+(define_insn "xorsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (xor:SI (match_operand:SI 1 "nonmemory_operand" "%r")
+ (match_operand:SI 2 "nonmemory_operand" "rI")))]
+ ""
+ "xor %0,%1,%2")
+
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (neg:SI (match_operand:SI 1 "nonmemory_operand" "rI")))]
+ ""
+ "sub %0,r0,%1")
+
+(define_insn "one_cmplsi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (not:SI (match_operand:SI 1 "register_operand" "r")))]
+ ""
+ "xor %0,%1,$-1")
+
+;; Floating point arithmetic instructions.
+
+(define_insn "adddf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (plus:DF (match_operand:DF 1 "register_operand" "f")
+ (match_operand:DF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fadd %0,%1,%2")
+
+(define_insn "addsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (plus:SF (match_operand:SF 1 "register_operand" "f")
+ (match_operand:SF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fadd %0,%1,%2")
+
+(define_insn "subdf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (minus:DF (match_operand:DF 1 "register_operand" "f")
+ (match_operand:DF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fsub %0,%1,%2")
+
+(define_insn "subsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (minus:SF (match_operand:SF 1 "register_operand" "f")
+ (match_operand:SF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fsub %0,%1,%2")
+
+(define_insn "muldf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (mult:DF (match_operand:DF 1 "register_operand" "f")
+ (match_operand:DF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fmul %0,%1,%2")
+
+(define_insn "mulsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (mult:SF (match_operand:SF 1 "register_operand" "f")
+ (match_operand:SF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fmul %0,%1,%2")
+
+(define_insn "divdf3"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (div:DF (match_operand:DF 1 "register_operand" "f")
+ (match_operand:DF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fdiv %0,%1,%2")
+
+(define_insn "divsf3"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (div:SF (match_operand:SF 1 "register_operand" "f")
+ (match_operand:SF 2 "register_operand" "f")))]
+ "TARGET_FPU"
+ "fdiv %0,%1,%2")
+
+(define_insn "negdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (neg:DF (match_operand:DF 1 "nonmemory_operand" "f")))]
+ "TARGET_FPU"
+ "fneg %0,%1")
+
+(define_insn "negsf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (neg:SF (match_operand:SF 1 "nonmemory_operand" "f")))]
+ "TARGET_FPU"
+ "fneg %0,%1")
+
+(define_insn "absdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (abs:DF (match_operand:DF 1 "nonmemory_operand" "f")))]
+ "TARGET_FPU"
+ "fabs %0,%1")
+
+(define_insn "abssf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (abs:SF (match_operand:SF 1 "nonmemory_operand" "f")))]
+ "TARGET_FPU"
+ "fabs %0,%1")
+
+;; Shift instructions
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (ashift:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "immediate_operand" "I")))]
+ "GET_CODE (operands[2]) == CONST_INT"
+ "*
+{
+ unsigned int amount = INTVAL (operands[2]);
+
+ switch (amount)
+ {
+ case 0:
+ return \"add_nt %0,%1,$0\";
+ case 1:
+ return \"sll %0,%1,$1\";
+ case 2:
+ return \"sll %0,%1,$2\";
+ default:
+ output_asm_insn (\"sll %0,%1,$3\", operands);
+
+ for (amount -= 3; amount >= 3; amount -= 3)
+ output_asm_insn (\"sll %0,%0,$3\", operands);
+
+ if (amount > 0)
+ output_asm_insn (amount == 1 ? \"sll %0,%0,$1\" : \"sll %0,%0,$2\",
+ operands);
+ return \"\";
+ }
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "immediate_operand" "I")))]
+ "GET_CODE (operands[2]) == CONST_INT"
+ "*
+{
+ unsigned int amount = INTVAL (operands[2]);
+
+ if (amount == 0)
+ return \"add_nt %0,%1,$0\";
+ else
+ output_asm_insn (\"sra %0,%1,$1\", operands);
+
+ for (amount -= 1; amount > 0; amount -= 1)
+ output_asm_insn (\"sra %0,%0,$1\", operands);
+
+ return \"\";
+}")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "immediate_operand" "I")))]
+ "GET_CODE (operands[2]) == CONST_INT"
+ "*
+{
+ unsigned int amount = INTVAL (operands[2]);
+
+ if (amount == 0)
+ return \"add_nt %0,%1,$0\";
+ else
+ output_asm_insn (\"srl %0,%1,$1\", operands);
+
+ for (amount -= 1; amount > 0; amount -= 1)
+ output_asm_insn (\"srl %0,%0,$1\", operands);
+
+ return \"\";
+}")
+
+(define_expand "ashlsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (ashift:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "nonmemory_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) != CONST_INT
+ || (! TARGET_EXPAND_SHIFTS && (unsigned) INTVAL (operands[2]) > 3))
+ FAIL;
+}")
+
+(define_expand "ashrsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "nonmemory_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) != CONST_INT
+ || (! TARGET_EXPAND_SHIFTS && (unsigned) INTVAL (operands[2]) > 1))
+ FAIL;
+}")
+
+(define_expand "lshrsi3"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "")
+ (match_operand:SI 2 "nonmemory_operand" "")))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) != CONST_INT
+ || (! TARGET_EXPAND_SHIFTS && (unsigned) INTVAL (operands[2]) > 1))
+ FAIL;
+}")
+
+;; Unconditional and other jump instructions
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "jump %l0\;nop")
+
+(define_insn "tablejump"
+ [(set (pc) (match_operand:SI 0 "register_operand" "r"))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "jump_reg r0,%0\;nop")
+
+;;- jump to subroutine
+(define_insn "call"
+ [(call (match_operand:SI 0 "memory_operand" "m")
+ (match_operand:SI 1 "general_operand" "g"))]
+ ;;- Don't use operand 1 for most machines.
+ ""
+ "add_nt r2,%0\;call .+8\;jump_reg r0,r2\;nop")
+
+(define_insn "call_value"
+ [(set (match_operand 0 "" "=g")
+ (call (match_operand:SI 1 "memory_operand" "m")
+ (match_operand:SI 2 "general_operand" "g")))]
+ ;;- Don't use operand 1 for most machines.
+ ""
+ "add_nt r2,%1\;call .+8\;jump_reg r0,r2\;nop")
+
+;; A memory ref with constant address is not normally valid.
+;; But it is valid in a call insns. This pattern allows the
+;; loading of the address to combine with the call.
+(define_insn ""
+ [(call (mem:SI (match_operand:SI 0 "" "i"))
+ (match_operand:SI 1 "general_operand" "g"))]
+ ;;- Don't use operand 1 for most machines.
+ "GET_CODE (operands[0]) == SYMBOL_REF"
+ "call %0\;nop")
+
+(define_insn ""
+ [(set (match_operand 0 "" "=g")
+ (call (mem:SI (match_operand:SI 1 "" "i"))
+ (match_operand:SI 2 "general_operand" "g")))]
+ ;;- Don't use operand 1 for most machines.
+ "GET_CODE (operands[1]) == SYMBOL_REF"
+ "call %1\;nop")
+
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "nop")
diff --git a/gnu/egcs/gcc/config/spur/xm-spur.h b/gnu/egcs/gcc/config/spur/xm-spur.h
new file mode 100644
index 00000000000..1d30053bc53
--- /dev/null
+++ b/gnu/egcs/gcc/config/spur/xm-spur.h
@@ -0,0 +1,39 @@
+/* Configuration for GNU C-compiler for Berkeley SPUR processor.
+ Copyright (C) 1988, 1993 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* #defines that need visibility everywhere. */
+#define FALSE 0
+#define TRUE 1
+
+/* This describes the machine the compiler is hosted on. */
+#define HOST_BITS_PER_CHAR 8
+#define HOST_BITS_PER_SHORT 16
+#define HOST_BITS_PER_INT 32
+#define HOST_BITS_PER_LONG 32
+#define HOST_BITS_PER_LONGLONG 64
+
+/* target machine dependencies.
+ tm.h is a symbolic link to the actual target specific file. */
+#include "tm.h"
+
+/* Arguments to use with `exit'. */
+#define SUCCESS_EXIT_CODE 0
+#define FATAL_EXIT_CODE 33