summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/final.c
diff options
context:
space:
mode:
authorMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
committerMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
commit0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch)
treef8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/final.c
parentff8e9a4356e55ed142306c3a375fa280800abc86 (diff)
egcs projects compiler system
Exact copy of the snapshot, except for the removal of texinfo/ gcc/ch/ libchill/
Diffstat (limited to 'gnu/egcs/gcc/final.c')
-rw-r--r--gnu/egcs/gcc/final.c4147
1 files changed, 4147 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/final.c b/gnu/egcs/gcc/final.c
new file mode 100644
index 00000000000..4695590dc5e
--- /dev/null
+++ b/gnu/egcs/gcc/final.c
@@ -0,0 +1,4147 @@
+/* Convert RTL to assembler code and output it, for GNU compiler.
+ Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This is the final pass of the compiler.
+ It looks at the rtl code for a function and outputs assembler code.
+
+ Call `final_start_function' to output the assembler code for function entry,
+ `final' to output assembler code for some RTL code,
+ `final_end_function' to output assembler code for function exit.
+ If a function is compiled in several pieces, each piece is
+ output separately with `final'.
+
+ Some optimizations are also done at this level.
+ Move instructions that were made unnecessary by good register allocation
+ are detected and omitted from the output. (Though most of these
+ are removed by the last jump pass.)
+
+ Instructions to set the condition codes are omitted when it can be
+ seen that the condition codes already had the desired values.
+
+ In some cases it is sufficient if the inherited condition codes
+ have related values, but this may require the following insn
+ (the one that tests the condition codes) to be modified.
+
+ The code for the function prologue and epilogue are generated
+ directly as assembler code by the macros FUNCTION_PROLOGUE and
+ FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
+
+#include "config.h"
+#include "system.h"
+
+#include "tree.h"
+#include "rtl.h"
+#include "regs.h"
+#include "insn-config.h"
+#include "insn-flags.h"
+#include "insn-attr.h"
+#include "insn-codes.h"
+#include "recog.h"
+#include "conditions.h"
+#include "flags.h"
+#include "real.h"
+#include "hard-reg-set.h"
+#include "defaults.h"
+#include "output.h"
+#include "except.h"
+#include "toplev.h"
+#include "reload.h"
+#include "intl.h"
+
+/* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
+#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
+#include "dbxout.h"
+#if defined (USG) || !defined (HAVE_STAB_H)
+#include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
+#else
+#include <stab.h>
+#endif
+
+#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
+
+#ifdef XCOFF_DEBUGGING_INFO
+#include "xcoffout.h"
+#endif
+
+#ifdef DWARF_DEBUGGING_INFO
+#include "dwarfout.h"
+#endif
+
+#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
+#include "dwarf2out.h"
+#endif
+
+#ifdef SDB_DEBUGGING_INFO
+#include "sdbout.h"
+#endif
+
+/* .stabd code for line number. */
+#ifndef N_SLINE
+#define N_SLINE 0x44
+#endif
+
+/* .stabs code for included file name. */
+#ifndef N_SOL
+#define N_SOL 0x84
+#endif
+
+#ifndef INT_TYPE_SIZE
+#define INT_TYPE_SIZE BITS_PER_WORD
+#endif
+
+#ifndef LONG_TYPE_SIZE
+#define LONG_TYPE_SIZE BITS_PER_WORD
+#endif
+
+/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
+ null default for it to save conditionalization later. */
+#ifndef CC_STATUS_INIT
+#define CC_STATUS_INIT
+#endif
+
+/* How to start an assembler comment. */
+#ifndef ASM_COMMENT_START
+#define ASM_COMMENT_START ";#"
+#endif
+
+/* Is the given character a logical line separator for the assembler? */
+#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
+#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
+#endif
+
+#ifndef JUMP_TABLES_IN_TEXT_SECTION
+#define JUMP_TABLES_IN_TEXT_SECTION 0
+#endif
+
+/* Last insn processed by final_scan_insn. */
+static rtx debug_insn = 0;
+
+/* Line number of last NOTE. */
+static int last_linenum;
+
+/* Highest line number in current block. */
+static int high_block_linenum;
+
+/* Likewise for function. */
+static int high_function_linenum;
+
+/* Filename of last NOTE. */
+static char *last_filename;
+
+/* Number of basic blocks seen so far;
+ used if profile_block_flag is set. */
+static int count_basic_blocks;
+
+/* Number of instrumented arcs when profile_arc_flag is set. */
+extern int count_instrumented_arcs;
+
+extern int length_unit_log; /* This is defined in insn-attrtab.c. */
+
+/* Nonzero while outputting an `asm' with operands.
+ This means that inconsistencies are the user's fault, so don't abort.
+ The precise value is the insn being output, to pass to error_for_asm. */
+static rtx this_is_asm_operands;
+
+/* Number of operands of this insn, for an `asm' with operands. */
+static unsigned int insn_noperands;
+
+/* Compare optimization flag. */
+
+static rtx last_ignored_compare = 0;
+
+/* Flag indicating this insn is the start of a new basic block. */
+
+static int new_block = 1;
+
+/* All the symbol-blocks (levels of scoping) in the compilation
+ are assigned sequence numbers in order of appearance of the
+ beginnings of the symbol-blocks. Both final and dbxout do this,
+ and assume that they will both give the same number to each block.
+ Final uses these sequence numbers to generate assembler label names
+ LBBnnn and LBEnnn for the beginning and end of the symbol-block.
+ Dbxout uses the sequence numbers to generate references to the same labels
+ from the dbx debugging information.
+
+ Sdb records this level at the beginning of each function,
+ in order to find the current level when recursing down declarations.
+ It outputs the block beginning and endings
+ at the point in the asm file where the blocks would begin and end. */
+
+int next_block_index;
+
+/* Assign a unique number to each insn that is output.
+ This can be used to generate unique local labels. */
+
+static int insn_counter = 0;
+
+#ifdef HAVE_cc0
+/* This variable contains machine-dependent flags (defined in tm.h)
+ set and examined by output routines
+ that describe how to interpret the condition codes properly. */
+
+CC_STATUS cc_status;
+
+/* During output of an insn, this contains a copy of cc_status
+ from before the insn. */
+
+CC_STATUS cc_prev_status;
+#endif
+
+/* Indexed by hardware reg number, is 1 if that register is ever
+ used in the current function.
+
+ In life_analysis, or in stupid_life_analysis, this is set
+ up to record the hard regs used explicitly. Reload adds
+ in the hard regs used for holding pseudo regs. Final uses
+ it to generate the code in the function prologue and epilogue
+ to save and restore registers as needed. */
+
+char regs_ever_live[FIRST_PSEUDO_REGISTER];
+
+/* Nonzero means current function must be given a frame pointer.
+ Set in stmt.c if anything is allocated on the stack there.
+ Set in reload1.c if anything is allocated on the stack there. */
+
+int frame_pointer_needed;
+
+/* Assign unique numbers to labels generated for profiling. */
+
+int profile_label_no;
+
+/* Length so far allocated in PENDING_BLOCKS. */
+
+static int max_block_depth;
+
+/* Stack of sequence numbers of symbol-blocks of which we have seen the
+ beginning but not yet the end. Sequence numbers are assigned at
+ the beginning; this stack allows us to find the sequence number
+ of a block that is ending. */
+
+static int *pending_blocks;
+
+/* Number of elements currently in use in PENDING_BLOCKS. */
+
+static int block_depth;
+
+/* Nonzero if have enabled APP processing of our assembler output. */
+
+static int app_on;
+
+/* If we are outputting an insn sequence, this contains the sequence rtx.
+ Zero otherwise. */
+
+rtx final_sequence;
+
+#ifdef ASSEMBLER_DIALECT
+
+/* Number of the assembler dialect to use, starting at 0. */
+static int dialect_number;
+#endif
+
+/* Indexed by line number, nonzero if there is a note for that line. */
+
+static char *line_note_exists;
+
+/* Linked list to hold line numbers for each basic block. */
+
+struct bb_list {
+ struct bb_list *next; /* pointer to next basic block */
+ int line_num; /* line number */
+ int file_label_num; /* LPBC<n> label # for stored filename */
+ int func_label_num; /* LPBC<n> label # for stored function name */
+};
+
+static struct bb_list *bb_head = 0; /* Head of basic block list */
+static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
+static int bb_file_label_num = -1; /* Current label # for file */
+static int bb_func_label_num = -1; /* Current label # for func */
+
+/* Linked list to hold the strings for each file and function name output. */
+
+struct bb_str {
+ struct bb_str *next; /* pointer to next string */
+ const char *string; /* string */
+ int label_num; /* label number */
+ int length; /* string length */
+};
+
+extern rtx peephole PROTO((rtx));
+
+static struct bb_str *sbb_head = 0; /* Head of string list. */
+static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
+static int sbb_label_num = 0; /* Last label used */
+
+#ifdef HAVE_ATTR_length
+static int asm_insn_count PROTO((rtx));
+#endif
+static void profile_function PROTO((FILE *));
+static void profile_after_prologue PROTO((FILE *));
+static void add_bb PROTO((FILE *));
+static int add_bb_string PROTO((const char *, int));
+static void output_source_line PROTO((FILE *, rtx));
+static rtx walk_alter_subreg PROTO((rtx));
+static void output_asm_name PROTO((void));
+static void output_operand PROTO((rtx, int));
+#ifdef LEAF_REGISTERS
+static void leaf_renumber_regs PROTO((rtx));
+#endif
+#ifdef HAVE_cc0
+static int alter_cond PROTO((rtx));
+#endif
+
+extern char *getpwd ();
+
+/* Initialize data in final at the beginning of a compilation. */
+
+void
+init_final (filename)
+ char *filename;
+{
+ next_block_index = 2;
+ app_on = 0;
+ max_block_depth = 20;
+ pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
+ final_sequence = 0;
+
+#ifdef ASSEMBLER_DIALECT
+ dialect_number = ASSEMBLER_DIALECT;
+#endif
+}
+
+/* Called at end of source file,
+ to output the block-profiling table for this entire compilation. */
+
+void
+end_final (filename)
+ const char *filename;
+{
+ int i;
+
+ if (profile_block_flag || profile_arc_flag)
+ {
+ char name[20];
+ int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
+ int size, rounded;
+ struct bb_list *ptr;
+ struct bb_str *sptr;
+ int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
+ int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
+
+ if (profile_block_flag)
+ size = long_bytes * count_basic_blocks;
+ else
+ size = long_bytes * count_instrumented_arcs;
+ rounded = size;
+
+ rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
+ rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
+ * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
+
+ data_section ();
+
+ /* Output the main header, of 11 words:
+ 0: 1 if this file is initialized, else 0.
+ 1: address of file name (LPBX1).
+ 2: address of table of counts (LPBX2).
+ 3: number of counts in the table.
+ 4: always 0, for compatibility with Sun.
+
+ The following are GNU extensions:
+
+ 5: address of table of start addrs of basic blocks (LPBX3).
+ 6: Number of bytes in this header.
+ 7: address of table of function names (LPBX4).
+ 8: address of table of line numbers (LPBX5) or 0.
+ 9: address of table of file names (LPBX6) or 0.
+ 10: space reserved for basic block profiling. */
+
+ ASM_OUTPUT_ALIGN (asm_out_file, align);
+
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
+ /* zero word */
+ assemble_integer (const0_rtx, long_bytes, 1);
+
+ /* address of filename */
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
+
+ /* address of count table */
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
+
+ /* count of the # of basic blocks or # of instrumented arcs */
+ if (profile_block_flag)
+ assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
+ else
+ assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
+ 1);
+
+ /* zero word (link field) */
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+
+ /* address of basic block start address table */
+ if (profile_block_flag)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
+ 1);
+ }
+ else
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+
+ /* byte count for extended structure. */
+ assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
+
+ /* address of function name table */
+ if (profile_block_flag)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
+ 1);
+ }
+ else
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+
+ /* address of line number and filename tables if debugging. */
+ if (write_symbols != NO_DEBUG && profile_block_flag)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
+ }
+ else
+ {
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ }
+
+ /* space for extension ptr (link field) */
+ assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
+
+ /* Output the file name changing the suffix to .d for Sun tcov
+ compatibility. */
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
+ {
+ char *cwd = getpwd ();
+ int len = strlen (filename) + strlen (cwd) + 1;
+ char *data_file = (char *) alloca (len + 4);
+
+ strcpy (data_file, cwd);
+ strcat (data_file, "/");
+ strcat (data_file, filename);
+ strip_off_ending (data_file, len);
+ if (profile_block_flag)
+ strcat (data_file, ".d");
+ else
+ strcat (data_file, ".da");
+ assemble_string (data_file, strlen (data_file) + 1);
+ }
+
+ /* Make space for the table of counts. */
+ if (size == 0)
+ {
+ /* Realign data section. */
+ ASM_OUTPUT_ALIGN (asm_out_file, align);
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
+ if (size != 0)
+ assemble_zeros (size);
+ }
+ else
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
+#ifdef ASM_OUTPUT_SHARED_LOCAL
+ if (flag_shared_data)
+ ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
+ else
+#endif
+#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
+ ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
+ BIGGEST_ALIGNMENT);
+#else
+#ifdef ASM_OUTPUT_ALIGNED_LOCAL
+ ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
+ BIGGEST_ALIGNMENT);
+#else
+ ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
+#endif
+#endif
+ }
+
+ /* Output any basic block strings */
+ if (profile_block_flag)
+ {
+ readonly_data_section ();
+ if (sbb_head)
+ {
+ ASM_OUTPUT_ALIGN (asm_out_file, align);
+ for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
+ {
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
+ sptr->label_num);
+ assemble_string (sptr->string, sptr->length);
+ }
+ }
+ }
+
+ /* Output the table of addresses. */
+ if (profile_block_flag)
+ {
+ /* Realign in new section */
+ ASM_OUTPUT_ALIGN (asm_out_file, align);
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
+ for (i = 0; i < count_basic_blocks; i++)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
+ pointer_bytes, 1);
+ }
+ }
+
+ /* Output the table of function names. */
+ if (profile_block_flag)
+ {
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
+ for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
+ {
+ if (ptr->func_label_num >= 0)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
+ ptr->func_label_num);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
+ pointer_bytes, 1);
+ }
+ else
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ }
+
+ for ( ; i < count_basic_blocks; i++)
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ }
+
+ if (write_symbols != NO_DEBUG && profile_block_flag)
+ {
+ /* Output the table of line numbers. */
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
+ for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
+ assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
+
+ for ( ; i < count_basic_blocks; i++)
+ assemble_integer (const0_rtx, long_bytes, 1);
+
+ /* Output the table of file names. */
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
+ for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
+ {
+ if (ptr->file_label_num >= 0)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
+ ptr->file_label_num);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
+ pointer_bytes, 1);
+ }
+ else
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ }
+
+ for ( ; i < count_basic_blocks; i++)
+ assemble_integer (const0_rtx, pointer_bytes, 1);
+ }
+
+ /* End with the address of the table of addresses,
+ so we can find it easily, as the last word in the file's text. */
+ if (profile_block_flag)
+ {
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
+ assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
+ 1);
+ }
+ }
+}
+
+/* Enable APP processing of subsequent output.
+ Used before the output from an `asm' statement. */
+
+void
+app_enable ()
+{
+ if (! app_on)
+ {
+ fputs (ASM_APP_ON, asm_out_file);
+ app_on = 1;
+ }
+}
+
+/* Disable APP processing of subsequent output.
+ Called from varasm.c before most kinds of output. */
+
+void
+app_disable ()
+{
+ if (app_on)
+ {
+ fputs (ASM_APP_OFF, asm_out_file);
+ app_on = 0;
+ }
+}
+
+/* Return the number of slots filled in the current
+ delayed branch sequence (we don't count the insn needing the
+ delay slot). Zero if not in a delayed branch sequence. */
+
+#ifdef DELAY_SLOTS
+int
+dbr_sequence_length ()
+{
+ if (final_sequence != 0)
+ return XVECLEN (final_sequence, 0) - 1;
+ else
+ return 0;
+}
+#endif
+
+/* The next two pages contain routines used to compute the length of an insn
+ and to shorten branches. */
+
+/* Arrays for insn lengths, and addresses. The latter is referenced by
+ `insn_current_length'. */
+
+static short *insn_lengths;
+int *insn_addresses;
+
+/* Max uid for which the above arrays are valid. */
+static int insn_lengths_max_uid;
+
+/* Address of insn being processed. Used by `insn_current_length'. */
+int insn_current_address;
+
+/* Address of insn being processed in previous iteration. */
+int insn_last_address;
+
+/* konwn invariant alignment of insn being processed. */
+int insn_current_align;
+
+/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
+ gives the next following alignment insn that increases the known
+ alignment, or NULL_RTX if there is no such insn.
+ For any alignment obtained this way, we can again index uid_align with
+ its uid to obtain the next following align that in turn increases the
+ alignment, till we reach NULL_RTX; the sequence obtained this way
+ for each insn we'll call the alignment chain of this insn in the following
+ comments. */
+
+struct label_alignment {
+ short alignment;
+ short max_skip;
+};
+
+static rtx *uid_align;
+static int *uid_shuid;
+static struct label_alignment *label_align;
+
+/* Indicate that branch shortening hasn't yet been done. */
+
+void
+init_insn_lengths ()
+{
+ if (label_align)
+ {
+ free (label_align);
+ label_align = 0;
+ }
+ if (uid_shuid)
+ {
+ free (uid_shuid);
+ uid_shuid = 0;
+ }
+ if (insn_lengths)
+ {
+ free (insn_lengths);
+ insn_lengths = 0;
+ insn_lengths_max_uid = 0;
+ }
+ if (insn_addresses)
+ {
+ free (insn_addresses);
+ insn_addresses = 0;
+ }
+ if (uid_align)
+ {
+ free (uid_align);
+ uid_align = 0;
+ }
+}
+
+/* Obtain the current length of an insn. If branch shortening has been done,
+ get its actual length. Otherwise, get its maximum length. */
+
+int
+get_attr_length (insn)
+ rtx insn;
+{
+#ifdef HAVE_ATTR_length
+ rtx body;
+ int i;
+ int length = 0;
+
+ if (insn_lengths_max_uid > INSN_UID (insn))
+ return insn_lengths[INSN_UID (insn)];
+ else
+ switch (GET_CODE (insn))
+ {
+ case NOTE:
+ case BARRIER:
+ case CODE_LABEL:
+ return 0;
+
+ case CALL_INSN:
+ length = insn_default_length (insn);
+ break;
+
+ case JUMP_INSN:
+ body = PATTERN (insn);
+ if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
+ {
+ /* Alignment is machine-dependent and should be handled by
+ ADDR_VEC_ALIGN. */
+ }
+ else
+ length = insn_default_length (insn);
+ break;
+
+ case INSN:
+ body = PATTERN (insn);
+ if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
+ return 0;
+
+ else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
+ length = asm_insn_count (body) * insn_default_length (insn);
+ else if (GET_CODE (body) == SEQUENCE)
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ length += get_attr_length (XVECEXP (body, 0, i));
+ else
+ length = insn_default_length (insn);
+ break;
+
+ default:
+ break;
+ }
+
+#ifdef ADJUST_INSN_LENGTH
+ ADJUST_INSN_LENGTH (insn, length);
+#endif
+ return length;
+#else /* not HAVE_ATTR_length */
+ return 0;
+#endif /* not HAVE_ATTR_length */
+}
+
+/* Code to handle alignment inside shorten_branches. */
+
+/* Here is an explanation how the algorithm in align_fuzz can give
+ proper results:
+
+ Call a sequence of instructions beginning with alignment point X
+ and continuing until the next alignment point `block X'. When `X'
+ is used in an expression, it means the alignment value of the
+ alignment point.
+
+ Call the distance between the start of the first insn of block X, and
+ the end of the last insn of block X `IX', for the `inner size of X'.
+ This is clearly the sum of the instruction lengths.
+
+ Likewise with the next alignment-delimited block following X, which we
+ shall call block Y.
+
+ Call the distance between the start of the first insn of block X, and
+ the start of the first insn of block Y `OX', for the `outer size of X'.
+
+ The estimated padding is then OX - IX.
+
+ OX can be safely estimated as
+
+ if (X >= Y)
+ OX = round_up(IX, Y)
+ else
+ OX = round_up(IX, X) + Y - X
+
+ Clearly est(IX) >= real(IX), because that only depends on the
+ instruction lengths, and those being overestimated is a given.
+
+ Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
+ we needn't worry about that when thinking about OX.
+
+ When X >= Y, the alignment provided by Y adds no uncertainty factor
+ for branch ranges starting before X, so we can just round what we have.
+ But when X < Y, we don't know anything about the, so to speak,
+ `middle bits', so we have to assume the worst when aligning up from an
+ address mod X to one mod Y, which is Y - X. */
+
+#ifndef LABEL_ALIGN
+#define LABEL_ALIGN(LABEL) 0
+#endif
+
+#ifndef LABEL_ALIGN_MAX_SKIP
+#define LABEL_ALIGN_MAX_SKIP 0
+#endif
+
+#ifndef LOOP_ALIGN
+#define LOOP_ALIGN(LABEL) 0
+#endif
+
+#ifndef LOOP_ALIGN_MAX_SKIP
+#define LOOP_ALIGN_MAX_SKIP 0
+#endif
+
+#ifndef LABEL_ALIGN_AFTER_BARRIER
+#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
+#endif
+
+#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
+#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
+#endif
+
+#ifndef ADDR_VEC_ALIGN
+int
+final_addr_vec_align (addr_vec)
+ rtx addr_vec;
+{
+ int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
+
+ if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
+ align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ return align;
+
+}
+#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
+#endif
+
+#ifndef INSN_LENGTH_ALIGNMENT
+#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
+#endif
+
+#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
+
+static int min_labelno, max_labelno;
+
+#define LABEL_TO_ALIGNMENT(LABEL) \
+ (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
+
+#define LABEL_TO_MAX_SKIP(LABEL) \
+ (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
+
+/* For the benefit of port specific code do this also as a function. */
+int
+label_to_alignment (label)
+ rtx label;
+{
+ return LABEL_TO_ALIGNMENT (label);
+}
+
+#ifdef HAVE_ATTR_length
+/* The differences in addresses
+ between a branch and its target might grow or shrink depending on
+ the alignment the start insn of the range (the branch for a forward
+ branch or the label for a backward branch) starts out on; if these
+ differences are used naively, they can even oscillate infinitely.
+ We therefore want to compute a 'worst case' address difference that
+ is independent of the alignment the start insn of the range end
+ up on, and that is at least as large as the actual difference.
+ The function align_fuzz calculates the amount we have to add to the
+ naively computed difference, by traversing the part of the alignment
+ chain of the start insn of the range that is in front of the end insn
+ of the range, and considering for each alignment the maximum amount
+ that it might contribute to a size increase.
+
+ For casesi tables, we also want to know worst case minimum amounts of
+ address difference, in case a machine description wants to introduce
+ some common offset that is added to all offsets in a table.
+ For this purpose, align_fuzz with a growth argument of 0 comuptes the
+ appropriate adjustment. */
+
+
+/* Compute the maximum delta by which the difference of the addresses of
+ START and END might grow / shrink due to a different address for start
+ which changes the size of alignment insns between START and END.
+ KNOWN_ALIGN_LOG is the alignment known for START.
+ GROWTH should be ~0 if the objective is to compute potential code size
+ increase, and 0 if the objective is to compute potential shrink.
+ The return value is undefined for any other value of GROWTH. */
+int
+align_fuzz (start, end, known_align_log, growth)
+ rtx start, end;
+ int known_align_log;
+ unsigned growth;
+{
+ int uid = INSN_UID (start);
+ rtx align_label;
+ int known_align = 1 << known_align_log;
+ int end_shuid = INSN_SHUID (end);
+ int fuzz = 0;
+
+ for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
+ {
+ int align_addr, new_align;
+
+ uid = INSN_UID (align_label);
+ align_addr = insn_addresses[uid] - insn_lengths[uid];
+ if (uid_shuid[uid] > end_shuid)
+ break;
+ known_align_log = LABEL_TO_ALIGNMENT (align_label);
+ new_align = 1 << known_align_log;
+ if (new_align < known_align)
+ continue;
+ fuzz += (-align_addr ^ growth) & (new_align - known_align);
+ known_align = new_align;
+ }
+ return fuzz;
+}
+
+/* Compute a worst-case reference address of a branch so that it
+ can be safely used in the presence of aligned labels. Since the
+ size of the branch itself is unknown, the size of the branch is
+ not included in the range. I.e. for a forward branch, the reference
+ address is the end address of the branch as known from the previous
+ branch shortening pass, minus a value to account for possible size
+ increase due to alignment. For a backward branch, it is the start
+ address of the branch as known from the current pass, plus a value
+ to account for possible size increase due to alignment.
+ NB.: Therefore, the maximum offset allowed for backward branches needs
+ to exclude the branch size. */
+int
+insn_current_reference_address (branch)
+ rtx branch;
+{
+ rtx dest;
+ rtx seq = NEXT_INSN (PREV_INSN (branch));
+ int seq_uid = INSN_UID (seq);
+ if (GET_CODE (branch) != JUMP_INSN)
+ /* This can happen for example on the PA; the objective is to know the
+ offset to address something in front of the start of the function.
+ Thus, we can treat it like a backward branch.
+ We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
+ any alignment we'd encounter, so we skip the call to align_fuzz. */
+ return insn_current_address;
+ dest = JUMP_LABEL (branch);
+ /* BRANCH has no proper alignment chain set, so use SEQ. */
+ if (INSN_SHUID (branch) < INSN_SHUID (dest))
+ {
+ /* Forward branch. */
+ return (insn_last_address + insn_lengths[seq_uid]
+ - align_fuzz (seq, dest, length_unit_log, ~0));
+ }
+ else
+ {
+ /* Backward branch. */
+ return (insn_current_address
+ + align_fuzz (dest, seq, length_unit_log, ~0));
+ }
+}
+#endif /* HAVE_ATTR_length */
+
+/* Make a pass over all insns and compute their actual lengths by shortening
+ any branches of variable length if possible. */
+
+/* Give a default value for the lowest address in a function. */
+
+#ifndef FIRST_INSN_ADDRESS
+#define FIRST_INSN_ADDRESS 0
+#endif
+
+/* shorten_branches might be called multiple times: for example, the SH
+ port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
+ In order to do this, it needs proper length information, which it obtains
+ by calling shorten_branches. This cannot be collapsed with
+ shorten_branches itself into a single pass unless we also want to intergate
+ reorg.c, since the branch splitting exposes new instructions with delay
+ slots. */
+
+void
+shorten_branches (first)
+ rtx first;
+{
+ rtx insn;
+ int max_uid;
+ int i;
+ int max_log;
+ int max_skip;
+#ifdef HAVE_ATTR_length
+#define MAX_CODE_ALIGN 16
+ rtx seq;
+ int something_changed = 1;
+ char *varying_length;
+ rtx body;
+ int uid;
+ rtx align_tab[MAX_CODE_ALIGN];
+
+ /* In order to make sure that all instructions have valid length info,
+ we must split them before we compute the address/length info. */
+
+ for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ rtx old = insn;
+ insn = try_split (PATTERN (old), old, 1);
+ /* When not optimizing, the old insn will be still left around
+ with only the 'deleted' bit set. Transform it into a note
+ to avoid confusion of subsequent processing. */
+ if (INSN_DELETED_P (old))
+ {
+ PUT_CODE (old , NOTE);
+ NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (old) = 0;
+ }
+ }
+#endif
+
+ /* We must do some computations even when not actually shortening, in
+ order to get the alignment information for the labels. */
+
+ init_insn_lengths ();
+
+ /* Compute maximum UID and allocate label_align / uid_shuid. */
+ max_uid = get_max_uid ();
+
+ max_labelno = max_label_num ();
+ min_labelno = get_first_label_num ();
+ label_align = (struct label_alignment *) xmalloc (
+ (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
+ bzero ((char *) label_align,
+ (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
+
+ uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
+
+ /* Initialize label_align and set up uid_shuid to be strictly
+ monotonically rising with insn order. */
+ /* We use max_log here to keep track of the maximum alignment we want to
+ impose on the next CODE_LABEL (or the current one if we are processing
+ the CODE_LABEL itself). */
+
+ max_log = 0;
+ max_skip = 0;
+
+ for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
+ {
+ int log;
+
+ INSN_SHUID (insn) = i++;
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ /* reorg might make the first insn of a loop being run once only,
+ and delete the label in front of it. Then we want to apply
+ the loop alignment to the new label created by reorg, which
+ is separated by the former loop start insn from the
+ NOTE_INSN_LOOP_BEG. */
+ }
+ else if (GET_CODE (insn) == CODE_LABEL)
+ {
+ rtx next;
+
+ log = LABEL_ALIGN (insn);
+ if (max_log < log)
+ {
+ max_log = log;
+ max_skip = LABEL_ALIGN_MAX_SKIP;
+ }
+ next = NEXT_INSN (insn);
+ /* ADDR_VECs only take room if read-only data goes into the text
+ section. */
+ if (JUMP_TABLES_IN_TEXT_SECTION
+#if !defined(READONLY_DATA_SECTION)
+ || 1
+#endif
+ )
+ if (next && GET_CODE (next) == JUMP_INSN)
+ {
+ rtx nextbody = PATTERN (next);
+ if (GET_CODE (nextbody) == ADDR_VEC
+ || GET_CODE (nextbody) == ADDR_DIFF_VEC)
+ {
+ log = ADDR_VEC_ALIGN (next);
+ if (max_log < log)
+ {
+ max_log = log;
+ max_skip = LABEL_ALIGN_MAX_SKIP;
+ }
+ }
+ }
+ LABEL_TO_ALIGNMENT (insn) = max_log;
+ LABEL_TO_MAX_SKIP (insn) = max_skip;
+ max_log = 0;
+ max_skip = 0;
+ }
+ else if (GET_CODE (insn) == BARRIER)
+ {
+ rtx label;
+
+ for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
+ label = NEXT_INSN (label))
+ if (GET_CODE (label) == CODE_LABEL)
+ {
+ log = LABEL_ALIGN_AFTER_BARRIER (insn);
+ if (max_log < log)
+ {
+ max_log = log;
+ max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
+ }
+ break;
+ }
+ }
+ /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
+ sequences in order to handle reorg output efficiently. */
+ else if (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ {
+ rtx label;
+
+ for (label = insn; label; label = NEXT_INSN (label))
+ if (GET_CODE (label) == CODE_LABEL)
+ {
+ log = LOOP_ALIGN (insn);
+ if (max_log < log)
+ {
+ max_log = log;
+ max_skip = LOOP_ALIGN_MAX_SKIP;
+ }
+ break;
+ }
+ }
+ else
+ continue;
+ }
+#ifdef HAVE_ATTR_length
+
+ /* Allocate the rest of the arrays. */
+ insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
+ insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
+ insn_lengths_max_uid = max_uid;
+ /* Syntax errors can lead to labels being outside of the main insn stream.
+ Initialize insn_addresses, so that we get reproducible results. */
+ bzero ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
+ uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
+
+ varying_length = (char *) xmalloc (max_uid * sizeof (char));
+
+ bzero (varying_length, max_uid);
+
+ /* Initialize uid_align. We scan instructions
+ from end to start, and keep in align_tab[n] the last seen insn
+ that does an alignment of at least n+1, i.e. the successor
+ in the alignment chain for an insn that does / has a known
+ alignment of n. */
+
+ bzero ((char *) uid_align, max_uid * sizeof *uid_align);
+
+ for (i = MAX_CODE_ALIGN; --i >= 0; )
+ align_tab[i] = NULL_RTX;
+ seq = get_last_insn ();
+ for (; seq; seq = PREV_INSN (seq))
+ {
+ int uid = INSN_UID (seq);
+ int log;
+ log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
+ uid_align[uid] = align_tab[0];
+ if (log)
+ {
+ /* Found an alignment label. */
+ uid_align[uid] = align_tab[log];
+ for (i = log - 1; i >= 0; i--)
+ align_tab[i] = seq;
+ }
+ }
+#ifdef CASE_VECTOR_SHORTEN_MODE
+ if (optimize)
+ {
+ /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
+ label fields. */
+
+ int min_shuid = INSN_SHUID (get_insns ()) - 1;
+ int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
+ int rel;
+
+ for (insn = first; insn != 0; insn = NEXT_INSN (insn))
+ {
+ rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
+ int len, i, min, max, insn_shuid;
+ int min_align;
+ addr_diff_vec_flags flags;
+
+ if (GET_CODE (insn) != JUMP_INSN
+ || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
+ continue;
+ pat = PATTERN (insn);
+ len = XVECLEN (pat, 1);
+ if (len <= 0)
+ abort ();
+ min_align = MAX_CODE_ALIGN;
+ for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
+ {
+ rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
+ int shuid = INSN_SHUID (lab);
+ if (shuid < min)
+ {
+ min = shuid;
+ min_lab = lab;
+ }
+ if (shuid > max)
+ {
+ max = shuid;
+ max_lab = lab;
+ }
+ if (min_align > LABEL_TO_ALIGNMENT (lab))
+ min_align = LABEL_TO_ALIGNMENT (lab);
+ }
+ XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
+ XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
+ insn_shuid = INSN_SHUID (insn);
+ rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
+ flags.min_align = min_align;
+ flags.base_after_vec = rel > insn_shuid;
+ flags.min_after_vec = min > insn_shuid;
+ flags.max_after_vec = max > insn_shuid;
+ flags.min_after_base = min > rel;
+ flags.max_after_base = max > rel;
+ ADDR_DIFF_VEC_FLAGS (pat) = flags;
+ }
+ }
+#endif /* CASE_VECTOR_SHORTEN_MODE */
+
+
+ /* Compute initial lengths, addresses, and varying flags for each insn. */
+ for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
+ insn != 0;
+ insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
+ {
+ uid = INSN_UID (insn);
+
+ insn_lengths[uid] = 0;
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ {
+ int log = LABEL_TO_ALIGNMENT (insn);
+ if (log)
+ {
+ int align = 1 << log;
+ int new_address = (insn_current_address + align - 1) & -align;
+ insn_lengths[uid] = new_address - insn_current_address;
+ insn_current_address = new_address;
+ }
+ }
+
+ insn_addresses[uid] = insn_current_address;
+
+ if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
+ || GET_CODE (insn) == CODE_LABEL)
+ continue;
+ if (INSN_DELETED_P (insn))
+ continue;
+
+ body = PATTERN (insn);
+ if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
+ {
+ /* This only takes room if read-only data goes into the text
+ section. */
+ if (JUMP_TABLES_IN_TEXT_SECTION
+#if !defined(READONLY_DATA_SECTION)
+ || 1
+#endif
+ )
+ insn_lengths[uid] = (XVECLEN (body,
+ GET_CODE (body) == ADDR_DIFF_VEC)
+ * GET_MODE_SIZE (GET_MODE (body)));
+ /* Alignment is handled by ADDR_VEC_ALIGN. */
+ }
+ else if (asm_noperands (body) >= 0)
+ insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
+ else if (GET_CODE (body) == SEQUENCE)
+ {
+ int i;
+ int const_delay_slots;
+#ifdef DELAY_SLOTS
+ const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
+#else
+ const_delay_slots = 0;
+#endif
+ /* Inside a delay slot sequence, we do not do any branch shortening
+ if the shortening could change the number of delay slots
+ of the branch. */
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ {
+ rtx inner_insn = XVECEXP (body, 0, i);
+ int inner_uid = INSN_UID (inner_insn);
+ int inner_length;
+
+ if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
+ inner_length = (asm_insn_count (PATTERN (inner_insn))
+ * insn_default_length (inner_insn));
+ else
+ inner_length = insn_default_length (inner_insn);
+
+ insn_lengths[inner_uid] = inner_length;
+ if (const_delay_slots)
+ {
+ if ((varying_length[inner_uid]
+ = insn_variable_length_p (inner_insn)) != 0)
+ varying_length[uid] = 1;
+ insn_addresses[inner_uid] = (insn_current_address +
+ insn_lengths[uid]);
+ }
+ else
+ varying_length[inner_uid] = 0;
+ insn_lengths[uid] += inner_length;
+ }
+ }
+ else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
+ {
+ insn_lengths[uid] = insn_default_length (insn);
+ varying_length[uid] = insn_variable_length_p (insn);
+ }
+
+ /* If needed, do any adjustment. */
+#ifdef ADJUST_INSN_LENGTH
+ ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
+ if (insn_lengths[uid] < 0)
+ fatal_insn ("Negative insn length", insn);
+#endif
+ }
+
+ /* Now loop over all the insns finding varying length insns. For each,
+ get the current insn length. If it has changed, reflect the change.
+ When nothing changes for a full pass, we are done. */
+
+ while (something_changed)
+ {
+ something_changed = 0;
+ insn_current_align = MAX_CODE_ALIGN - 1;
+ for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
+ insn != 0;
+ insn = NEXT_INSN (insn))
+ {
+ int new_length;
+#ifdef ADJUST_INSN_LENGTH
+ int tmp_length;
+#endif
+ int length_align;
+
+ uid = INSN_UID (insn);
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ {
+ int log = LABEL_TO_ALIGNMENT (insn);
+ if (log > insn_current_align)
+ {
+ int align = 1 << log;
+ int new_address= (insn_current_address + align - 1) & -align;
+ insn_lengths[uid] = new_address - insn_current_address;
+ insn_current_align = log;
+ insn_current_address = new_address;
+ }
+ else
+ insn_lengths[uid] = 0;
+ insn_addresses[uid] = insn_current_address;
+ continue;
+ }
+
+ length_align = INSN_LENGTH_ALIGNMENT (insn);
+ if (length_align < insn_current_align)
+ insn_current_align = length_align;
+
+ insn_last_address = insn_addresses[uid];
+ insn_addresses[uid] = insn_current_address;
+
+#ifdef CASE_VECTOR_SHORTEN_MODE
+ if (optimize && GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
+ {
+ rtx body = PATTERN (insn);
+ int old_length = insn_lengths[uid];
+ rtx rel_lab = XEXP (XEXP (body, 0), 0);
+ rtx min_lab = XEXP (XEXP (body, 2), 0);
+ rtx max_lab = XEXP (XEXP (body, 3), 0);
+ addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
+ int rel_addr = insn_addresses[INSN_UID (rel_lab)];
+ int min_addr = insn_addresses[INSN_UID (min_lab)];
+ int max_addr = insn_addresses[INSN_UID (max_lab)];
+ rtx prev;
+ int rel_align = 0;
+
+ /* Try to find a known alignment for rel_lab. */
+ for (prev = rel_lab;
+ prev
+ && ! insn_lengths[INSN_UID (prev)]
+ && ! (varying_length[INSN_UID (prev)] & 1);
+ prev = PREV_INSN (prev))
+ if (varying_length[INSN_UID (prev)] & 2)
+ {
+ rel_align = LABEL_TO_ALIGNMENT (prev);
+ break;
+ }
+
+ /* See the comment on addr_diff_vec_flags in rtl.h for the
+ meaning of the flags values. base: REL_LAB vec: INSN */
+ /* Anything after INSN has still addresses from the last
+ pass; adjust these so that they reflect our current
+ estimate for this pass. */
+ if (flags.base_after_vec)
+ rel_addr += insn_current_address - insn_last_address;
+ if (flags.min_after_vec)
+ min_addr += insn_current_address - insn_last_address;
+ if (flags.max_after_vec)
+ max_addr += insn_current_address - insn_last_address;
+ /* We want to know the worst case, i.e. lowest possible value
+ for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
+ its offset is positive, and we have to be wary of code shrink;
+ otherwise, it is negative, and we have to be vary of code
+ size increase. */
+ if (flags.min_after_base)
+ {
+ /* If INSN is between REL_LAB and MIN_LAB, the size
+ changes we are about to make can change the alignment
+ within the observed offset, therefore we have to break
+ it up into two parts that are independent. */
+ if (! flags.base_after_vec && flags.min_after_vec)
+ {
+ min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
+ min_addr -= align_fuzz (insn, min_lab, 0, 0);
+ }
+ else
+ min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
+ }
+ else
+ {
+ if (flags.base_after_vec && ! flags.min_after_vec)
+ {
+ min_addr -= align_fuzz (min_lab, insn, 0, ~0);
+ min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
+ }
+ else
+ min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
+ }
+ /* Likewise, determine the highest lowest possible value
+ for the offset of MAX_LAB. */
+ if (flags.max_after_base)
+ {
+ if (! flags.base_after_vec && flags.max_after_vec)
+ {
+ max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
+ max_addr += align_fuzz (insn, max_lab, 0, ~0);
+ }
+ else
+ max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
+ }
+ else
+ {
+ if (flags.base_after_vec && ! flags.max_after_vec)
+ {
+ max_addr += align_fuzz (max_lab, insn, 0, 0);
+ max_addr += align_fuzz (insn, rel_lab, 0, 0);
+ }
+ else
+ max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
+ }
+ PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
+ max_addr - rel_addr,
+ body));
+ if (JUMP_TABLES_IN_TEXT_SECTION
+#if !defined(READONLY_DATA_SECTION)
+ || 1
+#endif
+ )
+ {
+ insn_lengths[uid]
+ = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
+ insn_current_address += insn_lengths[uid];
+ if (insn_lengths[uid] != old_length)
+ something_changed = 1;
+ }
+
+ continue;
+ }
+#endif /* CASE_VECTOR_SHORTEN_MODE */
+
+ if (! (varying_length[uid]))
+ {
+ insn_current_address += insn_lengths[uid];
+ continue;
+ }
+ if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int i;
+
+ body = PATTERN (insn);
+ new_length = 0;
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ {
+ rtx inner_insn = XVECEXP (body, 0, i);
+ int inner_uid = INSN_UID (inner_insn);
+ int inner_length;
+
+ insn_addresses[inner_uid] = insn_current_address;
+
+ /* insn_current_length returns 0 for insns with a
+ non-varying length. */
+ if (! varying_length[inner_uid])
+ inner_length = insn_lengths[inner_uid];
+ else
+ inner_length = insn_current_length (inner_insn);
+
+ if (inner_length != insn_lengths[inner_uid])
+ {
+ insn_lengths[inner_uid] = inner_length;
+ something_changed = 1;
+ }
+ insn_current_address += insn_lengths[inner_uid];
+ new_length += inner_length;
+ }
+ }
+ else
+ {
+ new_length = insn_current_length (insn);
+ insn_current_address += new_length;
+ }
+
+#ifdef ADJUST_INSN_LENGTH
+ /* If needed, do any adjustment. */
+ tmp_length = new_length;
+ ADJUST_INSN_LENGTH (insn, new_length);
+ insn_current_address += (new_length - tmp_length);
+#endif
+
+ if (new_length != insn_lengths[uid])
+ {
+ insn_lengths[uid] = new_length;
+ something_changed = 1;
+ }
+ }
+ /* For a non-optimizing compile, do only a single pass. */
+ if (!optimize)
+ break;
+ }
+
+ free (varying_length);
+
+#endif /* HAVE_ATTR_length */
+}
+
+#ifdef HAVE_ATTR_length
+/* Given the body of an INSN known to be generated by an ASM statement, return
+ the number of machine instructions likely to be generated for this insn.
+ This is used to compute its length. */
+
+static int
+asm_insn_count (body)
+ rtx body;
+{
+ char *template;
+ int count = 1;
+
+ if (GET_CODE (body) == ASM_INPUT)
+ template = XSTR (body, 0);
+ else
+ template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
+ NULL_PTR, NULL_PTR);
+
+ for ( ; *template; template++)
+ if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
+ count++;
+
+ return count;
+}
+#endif
+
+/* Output assembler code for the start of a function,
+ and initialize some of the variables in this file
+ for the new function. The label for the function and associated
+ assembler pseudo-ops have already been output in `assemble_start_function'.
+
+ FIRST is the first insn of the rtl for the function being compiled.
+ FILE is the file to write assembler code to.
+ OPTIMIZE is nonzero if we should eliminate redundant
+ test and compare insns. */
+
+void
+final_start_function (first, file, optimize)
+ rtx first;
+ FILE *file;
+ int optimize;
+{
+ block_depth = 0;
+
+ this_is_asm_operands = 0;
+
+#ifdef NON_SAVING_SETJMP
+ /* A function that calls setjmp should save and restore all the
+ call-saved registers on a system where longjmp clobbers them. */
+ if (NON_SAVING_SETJMP && current_function_calls_setjmp)
+ {
+ int i;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (!call_used_regs[i])
+ regs_ever_live[i] = 1;
+ }
+#endif
+
+ /* Initial line number is supposed to be output
+ before the function's prologue and label
+ so that the function's address will not appear to be
+ in the last statement of the preceding function. */
+ if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
+ last_linenum = high_block_linenum = high_function_linenum
+ = NOTE_LINE_NUMBER (first);
+
+#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
+ /* Output DWARF definition of the function. */
+ if (dwarf2out_do_frame ())
+ dwarf2out_begin_prologue ();
+#endif
+
+ /* For SDB and XCOFF, the function beginning must be marked between
+ the function label and the prologue. We always need this, even when
+ -g1 was used. Defer on MIPS systems so that parameter descriptions
+ follow function entry. */
+#if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
+ if (write_symbols == SDB_DEBUG)
+ sdbout_begin_function (last_linenum);
+ else
+#endif
+#ifdef XCOFF_DEBUGGING_INFO
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_begin_function (file, last_linenum);
+ else
+#endif
+ /* But only output line number for other debug info types if -g2
+ or better. */
+ if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
+ output_source_line (file, first);
+
+#ifdef LEAF_REG_REMAP
+ if (current_function_uses_only_leaf_regs)
+ leaf_renumber_regs (first);
+#endif
+
+ /* The Sun386i and perhaps other machines don't work right
+ if the profiling code comes after the prologue. */
+#ifdef PROFILE_BEFORE_PROLOGUE
+ if (profile_flag)
+ profile_function (file);
+#endif /* PROFILE_BEFORE_PROLOGUE */
+
+#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
+ if (dwarf2out_do_frame ())
+ dwarf2out_frame_debug (NULL_RTX);
+#endif
+
+#ifdef FUNCTION_PROLOGUE
+ /* First output the function prologue: code to set up the stack frame. */
+ FUNCTION_PROLOGUE (file, get_frame_size ());
+#endif
+
+#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
+ if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
+ next_block_index = 1;
+#endif
+
+ /* If the machine represents the prologue as RTL, the profiling code must
+ be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
+#ifdef HAVE_prologue
+ if (! HAVE_prologue)
+#endif
+ profile_after_prologue (file);
+
+ profile_label_no++;
+
+ /* If we are doing basic block profiling, remember a printable version
+ of the function name. */
+ if (profile_block_flag)
+ {
+ bb_func_label_num
+ = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
+ }
+}
+
+static void
+profile_after_prologue (file)
+ FILE *file;
+{
+#ifdef FUNCTION_BLOCK_PROFILER
+ if (profile_block_flag)
+ {
+ FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
+ }
+#endif /* FUNCTION_BLOCK_PROFILER */
+
+#ifndef PROFILE_BEFORE_PROLOGUE
+ if (profile_flag)
+ profile_function (file);
+#endif /* not PROFILE_BEFORE_PROLOGUE */
+}
+
+static void
+profile_function (file)
+ FILE *file;
+{
+ int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
+#if defined(ASM_OUTPUT_REG_PUSH)
+#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
+ int sval = current_function_returns_struct;
+#endif
+#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
+ int cxt = current_function_needs_context;
+#endif
+#endif /* ASM_OUTPUT_REG_PUSH */
+
+ data_section ();
+ ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
+ assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
+
+ function_section (current_function_decl);
+
+#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (sval)
+ ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
+#else
+#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (sval)
+ {
+ ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
+ }
+#endif
+#endif
+
+#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (cxt)
+ ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
+#else
+#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (cxt)
+ {
+ ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
+ }
+#endif
+#endif
+
+ FUNCTION_PROFILER (file, profile_label_no);
+
+#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (cxt)
+ ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
+#else
+#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (cxt)
+ {
+ ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
+ }
+#endif
+#endif
+
+#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (sval)
+ ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
+#else
+#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
+ if (sval)
+ {
+ ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
+ }
+#endif
+#endif
+}
+
+/* Output assembler code for the end of a function.
+ For clarity, args are same as those of `final_start_function'
+ even though not all of them are needed. */
+
+void
+final_end_function (first, file, optimize)
+ rtx first;
+ FILE *file;
+ int optimize;
+{
+ if (app_on)
+ {
+ fputs (ASM_APP_OFF, file);
+ app_on = 0;
+ }
+
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG)
+ sdbout_end_function (high_function_linenum);
+#endif
+
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_end_function ();
+#endif
+
+#ifdef XCOFF_DEBUGGING_INFO
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_end_function (file, high_function_linenum);
+#endif
+
+#ifdef FUNCTION_EPILOGUE
+ /* Finally, output the function epilogue:
+ code to restore the stack frame and return to the caller. */
+ FUNCTION_EPILOGUE (file, get_frame_size ());
+#endif
+
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG)
+ sdbout_end_epilogue ();
+#endif
+
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_end_epilogue ();
+#endif
+
+#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
+ if (dwarf2out_do_frame ())
+ dwarf2out_end_epilogue ();
+#endif
+
+#ifdef XCOFF_DEBUGGING_INFO
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_end_epilogue (file);
+#endif
+
+ bb_func_label_num = -1; /* not in function, nuke label # */
+
+ /* If FUNCTION_EPILOGUE is not defined, then the function body
+ itself contains return instructions wherever needed. */
+}
+
+/* Add a block to the linked list that remembers the current line/file/function
+ for basic block profiling. Emit the label in front of the basic block and
+ the instructions that increment the count field. */
+
+static void
+add_bb (file)
+ FILE *file;
+{
+ struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
+
+ /* Add basic block to linked list. */
+ ptr->next = 0;
+ ptr->line_num = last_linenum;
+ ptr->file_label_num = bb_file_label_num;
+ ptr->func_label_num = bb_func_label_num;
+ *bb_tail = ptr;
+ bb_tail = &ptr->next;
+
+ /* Enable the table of basic-block use counts
+ to point at the code it applies to. */
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
+
+ /* Before first insn of this basic block, increment the
+ count of times it was entered. */
+#ifdef BLOCK_PROFILER
+ BLOCK_PROFILER (file, count_basic_blocks);
+#endif
+#ifdef HAVE_cc0
+ CC_STATUS_INIT;
+#endif
+
+ new_block = 0;
+ count_basic_blocks++;
+}
+
+/* Add a string to be used for basic block profiling. */
+
+static int
+add_bb_string (string, perm_p)
+ const char *string;
+ int perm_p;
+{
+ int len;
+ struct bb_str *ptr = 0;
+
+ if (!string)
+ {
+ string = "<unknown>";
+ perm_p = TRUE;
+ }
+
+ /* Allocate a new string if the current string isn't permanent. If
+ the string is permanent search for the same string in other
+ allocations. */
+
+ len = strlen (string) + 1;
+ if (!perm_p)
+ {
+ char *p = (char *) permalloc (len);
+ bcopy (string, p, len);
+ string = p;
+ }
+ else
+ for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
+ if (ptr->string == string)
+ break;
+
+ /* Allocate a new string block if we need to. */
+ if (!ptr)
+ {
+ ptr = (struct bb_str *) permalloc (sizeof (*ptr));
+ ptr->next = 0;
+ ptr->length = len;
+ ptr->label_num = sbb_label_num++;
+ ptr->string = string;
+ *sbb_tail = ptr;
+ sbb_tail = &ptr->next;
+ }
+
+ return ptr->label_num;
+}
+
+
+/* Output assembler code for some insns: all or part of a function.
+ For description of args, see `final_start_function', above.
+
+ PRESCAN is 1 if we are not really outputting,
+ just scanning as if we were outputting.
+ Prescanning deletes and rearranges insns just like ordinary output.
+ PRESCAN is -2 if we are outputting after having prescanned.
+ In this case, don't try to delete or rearrange insns
+ because that has already been done.
+ Prescanning is done only on certain machines. */
+
+void
+final (first, file, optimize, prescan)
+ rtx first;
+ FILE *file;
+ int optimize;
+ int prescan;
+{
+ register rtx insn;
+ int max_line = 0;
+ int max_uid = 0;
+
+ last_ignored_compare = 0;
+ new_block = 1;
+
+ check_exception_handler_labels ();
+
+ /* Make a map indicating which line numbers appear in this function.
+ When producing SDB debugging info, delete troublesome line number
+ notes from inlined functions in other files as well as duplicate
+ line number notes. */
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG)
+ {
+ rtx last = 0;
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
+ {
+ if ((RTX_INTEGRATED_P (insn)
+ && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
+ || (last != 0
+ && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
+ && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
+ {
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ continue;
+ }
+ last = insn;
+ if (NOTE_LINE_NUMBER (insn) > max_line)
+ max_line = NOTE_LINE_NUMBER (insn);
+ }
+ }
+ else
+#endif
+ {
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
+ max_line = NOTE_LINE_NUMBER (insn);
+ }
+
+ line_note_exists = (char *) oballoc (max_line + 1);
+ bzero (line_note_exists, max_line + 1);
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ if (INSN_UID (insn) > max_uid) /* find largest UID */
+ max_uid = INSN_UID (insn);
+ if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
+ line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
+#ifdef HAVE_cc0
+ /* If CC tracking across branches is enabled, record the insn which
+ jumps to each branch only reached from one place. */
+ if (optimize && GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx lab = JUMP_LABEL (insn);
+ if (lab && LABEL_NUSES (lab) == 1)
+ {
+ LABEL_REFS (lab) = insn;
+ }
+ }
+#endif
+ }
+
+ /* Initialize insn_eh_region table if eh is being used. */
+
+ init_insn_eh_region (first, max_uid);
+
+ init_recog ();
+
+ CC_STATUS_INIT;
+
+ /* Output the insns. */
+ for (insn = NEXT_INSN (first); insn;)
+ {
+#ifdef HAVE_ATTR_length
+ insn_current_address = insn_addresses[INSN_UID (insn)];
+#endif
+ insn = final_scan_insn (insn, file, optimize, prescan, 0);
+ }
+
+ /* Do basic-block profiling here
+ if the last insn was a conditional branch. */
+ if (profile_block_flag && new_block)
+ add_bb (file);
+
+ free_insn_eh_region ();
+}
+
+/* The final scan for one insn, INSN.
+ Args are same as in `final', except that INSN
+ is the insn being scanned.
+ Value returned is the next insn to be scanned.
+
+ NOPEEPHOLES is the flag to disallow peephole processing (currently
+ used for within delayed branch sequence output). */
+
+rtx
+final_scan_insn (insn, file, optimize, prescan, nopeepholes)
+ rtx insn;
+ FILE *file;
+ int optimize;
+ int prescan;
+ int nopeepholes;
+{
+#ifdef HAVE_cc0
+ rtx set;
+#endif
+
+ insn_counter++;
+
+ /* Ignore deleted insns. These can occur when we split insns (due to a
+ template of "#") while not optimizing. */
+ if (INSN_DELETED_P (insn))
+ return NEXT_INSN (insn);
+
+ switch (GET_CODE (insn))
+ {
+ case NOTE:
+ if (prescan > 0)
+ break;
+
+ /* Align the beginning of a loop, for higher speed
+ on certain machines. */
+
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ break; /* This used to depend on optimize, but that was bogus. */
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ break;
+
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
+ && ! exceptions_via_longjmp)
+ {
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
+ if (! flag_new_exceptions)
+ add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
+#ifdef ASM_OUTPUT_EH_REGION_BEG
+ ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
+#endif
+ break;
+ }
+
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
+ && ! exceptions_via_longjmp)
+ {
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
+ if (flag_new_exceptions)
+ add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
+#ifdef ASM_OUTPUT_EH_REGION_END
+ ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
+#endif
+ break;
+ }
+
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
+ {
+#ifdef FUNCTION_END_PROLOGUE
+ FUNCTION_END_PROLOGUE (file);
+#endif
+ profile_after_prologue (file);
+ break;
+ }
+
+#ifdef FUNCTION_BEGIN_EPILOGUE
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
+ {
+ FUNCTION_BEGIN_EPILOGUE (file);
+ break;
+ }
+#endif
+
+ if (write_symbols == NO_DEBUG)
+ break;
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
+ {
+#if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
+ /* MIPS stabs require the parameter descriptions to be after the
+ function entry point rather than before. */
+ if (write_symbols == SDB_DEBUG)
+ sdbout_begin_function (last_linenum);
+ else
+#endif
+#ifdef DWARF_DEBUGGING_INFO
+ /* This outputs a marker where the function body starts, so it
+ must be after the prologue. */
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_begin_function ();
+#endif
+ break;
+ }
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
+ break; /* An insn that was "deleted" */
+ if (app_on)
+ {
+ fputs (ASM_APP_OFF, file);
+ app_on = 0;
+ }
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
+ && (debug_info_level == DINFO_LEVEL_NORMAL
+ || debug_info_level == DINFO_LEVEL_VERBOSE
+ || write_symbols == DWARF_DEBUG
+ || write_symbols == DWARF2_DEBUG))
+ {
+ /* Beginning of a symbol-block. Assign it a sequence number
+ and push the number onto the stack PENDING_BLOCKS. */
+
+ if (block_depth == max_block_depth)
+ {
+ /* PENDING_BLOCKS is full; make it longer. */
+ max_block_depth *= 2;
+ pending_blocks
+ = (int *) xrealloc (pending_blocks,
+ max_block_depth * sizeof (int));
+ }
+ pending_blocks[block_depth++] = next_block_index;
+
+ high_block_linenum = last_linenum;
+
+ /* Output debugging info about the symbol-block beginning. */
+
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG)
+ sdbout_begin_block (file, last_linenum, next_block_index);
+#endif
+#ifdef XCOFF_DEBUGGING_INFO
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_begin_block (file, last_linenum, next_block_index);
+#endif
+#ifdef DBX_DEBUGGING_INFO
+ if (write_symbols == DBX_DEBUG)
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
+#endif
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_begin_block (next_block_index);
+#endif
+#ifdef DWARF2_DEBUGGING_INFO
+ if (write_symbols == DWARF2_DEBUG)
+ dwarf2out_begin_block (next_block_index);
+#endif
+
+ next_block_index++;
+ }
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
+ && (debug_info_level == DINFO_LEVEL_NORMAL
+ || debug_info_level == DINFO_LEVEL_VERBOSE
+ || write_symbols == DWARF_DEBUG
+ || write_symbols == DWARF2_DEBUG))
+ {
+ /* End of a symbol-block. Pop its sequence number off
+ PENDING_BLOCKS and output debugging info based on that. */
+
+ --block_depth;
+ if (block_depth < 0)
+ abort ();
+
+#ifdef XCOFF_DEBUGGING_INFO
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_end_block (file, high_block_linenum,
+ pending_blocks[block_depth]);
+#endif
+#ifdef DBX_DEBUGGING_INFO
+ if (write_symbols == DBX_DEBUG)
+ ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
+ pending_blocks[block_depth]);
+#endif
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG)
+ sdbout_end_block (file, high_block_linenum,
+ pending_blocks[block_depth]);
+#endif
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_end_block (pending_blocks[block_depth]);
+#endif
+#ifdef DWARF2_DEBUGGING_INFO
+ if (write_symbols == DWARF2_DEBUG)
+ dwarf2out_end_block (pending_blocks[block_depth]);
+#endif
+ }
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
+ && (debug_info_level == DINFO_LEVEL_NORMAL
+ || debug_info_level == DINFO_LEVEL_VERBOSE))
+ {
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_label (insn);
+#endif
+#ifdef DWARF2_DEBUGGING_INFO
+ if (write_symbols == DWARF2_DEBUG)
+ dwarf2out_label (insn);
+#endif
+ }
+ else if (NOTE_LINE_NUMBER (insn) > 0)
+ /* This note is a line-number. */
+ {
+ register rtx note;
+
+#if 0 /* This is what we used to do. */
+ output_source_line (file, insn);
+#endif
+ int note_after = 0;
+
+ /* If there is anything real after this note,
+ output it. If another line note follows, omit this one. */
+ for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
+ {
+ if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
+ break;
+ /* These types of notes can be significant
+ so make sure the preceding line number stays. */
+ else if (GET_CODE (note) == NOTE
+ && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
+ || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
+ || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
+ break;
+ else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
+ {
+ /* Another line note follows; we can delete this note
+ if no intervening line numbers have notes elsewhere. */
+ int num;
+ for (num = NOTE_LINE_NUMBER (insn) + 1;
+ num < NOTE_LINE_NUMBER (note);
+ num++)
+ if (line_note_exists[num])
+ break;
+
+ if (num >= NOTE_LINE_NUMBER (note))
+ note_after = 1;
+ break;
+ }
+ }
+
+ /* Output this line note
+ if it is the first or the last line note in a row. */
+ if (!note_after)
+ output_source_line (file, insn);
+ }
+ break;
+
+ case BARRIER:
+#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
+ /* If we push arguments, we need to check all insns for stack
+ adjustments. */
+ if (dwarf2out_do_frame ())
+ dwarf2out_frame_debug (insn);
+#endif
+ break;
+
+ case CODE_LABEL:
+ /* The target port might emit labels in the output function for
+ some insn, e.g. sh.c output_branchy_insn. */
+ if (CODE_LABEL_NUMBER (insn) <= max_labelno)
+ {
+ int align = LABEL_TO_ALIGNMENT (insn);
+#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
+ int max_skip = LABEL_TO_MAX_SKIP (insn);
+#endif
+
+ if (align && NEXT_INSN (insn))
+#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
+ ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
+#else
+ ASM_OUTPUT_ALIGN (file, align);
+#endif
+ }
+#ifdef HAVE_cc0
+ CC_STATUS_INIT;
+ /* If this label is reached from only one place, set the condition
+ codes from the instruction just before the branch. */
+
+ /* Disabled because some insns set cc_status in the C output code
+ and NOTICE_UPDATE_CC alone can set incorrect status. */
+ if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
+ {
+ rtx jump = LABEL_REFS (insn);
+ rtx barrier = prev_nonnote_insn (insn);
+ rtx prev;
+ /* If the LABEL_REFS field of this label has been set to point
+ at a branch, the predecessor of the branch is a regular
+ insn, and that branch is the only way to reach this label,
+ set the condition codes based on the branch and its
+ predecessor. */
+ if (barrier && GET_CODE (barrier) == BARRIER
+ && jump && GET_CODE (jump) == JUMP_INSN
+ && (prev = prev_nonnote_insn (jump))
+ && GET_CODE (prev) == INSN)
+ {
+ NOTICE_UPDATE_CC (PATTERN (prev), prev);
+ NOTICE_UPDATE_CC (PATTERN (jump), jump);
+ }
+ }
+#endif
+ if (prescan > 0)
+ break;
+ new_block = 1;
+
+#ifdef FINAL_PRESCAN_LABEL
+ FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
+#endif
+
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
+ sdbout_label (insn);
+#endif
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
+ dwarfout_label (insn);
+#endif
+#ifdef DWARF2_DEBUGGING_INFO
+ if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
+ dwarf2out_label (insn);
+#endif
+ if (app_on)
+ {
+ fputs (ASM_APP_OFF, file);
+ app_on = 0;
+ }
+ if (NEXT_INSN (insn) != 0
+ && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
+ {
+ rtx nextbody = PATTERN (NEXT_INSN (insn));
+
+ /* If this label is followed by a jump-table,
+ make sure we put the label in the read-only section. Also
+ possibly write the label and jump table together. */
+
+ if (GET_CODE (nextbody) == ADDR_VEC
+ || GET_CODE (nextbody) == ADDR_DIFF_VEC)
+ {
+#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
+ /* In this case, the case vector is being moved by the
+ target, so don't output the label at all. Leave that
+ to the back end macros. */
+#else
+ if (! JUMP_TABLES_IN_TEXT_SECTION)
+ {
+ readonly_data_section ();
+#ifdef READONLY_DATA_SECTION
+ ASM_OUTPUT_ALIGN (file,
+ exact_log2 (BIGGEST_ALIGNMENT
+ / BITS_PER_UNIT));
+#endif /* READONLY_DATA_SECTION */
+ }
+ else
+ function_section (current_function_decl);
+
+#ifdef ASM_OUTPUT_CASE_LABEL
+ ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
+ NEXT_INSN (insn));
+#else
+ ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
+#endif
+#endif
+ break;
+ }
+ }
+
+ ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
+ break;
+
+ default:
+ {
+ register rtx body = PATTERN (insn);
+ int insn_code_number;
+ const char *template;
+#ifdef HAVE_cc0
+ rtx note;
+#endif
+
+ /* An INSN, JUMP_INSN or CALL_INSN.
+ First check for special kinds that recog doesn't recognize. */
+
+ if (GET_CODE (body) == USE /* These are just declarations */
+ || GET_CODE (body) == CLOBBER)
+ break;
+
+#ifdef HAVE_cc0
+ /* If there is a REG_CC_SETTER note on this insn, it means that
+ the setting of the condition code was done in the delay slot
+ of the insn that branched here. So recover the cc status
+ from the insn that set it. */
+
+ note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
+ if (note)
+ {
+ NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
+ cc_prev_status = cc_status;
+ }
+#endif
+
+ /* Detect insns that are really jump-tables
+ and output them as such. */
+
+ if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
+ {
+#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
+ register int vlen, idx;
+#endif
+
+ if (prescan > 0)
+ break;
+
+ if (app_on)
+ {
+ fputs (ASM_APP_OFF, file);
+ app_on = 0;
+ }
+
+#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
+ if (GET_CODE (body) == ADDR_VEC)
+ {
+#ifdef ASM_OUTPUT_ADDR_VEC
+ ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
+#else
+ abort();
+#endif
+ }
+ else
+ {
+#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
+ ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
+#else
+ abort();
+#endif
+ }
+#else
+ vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
+ for (idx = 0; idx < vlen; idx++)
+ {
+ if (GET_CODE (body) == ADDR_VEC)
+ {
+#ifdef ASM_OUTPUT_ADDR_VEC_ELT
+ ASM_OUTPUT_ADDR_VEC_ELT
+ (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
+#else
+ abort ();
+#endif
+ }
+ else
+ {
+#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
+ ASM_OUTPUT_ADDR_DIFF_ELT
+ (file,
+ body,
+ CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
+ CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
+#else
+ abort ();
+#endif
+ }
+ }
+#ifdef ASM_OUTPUT_CASE_END
+ ASM_OUTPUT_CASE_END (file,
+ CODE_LABEL_NUMBER (PREV_INSN (insn)),
+ insn);
+#endif
+#endif
+
+ function_section (current_function_decl);
+
+ break;
+ }
+
+ /* Do basic-block profiling when we reach a new block.
+ Done here to avoid jump tables. */
+ if (profile_block_flag && new_block)
+ add_bb (file);
+
+ if (GET_CODE (body) == ASM_INPUT)
+ {
+ /* There's no telling what that did to the condition codes. */
+ CC_STATUS_INIT;
+ if (prescan > 0)
+ break;
+ if (! app_on)
+ {
+ fputs (ASM_APP_ON, file);
+ app_on = 1;
+ }
+ fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
+ break;
+ }
+
+ /* Detect `asm' construct with operands. */
+ if (asm_noperands (body) >= 0)
+ {
+ unsigned int noperands = asm_noperands (body);
+ rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
+ char *string;
+
+ /* There's no telling what that did to the condition codes. */
+ CC_STATUS_INIT;
+ if (prescan > 0)
+ break;
+
+ if (! app_on)
+ {
+ fputs (ASM_APP_ON, file);
+ app_on = 1;
+ }
+
+ /* Get out the operand values. */
+ string = decode_asm_operands (body, ops, NULL_PTR,
+ NULL_PTR, NULL_PTR);
+ /* Inhibit aborts on what would otherwise be compiler bugs. */
+ insn_noperands = noperands;
+ this_is_asm_operands = insn;
+
+ /* Output the insn using them. */
+ output_asm_insn (string, ops);
+ this_is_asm_operands = 0;
+ break;
+ }
+
+ if (prescan <= 0 && app_on)
+ {
+ fputs (ASM_APP_OFF, file);
+ app_on = 0;
+ }
+
+ if (GET_CODE (body) == SEQUENCE)
+ {
+ /* A delayed-branch sequence */
+ register int i;
+ rtx next;
+
+ if (prescan > 0)
+ break;
+ final_sequence = body;
+
+ /* The first insn in this SEQUENCE might be a JUMP_INSN that will
+ force the restoration of a comparison that was previously
+ thought unnecessary. If that happens, cancel this sequence
+ and cause that insn to be restored. */
+
+ next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
+ if (next != XVECEXP (body, 0, 1))
+ {
+ final_sequence = 0;
+ return next;
+ }
+
+ for (i = 1; i < XVECLEN (body, 0); i++)
+ {
+ rtx insn = XVECEXP (body, 0, i);
+ rtx next = NEXT_INSN (insn);
+ /* We loop in case any instruction in a delay slot gets
+ split. */
+ do
+ insn = final_scan_insn (insn, file, 0, prescan, 1);
+ while (insn != next);
+ }
+#ifdef DBR_OUTPUT_SEQEND
+ DBR_OUTPUT_SEQEND (file);
+#endif
+ final_sequence = 0;
+
+ /* If the insn requiring the delay slot was a CALL_INSN, the
+ insns in the delay slot are actually executed before the
+ called function. Hence we don't preserve any CC-setting
+ actions in these insns and the CC must be marked as being
+ clobbered by the function. */
+ if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
+ {
+ CC_STATUS_INIT;
+ }
+
+ /* Following a conditional branch sequence, we have a new basic
+ block. */
+ if (profile_block_flag)
+ {
+ rtx insn = XVECEXP (body, 0, 0);
+ rtx body = PATTERN (insn);
+
+ if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
+ && GET_CODE (SET_SRC (body)) != LABEL_REF)
+ || (GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (body) == PARALLEL
+ && GET_CODE (XVECEXP (body, 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
+ new_block = 1;
+ }
+ break;
+ }
+
+ /* We have a real machine instruction as rtl. */
+
+ body = PATTERN (insn);
+
+#ifdef HAVE_cc0
+ set = single_set(insn);
+
+ /* Check for redundant test and compare instructions
+ (when the condition codes are already set up as desired).
+ This is done only when optimizing; if not optimizing,
+ it should be possible for the user to alter a variable
+ with the debugger in between statements
+ and the next statement should reexamine the variable
+ to compute the condition codes. */
+
+ if (optimize)
+ {
+#if 0
+ rtx set = single_set(insn);
+#endif
+
+ if (set
+ && GET_CODE (SET_DEST (set)) == CC0
+ && insn != last_ignored_compare)
+ {
+ if (GET_CODE (SET_SRC (set)) == SUBREG)
+ SET_SRC (set) = alter_subreg (SET_SRC (set));
+ else if (GET_CODE (SET_SRC (set)) == COMPARE)
+ {
+ if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
+ XEXP (SET_SRC (set), 0)
+ = alter_subreg (XEXP (SET_SRC (set), 0));
+ if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
+ XEXP (SET_SRC (set), 1)
+ = alter_subreg (XEXP (SET_SRC (set), 1));
+ }
+ if ((cc_status.value1 != 0
+ && rtx_equal_p (SET_SRC (set), cc_status.value1))
+ || (cc_status.value2 != 0
+ && rtx_equal_p (SET_SRC (set), cc_status.value2)))
+ {
+ /* Don't delete insn if it has an addressing side-effect. */
+ if (! FIND_REG_INC_NOTE (insn, 0)
+ /* or if anything in it is volatile. */
+ && ! volatile_refs_p (PATTERN (insn)))
+ {
+ /* We don't really delete the insn; just ignore it. */
+ last_ignored_compare = insn;
+ break;
+ }
+ }
+ }
+ }
+#endif
+
+ /* Following a conditional branch, we have a new basic block.
+ But if we are inside a sequence, the new block starts after the
+ last insn of the sequence. */
+ if (profile_block_flag && final_sequence == 0
+ && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
+ && GET_CODE (SET_SRC (body)) != LABEL_REF)
+ || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
+ && GET_CODE (XVECEXP (body, 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
+ new_block = 1;
+
+#ifndef STACK_REGS
+ /* Don't bother outputting obvious no-ops, even without -O.
+ This optimization is fast and doesn't interfere with debugging.
+ Don't do this if the insn is in a delay slot, since this
+ will cause an improper number of delay insns to be written. */
+ if (final_sequence == 0
+ && prescan >= 0
+ && GET_CODE (insn) == INSN && GET_CODE (body) == SET
+ && GET_CODE (SET_SRC (body)) == REG
+ && GET_CODE (SET_DEST (body)) == REG
+ && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
+ break;
+#endif
+
+#ifdef HAVE_cc0
+ /* If this is a conditional branch, maybe modify it
+ if the cc's are in a nonstandard state
+ so that it accomplishes the same thing that it would
+ do straightforwardly if the cc's were set up normally. */
+
+ if (cc_status.flags != 0
+ && GET_CODE (insn) == JUMP_INSN
+ && GET_CODE (body) == SET
+ && SET_DEST (body) == pc_rtx
+ && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
+ && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
+ && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
+ /* This is done during prescan; it is not done again
+ in final scan when prescan has been done. */
+ && prescan >= 0)
+ {
+ /* This function may alter the contents of its argument
+ and clear some of the cc_status.flags bits.
+ It may also return 1 meaning condition now always true
+ or -1 meaning condition now always false
+ or 2 meaning condition nontrivial but altered. */
+ register int result = alter_cond (XEXP (SET_SRC (body), 0));
+ /* If condition now has fixed value, replace the IF_THEN_ELSE
+ with its then-operand or its else-operand. */
+ if (result == 1)
+ SET_SRC (body) = XEXP (SET_SRC (body), 1);
+ if (result == -1)
+ SET_SRC (body) = XEXP (SET_SRC (body), 2);
+
+ /* The jump is now either unconditional or a no-op.
+ If it has become a no-op, don't try to output it.
+ (It would not be recognized.) */
+ if (SET_SRC (body) == pc_rtx)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ break;
+ }
+ else if (GET_CODE (SET_SRC (body)) == RETURN)
+ /* Replace (set (pc) (return)) with (return). */
+ PATTERN (insn) = body = SET_SRC (body);
+
+ /* Rerecognize the instruction if it has changed. */
+ if (result != 0)
+ INSN_CODE (insn) = -1;
+ }
+
+ /* Make same adjustments to instructions that examine the
+ condition codes without jumping and instructions that
+ handle conditional moves (if this machine has either one). */
+
+ if (cc_status.flags != 0
+ && set != 0)
+ {
+ rtx cond_rtx, then_rtx, else_rtx;
+
+ if (GET_CODE (insn) != JUMP_INSN
+ && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
+ {
+ cond_rtx = XEXP (SET_SRC (set), 0);
+ then_rtx = XEXP (SET_SRC (set), 1);
+ else_rtx = XEXP (SET_SRC (set), 2);
+ }
+ else
+ {
+ cond_rtx = SET_SRC (set);
+ then_rtx = const_true_rtx;
+ else_rtx = const0_rtx;
+ }
+
+ switch (GET_CODE (cond_rtx))
+ {
+ case GTU:
+ case GT:
+ case LTU:
+ case LT:
+ case GEU:
+ case GE:
+ case LEU:
+ case LE:
+ case EQ:
+ case NE:
+ {
+ register int result;
+ if (XEXP (cond_rtx, 0) != cc0_rtx)
+ break;
+ result = alter_cond (cond_rtx);
+ if (result == 1)
+ validate_change (insn, &SET_SRC (set), then_rtx, 0);
+ else if (result == -1)
+ validate_change (insn, &SET_SRC (set), else_rtx, 0);
+ else if (result == 2)
+ INSN_CODE (insn) = -1;
+ if (SET_DEST (set) == SET_SRC (set))
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+#endif
+
+ /* Do machine-specific peephole optimizations if desired. */
+
+ if (optimize && !flag_no_peephole && !nopeepholes)
+ {
+ rtx next = peephole (insn);
+ /* When peepholing, if there were notes within the peephole,
+ emit them before the peephole. */
+ if (next != 0 && next != NEXT_INSN (insn))
+ {
+ rtx prev = PREV_INSN (insn);
+ rtx note;
+
+ for (note = NEXT_INSN (insn); note != next;
+ note = NEXT_INSN (note))
+ final_scan_insn (note, file, optimize, prescan, nopeepholes);
+
+ /* In case this is prescan, put the notes
+ in proper position for later rescan. */
+ note = NEXT_INSN (insn);
+ PREV_INSN (note) = prev;
+ NEXT_INSN (prev) = note;
+ NEXT_INSN (PREV_INSN (next)) = insn;
+ PREV_INSN (insn) = PREV_INSN (next);
+ NEXT_INSN (insn) = next;
+ PREV_INSN (next) = insn;
+ }
+
+ /* PEEPHOLE might have changed this. */
+ body = PATTERN (insn);
+ }
+
+ /* Try to recognize the instruction.
+ If successful, verify that the operands satisfy the
+ constraints for the instruction. Crash if they don't,
+ since `reload' should have changed them so that they do. */
+
+ insn_code_number = recog_memoized (insn);
+ extract_insn (insn);
+ cleanup_subreg_operands (insn);
+
+#ifdef REGISTER_CONSTRAINTS
+ if (! constrain_operands (1))
+ fatal_insn_not_found (insn);
+#endif
+
+ /* Some target machines need to prescan each insn before
+ it is output. */
+
+#ifdef FINAL_PRESCAN_INSN
+ FINAL_PRESCAN_INSN (insn, recog_operand, recog_n_operands);
+#endif
+
+#ifdef HAVE_cc0
+ cc_prev_status = cc_status;
+
+ /* Update `cc_status' for this instruction.
+ The instruction's output routine may change it further.
+ If the output routine for a jump insn needs to depend
+ on the cc status, it should look at cc_prev_status. */
+
+ NOTICE_UPDATE_CC (body, insn);
+#endif
+
+ debug_insn = insn;
+
+#if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
+ /* If we push arguments, we want to know where the calls are. */
+ if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
+ dwarf2out_frame_debug (insn);
+#endif
+
+ /* If the proper template needs to be chosen by some C code,
+ run that code and get the real template. */
+
+ template = insn_template[insn_code_number];
+ if (template == 0)
+ {
+ template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
+
+ /* If the C code returns 0, it means that it is a jump insn
+ which follows a deleted test insn, and that test insn
+ needs to be reinserted. */
+ if (template == 0)
+ {
+ if (prev_nonnote_insn (insn) != last_ignored_compare)
+ abort ();
+ new_block = 0;
+ return prev_nonnote_insn (insn);
+ }
+ }
+
+ /* If the template is the string "#", it means that this insn must
+ be split. */
+ if (template[0] == '#' && template[1] == '\0')
+ {
+ rtx new = try_split (body, insn, 0);
+
+ /* If we didn't split the insn, go away. */
+ if (new == insn && PATTERN (new) == body)
+ fatal_insn ("Could not split insn", insn);
+
+#ifdef HAVE_ATTR_length
+ /* This instruction should have been split in shorten_branches,
+ to ensure that we would have valid length info for the
+ splitees. */
+ abort ();
+#endif
+
+ new_block = 0;
+ return new;
+ }
+
+ if (prescan > 0)
+ break;
+
+ /* Output assembler code from the template. */
+
+ output_asm_insn (template, recog_operand);
+
+#if defined (DWARF2_UNWIND_INFO)
+#if !defined (ACCUMULATE_OUTGOING_ARGS)
+ /* If we push arguments, we need to check all insns for stack
+ adjustments. */
+ if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
+ dwarf2out_frame_debug (insn);
+#else
+#if defined (HAVE_prologue)
+ /* If this insn is part of the prologue, emit DWARF v2
+ call frame info. */
+ if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
+ dwarf2out_frame_debug (insn);
+#endif
+#endif
+#endif
+
+#if 0
+ /* It's not at all clear why we did this and doing so interferes
+ with tests we'd like to do to use REG_WAS_0 notes, so let's try
+ with this out. */
+
+ /* Mark this insn as having been output. */
+ INSN_DELETED_P (insn) = 1;
+#endif
+
+ debug_insn = 0;
+ }
+ }
+ return NEXT_INSN (insn);
+}
+
+/* Output debugging info to the assembler file FILE
+ based on the NOTE-insn INSN, assumed to be a line number. */
+
+static void
+output_source_line (file, insn)
+ FILE *file;
+ rtx insn;
+{
+ register char *filename = NOTE_SOURCE_FILE (insn);
+
+ /* Remember filename for basic block profiling.
+ Filenames are allocated on the permanent obstack
+ or are passed in ARGV, so we don't have to save
+ the string. */
+
+ if (profile_block_flag && last_filename != filename)
+ bb_file_label_num = add_bb_string (filename, TRUE);
+
+ last_filename = filename;
+ last_linenum = NOTE_LINE_NUMBER (insn);
+ high_block_linenum = MAX (last_linenum, high_block_linenum);
+ high_function_linenum = MAX (last_linenum, high_function_linenum);
+
+ if (write_symbols != NO_DEBUG)
+ {
+#ifdef SDB_DEBUGGING_INFO
+ if (write_symbols == SDB_DEBUG
+#if 0 /* People like having line numbers even in wrong file! */
+ /* COFF can't handle multiple source files--lose, lose. */
+ && !strcmp (filename, main_input_filename)
+#endif
+ /* COFF relative line numbers must be positive. */
+ && last_linenum > sdb_begin_function_line)
+ {
+#ifdef ASM_OUTPUT_SOURCE_LINE
+ ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
+#else
+ fprintf (file, "\t.ln\t%d\n",
+ ((sdb_begin_function_line > -1)
+ ? last_linenum - sdb_begin_function_line : 1));
+#endif
+ }
+#endif
+
+#if defined (DBX_DEBUGGING_INFO)
+ if (write_symbols == DBX_DEBUG)
+ dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
+#endif
+
+#if defined (XCOFF_DEBUGGING_INFO)
+ if (write_symbols == XCOFF_DEBUG)
+ xcoffout_source_line (file, filename, insn);
+#endif
+
+#ifdef DWARF_DEBUGGING_INFO
+ if (write_symbols == DWARF_DEBUG)
+ dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
+#endif
+
+#ifdef DWARF2_DEBUGGING_INFO
+ if (write_symbols == DWARF2_DEBUG)
+ dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
+#endif
+ }
+}
+
+
+/* For each operand in INSN, simplify (subreg (reg)) so that it refers
+ directly to the desired hard register. */
+void
+cleanup_subreg_operands (insn)
+ rtx insn;
+{
+ int i;
+
+ extract_insn (insn);
+ for (i = 0; i < recog_n_operands; i++)
+ {
+ if (GET_CODE (recog_operand[i]) == SUBREG)
+ recog_operand[i] = alter_subreg (recog_operand[i]);
+ else if (GET_CODE (recog_operand[i]) == PLUS
+ || GET_CODE (recog_operand[i]) == MULT)
+ recog_operand[i] = walk_alter_subreg (recog_operand[i]);
+ }
+
+ for (i = 0; i < recog_n_dups; i++)
+ {
+ if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
+ *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
+ else if (GET_CODE (*recog_dup_loc[i]) == PLUS
+ || GET_CODE (*recog_dup_loc[i]) == MULT)
+ *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
+ }
+}
+
+/* If X is a SUBREG, replace it with a REG or a MEM,
+ based on the thing it is a subreg of. */
+
+rtx
+alter_subreg (x)
+ register rtx x;
+{
+ register rtx y = SUBREG_REG (x);
+
+ if (GET_CODE (y) == SUBREG)
+ y = alter_subreg (y);
+
+ /* If reload is operating, we may be replacing inside this SUBREG.
+ Check for that and make a new one if so. */
+ if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
+ x = copy_rtx (x);
+
+ if (GET_CODE (y) == REG)
+ {
+ /* If the word size is larger than the size of this register,
+ adjust the register number to compensate. */
+ /* ??? Note that this just catches stragglers created by/for
+ integrate. It would be better if we either caught these
+ earlier, or kept _all_ subregs until now and eliminate
+ gen_lowpart and friends. */
+
+ PUT_CODE (x, REG);
+#ifdef ALTER_HARD_SUBREG
+ REGNO (x) = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
+ GET_MODE (y), REGNO (y));
+#else
+ REGNO (x) = REGNO (y) + SUBREG_WORD (x);
+#endif
+ /* This field has a different meaning for REGs and SUBREGs. Make sure
+ to clear it! */
+ x->used = 0;
+ }
+ else if (GET_CODE (y) == MEM)
+ {
+ register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
+ PUT_CODE (x, MEM);
+ MEM_COPY_ATTRIBUTES (x, y);
+ MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
+ XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
+ }
+
+ return x;
+}
+
+/* Do alter_subreg on all the SUBREGs contained in X. */
+
+static rtx
+walk_alter_subreg (x)
+ rtx x;
+{
+ switch (GET_CODE (x))
+ {
+ case PLUS:
+ case MULT:
+ XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
+ XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
+ break;
+
+ case MEM:
+ XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
+ break;
+
+ case SUBREG:
+ return alter_subreg (x);
+
+ default:
+ break;
+ }
+
+ return x;
+}
+
+#ifdef HAVE_cc0
+
+/* Given BODY, the body of a jump instruction, alter the jump condition
+ as required by the bits that are set in cc_status.flags.
+ Not all of the bits there can be handled at this level in all cases.
+
+ The value is normally 0.
+ 1 means that the condition has become always true.
+ -1 means that the condition has become always false.
+ 2 means that COND has been altered. */
+
+static int
+alter_cond (cond)
+ register rtx cond;
+{
+ int value = 0;
+
+ if (cc_status.flags & CC_REVERSED)
+ {
+ value = 2;
+ PUT_CODE (cond, swap_condition (GET_CODE (cond)));
+ }
+
+ if (cc_status.flags & CC_INVERTED)
+ {
+ value = 2;
+ PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
+ }
+
+ if (cc_status.flags & CC_NOT_POSITIVE)
+ switch (GET_CODE (cond))
+ {
+ case LE:
+ case LEU:
+ case GEU:
+ /* Jump becomes unconditional. */
+ return 1;
+
+ case GT:
+ case GTU:
+ case LTU:
+ /* Jump becomes no-op. */
+ return -1;
+
+ case GE:
+ PUT_CODE (cond, EQ);
+ value = 2;
+ break;
+
+ case LT:
+ PUT_CODE (cond, NE);
+ value = 2;
+ break;
+
+ default:
+ break;
+ }
+
+ if (cc_status.flags & CC_NOT_NEGATIVE)
+ switch (GET_CODE (cond))
+ {
+ case GE:
+ case GEU:
+ /* Jump becomes unconditional. */
+ return 1;
+
+ case LT:
+ case LTU:
+ /* Jump becomes no-op. */
+ return -1;
+
+ case LE:
+ case LEU:
+ PUT_CODE (cond, EQ);
+ value = 2;
+ break;
+
+ case GT:
+ case GTU:
+ PUT_CODE (cond, NE);
+ value = 2;
+ break;
+
+ default:
+ break;
+ }
+
+ if (cc_status.flags & CC_NO_OVERFLOW)
+ switch (GET_CODE (cond))
+ {
+ case GEU:
+ /* Jump becomes unconditional. */
+ return 1;
+
+ case LEU:
+ PUT_CODE (cond, EQ);
+ value = 2;
+ break;
+
+ case GTU:
+ PUT_CODE (cond, NE);
+ value = 2;
+ break;
+
+ case LTU:
+ /* Jump becomes no-op. */
+ return -1;
+
+ default:
+ break;
+ }
+
+ if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
+ switch (GET_CODE (cond))
+ {
+ default:
+ abort ();
+
+ case NE:
+ PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
+ value = 2;
+ break;
+
+ case EQ:
+ PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
+ value = 2;
+ break;
+ }
+
+ if (cc_status.flags & CC_NOT_SIGNED)
+ /* The flags are valid if signed condition operators are converted
+ to unsigned. */
+ switch (GET_CODE (cond))
+ {
+ case LE:
+ PUT_CODE (cond, LEU);
+ value = 2;
+ break;
+
+ case LT:
+ PUT_CODE (cond, LTU);
+ value = 2;
+ break;
+
+ case GT:
+ PUT_CODE (cond, GTU);
+ value = 2;
+ break;
+
+ case GE:
+ PUT_CODE (cond, GEU);
+ value = 2;
+ break;
+
+ default:
+ break;
+ }
+
+ return value;
+}
+#endif
+
+/* Report inconsistency between the assembler template and the operands.
+ In an `asm', it's the user's fault; otherwise, the compiler's fault. */
+
+void
+output_operand_lossage (msgid)
+ const char *msgid;
+{
+ if (this_is_asm_operands)
+ error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
+ else
+ fatal ("Internal compiler error, output_operand_lossage `%s'", _(msgid));
+}
+
+/* Output of assembler code from a template, and its subroutines. */
+
+/* Output text from TEMPLATE to the assembler output file,
+ obeying %-directions to substitute operands taken from
+ the vector OPERANDS.
+
+ %N (for N a digit) means print operand N in usual manner.
+ %lN means require operand N to be a CODE_LABEL or LABEL_REF
+ and print the label name with no punctuation.
+ %cN means require operand N to be a constant
+ and print the constant expression with no punctuation.
+ %aN means expect operand N to be a memory address
+ (not a memory reference!) and print a reference
+ to that address.
+ %nN means expect operand N to be a constant
+ and print a constant expression for minus the value
+ of the operand, with no other punctuation. */
+
+static void
+output_asm_name ()
+{
+ if (flag_print_asm_name)
+ {
+ /* Annotate the assembly with a comment describing the pattern and
+ alternative used. */
+ if (debug_insn)
+ {
+ register int num = INSN_CODE (debug_insn);
+ fprintf (asm_out_file, "\t%s %d\t%s",
+ ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
+ if (insn_n_alternatives[num] > 1)
+ fprintf (asm_out_file, "/%d", which_alternative + 1);
+#ifdef HAVE_ATTR_length
+ fprintf (asm_out_file, "\t[length = %d]", get_attr_length (debug_insn));
+#endif
+ /* Clear this so only the first assembler insn
+ of any rtl insn will get the special comment for -dp. */
+ debug_insn = 0;
+ }
+ }
+}
+
+void
+output_asm_insn (template, operands)
+ const char *template;
+ rtx *operands;
+{
+ register const char *p;
+ register int c;
+
+ /* An insn may return a null string template
+ in a case where no assembler code is needed. */
+ if (*template == 0)
+ return;
+
+ p = template;
+ putc ('\t', asm_out_file);
+
+#ifdef ASM_OUTPUT_OPCODE
+ ASM_OUTPUT_OPCODE (asm_out_file, p);
+#endif
+
+ while ((c = *p++))
+ switch (c)
+ {
+ case '\n':
+ output_asm_name ();
+ putc (c, asm_out_file);
+#ifdef ASM_OUTPUT_OPCODE
+ while ((c = *p) == '\t')
+ {
+ putc (c, asm_out_file);
+ p++;
+ }
+ ASM_OUTPUT_OPCODE (asm_out_file, p);
+#endif
+ break;
+
+#ifdef ASSEMBLER_DIALECT
+ case '{':
+ {
+ register int i;
+
+ /* If we want the first dialect, do nothing. Otherwise, skip
+ DIALECT_NUMBER of strings ending with '|'. */
+ for (i = 0; i < dialect_number; i++)
+ {
+ while (*p && *p++ != '|')
+ ;
+
+ if (*p == '|')
+ p++;
+ }
+ }
+ break;
+
+ case '|':
+ /* Skip to close brace. */
+ while (*p && *p++ != '}')
+ ;
+ break;
+
+ case '}':
+ break;
+#endif
+
+ case '%':
+ /* %% outputs a single %. */
+ if (*p == '%')
+ {
+ p++;
+ putc (c, asm_out_file);
+ }
+ /* %= outputs a number which is unique to each insn in the entire
+ compilation. This is useful for making local labels that are
+ referred to more than once in a given insn. */
+ else if (*p == '=')
+ {
+ p++;
+ fprintf (asm_out_file, "%d", insn_counter);
+ }
+ /* % followed by a letter and some digits
+ outputs an operand in a special way depending on the letter.
+ Letters `acln' are implemented directly.
+ Other letters are passed to `output_operand' so that
+ the PRINT_OPERAND macro can define them. */
+ else if ((*p >= 'a' && *p <= 'z')
+ || (*p >= 'A' && *p <= 'Z'))
+ {
+ int letter = *p++;
+ c = atoi (p);
+
+ if (! (*p >= '0' && *p <= '9'))
+ output_operand_lossage ("operand number missing after %-letter");
+ else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
+ output_operand_lossage ("operand number out of range");
+ else if (letter == 'l')
+ output_asm_label (operands[c]);
+ else if (letter == 'a')
+ output_address (operands[c]);
+ else if (letter == 'c')
+ {
+ if (CONSTANT_ADDRESS_P (operands[c]))
+ output_addr_const (asm_out_file, operands[c]);
+ else
+ output_operand (operands[c], 'c');
+ }
+ else if (letter == 'n')
+ {
+ if (GET_CODE (operands[c]) == CONST_INT)
+ fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
+ - INTVAL (operands[c]));
+ else
+ {
+ putc ('-', asm_out_file);
+ output_addr_const (asm_out_file, operands[c]);
+ }
+ }
+ else
+ output_operand (operands[c], letter);
+
+ while ((c = *p) >= '0' && c <= '9') p++;
+ }
+ /* % followed by a digit outputs an operand the default way. */
+ else if (*p >= '0' && *p <= '9')
+ {
+ c = atoi (p);
+ if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
+ output_operand_lossage ("operand number out of range");
+ else
+ output_operand (operands[c], 0);
+ while ((c = *p) >= '0' && c <= '9') p++;
+ }
+ /* % followed by punctuation: output something for that
+ punctuation character alone, with no operand.
+ The PRINT_OPERAND macro decides what is actually done. */
+#ifdef PRINT_OPERAND_PUNCT_VALID_P
+ else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
+ output_operand (NULL_RTX, *p++);
+#endif
+ else
+ output_operand_lossage ("invalid %%-code");
+ break;
+
+ default:
+ putc (c, asm_out_file);
+ }
+
+ output_asm_name ();
+
+ putc ('\n', asm_out_file);
+}
+
+/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
+
+void
+output_asm_label (x)
+ rtx x;
+{
+ char buf[256];
+
+ if (GET_CODE (x) == LABEL_REF)
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
+ else if (GET_CODE (x) == CODE_LABEL)
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
+ else
+ output_operand_lossage ("`%l' operand isn't a label");
+
+ assemble_name (asm_out_file, buf);
+}
+
+/* Print operand X using machine-dependent assembler syntax.
+ The macro PRINT_OPERAND is defined just to control this function.
+ CODE is a non-digit that preceded the operand-number in the % spec,
+ such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
+ between the % and the digits.
+ When CODE is a non-letter, X is 0.
+
+ The meanings of the letters are machine-dependent and controlled
+ by PRINT_OPERAND. */
+
+static void
+output_operand (x, code)
+ rtx x;
+ int code;
+{
+ if (x && GET_CODE (x) == SUBREG)
+ x = alter_subreg (x);
+
+ /* If X is a pseudo-register, abort now rather than writing trash to the
+ assembler file. */
+
+ if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
+ abort ();
+
+ PRINT_OPERAND (asm_out_file, x, code);
+}
+
+/* Print a memory reference operand for address X
+ using machine-dependent assembler syntax.
+ The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
+
+void
+output_address (x)
+ rtx x;
+{
+ walk_alter_subreg (x);
+ PRINT_OPERAND_ADDRESS (asm_out_file, x);
+}
+
+/* Print an integer constant expression in assembler syntax.
+ Addition and subtraction are the only arithmetic
+ that may appear in these expressions. */
+
+void
+output_addr_const (file, x)
+ FILE *file;
+ rtx x;
+{
+ char buf[256];
+
+ restart:
+ switch (GET_CODE (x))
+ {
+ case PC:
+ if (flag_pic)
+ putc ('.', file);
+ else
+ abort ();
+ break;
+
+ case SYMBOL_REF:
+ assemble_name (file, XSTR (x, 0));
+ break;
+
+ case LABEL_REF:
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
+ assemble_name (file, buf);
+ break;
+
+ case CODE_LABEL:
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
+ assemble_name (file, buf);
+ break;
+
+ case CONST_INT:
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
+ break;
+
+ case CONST:
+ /* This used to output parentheses around the expression,
+ but that does not work on the 386 (either ATT or BSD assembler). */
+ output_addr_const (file, XEXP (x, 0));
+ break;
+
+ case CONST_DOUBLE:
+ if (GET_MODE (x) == VOIDmode)
+ {
+ /* We can use %d if the number is one word and positive. */
+ if (CONST_DOUBLE_HIGH (x))
+ fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
+ CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
+ else if (CONST_DOUBLE_LOW (x) < 0)
+ fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
+ else
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
+ }
+ else
+ /* We can't handle floating point constants;
+ PRINT_OPERAND must handle them. */
+ output_operand_lossage ("floating constant misused");
+ break;
+
+ case PLUS:
+ /* Some assemblers need integer constants to appear last (eg masm). */
+ if (GET_CODE (XEXP (x, 0)) == CONST_INT)
+ {
+ output_addr_const (file, XEXP (x, 1));
+ if (INTVAL (XEXP (x, 0)) >= 0)
+ fprintf (file, "+");
+ output_addr_const (file, XEXP (x, 0));
+ }
+ else
+ {
+ output_addr_const (file, XEXP (x, 0));
+ if (INTVAL (XEXP (x, 1)) >= 0)
+ fprintf (file, "+");
+ output_addr_const (file, XEXP (x, 1));
+ }
+ break;
+
+ case MINUS:
+ /* Avoid outputting things like x-x or x+5-x,
+ since some assemblers can't handle that. */
+ x = simplify_subtraction (x);
+ if (GET_CODE (x) != MINUS)
+ goto restart;
+
+ output_addr_const (file, XEXP (x, 0));
+ fprintf (file, "-");
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) < 0)
+ {
+ fprintf (file, ASM_OPEN_PAREN);
+ output_addr_const (file, XEXP (x, 1));
+ fprintf (file, ASM_CLOSE_PAREN);
+ }
+ else
+ output_addr_const (file, XEXP (x, 1));
+ break;
+
+ case ZERO_EXTEND:
+ case SIGN_EXTEND:
+ output_addr_const (file, XEXP (x, 0));
+ break;
+
+ default:
+ output_operand_lossage ("invalid expression as operand");
+ }
+}
+
+/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
+ %R prints the value of REGISTER_PREFIX.
+ %L prints the value of LOCAL_LABEL_PREFIX.
+ %U prints the value of USER_LABEL_PREFIX.
+ %I prints the value of IMMEDIATE_PREFIX.
+ %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
+ Also supported are %d, %x, %s, %e, %f, %g and %%.
+
+ We handle alternate assembler dialects here, just like output_asm_insn. */
+
+void
+asm_fprintf VPROTO((FILE *file, const char *p, ...))
+{
+#ifndef ANSI_PROTOTYPES
+ FILE *file;
+ const char *p;
+#endif
+ va_list argptr;
+ char buf[10];
+ char *q, c;
+
+ VA_START (argptr, p);
+
+#ifndef ANSI_PROTOTYPES
+ file = va_arg (argptr, FILE *);
+ p = va_arg (argptr, const char *);
+#endif
+
+ buf[0] = '%';
+
+ while ((c = *p++))
+ switch (c)
+ {
+#ifdef ASSEMBLER_DIALECT
+ case '{':
+ {
+ int i;
+
+ /* If we want the first dialect, do nothing. Otherwise, skip
+ DIALECT_NUMBER of strings ending with '|'. */
+ for (i = 0; i < dialect_number; i++)
+ {
+ while (*p && *p++ != '|')
+ ;
+
+ if (*p == '|')
+ p++;
+ }
+ }
+ break;
+
+ case '|':
+ /* Skip to close brace. */
+ while (*p && *p++ != '}')
+ ;
+ break;
+
+ case '}':
+ break;
+#endif
+
+ case '%':
+ c = *p++;
+ q = &buf[1];
+ while ((c >= '0' && c <= '9') || c == '.')
+ {
+ *q++ = c;
+ c = *p++;
+ }
+ switch (c)
+ {
+ case '%':
+ fprintf (file, "%%");
+ break;
+
+ case 'd': case 'i': case 'u':
+ case 'x': case 'p': case 'X':
+ case 'o':
+ *q++ = c;
+ *q = 0;
+ fprintf (file, buf, va_arg (argptr, int));
+ break;
+
+ case 'w':
+ /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
+ but we do not check for those cases. It means that the value
+ is a HOST_WIDE_INT, which may be either `int' or `long'. */
+
+#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
+#else
+#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
+ *q++ = 'l';
+#else
+ *q++ = 'l';
+ *q++ = 'l';
+#endif
+#endif
+
+ *q++ = *p++;
+ *q = 0;
+ fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
+ break;
+
+ case 'l':
+ *q++ = c;
+ *q++ = *p++;
+ *q = 0;
+ fprintf (file, buf, va_arg (argptr, long));
+ break;
+
+ case 'e':
+ case 'f':
+ case 'g':
+ *q++ = c;
+ *q = 0;
+ fprintf (file, buf, va_arg (argptr, double));
+ break;
+
+ case 's':
+ *q++ = c;
+ *q = 0;
+ fprintf (file, buf, va_arg (argptr, char *));
+ break;
+
+ case 'O':
+#ifdef ASM_OUTPUT_OPCODE
+ ASM_OUTPUT_OPCODE (asm_out_file, p);
+#endif
+ break;
+
+ case 'R':
+#ifdef REGISTER_PREFIX
+ fprintf (file, "%s", REGISTER_PREFIX);
+#endif
+ break;
+
+ case 'I':
+#ifdef IMMEDIATE_PREFIX
+ fprintf (file, "%s", IMMEDIATE_PREFIX);
+#endif
+ break;
+
+ case 'L':
+#ifdef LOCAL_LABEL_PREFIX
+ fprintf (file, "%s", LOCAL_LABEL_PREFIX);
+#endif
+ break;
+
+ case 'U':
+ fputs (user_label_prefix, file);
+ break;
+
+ default:
+ abort ();
+ }
+ break;
+
+ default:
+ fputc (c, file);
+ }
+}
+
+/* Split up a CONST_DOUBLE or integer constant rtx
+ into two rtx's for single words,
+ storing in *FIRST the word that comes first in memory in the target
+ and in *SECOND the other. */
+
+void
+split_double (value, first, second)
+ rtx value;
+ rtx *first, *second;
+{
+ if (GET_CODE (value) == CONST_INT)
+ {
+ if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
+ {
+ /* In this case the CONST_INT holds both target words.
+ Extract the bits from it into two word-sized pieces.
+ Sign extend each half to HOST_WIDE_INT. */
+ rtx low, high;
+ /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
+ the shift below will cause a compiler warning, even though
+ this code won't be executed. So put the shift amounts in
+ variables to avoid the warning. */
+ int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
+ int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
+
+ low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
+ high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
+ if (WORDS_BIG_ENDIAN)
+ {
+ *first = high;
+ *second = low;
+ }
+ else
+ {
+ *first = low;
+ *second = high;
+ }
+ }
+ else
+ {
+ /* The rule for using CONST_INT for a wider mode
+ is that we regard the value as signed.
+ So sign-extend it. */
+ rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
+ if (WORDS_BIG_ENDIAN)
+ {
+ *first = high;
+ *second = value;
+ }
+ else
+ {
+ *first = value;
+ *second = high;
+ }
+ }
+ }
+ else if (GET_CODE (value) != CONST_DOUBLE)
+ {
+ if (WORDS_BIG_ENDIAN)
+ {
+ *first = const0_rtx;
+ *second = value;
+ }
+ else
+ {
+ *first = value;
+ *second = const0_rtx;
+ }
+ }
+ else if (GET_MODE (value) == VOIDmode
+ /* This is the old way we did CONST_DOUBLE integers. */
+ || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
+ {
+ /* In an integer, the words are defined as most and least significant.
+ So order them by the target's convention. */
+ if (WORDS_BIG_ENDIAN)
+ {
+ *first = GEN_INT (CONST_DOUBLE_HIGH (value));
+ *second = GEN_INT (CONST_DOUBLE_LOW (value));
+ }
+ else
+ {
+ *first = GEN_INT (CONST_DOUBLE_LOW (value));
+ *second = GEN_INT (CONST_DOUBLE_HIGH (value));
+ }
+ }
+ else
+ {
+#ifdef REAL_ARITHMETIC
+ REAL_VALUE_TYPE r; long l[2];
+ REAL_VALUE_FROM_CONST_DOUBLE (r, value);
+
+ /* Note, this converts the REAL_VALUE_TYPE to the target's
+ format, splits up the floating point double and outputs
+ exactly 32 bits of it into each of l[0] and l[1] --
+ not necessarily BITS_PER_WORD bits. */
+ REAL_VALUE_TO_TARGET_DOUBLE (r, l);
+
+ /* If 32 bits is an entire word for the target, but not for the host,
+ then sign-extend on the host so that the number will look the same
+ way on the host that it would on the target. See for instance
+ simplify_unary_operation. The #if is needed to avoid compiler
+ warnings. */
+
+#if HOST_BITS_PER_LONG > 32
+ if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
+ {
+ if (l[0] & ((long) 1 << 31))
+ l[0] |= ((long) (-1) << 32);
+ if (l[1] & ((long) 1 << 31))
+ l[1] |= ((long) (-1) << 32);
+ }
+#endif
+
+ *first = GEN_INT ((HOST_WIDE_INT) l[0]);
+ *second = GEN_INT ((HOST_WIDE_INT) l[1]);
+#else
+ if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
+ || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
+ && ! flag_pretend_float)
+ abort ();
+
+ if (
+#ifdef HOST_WORDS_BIG_ENDIAN
+ WORDS_BIG_ENDIAN
+#else
+ ! WORDS_BIG_ENDIAN
+#endif
+ )
+ {
+ /* Host and target agree => no need to swap. */
+ *first = GEN_INT (CONST_DOUBLE_LOW (value));
+ *second = GEN_INT (CONST_DOUBLE_HIGH (value));
+ }
+ else
+ {
+ *second = GEN_INT (CONST_DOUBLE_LOW (value));
+ *first = GEN_INT (CONST_DOUBLE_HIGH (value));
+ }
+#endif /* no REAL_ARITHMETIC */
+ }
+}
+
+/* Return nonzero if this function has no function calls. */
+
+int
+leaf_function_p ()
+{
+ rtx insn;
+
+ if (profile_flag || profile_block_flag || profile_arc_flag)
+ return 0;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == CALL_INSN)
+ return 0;
+ if (GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) == SEQUENCE
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
+ return 0;
+ }
+ for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
+ {
+ if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
+ return 0;
+ if (GET_CODE (XEXP (insn, 0)) == INSN
+ && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
+ && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* On some machines, a function with no call insns
+ can run faster if it doesn't create its own register window.
+ When output, the leaf function should use only the "output"
+ registers. Ordinarily, the function would be compiled to use
+ the "input" registers to find its arguments; it is a candidate
+ for leaf treatment if it uses only the "input" registers.
+ Leaf function treatment means renumbering so the function
+ uses the "output" registers instead. */
+
+#ifdef LEAF_REGISTERS
+
+static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
+
+/* Return 1 if this function uses only the registers that can be
+ safely renumbered. */
+
+int
+only_leaf_regs_used ()
+{
+ int i;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if ((regs_ever_live[i] || global_regs[i])
+ && ! permitted_reg_in_leaf_functions[i])
+ return 0;
+
+ if (current_function_uses_pic_offset_table
+ && pic_offset_table_rtx != 0
+ && GET_CODE (pic_offset_table_rtx) == REG
+ && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
+ return 0;
+
+ return 1;
+}
+
+/* Scan all instructions and renumber all registers into those
+ available in leaf functions. */
+
+static void
+leaf_renumber_regs (first)
+ rtx first;
+{
+ rtx insn;
+
+ /* Renumber only the actual patterns.
+ The reg-notes can contain frame pointer refs,
+ and renumbering them could crash, and should not be needed. */
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ leaf_renumber_regs_insn (PATTERN (insn));
+ for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
+ if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
+ leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
+}
+
+/* Scan IN_RTX and its subexpressions, and renumber all regs into those
+ available in leaf functions. */
+
+void
+leaf_renumber_regs_insn (in_rtx)
+ register rtx in_rtx;
+{
+ register int i, j;
+ register char *format_ptr;
+
+ if (in_rtx == 0)
+ return;
+
+ /* Renumber all input-registers into output-registers.
+ renumbered_regs would be 1 for an output-register;
+ they */
+
+ if (GET_CODE (in_rtx) == REG)
+ {
+ int newreg;
+
+ /* Don't renumber the same reg twice. */
+ if (in_rtx->used)
+ return;
+
+ newreg = REGNO (in_rtx);
+ /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
+ to reach here as part of a REG_NOTE. */
+ if (newreg >= FIRST_PSEUDO_REGISTER)
+ {
+ in_rtx->used = 1;
+ return;
+ }
+ newreg = LEAF_REG_REMAP (newreg);
+ if (newreg < 0)
+ abort ();
+ regs_ever_live[REGNO (in_rtx)] = 0;
+ regs_ever_live[newreg] = 1;
+ REGNO (in_rtx) = newreg;
+ in_rtx->used = 1;
+ }
+
+ if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
+ {
+ /* Inside a SEQUENCE, we find insns.
+ Renumber just the patterns of these insns,
+ just as we do for the top-level insns. */
+ leaf_renumber_regs_insn (PATTERN (in_rtx));
+ return;
+ }
+
+ format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
+
+ for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
+ switch (*format_ptr++)
+ {
+ case 'e':
+ leaf_renumber_regs_insn (XEXP (in_rtx, i));
+ break;
+
+ case 'E':
+ if (NULL != XVEC (in_rtx, i))
+ {
+ for (j = 0; j < XVECLEN (in_rtx, i); j++)
+ leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
+ }
+ break;
+
+ case 'S':
+ case 's':
+ case '0':
+ case 'i':
+ case 'w':
+ case 'n':
+ case 'u':
+ break;
+
+ default:
+ abort ();
+ }
+}
+#endif