summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/flow.c
diff options
context:
space:
mode:
authorMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
committerMarc Espie <espie@cvs.openbsd.org>1999-05-26 13:38:57 +0000
commit0126e157b87f137fc08dc7f46f6c291b9d06ac5d (patch)
treef8555e3e504eb82b4cd3cba5cec20ae4ce8124ff /gnu/egcs/gcc/flow.c
parentff8e9a4356e55ed142306c3a375fa280800abc86 (diff)
egcs projects compiler system
Exact copy of the snapshot, except for the removal of texinfo/ gcc/ch/ libchill/
Diffstat (limited to 'gnu/egcs/gcc/flow.c')
-rw-r--r--gnu/egcs/gcc/flow.c5230
1 files changed, 5230 insertions, 0 deletions
diff --git a/gnu/egcs/gcc/flow.c b/gnu/egcs/gcc/flow.c
new file mode 100644
index 00000000000..b46c87ea46a
--- /dev/null
+++ b/gnu/egcs/gcc/flow.c
@@ -0,0 +1,5230 @@
+/* Data flow analysis for GNU compiler.
+ Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This file contains the data flow analysis pass of the compiler. It
+ computes data flow information which tells combine_instructions
+ which insns to consider combining and controls register allocation.
+
+ Additional data flow information that is too bulky to record is
+ generated during the analysis, and is used at that time to create
+ autoincrement and autodecrement addressing.
+
+ The first step is dividing the function into basic blocks.
+ find_basic_blocks does this. Then life_analysis determines
+ where each register is live and where it is dead.
+
+ ** find_basic_blocks **
+
+ find_basic_blocks divides the current function's rtl into basic
+ blocks and constructs the CFG. The blocks are recorded in the
+ basic_block_info array; the CFG exists in the edge structures
+ referenced by the blocks.
+
+ find_basic_blocks also finds any unreachable loops and deletes them.
+
+ ** life_analysis **
+
+ life_analysis is called immediately after find_basic_blocks.
+ It uses the basic block information to determine where each
+ hard or pseudo register is live.
+
+ ** live-register info **
+
+ The information about where each register is live is in two parts:
+ the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
+
+ basic_block->global_live_at_start has an element for each basic
+ block, and the element is a bit-vector with a bit for each hard or
+ pseudo register. The bit is 1 if the register is live at the
+ beginning of the basic block.
+
+ Two types of elements can be added to an insn's REG_NOTES.
+ A REG_DEAD note is added to an insn's REG_NOTES for any register
+ that meets both of two conditions: The value in the register is not
+ needed in subsequent insns and the insn does not replace the value in
+ the register (in the case of multi-word hard registers, the value in
+ each register must be replaced by the insn to avoid a REG_DEAD note).
+
+ In the vast majority of cases, an object in a REG_DEAD note will be
+ used somewhere in the insn. The (rare) exception to this is if an
+ insn uses a multi-word hard register and only some of the registers are
+ needed in subsequent insns. In that case, REG_DEAD notes will be
+ provided for those hard registers that are not subsequently needed.
+ Partial REG_DEAD notes of this type do not occur when an insn sets
+ only some of the hard registers used in such a multi-word operand;
+ omitting REG_DEAD notes for objects stored in an insn is optional and
+ the desire to do so does not justify the complexity of the partial
+ REG_DEAD notes.
+
+ REG_UNUSED notes are added for each register that is set by the insn
+ but is unused subsequently (if every register set by the insn is unused
+ and the insn does not reference memory or have some other side-effect,
+ the insn is deleted instead). If only part of a multi-word hard
+ register is used in a subsequent insn, REG_UNUSED notes are made for
+ the parts that will not be used.
+
+ To determine which registers are live after any insn, one can
+ start from the beginning of the basic block and scan insns, noting
+ which registers are set by each insn and which die there.
+
+ ** Other actions of life_analysis **
+
+ life_analysis sets up the LOG_LINKS fields of insns because the
+ information needed to do so is readily available.
+
+ life_analysis deletes insns whose only effect is to store a value
+ that is never used.
+
+ life_analysis notices cases where a reference to a register as
+ a memory address can be combined with a preceding or following
+ incrementation or decrementation of the register. The separate
+ instruction to increment or decrement is deleted and the address
+ is changed to a POST_INC or similar rtx.
+
+ Each time an incrementing or decrementing address is created,
+ a REG_INC element is added to the insn's REG_NOTES list.
+
+ life_analysis fills in certain vectors containing information about
+ register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
+ reg_n_calls_crosses and reg_basic_block.
+
+ life_analysis sets current_function_sp_is_unchanging if the function
+ doesn't modify the stack pointer. */
+
+/* TODO:
+
+ Split out from life_analysis:
+ - local property discovery (bb->local_live, bb->local_set)
+ - global property computation
+ - log links creation
+ - pre/post modify transformation
+*/
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "basic-block.h"
+#include "insn-config.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "output.h"
+#include "except.h"
+#include "toplev.h"
+#include "recog.h"
+#include "insn-flags.h"
+
+#include "obstack.h"
+#define obstack_chunk_alloc xmalloc
+#define obstack_chunk_free free
+
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+#ifndef EXIT_IGNORE_STACK
+#define EXIT_IGNORE_STACK 0
+#endif
+
+
+/* The contents of the current function definition are allocated
+ in this obstack, and all are freed at the end of the function.
+ For top-level functions, this is temporary_obstack.
+ Separate obstacks are made for nested functions. */
+
+extern struct obstack *function_obstack;
+
+/* List of labels that must never be deleted. */
+extern rtx forced_labels;
+
+/* Number of basic blocks in the current function. */
+
+int n_basic_blocks;
+
+/* The basic block array. */
+
+varray_type basic_block_info;
+
+/* The special entry and exit blocks. */
+
+struct basic_block_def entry_exit_blocks[2] =
+{
+ {
+ NULL, /* head */
+ NULL, /* end */
+ NULL, /* pred */
+ NULL, /* succ */
+ NULL, /* local_set */
+ NULL, /* global_live_at_start */
+ NULL, /* global_live_at_end */
+ NULL, /* aux */
+ ENTRY_BLOCK, /* index */
+ 0 /* loop_depth */
+ },
+ {
+ NULL, /* head */
+ NULL, /* end */
+ NULL, /* pred */
+ NULL, /* succ */
+ NULL, /* local_set */
+ NULL, /* global_live_at_start */
+ NULL, /* global_live_at_end */
+ NULL, /* aux */
+ EXIT_BLOCK, /* index */
+ 0 /* loop_depth */
+ }
+};
+
+/* Nonzero if the second flow pass has completed. */
+int flow2_completed;
+
+/* Maximum register number used in this function, plus one. */
+
+int max_regno;
+
+/* Indexed by n, giving various register information */
+
+varray_type reg_n_info;
+
+/* Size of the reg_n_info table. */
+
+unsigned int reg_n_max;
+
+/* Element N is the next insn that uses (hard or pseudo) register number N
+ within the current basic block; or zero, if there is no such insn.
+ This is valid only during the final backward scan in propagate_block. */
+
+static rtx *reg_next_use;
+
+/* Size of a regset for the current function,
+ in (1) bytes and (2) elements. */
+
+int regset_bytes;
+int regset_size;
+
+/* Regset of regs live when calls to `setjmp'-like functions happen. */
+/* ??? Does this exist only for the setjmp-clobbered warning message? */
+
+regset regs_live_at_setjmp;
+
+/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
+ that have to go in the same hard reg.
+ The first two regs in the list are a pair, and the next two
+ are another pair, etc. */
+rtx regs_may_share;
+
+/* Depth within loops of basic block being scanned for lifetime analysis,
+ plus one. This is the weight attached to references to registers. */
+
+static int loop_depth;
+
+/* During propagate_block, this is non-zero if the value of CC0 is live. */
+
+static int cc0_live;
+
+/* During propagate_block, this contains a list of all the MEMs we are
+ tracking for dead store elimination.
+
+ ?!? Note we leak memory by not free-ing items on this list. We need to
+ write some generic routines to operate on memory lists since cse, gcse,
+ loop, sched, flow and possibly other passes all need to do basically the
+ same operations on these lists. */
+
+static rtx mem_set_list;
+
+/* Set of registers that may be eliminable. These are handled specially
+ in updating regs_ever_live. */
+
+static HARD_REG_SET elim_reg_set;
+
+/* The basic block structure for every insn, indexed by uid. */
+
+varray_type basic_block_for_insn;
+
+/* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
+/* ??? Should probably be using LABEL_NUSES instead. It would take a
+ bit of surgery to be able to use or co-opt the routines in jump. */
+
+static rtx label_value_list;
+
+/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
+
+#define INSN_VOLATILE(INSN) bitmap_bit_p (uid_volatile, INSN_UID (INSN))
+#define SET_INSN_VOLATILE(INSN) bitmap_set_bit (uid_volatile, INSN_UID (INSN))
+static bitmap uid_volatile;
+
+/* Forward declarations */
+static int count_basic_blocks PROTO((rtx));
+static rtx find_basic_blocks_1 PROTO((rtx, rtx*));
+static void create_basic_block PROTO((int, rtx, rtx, rtx));
+static void compute_bb_for_insn PROTO((varray_type, int));
+static void clear_edges PROTO((void));
+static void make_edges PROTO((rtx, rtx*));
+static void make_edge PROTO((basic_block, basic_block, int));
+static void make_label_edge PROTO((basic_block, rtx, int));
+static void mark_critical_edges PROTO((void));
+
+static void commit_one_edge_insertion PROTO((edge));
+
+static void delete_unreachable_blocks PROTO((void));
+static void delete_eh_regions PROTO((void));
+static int can_delete_note_p PROTO((rtx));
+static void delete_insn_chain PROTO((rtx, rtx));
+static int delete_block PROTO((basic_block));
+static void expunge_block PROTO((basic_block));
+static rtx flow_delete_insn PROTO((rtx));
+static int can_delete_label_p PROTO((rtx));
+static void merge_blocks_nomove PROTO((basic_block, basic_block));
+static int merge_blocks PROTO((edge,basic_block,basic_block));
+static void tidy_fallthru_edge PROTO((edge,basic_block,basic_block));
+static void calculate_loop_depth PROTO((rtx));
+
+static int set_noop_p PROTO((rtx));
+static int noop_move_p PROTO((rtx));
+static void notice_stack_pointer_modification PROTO ((rtx, rtx));
+static void record_volatile_insns PROTO((rtx));
+static void mark_regs_live_at_end PROTO((regset));
+static void life_analysis_1 PROTO((rtx, int, int));
+static void init_regset_vector PROTO ((regset *, int,
+ struct obstack *));
+static void propagate_block PROTO((regset, rtx, rtx, int,
+ regset, int, int));
+static int insn_dead_p PROTO((rtx, regset, int, rtx));
+static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
+static void mark_set_regs PROTO((regset, regset, rtx,
+ rtx, regset));
+static void mark_set_1 PROTO((regset, regset, rtx,
+ rtx, regset));
+#ifdef AUTO_INC_DEC
+static void find_auto_inc PROTO((regset, rtx, rtx));
+static int try_pre_increment_1 PROTO((rtx));
+static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
+#endif
+static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
+void dump_flow_info PROTO((FILE *));
+static void dump_edge_info PROTO((FILE *, edge, int));
+
+static int_list_ptr alloc_int_list_node PROTO ((int_list_block **));
+static int_list_ptr add_int_list_node PROTO ((int_list_block **,
+ int_list **, int));
+
+static void add_pred_succ PROTO ((int, int, int_list_ptr *,
+ int_list_ptr *, int *, int *));
+
+static void count_reg_sets_1 PROTO ((rtx));
+static void count_reg_sets PROTO ((rtx));
+static void count_reg_references PROTO ((rtx));
+static void notice_stack_pointer_modification PROTO ((rtx, rtx));
+static void invalidate_mems_from_autoinc PROTO ((rtx));
+void verify_flow_info PROTO ((void));
+
+/* Find basic blocks of the current function.
+ F is the first insn of the function and NREGS the number of register
+ numbers in use. */
+
+void
+find_basic_blocks (f, nregs, file, do_cleanup)
+ rtx f;
+ int nregs ATTRIBUTE_UNUSED;
+ FILE *file ATTRIBUTE_UNUSED;
+ int do_cleanup;
+{
+ rtx *bb_eh_end;
+ int max_uid;
+
+ /* Flush out existing data. */
+ if (basic_block_info != NULL)
+ {
+ int i;
+
+ clear_edges ();
+
+ /* Clear bb->aux on all extant basic blocks. We'll use this as a
+ tag for reuse during create_basic_block, just in case some pass
+ copies around basic block notes improperly. */
+ for (i = 0; i < n_basic_blocks; ++i)
+ BASIC_BLOCK (i)->aux = NULL;
+
+ VARRAY_FREE (basic_block_info);
+ }
+
+ n_basic_blocks = count_basic_blocks (f);
+
+ /* Size the basic block table. The actual structures will be allocated
+ by find_basic_blocks_1, since we want to keep the structure pointers
+ stable across calls to find_basic_blocks. */
+ /* ??? This whole issue would be much simpler if we called find_basic_blocks
+ exactly once, and thereafter we don't have a single long chain of
+ instructions at all until close to the end of compilation when we
+ actually lay them out. */
+
+ VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
+
+ /* An array to record the active exception region at the end of each
+ basic block. It is filled in by find_basic_blocks_1 for make_edges. */
+ bb_eh_end = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
+
+ label_value_list = find_basic_blocks_1 (f, bb_eh_end);
+
+ /* Record the block to which an insn belongs. */
+ /* ??? This should be done another way, by which (perhaps) a label is
+ tagged directly with the basic block that it starts. It is used for
+ more than that currently, but IMO that is the only valid use. */
+
+ max_uid = get_max_uid ();
+#ifdef AUTO_INC_DEC
+ /* Leave space for insns life_analysis makes in some cases for auto-inc.
+ These cases are rare, so we don't need too much space. */
+ max_uid += max_uid / 10;
+#endif
+
+ VARRAY_BB_INIT (basic_block_for_insn, max_uid, "basic_block_for_insn");
+ compute_bb_for_insn (basic_block_for_insn, max_uid);
+
+ /* Discover the edges of our cfg. */
+
+ make_edges (label_value_list, bb_eh_end);
+
+ /* Delete unreachable blocks. */
+
+ if (do_cleanup)
+ delete_unreachable_blocks ();
+
+ /* Mark critical edges. */
+
+ mark_critical_edges ();
+
+ /* Discover the loop depth at the start of each basic block to aid
+ register allocation. */
+ calculate_loop_depth (f);
+
+ /* Kill the data we won't maintain. */
+ label_value_list = 0;
+
+#ifdef ENABLE_CHECKING
+ verify_flow_info ();
+#endif
+}
+
+/* Count the basic blocks of the function. */
+
+static int
+count_basic_blocks (f)
+ rtx f;
+{
+ register rtx insn;
+ register RTX_CODE prev_code;
+ register int count = 0;
+ int eh_region = 0;
+ int call_had_abnormal_edge = 0;
+ rtx prev_call = NULL_RTX;
+
+ prev_code = JUMP_INSN;
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ register RTX_CODE code = GET_CODE (insn);
+
+ if (code == CODE_LABEL
+ || (GET_RTX_CLASS (code) == 'i'
+ && (prev_code == JUMP_INSN
+ || prev_code == BARRIER
+ || (prev_code == CALL_INSN && call_had_abnormal_edge))))
+ {
+ count++;
+
+ /* If the previous insn was a call that did not create an
+ abnormal edge, we want to add a nop so that the CALL_INSN
+ itself is not at basic_block_end. This allows us to
+ easily distinguish between normal calls and those which
+ create abnormal edges in the flow graph. */
+
+ if (count > 0 && prev_call != 0 && !call_had_abnormal_edge)
+ {
+ rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
+ emit_insn_after (nop, prev_call);
+ }
+ }
+
+ /* Record whether this call created an edge. */
+ if (code == CALL_INSN)
+ {
+ rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
+ int region = (note ? XINT (XEXP (note, 0), 0) : 1);
+ prev_call = insn;
+ call_had_abnormal_edge = 0;
+
+ /* If there is a specified EH region, we have an edge. */
+ if (eh_region && region > 0)
+ call_had_abnormal_edge = 1;
+ else
+ {
+ /* If there is a nonlocal goto label and the specified
+ region number isn't -1, we have an edge. (0 means
+ no throw, but might have a nonlocal goto). */
+ if (nonlocal_goto_handler_labels && region >= 0)
+ call_had_abnormal_edge = 1;
+ }
+ }
+ else if (code != NOTE)
+ prev_call = NULL_RTX;
+
+ if (code != NOTE)
+ prev_code = code;
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
+ ++eh_region;
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
+ --eh_region;
+
+ }
+
+ /* The rest of the compiler works a bit smoother when we don't have to
+ check for the edge case of do-nothing functions with no basic blocks. */
+ if (count == 0)
+ {
+ emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
+ count = 1;
+ }
+
+ return count;
+}
+
+/* Find all basic blocks of the function whose first insn is F.
+ Store the correct data in the tables that describe the basic blocks,
+ set up the chains of references for each CODE_LABEL, and
+ delete any entire basic blocks that cannot be reached.
+
+ NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
+ that are otherwise unreachable may be reachable with a non-local goto.
+
+ BB_EH_END is an array in which we record the list of exception regions
+ active at the end of every basic block. */
+
+static rtx
+find_basic_blocks_1 (f, bb_eh_end)
+ rtx f;
+ rtx *bb_eh_end;
+{
+ register rtx insn, next;
+ int call_has_abnormal_edge = 0;
+ int i = 0;
+ rtx bb_note = NULL_RTX;
+ rtx eh_list = NULL_RTX;
+ rtx label_value_list = NULL_RTX;
+ rtx head = NULL_RTX;
+ rtx end = NULL_RTX;
+
+ /* We process the instructions in a slightly different way than we did
+ previously. This is so that we see a NOTE_BASIC_BLOCK after we have
+ closed out the previous block, so that it gets attached at the proper
+ place. Since this form should be equivalent to the previous,
+ find_basic_blocks_0 continues to use the old form as a check. */
+
+ for (insn = f; insn; insn = next)
+ {
+ enum rtx_code code = GET_CODE (insn);
+
+ next = NEXT_INSN (insn);
+
+ if (code == CALL_INSN)
+ {
+ /* Record whether this call created an edge. */
+ rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
+ int region = (note ? XINT (XEXP (note, 0), 0) : 1);
+ call_has_abnormal_edge = 0;
+
+ /* If there is an EH region, we have an edge. */
+ if (eh_list && region > 0)
+ call_has_abnormal_edge = 1;
+ else
+ {
+ /* If there is a nonlocal goto label and the specified
+ region number isn't -1, we have an edge. (0 means
+ no throw, but might have a nonlocal goto). */
+ if (nonlocal_goto_handler_labels && region >= 0)
+ call_has_abnormal_edge = 1;
+ }
+ }
+
+ switch (code)
+ {
+ case NOTE:
+ {
+ int kind = NOTE_LINE_NUMBER (insn);
+
+ /* Keep a LIFO list of the currently active exception notes. */
+ if (kind == NOTE_INSN_EH_REGION_BEG)
+ eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
+ else if (kind == NOTE_INSN_EH_REGION_END)
+ eh_list = XEXP (eh_list, 1);
+
+ /* Look for basic block notes with which to keep the
+ basic_block_info pointers stable. Unthread the note now;
+ we'll put it back at the right place in create_basic_block.
+ Or not at all if we've already found a note in this block. */
+ else if (kind == NOTE_INSN_BASIC_BLOCK)
+ {
+ if (bb_note == NULL_RTX)
+ bb_note = insn;
+ next = flow_delete_insn (insn);
+ }
+
+ break;
+ }
+
+ case CODE_LABEL:
+ /* A basic block starts at a label. If we've closed one off due
+ to a barrier or some such, no need to do it again. */
+ if (head != NULL_RTX)
+ {
+ /* While we now have edge lists with which other portions of
+ the compiler might determine a call ending a basic block
+ does not imply an abnormal edge, it will be a bit before
+ everything can be updated. So continue to emit a noop at
+ the end of such a block. */
+ if (GET_CODE (end) == CALL_INSN)
+ {
+ rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
+ end = emit_insn_after (nop, end);
+ }
+
+ bb_eh_end[i] = eh_list;
+ create_basic_block (i++, head, end, bb_note);
+ bb_note = NULL_RTX;
+ }
+ head = end = insn;
+ break;
+
+ case JUMP_INSN:
+ /* A basic block ends at a jump. */
+ if (head == NULL_RTX)
+ head = insn;
+ else
+ {
+ /* ??? Make a special check for table jumps. The way this
+ happens is truely and amazingly gross. We are about to
+ create a basic block that contains just a code label and
+ an addr*vec jump insn. Worse, an addr_diff_vec creates
+ its own natural loop.
+
+ Prevent this bit of brain damage, pasting things together
+ correctly in make_edges.
+
+ The correct solution involves emitting the table directly
+ on the tablejump instruction as a note, or JUMP_LABEL. */
+
+ if (GET_CODE (PATTERN (insn)) == ADDR_VEC
+ || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
+ {
+ head = end = NULL;
+ n_basic_blocks--;
+ break;
+ }
+ }
+ end = insn;
+ goto new_bb_inclusive;
+
+ case BARRIER:
+ /* A basic block ends at a barrier. It may be that an unconditional
+ jump already closed the basic block -- no need to do it again. */
+ if (head == NULL_RTX)
+ break;
+
+ /* While we now have edge lists with which other portions of the
+ compiler might determine a call ending a basic block does not
+ imply an abnormal edge, it will be a bit before everything can
+ be updated. So continue to emit a noop at the end of such a
+ block. */
+ if (GET_CODE (end) == CALL_INSN)
+ {
+ rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
+ end = emit_insn_after (nop, end);
+ }
+ goto new_bb_exclusive;
+
+ case CALL_INSN:
+ /* A basic block ends at a call that can either throw or
+ do a non-local goto. */
+ if (call_has_abnormal_edge)
+ {
+ new_bb_inclusive:
+ if (head == NULL_RTX)
+ head = insn;
+ end = insn;
+
+ new_bb_exclusive:
+ bb_eh_end[i] = eh_list;
+ create_basic_block (i++, head, end, bb_note);
+ head = end = NULL_RTX;
+ bb_note = NULL_RTX;
+ break;
+ }
+ /* FALLTHRU */
+
+ default:
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ if (head == NULL_RTX)
+ head = insn;
+ end = insn;
+ }
+ break;
+ }
+
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ rtx note;
+
+ /* Make a list of all labels referred to other than by jumps
+ (which just don't have the REG_LABEL notes).
+
+ Make a special exception for labels followed by an ADDR*VEC,
+ as this would be a part of the tablejump setup code.
+
+ Make a special exception for the eh_return_stub_label, which
+ we know isn't part of any otherwise visible control flow. */
+
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_LABEL)
+ {
+ rtx lab = XEXP (note, 0), next;
+
+ if (lab == eh_return_stub_label)
+ ;
+ else if ((next = next_nonnote_insn (lab)) != NULL
+ && GET_CODE (next) == JUMP_INSN
+ && (GET_CODE (PATTERN (next)) == ADDR_VEC
+ || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
+ ;
+ else
+ label_value_list
+ = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
+ label_value_list);
+ }
+ }
+ }
+
+ if (head != NULL_RTX)
+ {
+ bb_eh_end[i] = eh_list;
+ create_basic_block (i++, head, end, bb_note);
+ }
+
+ if (i != n_basic_blocks)
+ abort ();
+
+ return label_value_list;
+}
+
+/* Create a new basic block consisting of the instructions between
+ HEAD and END inclusive. Reuses the note and basic block struct
+ in BB_NOTE, if any. */
+
+static void
+create_basic_block (index, head, end, bb_note)
+ int index;
+ rtx head, end, bb_note;
+{
+ basic_block bb;
+
+ if (bb_note
+ && ! RTX_INTEGRATED_P (bb_note)
+ && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
+ && bb->aux == NULL)
+ {
+ /* If we found an existing note, thread it back onto the chain. */
+
+ if (GET_CODE (head) == CODE_LABEL)
+ add_insn_after (bb_note, head);
+ else
+ {
+ add_insn_before (bb_note, head);
+ head = bb_note;
+ }
+ }
+ else
+ {
+ /* Otherwise we must create a note and a basic block structure.
+ Since we allow basic block structs in rtl, give the struct
+ the same lifetime by allocating it off the function obstack
+ rather than using malloc. */
+
+ bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
+ memset (bb, 0, sizeof (*bb));
+
+ if (GET_CODE (head) == CODE_LABEL)
+ bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
+ else
+ {
+ bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
+ head = bb_note;
+ }
+ NOTE_BASIC_BLOCK (bb_note) = bb;
+ }
+
+ /* Always include the bb note in the block. */
+ if (NEXT_INSN (end) == bb_note)
+ end = bb_note;
+
+ bb->head = head;
+ bb->end = end;
+ bb->index = index;
+ BASIC_BLOCK (index) = bb;
+
+ /* Tag the block so that we know it has been used when considering
+ other basic block notes. */
+ bb->aux = bb;
+}
+
+/* Records the basic block struct in BB_FOR_INSN, for every instruction
+ indexed by INSN_UID. MAX is the size of the array. */
+
+static void
+compute_bb_for_insn (bb_for_insn, max)
+ varray_type bb_for_insn;
+ int max;
+{
+ int i;
+
+ for (i = 0; i < n_basic_blocks; ++i)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+ rtx insn, end;
+
+ end = bb->end;
+ insn = bb->head;
+ while (1)
+ {
+ int uid = INSN_UID (insn);
+ if (uid < max)
+ VARRAY_BB (bb_for_insn, uid) = bb;
+ if (insn == end)
+ break;
+ insn = NEXT_INSN (insn);
+ }
+ }
+}
+
+/* Free the memory associated with the edge structures. */
+
+static void
+clear_edges ()
+{
+ int i;
+ edge n, e;
+
+ for (i = 0; i < n_basic_blocks; ++i)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+
+ for (e = bb->succ; e ; e = n)
+ {
+ n = e->succ_next;
+ free (e);
+ }
+
+ bb->succ = 0;
+ bb->pred = 0;
+ }
+
+ for (e = ENTRY_BLOCK_PTR->succ; e ; e = n)
+ {
+ n = e->succ_next;
+ free (e);
+ }
+
+ ENTRY_BLOCK_PTR->succ = 0;
+ EXIT_BLOCK_PTR->pred = 0;
+}
+
+/* Identify the edges between basic blocks.
+
+ NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
+ that are otherwise unreachable may be reachable with a non-local goto.
+
+ BB_EH_END is an array indexed by basic block number in which we record
+ the list of exception regions active at the end of the basic block. */
+
+static void
+make_edges (label_value_list, bb_eh_end)
+ rtx label_value_list;
+ rtx *bb_eh_end;
+{
+ int i;
+
+ /* Assume no computed jump; revise as we create edges. */
+ current_function_has_computed_jump = 0;
+
+ /* By nature of the way these get numbered, block 0 is always the entry. */
+ make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
+
+ for (i = 0; i < n_basic_blocks; ++i)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+ rtx insn, x, eh_list;
+ enum rtx_code code;
+ int force_fallthru = 0;
+
+ /* If we have asynchronous exceptions, scan the notes for all exception
+ regions active in the block. In the normal case, we only need the
+ one active at the end of the block, which is bb_eh_end[i]. */
+
+ eh_list = bb_eh_end[i];
+ if (asynchronous_exceptions)
+ {
+ for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
+ eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
+ }
+ }
+
+ /* Now examine the last instruction of the block, and discover the
+ ways we can leave the block. */
+
+ insn = bb->end;
+ code = GET_CODE (insn);
+
+ /* A branch. */
+ if (code == JUMP_INSN)
+ {
+ rtx tmp;
+
+ /* ??? Recognize a tablejump and do the right thing. */
+ if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
+ && (tmp = NEXT_INSN (tmp)) != NULL_RTX
+ && GET_CODE (tmp) == JUMP_INSN
+ && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
+ || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
+ {
+ rtvec vec;
+ int j;
+
+ if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
+ vec = XVEC (PATTERN (tmp), 0);
+ else
+ vec = XVEC (PATTERN (tmp), 1);
+
+ for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
+ make_label_edge (bb, XEXP (RTVEC_ELT (vec, j), 0), 0);
+
+ /* Some targets (eg, ARM) emit a conditional jump that also
+ contains the out-of-range target. Scan for these and
+ add an edge if necessary. */
+ if ((tmp = single_set (insn)) != NULL
+ && SET_DEST (tmp) == pc_rtx
+ && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
+ && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
+ make_label_edge (bb, XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
+
+#ifdef CASE_DROPS_THROUGH
+ /* Silly VAXen. The ADDR_VEC is going to be in the way of
+ us naturally detecting fallthru into the next block. */
+ force_fallthru = 1;
+#endif
+ }
+
+ /* If this is a computed jump, then mark it as reaching
+ everything on the label_value_list and forced_labels list. */
+ else if (computed_jump_p (insn))
+ {
+ current_function_has_computed_jump = 1;
+
+ for (x = label_value_list; x; x = XEXP (x, 1))
+ make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
+
+ for (x = forced_labels; x; x = XEXP (x, 1))
+ make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
+ }
+
+ /* Returns create an exit out. */
+ else if (returnjump_p (insn))
+ make_edge (bb, EXIT_BLOCK_PTR, 0);
+
+ /* Otherwise, we have a plain conditional or unconditional jump. */
+ else
+ {
+ if (! JUMP_LABEL (insn))
+ abort ();
+ make_label_edge (bb, JUMP_LABEL (insn), 0);
+ }
+ }
+
+ /* If this is a CALL_INSN, then mark it as reaching the active EH
+ handler for this CALL_INSN. If we're handling asynchronous
+ exceptions then any insn can reach any of the active handlers.
+
+ Also mark the CALL_INSN as reaching any nonlocal goto handler. */
+
+ if (code == CALL_INSN || asynchronous_exceptions)
+ {
+ int is_call = (code == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
+ handler_info *ptr;
+
+ /* Use REG_EH_RETHROW and REG_EH_REGION if available. */
+ /* ??? REG_EH_REGION is not generated presently. Is it
+ inteded that there be multiple notes for the regions?
+ or is my eh_list collection redundant with handler linking? */
+
+ x = find_reg_note (insn, REG_EH_RETHROW, 0);
+ if (!x)
+ x = find_reg_note (insn, REG_EH_REGION, 0);
+ if (x)
+ {
+ if (XINT (XEXP (x, 0), 0) > 0)
+ {
+ ptr = get_first_handler (XINT (XEXP (x, 0), 0));
+ while (ptr)
+ {
+ make_label_edge (bb, ptr->handler_label,
+ EDGE_ABNORMAL | EDGE_EH | is_call);
+ ptr = ptr->next;
+ }
+ }
+ }
+ else
+ {
+ for (x = eh_list; x; x = XEXP (x, 1))
+ {
+ ptr = get_first_handler (NOTE_BLOCK_NUMBER (XEXP (x, 0)));
+ while (ptr)
+ {
+ make_label_edge (bb, ptr->handler_label,
+ EDGE_ABNORMAL | EDGE_EH | is_call);
+ ptr = ptr->next;
+ }
+ }
+ }
+
+ if (code == CALL_INSN && nonlocal_goto_handler_labels)
+ {
+ /* ??? This could be made smarter: in some cases it's possible
+ to tell that certain calls will not do a nonlocal goto.
+
+ For example, if the nested functions that do the nonlocal
+ gotos do not have their addresses taken, then only calls to
+ those functions or to other nested functions that use them
+ could possibly do nonlocal gotos. */
+
+ for (x = nonlocal_goto_handler_labels; x ; x = XEXP (x, 1))
+ make_label_edge (bb, XEXP (x, 0),
+ EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
+ }
+ }
+
+ /* We know something about the structure of the function __throw in
+ libgcc2.c. It is the only function that ever contains eh_stub
+ labels. It modifies its return address so that the last block
+ returns to one of the eh_stub labels within it. So we have to
+ make additional edges in the flow graph. */
+ if (i + 1 == n_basic_blocks && eh_return_stub_label != 0)
+ make_label_edge (bb, eh_return_stub_label, EDGE_EH);
+
+ /* Find out if we can drop through to the next block. */
+ insn = next_nonnote_insn (insn);
+ if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
+ make_edge (bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
+ else if (i + 1 < n_basic_blocks)
+ {
+ rtx tmp = BLOCK_HEAD (i + 1);
+ if (GET_CODE (tmp) == NOTE)
+ tmp = next_nonnote_insn (tmp);
+ if (force_fallthru || insn == tmp)
+ make_edge (bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
+ }
+ }
+}
+
+/* Create an edge between two basic blocks. FLAGS are auxiliary information
+ about the edge that is accumulated between calls. */
+
+static void
+make_edge (src, dst, flags)
+ basic_block src, dst;
+ int flags;
+{
+ edge e;
+
+ /* Make sure we don't add duplicate edges. */
+
+ for (e = src->succ; e ; e = e->succ_next)
+ if (e->dest == dst)
+ {
+ e->flags |= flags;
+ return;
+ }
+
+ e = (edge) xcalloc (1, sizeof (*e));
+
+ e->succ_next = src->succ;
+ e->pred_next = dst->pred;
+ e->src = src;
+ e->dest = dst;
+ e->flags = flags;
+
+ src->succ = e;
+ dst->pred = e;
+}
+
+/* Create an edge from a basic block to a label. */
+
+static void
+make_label_edge (src, label, flags)
+ basic_block src;
+ rtx label;
+ int flags;
+{
+ if (GET_CODE (label) != CODE_LABEL)
+ abort ();
+
+ /* If the label was never emitted, this insn is junk, but avoid a
+ crash trying to refer to BLOCK_FOR_INSN (label). This can happen
+ as a result of a syntax error and a diagnostic has already been
+ printed. */
+
+ if (INSN_UID (label) == 0)
+ return;
+
+ make_edge (src, BLOCK_FOR_INSN (label), flags);
+}
+
+/* Identify critical edges and set the bits appropriately. */
+static void
+mark_critical_edges ()
+{
+ int i, n = n_basic_blocks;
+ basic_block bb;
+
+ /* We begin with the entry block. This is not terribly important now,
+ but could be if a front end (Fortran) implemented alternate entry
+ points. */
+ bb = ENTRY_BLOCK_PTR;
+ i = -1;
+
+ while (1)
+ {
+ edge e;
+
+ /* (1) Critical edges must have a source with multiple successors. */
+ if (bb->succ && bb->succ->succ_next)
+ {
+ for (e = bb->succ; e ; e = e->succ_next)
+ {
+ /* (2) Critical edges must have a destination with multiple
+ predecessors. Note that we know there is at least one
+ predecessor -- the edge we followed to get here. */
+ if (e->dest->pred->pred_next)
+ e->flags |= EDGE_CRITICAL;
+ else
+ e->flags &= ~EDGE_CRITICAL;
+ }
+ }
+ else
+ {
+ for (e = bb->succ; e ; e = e->succ_next)
+ e->flags &= ~EDGE_CRITICAL;
+ }
+
+ if (++i >= n)
+ break;
+ bb = BASIC_BLOCK (i);
+ }
+}
+
+/* Split a (typically critical) edge. Return the new block.
+ Abort on abnormal edges.
+
+ ??? The code generally expects to be called on critical edges.
+ The case of a block ending in an unconditional jump to a
+ block with multiple predecessors is not handled optimally. */
+
+basic_block
+split_edge (edge_in)
+ edge edge_in;
+{
+ basic_block old_pred, bb, old_succ;
+ edge edge_out;
+ rtx bb_note;
+ int i;
+
+ /* Abnormal edges cannot be split. */
+ if ((edge_in->flags & EDGE_ABNORMAL) != 0)
+ abort ();
+
+ old_pred = edge_in->src;
+ old_succ = edge_in->dest;
+
+ /* Remove the existing edge from the destination's pred list. */
+ {
+ edge *pp;
+ for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
+ continue;
+ *pp = edge_in->pred_next;
+ edge_in->pred_next = NULL;
+ }
+
+ /* Create the new structures. */
+ bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
+ edge_out = (edge) xcalloc (1, sizeof (*edge_out));
+
+ memset (bb, 0, sizeof (*bb));
+ bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
+ bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
+ bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);
+
+ /* ??? This info is likely going to be out of date very soon. */
+ CLEAR_REG_SET (bb->local_set);
+ if (old_succ->global_live_at_start)
+ {
+ COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
+ COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
+ }
+ else
+ {
+ CLEAR_REG_SET (bb->global_live_at_start);
+ CLEAR_REG_SET (bb->global_live_at_end);
+ }
+
+ /* Wire them up. */
+ bb->pred = edge_in;
+ bb->succ = edge_out;
+
+ edge_in->dest = bb;
+ edge_in->flags &= ~EDGE_CRITICAL;
+
+ edge_out->pred_next = old_succ->pred;
+ edge_out->succ_next = NULL;
+ edge_out->src = bb;
+ edge_out->dest = old_succ;
+ edge_out->flags = EDGE_FALLTHRU;
+ edge_out->probability = REG_BR_PROB_BASE;
+
+ old_succ->pred = edge_out;
+
+ /* Tricky case -- if there existed a fallthru into the successor
+ (and we're not it) we must add a new unconditional jump around
+ the new block we're actually interested in.
+
+ Further, if that edge is critical, this means a second new basic
+ block must be created to hold it. In order to simplify correct
+ insn placement, do this before we touch the existing basic block
+ ordering for the block we were really wanting. */
+ if ((edge_in->flags & EDGE_FALLTHRU) == 0)
+ {
+ edge e;
+ for (e = edge_out->pred_next; e ; e = e->pred_next)
+ if (e->flags & EDGE_FALLTHRU)
+ break;
+
+ if (e)
+ {
+ basic_block jump_block;
+ rtx pos;
+
+ if ((e->flags & EDGE_CRITICAL) == 0)
+ {
+ /* Non critical -- we can simply add a jump to the end
+ of the existing predecessor. */
+ jump_block = e->src;
+ }
+ else
+ {
+ /* We need a new block to hold the jump. The simplest
+ way to do the bulk of the work here is to recursively
+ call ourselves. */
+ jump_block = split_edge (e);
+ e = jump_block->succ;
+ }
+
+ /* Now add the jump insn ... */
+ pos = emit_jump_insn_after (gen_jump (old_succ->head),
+ jump_block->end);
+ jump_block->end = pos;
+ emit_barrier_after (pos);
+
+ /* ... let jump know that label is in use, ... */
+ ++LABEL_NUSES (old_succ->head);
+
+ /* ... and clear fallthru on the outgoing edge. */
+ e->flags &= ~EDGE_FALLTHRU;
+
+ /* Continue splitting the interesting edge. */
+ }
+ }
+
+ /* Place the new block just in front of the successor. */
+ VARRAY_GROW (basic_block_info, ++n_basic_blocks);
+ for (i = n_basic_blocks - 1; i > old_succ->index; --i)
+ {
+ basic_block tmp = BASIC_BLOCK (i - 1);
+ BASIC_BLOCK (i) = tmp;
+ tmp->index = i;
+ }
+ BASIC_BLOCK (i) = bb;
+ bb->index = i;
+
+ /* Create the basic block note. */
+ bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
+ NOTE_BASIC_BLOCK (bb_note) = bb;
+ bb->head = bb->end = bb_note;
+
+ /* Not quite simple -- for non-fallthru edges, we must adjust the
+ predecessor's jump instruction to target our new block. */
+ if ((edge_in->flags & EDGE_FALLTHRU) == 0)
+ {
+ rtx tmp, insn = old_pred->end;
+ rtx old_label = old_succ->head;
+ rtx new_label = gen_label_rtx ();
+
+ if (GET_CODE (insn) != JUMP_INSN)
+ abort ();
+
+ /* ??? Recognize a tablejump and adjust all matching cases. */
+ if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
+ && (tmp = NEXT_INSN (tmp)) != NULL_RTX
+ && GET_CODE (tmp) == JUMP_INSN
+ && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
+ || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
+ {
+ rtvec vec;
+ int j;
+
+ if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
+ vec = XVEC (PATTERN (tmp), 0);
+ else
+ vec = XVEC (PATTERN (tmp), 1);
+
+ for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
+ if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
+ {
+ RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
+ --LABEL_NUSES (old_label);
+ ++LABEL_NUSES (new_label);
+ }
+ }
+ else
+ {
+ /* This would have indicated an abnormal edge. */
+ if (computed_jump_p (insn))
+ abort ();
+
+ /* A return instruction can't be redirected. */
+ if (returnjump_p (insn))
+ abort ();
+
+ /* If the insn doesn't go where we think, we're confused. */
+ if (JUMP_LABEL (insn) != old_label)
+ abort ();
+
+ redirect_jump (insn, new_label);
+ }
+
+ emit_label_before (new_label, bb_note);
+ bb->head = new_label;
+ }
+
+ return bb;
+}
+
+/* Queue instructions for insertion on an edge between two basic blocks.
+ The new instructions and basic blocks (if any) will not appear in the
+ CFG until commit_edge_insertions is called. */
+
+void
+insert_insn_on_edge (pattern, e)
+ rtx pattern;
+ edge e;
+{
+ /* We cannot insert instructions on an abnormal critical edge.
+ It will be easier to find the culprit if we die now. */
+ if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
+ == (EDGE_ABNORMAL|EDGE_CRITICAL))
+ abort ();
+
+ if (e->insns == NULL_RTX)
+ start_sequence ();
+ else
+ push_to_sequence (e->insns);
+
+ emit_insn (pattern);
+
+ e->insns = get_insns ();
+ end_sequence();
+}
+
+/* Update the CFG for the instructions queued on edge E. */
+
+static void
+commit_one_edge_insertion (e)
+ edge e;
+{
+ rtx before = NULL_RTX, after = NULL_RTX, tmp;
+ basic_block bb;
+
+ /* Figure out where to put these things. If the destination has
+ one predecessor, insert there. Except for the exit block. */
+ if (e->dest->pred->pred_next == NULL
+ && e->dest != EXIT_BLOCK_PTR)
+ {
+ bb = e->dest;
+
+ /* Get the location correct wrt a code label, and "nice" wrt
+ a basic block note, and before everything else. */
+ tmp = bb->head;
+ if (GET_CODE (tmp) == CODE_LABEL)
+ tmp = NEXT_INSN (tmp);
+ if (GET_CODE (tmp) == NOTE
+ && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BASIC_BLOCK)
+ tmp = NEXT_INSN (tmp);
+ if (tmp == bb->head)
+ before = tmp;
+ else
+ after = PREV_INSN (tmp);
+ }
+
+ /* If the source has one successor and the edge is not abnormal,
+ insert there. Except for the entry block. */
+ else if ((e->flags & EDGE_ABNORMAL) == 0
+ && e->src->succ->succ_next == NULL
+ && e->src != ENTRY_BLOCK_PTR)
+ {
+ bb = e->src;
+ if (GET_CODE (bb->end) == JUMP_INSN)
+ {
+ /* ??? Is it possible to wind up with non-simple jumps? Perhaps
+ a jump with delay slots already filled? */
+ if (! simplejump_p (bb->end))
+ abort ();
+
+ before = bb->end;
+ }
+ else
+ {
+ /* We'd better be fallthru, or we've lost track of what's what. */
+ if ((e->flags & EDGE_FALLTHRU) == 0)
+ abort ();
+
+ after = bb->end;
+ }
+ }
+
+ /* Otherwise we must split the edge. */
+ else
+ {
+ bb = split_edge (e);
+ after = bb->end;
+ }
+
+ /* Now that we've found the spot, do the insertion. */
+ tmp = e->insns;
+ e->insns = NULL_RTX;
+ if (before)
+ {
+ emit_insns_before (tmp, before);
+ if (before == bb->head)
+ bb->head = before;
+ }
+ else
+ {
+ tmp = emit_insns_after (tmp, after);
+ if (after == bb->end)
+ bb->end = tmp;
+ }
+}
+
+/* Update the CFG for all queued instructions. */
+
+void
+commit_edge_insertions ()
+{
+ int i;
+ basic_block bb;
+
+ i = -1;
+ bb = ENTRY_BLOCK_PTR;
+ while (1)
+ {
+ edge e, next;
+
+ for (e = bb->succ; e ; e = next)
+ {
+ next = e->succ_next;
+ if (e->insns)
+ commit_one_edge_insertion (e);
+ }
+
+ if (++i >= n_basic_blocks)
+ break;
+ bb = BASIC_BLOCK (i);
+ }
+}
+
+/* Delete all unreachable basic blocks. */
+
+static void
+delete_unreachable_blocks ()
+{
+ basic_block *worklist, *tos;
+ int deleted_handler;
+ edge e;
+ int i, n;
+
+ n = n_basic_blocks;
+ tos = worklist = (basic_block *) alloca (sizeof (basic_block) * n);
+
+ /* Use basic_block->aux as a marker. Clear them all. */
+
+ for (i = 0; i < n; ++i)
+ BASIC_BLOCK (i)->aux = NULL;
+
+ /* Add our starting points to the worklist. Almost always there will
+ be only one. It isn't inconcievable that we might one day directly
+ support Fortran alternate entry points. */
+
+ for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
+ {
+ *tos++ = e->dest;
+
+ /* Mark the block with a handy non-null value. */
+ e->dest->aux = e;
+ }
+
+ /* Iterate: find everything reachable from what we've already seen. */
+
+ while (tos != worklist)
+ {
+ basic_block b = *--tos;
+
+ for (e = b->succ; e ; e = e->succ_next)
+ if (!e->dest->aux)
+ {
+ *tos++ = e->dest;
+ e->dest->aux = e;
+ }
+ }
+
+ /* Delete all unreachable basic blocks. Count down so that we don't
+ interfere with the block renumbering that happens in delete_block. */
+
+ deleted_handler = 0;
+
+ for (i = n - 1; i >= 0; --i)
+ {
+ basic_block b = BASIC_BLOCK (i);
+
+ if (b->aux != NULL)
+ /* This block was found. Tidy up the mark. */
+ b->aux = NULL;
+ else
+ deleted_handler |= delete_block (b);
+ }
+
+ /* Fix up edges that now fall through, or rather should now fall through
+ but previously required a jump around now deleted blocks. Simplify
+ the search by only examining blocks numerically adjacent, since this
+ is how find_basic_blocks created them. */
+
+ for (i = 1; i < n_basic_blocks; ++i)
+ {
+ basic_block b = BASIC_BLOCK (i - 1);
+ basic_block c = BASIC_BLOCK (i);
+ edge s;
+
+ /* We care about simple conditional or unconditional jumps with
+ a single successor.
+
+ If we had a conditional branch to the next instruction when
+ find_basic_blocks was called, then there will only be one
+ out edge for the block which ended with the conditional
+ branch (since we do not create duplicate edges).
+
+ Furthermore, the edge will be marked as a fallthru because we
+ merge the flags for the duplicate edges. So we do not want to
+ check that the edge is not a FALLTHRU edge. */
+ if ((s = b->succ) != NULL
+ && s->succ_next == NULL
+ && s->dest == c)
+ tidy_fallthru_edge (s, b, c);
+ }
+
+ /* Attempt to merge blocks as made possible by edge removal. If a block
+ has only one successor, and the successor has only one predecessor,
+ they may be combined. */
+
+ for (i = 0; i < n_basic_blocks; )
+ {
+ basic_block c, b = BASIC_BLOCK (i);
+ edge s;
+
+ /* A loop because chains of blocks might be combineable. */
+ while ((s = b->succ) != NULL
+ && s->succ_next == NULL
+ && (c = s->dest) != EXIT_BLOCK_PTR
+ && c->pred->pred_next == NULL
+ && merge_blocks (s, b, c))
+ continue;
+
+ /* Don't get confused by the index shift caused by deleting blocks. */
+ i = b->index + 1;
+ }
+
+ /* If we deleted an exception handler, we may have EH region begin/end
+ blocks to remove as well. */
+ if (deleted_handler)
+ delete_eh_regions ();
+}
+
+/* Find EH regions for which there is no longer a handler, and delete them. */
+
+static void
+delete_eh_regions ()
+{
+ rtx insn;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == NOTE)
+ {
+ if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) ||
+ (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
+ {
+ int num = CODE_LABEL_NUMBER (insn);
+ /* A NULL handler indicates a region is no longer needed */
+ if (get_first_handler (num) == NULL)
+ {
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ }
+ }
+}
+
+/* Return true if NOTE is not one of the ones that must be kept paired,
+ so that we may simply delete them. */
+
+static int
+can_delete_note_p (note)
+ rtx note;
+{
+ return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
+ || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
+}
+
+/* Unlink a chain of insns between START and FINISH, leaving notes
+ that must be paired. */
+
+static void
+delete_insn_chain (start, finish)
+ rtx start, finish;
+{
+ /* Unchain the insns one by one. It would be quicker to delete all
+ of these with a single unchaining, rather than one at a time, but
+ we need to keep the NOTE's. */
+
+ rtx next;
+
+ while (1)
+ {
+ next = NEXT_INSN (start);
+ if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
+ ;
+ else if (GET_CODE (start) == CODE_LABEL && !can_delete_label_p (start))
+ ;
+ else
+ next = flow_delete_insn (start);
+
+ if (start == finish)
+ break;
+ start = next;
+ }
+}
+
+/* Delete the insns in a (non-live) block. We physically delete every
+ non-deleted-note insn, and update the flow graph appropriately.
+
+ Return nonzero if we deleted an exception handler. */
+
+/* ??? Preserving all such notes strikes me as wrong. It would be nice
+ to post-process the stream to remove empty blocks, loops, ranges, etc. */
+
+static int
+delete_block (b)
+ basic_block b;
+{
+ int deleted_handler = 0;
+ rtx insn, end;
+
+ /* If the head of this block is a CODE_LABEL, then it might be the
+ label for an exception handler which can't be reached.
+
+ We need to remove the label from the exception_handler_label list
+ and remove the associated NOTE_EH_REGION_BEG and NOTE_EH_REGION_END
+ notes. */
+
+ insn = b->head;
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ {
+ rtx x, *prev = &exception_handler_labels;
+
+ for (x = exception_handler_labels; x; x = XEXP (x, 1))
+ {
+ if (XEXP (x, 0) == insn)
+ {
+ /* Found a match, splice this label out of the EH label list. */
+ *prev = XEXP (x, 1);
+ XEXP (x, 1) = NULL_RTX;
+ XEXP (x, 0) = NULL_RTX;
+
+ /* Remove the handler from all regions */
+ remove_handler (insn);
+ deleted_handler = 1;
+ break;
+ }
+ prev = &XEXP (x, 1);
+ }
+
+ /* This label may be referenced by code solely for its value, or
+ referenced by static data, or something. We have determined
+ that it is not reachable, but cannot delete the label itself.
+ Save code space and continue to delete the balance of the block,
+ along with properly updating the cfg. */
+ if (!can_delete_label_p (insn))
+ {
+ /* If we've only got one of these, skip the whole deleting
+ insns thing. */
+ if (insn == b->end)
+ goto no_delete_insns;
+ insn = NEXT_INSN (insn);
+ }
+ }
+
+ /* Selectively unlink the insn chain. Include any BARRIER that may
+ follow the basic block. */
+ end = next_nonnote_insn (b->end);
+ if (!end || GET_CODE (end) != BARRIER)
+ end = b->end;
+ delete_insn_chain (insn, end);
+
+no_delete_insns:
+
+ /* Remove the edges into and out of this block. Note that there may
+ indeed be edges in, if we are removing an unreachable loop. */
+ {
+ edge e, next, *q;
+
+ for (e = b->pred; e ; e = next)
+ {
+ for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
+ continue;
+ *q = e->succ_next;
+ next = e->pred_next;
+ free (e);
+ }
+ for (e = b->succ; e ; e = next)
+ {
+ for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
+ continue;
+ *q = e->pred_next;
+ next = e->succ_next;
+ free (e);
+ }
+
+ b->pred = NULL;
+ b->succ = NULL;
+ }
+
+ /* Remove the basic block from the array, and compact behind it. */
+ expunge_block (b);
+
+ return deleted_handler;
+}
+
+/* Remove block B from the basic block array and compact behind it. */
+
+static void
+expunge_block (b)
+ basic_block b;
+{
+ int i, n = n_basic_blocks;
+
+ for (i = b->index; i + 1 < n; ++i)
+ {
+ basic_block x = BASIC_BLOCK (i + 1);
+ BASIC_BLOCK (i) = x;
+ x->index = i;
+ }
+
+ basic_block_info->num_elements--;
+ n_basic_blocks--;
+}
+
+/* Delete INSN by patching it out. Return the next insn. */
+
+static rtx
+flow_delete_insn (insn)
+ rtx insn;
+{
+ rtx prev = PREV_INSN (insn);
+ rtx next = NEXT_INSN (insn);
+
+ PREV_INSN (insn) = NULL_RTX;
+ NEXT_INSN (insn) = NULL_RTX;
+
+ if (prev)
+ NEXT_INSN (prev) = next;
+ if (next)
+ PREV_INSN (next) = prev;
+ else
+ set_last_insn (prev);
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
+
+ /* If deleting a jump, decrement the use count of the label. Deleting
+ the label itself should happen in the normal course of block merging. */
+ if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
+ LABEL_NUSES (JUMP_LABEL (insn))--;
+
+ return next;
+}
+
+/* True if a given label can be deleted. */
+
+static int
+can_delete_label_p (label)
+ rtx label;
+{
+ rtx x;
+
+ if (LABEL_PRESERVE_P (label))
+ return 0;
+
+ for (x = forced_labels; x ; x = XEXP (x, 1))
+ if (label == XEXP (x, 0))
+ return 0;
+ for (x = label_value_list; x ; x = XEXP (x, 1))
+ if (label == XEXP (x, 0))
+ return 0;
+ for (x = exception_handler_labels; x ; x = XEXP (x, 1))
+ if (label == XEXP (x, 0))
+ return 0;
+
+ /* User declared labels must be preserved. */
+ if (LABEL_NAME (label) != 0)
+ return 0;
+
+ return 1;
+}
+
+/* Blocks A and B are to be merged into a single block. The insns
+ are already contiguous, hence `nomove'. */
+
+static void
+merge_blocks_nomove (a, b)
+ basic_block a, b;
+{
+ edge e;
+ rtx b_head, b_end, a_end;
+ int b_empty = 0;
+
+ /* If there was a CODE_LABEL beginning B, delete it. */
+ b_head = b->head;
+ b_end = b->end;
+ if (GET_CODE (b_head) == CODE_LABEL)
+ {
+ /* Detect basic blocks with nothing but a label. This can happen
+ in particular at the end of a function. */
+ if (b_head == b_end)
+ b_empty = 1;
+ b_head = flow_delete_insn (b_head);
+ }
+
+ /* Delete the basic block note. */
+ if (GET_CODE (b_head) == NOTE
+ && NOTE_LINE_NUMBER (b_head) == NOTE_INSN_BASIC_BLOCK)
+ {
+ if (b_head == b_end)
+ b_empty = 1;
+ b_head = flow_delete_insn (b_head);
+ }
+
+ /* If there was a jump out of A, delete it. */
+ a_end = a->end;
+ if (GET_CODE (a_end) == JUMP_INSN)
+ {
+ rtx prev;
+
+ prev = prev_nonnote_insn (a_end);
+ if (!prev)
+ prev = a->head;
+
+#ifdef HAVE_cc0
+ /* If this was a conditional jump, we need to also delete
+ the insn that set cc0. */
+
+ if (prev && sets_cc0_p (prev))
+ {
+ rtx tmp = prev;
+ prev = prev_nonnote_insn (prev);
+ if (!prev)
+ prev = a->head;
+ flow_delete_insn (tmp);
+ }
+#endif
+
+ /* Note that a->head != a->end, since we should have at least a
+ bb note plus the jump, so prev != insn. */
+ flow_delete_insn (a_end);
+ a_end = prev;
+ }
+
+ /* By definition, there should only be one successor of A, and that is
+ B. Free that edge struct. */
+ free (a->succ);
+
+ /* Adjust the edges out of B for the new owner. */
+ for (e = b->succ; e ; e = e->succ_next)
+ e->src = a;
+ a->succ = b->succ;
+
+ /* Reassociate the insns of B with A. */
+ if (!b_empty)
+ {
+ BLOCK_FOR_INSN (b_head) = a;
+ while (b_head != b_end)
+ {
+ b_head = NEXT_INSN (b_head);
+ BLOCK_FOR_INSN (b_head) = a;
+ }
+ a_end = b_head;
+ }
+ a->end = a_end;
+
+ /* Compact the basic block array. */
+ expunge_block (b);
+}
+
+/* Attempt to merge basic blocks that are potentially non-adjacent.
+ Return true iff the attempt succeeded. */
+
+static int
+merge_blocks (e, b, c)
+ edge e;
+ basic_block b, c;
+{
+ /* If B has a fallthru edge to C, no need to move anything. */
+ if (!(e->flags & EDGE_FALLTHRU))
+ {
+ /* ??? From here on out we must make sure to not munge nesting
+ of exception regions and lexical blocks. Need to think about
+ these cases before this gets implemented. */
+ return 0;
+
+ /* If C has an outgoing fallthru, and B does not have an incoming
+ fallthru, move B before C. The later clause is somewhat arbitrary,
+ but avoids modifying blocks other than the two we've been given. */
+
+ /* Otherwise, move C after B. If C had a fallthru, which doesn't
+ happen to be the physical successor to B, insert an unconditional
+ branch. If C already ended with a conditional branch, the new
+ jump must go in a new basic block D. */
+ }
+
+ /* If a label still appears somewhere and we cannot delete the label,
+ then we cannot merge the blocks. The edge was tidied already. */
+ {
+ rtx insn, stop = NEXT_INSN (c->head);
+ for (insn = NEXT_INSN (b->end); insn != stop; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == CODE_LABEL && !can_delete_label_p (insn))
+ return 0;
+ }
+
+ merge_blocks_nomove (b, c);
+ return 1;
+}
+
+/* The given edge should potentially a fallthru edge. If that is in
+ fact true, delete the unconditional jump and barriers that are in
+ the way. */
+
+static void
+tidy_fallthru_edge (e, b, c)
+ edge e;
+ basic_block b, c;
+{
+ rtx q;
+
+ /* ??? In a late-running flow pass, other folks may have deleted basic
+ blocks by nopping out blocks, leaving multiple BARRIERs between here
+ and the target label. They ought to be chastized and fixed.
+
+ We can also wind up with a sequence of undeletable labels between
+ one block and the next.
+
+ So search through a sequence of barriers, labels, and notes for
+ the head of block C and assert that we really do fall through. */
+
+ if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
+ return;
+
+ /* Remove what will soon cease being the jump insn from the source block.
+ If block B consisted only of this single jump, turn it into a deleted
+ note. */
+ q = b->end;
+ if (GET_CODE (q) == JUMP_INSN)
+ {
+#ifdef HAVE_cc0
+ /* If this was a conditional jump, we need to also delete
+ the insn that set cc0. */
+ if (! simplejump_p (q) && condjump_p (q))
+ q = PREV_INSN (q);
+#endif
+
+ if (b->head == q)
+ {
+ PUT_CODE (q, NOTE);
+ NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (q) = 0;
+ }
+ else
+ b->end = q = PREV_INSN (q);
+ }
+
+ /* Selectively unlink the sequence. */
+ if (q != PREV_INSN (c->head))
+ delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
+
+ e->flags |= EDGE_FALLTHRU;
+}
+
+/* Discover and record the loop depth at the head of each basic block. */
+
+static void
+calculate_loop_depth (insns)
+ rtx insns;
+{
+ basic_block bb;
+ rtx insn;
+ int i = 0, depth = 1;
+
+ bb = BASIC_BLOCK (i);
+ for (insn = insns; insn ; insn = NEXT_INSN (insn))
+ {
+ if (insn == bb->head)
+ {
+ bb->loop_depth = depth;
+ if (++i >= n_basic_blocks)
+ break;
+ bb = BASIC_BLOCK (i);
+ }
+
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ depth++;
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ depth--;
+
+ /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. */
+ if (depth == 0)
+ abort ();
+ }
+ }
+}
+
+/* Perform data flow analysis.
+ F is the first insn of the function and NREGS the number of register numbers
+ in use. */
+
+void
+life_analysis (f, nregs, file, remove_dead_code)
+ rtx f;
+ int nregs;
+ FILE *file;
+ int remove_dead_code;
+{
+#ifdef ELIMINABLE_REGS
+ register size_t i;
+ static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
+#endif
+
+ /* Record which registers will be eliminated. We use this in
+ mark_used_regs. */
+
+ CLEAR_HARD_REG_SET (elim_reg_set);
+
+#ifdef ELIMINABLE_REGS
+ for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
+ SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
+#else
+ SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
+#endif
+
+ /* Allocate a bitmap to be filled in by record_volatile_insns. */
+ uid_volatile = BITMAP_ALLOCA ();
+
+ /* We want alias analysis information for local dead store elimination. */
+ init_alias_analysis ();
+ life_analysis_1 (f, nregs, remove_dead_code);
+ end_alias_analysis ();
+
+ if (file)
+ dump_flow_info (file);
+
+ BITMAP_FREE (uid_volatile);
+ free_basic_block_vars (1);
+}
+
+/* Free the variables allocated by find_basic_blocks.
+
+ KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
+
+void
+free_basic_block_vars (keep_head_end_p)
+ int keep_head_end_p;
+{
+ if (basic_block_for_insn)
+ {
+ VARRAY_FREE (basic_block_for_insn);
+ basic_block_for_insn = NULL;
+ }
+
+ if (! keep_head_end_p)
+ {
+ clear_edges ();
+ VARRAY_FREE (basic_block_info);
+ n_basic_blocks = 0;
+
+ ENTRY_BLOCK_PTR->aux = NULL;
+ ENTRY_BLOCK_PTR->global_live_at_end = NULL;
+ EXIT_BLOCK_PTR->aux = NULL;
+ EXIT_BLOCK_PTR->global_live_at_start = NULL;
+ }
+}
+
+/* Return nonzero if the destination of SET equals the source. */
+static int
+set_noop_p (set)
+ rtx set;
+{
+ rtx src = SET_SRC (set);
+ rtx dst = SET_DEST (set);
+ if (GET_CODE (src) == REG && GET_CODE (dst) == REG
+ && REGNO (src) == REGNO (dst))
+ return 1;
+ if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG
+ || SUBREG_WORD (src) != SUBREG_WORD (dst))
+ return 0;
+ src = SUBREG_REG (src);
+ dst = SUBREG_REG (dst);
+ if (GET_CODE (src) == REG && GET_CODE (dst) == REG
+ && REGNO (src) == REGNO (dst))
+ return 1;
+ return 0;
+}
+
+/* Return nonzero if an insn consists only of SETs, each of which only sets a
+ value to itself. */
+static int
+noop_move_p (insn)
+ rtx insn;
+{
+ rtx pat = PATTERN (insn);
+
+ /* Insns carrying these notes are useful later on. */
+ if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
+ return 0;
+
+ if (GET_CODE (pat) == SET && set_noop_p (pat))
+ return 1;
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ int i;
+ /* If nothing but SETs of registers to themselves,
+ this insn can also be deleted. */
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx tem = XVECEXP (pat, 0, i);
+
+ if (GET_CODE (tem) == USE
+ || GET_CODE (tem) == CLOBBER)
+ continue;
+
+ if (GET_CODE (tem) != SET || ! set_noop_p (tem))
+ return 0;
+ }
+
+ return 1;
+ }
+ return 0;
+}
+
+static void
+notice_stack_pointer_modification (x, pat)
+ rtx x;
+ rtx pat ATTRIBUTE_UNUSED;
+{
+ if (x == stack_pointer_rtx
+ /* The stack pointer is only modified indirectly as the result
+ of a push until later in flow. See the comments in rtl.texi
+ regarding Embedded Side-Effects on Addresses. */
+ || (GET_CODE (x) == MEM
+ && (GET_CODE (XEXP (x, 0)) == PRE_DEC
+ || GET_CODE (XEXP (x, 0)) == PRE_INC
+ || GET_CODE (XEXP (x, 0)) == POST_DEC
+ || GET_CODE (XEXP (x, 0)) == POST_INC)
+ && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
+ current_function_sp_is_unchanging = 0;
+}
+
+/* Record which insns refer to any volatile memory
+ or for any reason can't be deleted just because they are dead stores.
+ Also, delete any insns that copy a register to itself.
+ And see if the stack pointer is modified. */
+static void
+record_volatile_insns (f)
+ rtx f;
+{
+ rtx insn;
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ enum rtx_code code1 = GET_CODE (insn);
+ if (code1 == CALL_INSN)
+ SET_INSN_VOLATILE (insn);
+ else if (code1 == INSN || code1 == JUMP_INSN)
+ {
+ if (GET_CODE (PATTERN (insn)) != USE
+ && volatile_refs_p (PATTERN (insn)))
+ SET_INSN_VOLATILE (insn);
+
+ /* A SET that makes space on the stack cannot be dead.
+ (Such SETs occur only for allocating variable-size data,
+ so they will always have a PLUS or MINUS according to the
+ direction of stack growth.)
+ Even if this function never uses this stack pointer value,
+ signal handlers do! */
+ else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
+#ifdef STACK_GROWS_DOWNWARD
+ && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
+#else
+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
+#endif
+ && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
+ SET_INSN_VOLATILE (insn);
+
+ /* Delete (in effect) any obvious no-op moves. */
+ else if (noop_move_p (insn))
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ }
+
+ /* Check if insn modifies the stack pointer. */
+ if ( current_function_sp_is_unchanging
+ && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ note_stores (PATTERN (insn), notice_stack_pointer_modification);
+ }
+}
+
+/* Mark those regs which are needed at the end of the function as live
+ at the end of the last basic block. */
+static void
+mark_regs_live_at_end (set)
+ regset set;
+{
+ int i;
+
+ /* If exiting needs the right stack value, consider the stack pointer
+ live at the end of the function. */
+ if (! EXIT_IGNORE_STACK
+ || (! FRAME_POINTER_REQUIRED
+ && ! current_function_calls_alloca
+ && flag_omit_frame_pointer)
+ || current_function_sp_is_unchanging)
+ {
+ SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
+ }
+
+ /* Mark the frame pointer if needed at the end of the function. If
+ we end up eliminating it, it will be removed from the live list
+ of each basic block by reload. */
+
+ SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ /* If they are different, also mark the hard frame pointer as live */
+ SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
+#endif
+
+ /* Mark all global registers, and all registers used by the epilogue
+ as being live at the end of the function since they may be
+ referenced by our caller. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i]
+#ifdef EPILOGUE_USES
+ || EPILOGUE_USES (i)
+#endif
+ )
+ SET_REGNO_REG_SET (set, i);
+
+ /* ??? Mark function return value here rather than as uses. */
+}
+
+/* Determine which registers are live at the start of each
+ basic block of the function whose first insn is F.
+ NREGS is the number of registers used in F.
+ We allocate the vector basic_block_live_at_start
+ and the regsets that it points to, and fill them with the data.
+ regset_size and regset_bytes are also set here. */
+
+static void
+life_analysis_1 (f, nregs, remove_dead_code)
+ rtx f;
+ int nregs;
+ int remove_dead_code;
+{
+ int first_pass;
+ int changed;
+ register int i;
+ char save_regs_ever_live[FIRST_PSEUDO_REGISTER];
+ regset *new_live_at_end;
+
+ struct obstack flow_obstack;
+
+ gcc_obstack_init (&flow_obstack);
+
+ max_regno = nregs;
+
+ /* Allocate and zero out many data structures
+ that will record the data from lifetime analysis. */
+
+ allocate_reg_life_data ();
+ allocate_bb_life_data ();
+
+ reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
+ memset (reg_next_use, 0, nregs * sizeof (rtx));
+
+ /* Set up regset-vectors used internally within this function.
+ Their meanings are documented above, with their declarations. */
+
+ new_live_at_end = (regset *) alloca ((n_basic_blocks + 1) * sizeof (regset));
+ init_regset_vector (new_live_at_end, n_basic_blocks + 1, &flow_obstack);
+
+ /* Stick these vectors into the AUX field of the basic block, so that
+ we don't have to keep going through the index. */
+
+ for (i = 0; i < n_basic_blocks; ++i)
+ BASIC_BLOCK (i)->aux = new_live_at_end[i];
+ ENTRY_BLOCK_PTR->aux = new_live_at_end[i];
+
+ /* Assume that the stack pointer is unchanging if alloca hasn't been used.
+ This will be cleared by record_volatile_insns if it encounters an insn
+ which modifies the stack pointer. */
+ current_function_sp_is_unchanging = !current_function_calls_alloca;
+
+ record_volatile_insns (f);
+
+ if (n_basic_blocks > 0)
+ {
+ regset theend;
+ register edge e;
+
+ theend = EXIT_BLOCK_PTR->global_live_at_start;
+ mark_regs_live_at_end (theend);
+
+ /* Propogate this exit data to each of EXIT's predecessors. */
+ for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
+ {
+ COPY_REG_SET (e->src->global_live_at_end, theend);
+ COPY_REG_SET ((regset) e->src->aux, theend);
+ }
+ }
+
+ /* The post-reload life analysis have (on a global basis) the same registers
+ live as was computed by reload itself.
+
+ Otherwise elimination offsets and such may be incorrect.
+
+ Reload will make some registers as live even though they do not appear
+ in the rtl. */
+ if (reload_completed)
+ memcpy (save_regs_ever_live, regs_ever_live, sizeof (regs_ever_live));
+ memset (regs_ever_live, 0, sizeof regs_ever_live);
+
+ /* Propagate life info through the basic blocks
+ around the graph of basic blocks.
+
+ This is a relaxation process: each time a new register
+ is live at the end of the basic block, we must scan the block
+ to determine which registers are, as a consequence, live at the beginning
+ of that block. These registers must then be marked live at the ends
+ of all the blocks that can transfer control to that block.
+ The process continues until it reaches a fixed point. */
+
+ first_pass = 1;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (i = n_basic_blocks - 1; i >= 0; i--)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+ int consider = first_pass;
+ int must_rescan = first_pass;
+ register int j;
+
+ if (!first_pass)
+ {
+ /* Set CONSIDER if this block needs thinking about at all
+ (that is, if the regs live now at the end of it
+ are not the same as were live at the end of it when
+ we last thought about it).
+ Set must_rescan if it needs to be thought about
+ instruction by instruction (that is, if any additional
+ reg that is live at the end now but was not live there before
+ is one of the significant regs of this basic block). */
+
+ EXECUTE_IF_AND_COMPL_IN_REG_SET
+ ((regset) bb->aux, bb->global_live_at_end, 0, j,
+ {
+ consider = 1;
+ if (REGNO_REG_SET_P (bb->local_set, j))
+ {
+ must_rescan = 1;
+ goto done;
+ }
+ });
+ done:
+ if (! consider)
+ continue;
+ }
+
+ /* The live_at_start of this block may be changing,
+ so another pass will be required after this one. */
+ changed = 1;
+
+ if (! must_rescan)
+ {
+ /* No complete rescan needed;
+ just record those variables newly known live at end
+ as live at start as well. */
+ IOR_AND_COMPL_REG_SET (bb->global_live_at_start,
+ (regset) bb->aux,
+ bb->global_live_at_end);
+
+ IOR_AND_COMPL_REG_SET (bb->global_live_at_end,
+ (regset) bb->aux,
+ bb->global_live_at_end);
+ }
+ else
+ {
+ /* Update the basic_block_live_at_start
+ by propagation backwards through the block. */
+ COPY_REG_SET (bb->global_live_at_end, (regset) bb->aux);
+ COPY_REG_SET (bb->global_live_at_start,
+ bb->global_live_at_end);
+ propagate_block (bb->global_live_at_start,
+ bb->head, bb->end, 0,
+ first_pass ? bb->local_set : (regset) 0,
+ i, remove_dead_code);
+ }
+
+ /* Update the new_live_at_end's of the block's predecessors. */
+ {
+ register edge e;
+
+ for (e = bb->pred; e ; e = e->pred_next)
+ IOR_REG_SET ((regset) e->src->aux, bb->global_live_at_start);
+ }
+
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+ first_pass = 0;
+ }
+
+ /* The only pseudos that are live at the beginning of the function are
+ those that were not set anywhere in the function. local-alloc doesn't
+ know how to handle these correctly, so mark them as not local to any
+ one basic block. */
+
+ if (n_basic_blocks > 0)
+ EXECUTE_IF_SET_IN_REG_SET (BASIC_BLOCK (0)->global_live_at_start,
+ FIRST_PSEUDO_REGISTER, i,
+ {
+ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
+ });
+
+ /* Now the life information is accurate. Make one more pass over each
+ basic block to delete dead stores, create autoincrement addressing
+ and record how many times each register is used, is set, or dies. */
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+
+ /* We start with global_live_at_end to determine which stores are
+ dead. This process is destructive, and we wish to preserve the
+ contents of global_live_at_end for posterity. Fortunately,
+ new_live_at_end, due to the way we converged on a solution,
+ contains a duplicate of global_live_at_end that we can kill. */
+ propagate_block ((regset) bb->aux, bb->head, bb->end, 1, (regset) 0, i, remove_dead_code);
+
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+
+ /* We have a problem with any pseudoreg that lives across the setjmp.
+ ANSI says that if a user variable does not change in value between
+ the setjmp and the longjmp, then the longjmp preserves it. This
+ includes longjmp from a place where the pseudo appears dead.
+ (In principle, the value still exists if it is in scope.)
+ If the pseudo goes in a hard reg, some other value may occupy
+ that hard reg where this pseudo is dead, thus clobbering the pseudo.
+ Conclusion: such a pseudo must not go in a hard reg. */
+ EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
+ FIRST_PSEUDO_REGISTER, i,
+ {
+ if (regno_reg_rtx[i] != 0)
+ {
+ REG_LIVE_LENGTH (i) = -1;
+ REG_BASIC_BLOCK (i) = -1;
+ }
+ });
+
+ /* Restore regs_ever_live that was provided by reload. */
+ if (reload_completed)
+ memcpy (regs_ever_live, save_regs_ever_live, sizeof (regs_ever_live));
+
+ free_regset_vector (new_live_at_end, n_basic_blocks);
+ obstack_free (&flow_obstack, NULL_PTR);
+
+ for (i = 0; i < n_basic_blocks; ++i)
+ BASIC_BLOCK (i)->aux = NULL;
+ ENTRY_BLOCK_PTR->aux = NULL;
+}
+
+/* Subroutines of life analysis. */
+
+/* Allocate the permanent data structures that represent the results
+ of life analysis. Not static since used also for stupid life analysis. */
+
+void
+allocate_bb_life_data ()
+{
+ register int i;
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+
+ bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
+ bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
+ bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);
+ }
+
+ ENTRY_BLOCK_PTR->global_live_at_end
+ = OBSTACK_ALLOC_REG_SET (function_obstack);
+ EXIT_BLOCK_PTR->global_live_at_start
+ = OBSTACK_ALLOC_REG_SET (function_obstack);
+
+ regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
+}
+
+void
+allocate_reg_life_data ()
+{
+ int i;
+
+ /* Recalculate the register space, in case it has grown. Old style
+ vector oriented regsets would set regset_{size,bytes} here also. */
+ allocate_reg_info (max_regno, FALSE, FALSE);
+
+ /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
+ information, explicitly reset it here. The allocation should have
+ already happened on the previous reg_scan pass. Make sure in case
+ some more registers were allocated. */
+ for (i = 0; i < max_regno; i++)
+ REG_N_SETS (i) = 0;
+}
+
+/* Make each element of VECTOR point at a regset. The vector has
+ NELTS elements, and space is allocated from the ALLOC_OBSTACK
+ obstack. */
+
+static void
+init_regset_vector (vector, nelts, alloc_obstack)
+ regset *vector;
+ int nelts;
+ struct obstack *alloc_obstack;
+{
+ register int i;
+
+ for (i = 0; i < nelts; i++)
+ {
+ vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
+ CLEAR_REG_SET (vector[i]);
+ }
+}
+
+/* Release any additional space allocated for each element of VECTOR point
+ other than the regset header itself. The vector has NELTS elements. */
+
+void
+free_regset_vector (vector, nelts)
+ regset *vector;
+ int nelts;
+{
+ register int i;
+
+ for (i = 0; i < nelts; i++)
+ FREE_REG_SET (vector[i]);
+}
+
+/* Compute the registers live at the beginning of a basic block
+ from those live at the end.
+
+ When called, OLD contains those live at the end.
+ On return, it contains those live at the beginning.
+ FIRST and LAST are the first and last insns of the basic block.
+
+ FINAL is nonzero if we are doing the final pass which is not
+ for computing the life info (since that has already been done)
+ but for acting on it. On this pass, we delete dead stores,
+ set up the logical links and dead-variables lists of instructions,
+ and merge instructions for autoincrement and autodecrement addresses.
+
+ SIGNIFICANT is nonzero only the first time for each basic block.
+ If it is nonzero, it points to a regset in which we store
+ a 1 for each register that is set within the block.
+
+ BNUM is the number of the basic block. */
+
+static void
+propagate_block (old, first, last, final, significant, bnum, remove_dead_code)
+ register regset old;
+ rtx first;
+ rtx last;
+ int final;
+ regset significant;
+ int bnum;
+ int remove_dead_code;
+{
+ register rtx insn;
+ rtx prev;
+ regset live;
+ regset dead;
+
+ /* Find the loop depth for this block. Ignore loop level changes in the
+ middle of the basic block -- for register allocation purposes, the
+ important uses will be in the blocks wholely contained within the loop
+ not in the loop pre-header or post-trailer. */
+ loop_depth = BASIC_BLOCK (bnum)->loop_depth;
+
+ dead = ALLOCA_REG_SET ();
+ live = ALLOCA_REG_SET ();
+
+ cc0_live = 0;
+ mem_set_list = NULL_RTX;
+
+ if (final)
+ {
+ register int i;
+
+ /* Process the regs live at the end of the block.
+ Mark them as not local to any one basic block. */
+ EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
+ {
+ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
+ });
+ }
+
+ /* Scan the block an insn at a time from end to beginning. */
+
+ for (insn = last; ; insn = prev)
+ {
+ prev = PREV_INSN (insn);
+
+ if (GET_CODE (insn) == NOTE)
+ {
+ /* If this is a call to `setjmp' et al,
+ warn if any non-volatile datum is live. */
+
+ if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
+ IOR_REG_SET (regs_live_at_setjmp, old);
+ }
+
+ /* Update the life-status of regs for this insn.
+ First DEAD gets which regs are set in this insn
+ then LIVE gets which regs are used in this insn.
+ Then the regs live before the insn
+ are those live after, with DEAD regs turned off,
+ and then LIVE regs turned on. */
+
+ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ register int i;
+ rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
+ int insn_is_dead = 0;
+ int libcall_is_dead = 0;
+
+ if (remove_dead_code)
+ {
+ insn_is_dead = (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn))
+ /* Don't delete something that refers to volatile storage! */
+ && ! INSN_VOLATILE (insn));
+ libcall_is_dead = (insn_is_dead && note != 0
+ && libcall_dead_p (PATTERN (insn), old, note, insn));
+ }
+
+ /* If an instruction consists of just dead store(s) on final pass,
+ "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
+ We could really delete it with delete_insn, but that
+ can cause trouble for first or last insn in a basic block. */
+ if (final && insn_is_dead)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+
+ /* CC0 is now known to be dead. Either this insn used it,
+ in which case it doesn't anymore, or clobbered it,
+ so the next insn can't use it. */
+ cc0_live = 0;
+
+ /* If this insn is copying the return value from a library call,
+ delete the entire library call. */
+ if (libcall_is_dead)
+ {
+ rtx first = XEXP (note, 0);
+ rtx p = insn;
+ while (INSN_DELETED_P (first))
+ first = NEXT_INSN (first);
+ while (p != first)
+ {
+ p = PREV_INSN (p);
+ PUT_CODE (p, NOTE);
+ NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (p) = 0;
+ }
+ }
+ goto flushed;
+ }
+
+ CLEAR_REG_SET (dead);
+ CLEAR_REG_SET (live);
+
+ /* See if this is an increment or decrement that can be
+ merged into a following memory address. */
+#ifdef AUTO_INC_DEC
+ {
+ register rtx x = single_set (insn);
+
+ /* Does this instruction increment or decrement a register? */
+ if (!reload_completed
+ && final && x != 0
+ && GET_CODE (SET_DEST (x)) == REG
+ && (GET_CODE (SET_SRC (x)) == PLUS
+ || GET_CODE (SET_SRC (x)) == MINUS)
+ && XEXP (SET_SRC (x), 0) == SET_DEST (x)
+ && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ /* Ok, look for a following memory ref we can combine with.
+ If one is found, change the memory ref to a PRE_INC
+ or PRE_DEC, cancel this insn, and return 1.
+ Return 0 if nothing has been done. */
+ && try_pre_increment_1 (insn))
+ goto flushed;
+ }
+#endif /* AUTO_INC_DEC */
+
+ /* If this is not the final pass, and this insn is copying the
+ value of a library call and it's dead, don't scan the
+ insns that perform the library call, so that the call's
+ arguments are not marked live. */
+ if (libcall_is_dead)
+ {
+ /* Mark the dest reg as `significant'. */
+ mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
+
+ insn = XEXP (note, 0);
+ prev = PREV_INSN (insn);
+ }
+ else if (GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
+ && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
+ && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
+ /* We have an insn to pop a constant amount off the stack.
+ (Such insns use PLUS regardless of the direction of the stack,
+ and any insn to adjust the stack by a constant is always a pop.)
+ These insns, if not dead stores, have no effect on life. */
+ ;
+ else
+ {
+ /* Any regs live at the time of a call instruction
+ must not go in a register clobbered by calls.
+ Find all regs now live and record this for them. */
+
+ if (GET_CODE (insn) == CALL_INSN && final)
+ EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
+ {
+ REG_N_CALLS_CROSSED (i)++;
+ });
+
+ /* LIVE gets the regs used in INSN;
+ DEAD gets those set by it. Dead insns don't make anything
+ live. */
+
+ mark_set_regs (old, dead, PATTERN (insn),
+ final ? insn : NULL_RTX, significant);
+
+ /* If an insn doesn't use CC0, it becomes dead since we
+ assume that every insn clobbers it. So show it dead here;
+ mark_used_regs will set it live if it is referenced. */
+ cc0_live = 0;
+
+ if (! insn_is_dead)
+ mark_used_regs (old, live, PATTERN (insn), final, insn);
+
+ /* Sometimes we may have inserted something before INSN (such as
+ a move) when we make an auto-inc. So ensure we will scan
+ those insns. */
+#ifdef AUTO_INC_DEC
+ prev = PREV_INSN (insn);
+#endif
+
+ if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
+ {
+ register int i;
+
+ rtx note;
+
+ for (note = CALL_INSN_FUNCTION_USAGE (insn);
+ note;
+ note = XEXP (note, 1))
+ if (GET_CODE (XEXP (note, 0)) == USE)
+ mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
+ final, insn);
+
+ /* Each call clobbers all call-clobbered regs that are not
+ global or fixed. Note that the function-value reg is a
+ call-clobbered reg, and mark_set_regs has already had
+ a chance to handle it. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i] && ! global_regs[i]
+ && ! fixed_regs[i])
+ SET_REGNO_REG_SET (dead, i);
+
+ /* The stack ptr is used (honorarily) by a CALL insn. */
+ SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
+
+ /* Calls may also reference any of the global registers,
+ so they are made live. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ mark_used_regs (old, live,
+ gen_rtx_REG (reg_raw_mode[i], i),
+ final, insn);
+
+ /* Calls also clobber memory. */
+ mem_set_list = NULL_RTX;
+ }
+
+ /* Update OLD for the registers used or set. */
+ AND_COMPL_REG_SET (old, dead);
+ IOR_REG_SET (old, live);
+
+ }
+
+ /* On final pass, update counts of how many insns each reg is live
+ at. */
+ if (final)
+ EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
+ { REG_LIVE_LENGTH (i)++; });
+ }
+ flushed: ;
+ if (insn == first)
+ break;
+ }
+
+ FREE_REG_SET (dead);
+ FREE_REG_SET (live);
+}
+
+/* Return 1 if X (the body of an insn, or part of it) is just dead stores
+ (SET expressions whose destinations are registers dead after the insn).
+ NEEDED is the regset that says which regs are alive after the insn.
+
+ Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
+
+ If X is the entire body of an insn, NOTES contains the reg notes
+ pertaining to the insn. */
+
+static int
+insn_dead_p (x, needed, call_ok, notes)
+ rtx x;
+ regset needed;
+ int call_ok;
+ rtx notes ATTRIBUTE_UNUSED;
+{
+ enum rtx_code code = GET_CODE (x);
+
+#ifdef AUTO_INC_DEC
+ /* If flow is invoked after reload, we must take existing AUTO_INC
+ expresions into account. */
+ if (reload_completed)
+ {
+ for ( ; notes; notes = XEXP (notes, 1))
+ {
+ if (REG_NOTE_KIND (notes) == REG_INC)
+ {
+ int regno = REGNO (XEXP (notes, 0));
+
+ /* Don't delete insns to set global regs. */
+ if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
+ || REGNO_REG_SET_P (needed, regno))
+ return 0;
+ }
+ }
+ }
+#endif
+
+ /* If setting something that's a reg or part of one,
+ see if that register's altered value will be live. */
+
+ if (code == SET)
+ {
+ rtx r = SET_DEST (x);
+
+ /* A SET that is a subroutine call cannot be dead. */
+ if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
+ return 0;
+
+#ifdef HAVE_cc0
+ if (GET_CODE (r) == CC0)
+ return ! cc0_live;
+#endif
+
+ if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r))
+ {
+ rtx temp;
+ /* Walk the set of memory locations we are currently tracking
+ and see if one is an identical match to this memory location.
+ If so, this memory write is dead (remember, we're walking
+ backwards from the end of the block to the start. */
+ temp = mem_set_list;
+ while (temp)
+ {
+ if (rtx_equal_p (XEXP (temp, 0), r))
+ return 1;
+ temp = XEXP (temp, 1);
+ }
+ }
+
+ while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART
+ || GET_CODE (r) == ZERO_EXTRACT)
+ r = SUBREG_REG (r);
+
+ if (GET_CODE (r) == REG)
+ {
+ int regno = REGNO (r);
+
+ /* Don't delete insns to set global regs. */
+ if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
+ /* Make sure insns to set frame pointer aren't deleted. */
+ || regno == FRAME_POINTER_REGNUM
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ /* Make sure insns to set arg pointer are never deleted
+ (if the arg pointer isn't fixed, there will be a USE for
+ it, so we can treat it normally). */
+ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ || REGNO_REG_SET_P (needed, regno))
+ return 0;
+
+ /* If this is a hard register, verify that subsequent words are
+ not needed. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
+
+ while (--n > 0)
+ if (REGNO_REG_SET_P (needed, regno+n))
+ return 0;
+ }
+
+ return 1;
+ }
+ }
+
+ /* If performing several activities,
+ insn is dead if each activity is individually dead.
+ Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
+ that's inside a PARALLEL doesn't make the insn worth keeping. */
+ else if (code == PARALLEL)
+ {
+ int i = XVECLEN (x, 0);
+
+ for (i--; i >= 0; i--)
+ if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
+ && GET_CODE (XVECEXP (x, 0, i)) != USE
+ && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX))
+ return 0;
+
+ return 1;
+ }
+
+ /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
+ is not necessarily true for hard registers. */
+ else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
+ && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
+ && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0))))
+ return 1;
+
+ /* We do not check other CLOBBER or USE here. An insn consisting of just
+ a CLOBBER or just a USE should not be deleted. */
+ return 0;
+}
+
+/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
+ return 1 if the entire library call is dead.
+ This is true if X copies a register (hard or pseudo)
+ and if the hard return reg of the call insn is dead.
+ (The caller should have tested the destination of X already for death.)
+
+ If this insn doesn't just copy a register, then we don't
+ have an ordinary libcall. In that case, cse could not have
+ managed to substitute the source for the dest later on,
+ so we can assume the libcall is dead.
+
+ NEEDED is the bit vector of pseudoregs live before this insn.
+ NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
+
+static int
+libcall_dead_p (x, needed, note, insn)
+ rtx x;
+ regset needed;
+ rtx note;
+ rtx insn;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ if (code == SET)
+ {
+ register rtx r = SET_SRC (x);
+ if (GET_CODE (r) == REG)
+ {
+ rtx call = XEXP (note, 0);
+ rtx call_pat;
+ register int i;
+
+ /* Find the call insn. */
+ while (call != insn && GET_CODE (call) != CALL_INSN)
+ call = NEXT_INSN (call);
+
+ /* If there is none, do nothing special,
+ since ordinary death handling can understand these insns. */
+ if (call == insn)
+ return 0;
+
+ /* See if the hard reg holding the value is dead.
+ If this is a PARALLEL, find the call within it. */
+ call_pat = PATTERN (call);
+ if (GET_CODE (call_pat) == PARALLEL)
+ {
+ for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
+ break;
+
+ /* This may be a library call that is returning a value
+ via invisible pointer. Do nothing special, since
+ ordinary death handling can understand these insns. */
+ if (i < 0)
+ return 0;
+
+ call_pat = XVECEXP (call_pat, 0, i);
+ }
+
+ return insn_dead_p (call_pat, needed, 1, REG_NOTES (call));
+ }
+ }
+ return 1;
+}
+
+/* Return 1 if register REGNO was used before it was set, i.e. if it is
+ live at function entry. Don't count global register variables, variables
+ in registers that can be used for function arg passing, or variables in
+ fixed hard registers. */
+
+int
+regno_uninitialized (regno)
+ int regno;
+{
+ if (n_basic_blocks == 0
+ || (regno < FIRST_PSEUDO_REGISTER
+ && (global_regs[regno]
+ || fixed_regs[regno]
+ || FUNCTION_ARG_REGNO_P (regno))))
+ return 0;
+
+ return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
+}
+
+/* 1 if register REGNO was alive at a place where `setjmp' was called
+ and was set more than once or is an argument.
+ Such regs may be clobbered by `longjmp'. */
+
+int
+regno_clobbered_at_setjmp (regno)
+ int regno;
+{
+ if (n_basic_blocks == 0)
+ return 0;
+
+ return ((REG_N_SETS (regno) > 1
+ || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
+ && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
+}
+
+/* INSN references memory, possibly using autoincrement addressing modes.
+ Find any entries on the mem_set_list that need to be invalidated due
+ to an address change. */
+static void
+invalidate_mems_from_autoinc (insn)
+ rtx insn;
+{
+ rtx note = REG_NOTES (insn);
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ {
+ if (REG_NOTE_KIND (note) == REG_INC)
+ {
+ rtx temp = mem_set_list;
+ rtx prev = NULL_RTX;
+
+ while (temp)
+ {
+ if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
+ {
+ /* Splice temp out of list. */
+ if (prev)
+ XEXP (prev, 1) = XEXP (temp, 1);
+ else
+ mem_set_list = XEXP (temp, 1);
+ }
+ else
+ prev = temp;
+ temp = XEXP (temp, 1);
+ }
+ }
+ }
+}
+
+/* Process the registers that are set within X.
+ Their bits are set to 1 in the regset DEAD,
+ because they are dead prior to this insn.
+
+ If INSN is nonzero, it is the insn being processed
+ and the fact that it is nonzero implies this is the FINAL pass
+ in propagate_block. In this case, various info about register
+ usage is stored, LOG_LINKS fields of insns are set up. */
+
+static void
+mark_set_regs (needed, dead, x, insn, significant)
+ regset needed;
+ regset dead;
+ rtx x;
+ rtx insn;
+ regset significant;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ if (code == SET || code == CLOBBER)
+ mark_set_1 (needed, dead, x, insn, significant);
+ else if (code == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ code = GET_CODE (XVECEXP (x, 0, i));
+ if (code == SET || code == CLOBBER)
+ mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
+ }
+ }
+}
+
+/* Process a single SET rtx, X. */
+
+static void
+mark_set_1 (needed, dead, x, insn, significant)
+ regset needed;
+ regset dead;
+ rtx x;
+ rtx insn;
+ regset significant;
+{
+ register int regno;
+ register rtx reg = SET_DEST (x);
+
+ /* Some targets place small structures in registers for
+ return values of functions. We have to detect this
+ case specially here to get correct flow information. */
+ if (GET_CODE (reg) == PARALLEL
+ && GET_MODE (reg) == BLKmode)
+ {
+ register int i;
+
+ for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
+ mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant);
+ return;
+ }
+
+ /* Modifying just one hardware register of a multi-reg value
+ or just a byte field of a register
+ does not mean the value from before this insn is now dead.
+ But it does mean liveness of that register at the end of the block
+ is significant.
+
+ Within mark_set_1, however, we treat it as if the register is
+ indeed modified. mark_used_regs will, however, also treat this
+ register as being used. Thus, we treat these insns as setting a
+ new value for the register as a function of its old value. This
+ cases LOG_LINKS to be made appropriately and this will help combine. */
+
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ /* If this set is a MEM, then it kills any aliased writes.
+ If this set is a REG, then it kills any MEMs which use the reg. */
+ if (GET_CODE (reg) == MEM
+ || GET_CODE (reg) == REG)
+ {
+ rtx temp = mem_set_list;
+ rtx prev = NULL_RTX;
+
+ while (temp)
+ {
+ if ((GET_CODE (reg) == MEM
+ && output_dependence (XEXP (temp, 0), reg))
+ || (GET_CODE (reg) == REG
+ && reg_overlap_mentioned_p (reg, XEXP (temp, 0))))
+ {
+ /* Splice this entry out of the list. */
+ if (prev)
+ XEXP (prev, 1) = XEXP (temp, 1);
+ else
+ mem_set_list = XEXP (temp, 1);
+ }
+ else
+ prev = temp;
+ temp = XEXP (temp, 1);
+ }
+ }
+
+ /* If the memory reference had embedded side effects (autoincrement
+ address modes. Then we may need to kill some entries on the
+ memory set list. */
+ if (insn && GET_CODE (reg) == MEM)
+ invalidate_mems_from_autoinc (insn);
+
+ if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
+ /* There are no REG_INC notes for SP, so we can't assume we'll see
+ everything that invalidates it. To be safe, don't eliminate any
+ stores though SP; none of them should be redundant anyway. */
+ && ! reg_mentioned_p (stack_pointer_rtx, reg))
+ mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list);
+
+ if (GET_CODE (reg) == REG
+ && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ && regno != HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
+ /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
+ {
+ int some_needed = REGNO_REG_SET_P (needed, regno);
+ int some_not_needed = ! some_needed;
+
+ /* Mark it as a significant register for this basic block. */
+ if (significant)
+ SET_REGNO_REG_SET (significant, regno);
+
+ /* Mark it as dead before this insn. */
+ SET_REGNO_REG_SET (dead, regno);
+
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n;
+
+ /* Nothing below is needed for the stack pointer; get out asap.
+ Eg, log links aren't needed, since combine won't use them. */
+ if (regno == STACK_POINTER_REGNUM)
+ return;
+
+ n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ while (--n > 0)
+ {
+ int regno_n = regno + n;
+ int needed_regno = REGNO_REG_SET_P (needed, regno_n);
+ if (significant)
+ SET_REGNO_REG_SET (significant, regno_n);
+
+ SET_REGNO_REG_SET (dead, regno_n);
+ some_needed |= needed_regno;
+ some_not_needed |= ! needed_regno;
+ }
+ }
+ /* Additional data to record if this is the final pass. */
+ if (insn)
+ {
+ register rtx y = reg_next_use[regno];
+ register int blocknum = BLOCK_NUM (insn);
+
+ /* If this is a hard reg, record this function uses the reg. */
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ register int i;
+ int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+
+ for (i = regno; i < endregno; i++)
+ {
+ /* The next use is no longer "next", since a store
+ intervenes. */
+ reg_next_use[i] = 0;
+
+ regs_ever_live[i] = 1;
+ REG_N_SETS (i)++;
+ }
+ }
+ else
+ {
+ /* The next use is no longer "next", since a store
+ intervenes. */
+ reg_next_use[regno] = 0;
+
+ /* Keep track of which basic blocks each reg appears in. */
+
+ if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
+ REG_BASIC_BLOCK (regno) = blocknum;
+ else if (REG_BASIC_BLOCK (regno) != blocknum)
+ REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
+
+ /* Count (weighted) references, stores, etc. This counts a
+ register twice if it is modified, but that is correct. */
+ REG_N_SETS (regno)++;
+
+ REG_N_REFS (regno) += loop_depth;
+
+ /* The insns where a reg is live are normally counted
+ elsewhere, but we want the count to include the insn
+ where the reg is set, and the normal counting mechanism
+ would not count it. */
+ REG_LIVE_LENGTH (regno)++;
+ }
+
+ if (! some_not_needed)
+ {
+ /* Make a logical link from the next following insn
+ that uses this register, back to this insn.
+ The following insns have already been processed.
+
+ We don't build a LOG_LINK for hard registers containing
+ in ASM_OPERANDs. If these registers get replaced,
+ we might wind up changing the semantics of the insn,
+ even if reload can make what appear to be valid assignments
+ later. */
+ if (y && (BLOCK_NUM (y) == blocknum)
+ && (regno >= FIRST_PSEUDO_REGISTER
+ || asm_noperands (PATTERN (y)) < 0))
+ LOG_LINKS (y)
+ = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
+ }
+ else if (! some_needed)
+ {
+ /* Note that dead stores have already been deleted when possible
+ If we get here, we have found a dead store that cannot
+ be eliminated (because the same insn does something useful).
+ Indicate this by marking the reg being set as dying here. */
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
+ REG_N_DEATHS (REGNO (reg))++;
+ }
+ else
+ {
+ /* This is a case where we have a multi-word hard register
+ and some, but not all, of the words of the register are
+ needed in subsequent insns. Write REG_UNUSED notes
+ for those parts that were not needed. This case should
+ be rare. */
+
+ int i;
+
+ for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
+ i >= 0; i--)
+ if (!REGNO_REG_SET_P (needed, regno + i))
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_UNUSED,
+ gen_rtx_REG (reg_raw_mode[regno + i],
+ regno + i),
+ REG_NOTES (insn));
+ }
+ }
+ }
+ else if (GET_CODE (reg) == REG)
+ reg_next_use[regno] = 0;
+
+ /* If this is the last pass and this is a SCRATCH, show it will be dying
+ here and count it. */
+ else if (GET_CODE (reg) == SCRATCH && insn != 0)
+ {
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
+ }
+}
+
+#ifdef AUTO_INC_DEC
+
+/* X is a MEM found in INSN. See if we can convert it into an auto-increment
+ reference. */
+
+static void
+find_auto_inc (needed, x, insn)
+ regset needed;
+ rtx x;
+ rtx insn;
+{
+ rtx addr = XEXP (x, 0);
+ HOST_WIDE_INT offset = 0;
+ rtx set;
+
+ /* Here we detect use of an index register which might be good for
+ postincrement, postdecrement, preincrement, or predecrement. */
+
+ if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
+ offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
+
+ if (GET_CODE (addr) == REG)
+ {
+ register rtx y;
+ register int size = GET_MODE_SIZE (GET_MODE (x));
+ rtx use;
+ rtx incr;
+ int regno = REGNO (addr);
+
+ /* Is the next use an increment that might make auto-increment? */
+ if ((incr = reg_next_use[regno]) != 0
+ && (set = single_set (incr)) != 0
+ && GET_CODE (set) == SET
+ && BLOCK_NUM (incr) == BLOCK_NUM (insn)
+ /* Can't add side effects to jumps; if reg is spilled and
+ reloaded, there's no way to store back the altered value. */
+ && GET_CODE (insn) != JUMP_INSN
+ && (y = SET_SRC (set), GET_CODE (y) == PLUS)
+ && XEXP (y, 0) == addr
+ && GET_CODE (XEXP (y, 1)) == CONST_INT
+ && ((HAVE_POST_INCREMENT
+ && (INTVAL (XEXP (y, 1)) == size && offset == 0))
+ || (HAVE_POST_DECREMENT
+ && (INTVAL (XEXP (y, 1)) == - size && offset == 0))
+ || (HAVE_PRE_INCREMENT
+ && (INTVAL (XEXP (y, 1)) == size && offset == size))
+ || (HAVE_PRE_DECREMENT
+ && (INTVAL (XEXP (y, 1)) == - size && offset == - size)))
+ /* Make sure this reg appears only once in this insn. */
+ && (use = find_use_as_address (PATTERN (insn), addr, offset),
+ use != 0 && use != (rtx) 1))
+ {
+ rtx q = SET_DEST (set);
+ enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
+ ? (offset ? PRE_INC : POST_INC)
+ : (offset ? PRE_DEC : POST_DEC));
+
+ if (dead_or_set_p (incr, addr))
+ {
+ /* This is the simple case. Try to make the auto-inc. If
+ we can't, we are done. Otherwise, we will do any
+ needed updates below. */
+ if (! validate_change (insn, &XEXP (x, 0),
+ gen_rtx_fmt_e (inc_code, Pmode, addr),
+ 0))
+ return;
+ }
+ else if (GET_CODE (q) == REG
+ /* PREV_INSN used here to check the semi-open interval
+ [insn,incr). */
+ && ! reg_used_between_p (q, PREV_INSN (insn), incr)
+ /* We must also check for sets of q as q may be
+ a call clobbered hard register and there may
+ be a call between PREV_INSN (insn) and incr. */
+ && ! reg_set_between_p (q, PREV_INSN (insn), incr))
+ {
+ /* We have *p followed sometime later by q = p+size.
+ Both p and q must be live afterward,
+ and q is not used between INSN and its assignment.
+ Change it to q = p, ...*q..., q = q+size.
+ Then fall into the usual case. */
+ rtx insns, temp;
+ basic_block bb;
+
+ start_sequence ();
+ emit_move_insn (q, addr);
+ insns = get_insns ();
+ end_sequence ();
+
+ bb = BLOCK_FOR_INSN (insn);
+ for (temp = insns; temp; temp = NEXT_INSN (temp))
+ set_block_for_insn (temp, bb);
+
+ /* If we can't make the auto-inc, or can't make the
+ replacement into Y, exit. There's no point in making
+ the change below if we can't do the auto-inc and doing
+ so is not correct in the pre-inc case. */
+
+ validate_change (insn, &XEXP (x, 0),
+ gen_rtx_fmt_e (inc_code, Pmode, q),
+ 1);
+ validate_change (incr, &XEXP (y, 0), q, 1);
+ if (! apply_change_group ())
+ return;
+
+ /* We now know we'll be doing this change, so emit the
+ new insn(s) and do the updates. */
+ emit_insns_before (insns, insn);
+
+ if (BLOCK_FOR_INSN (insn)->head == insn)
+ BLOCK_FOR_INSN (insn)->head = insns;
+
+ /* INCR will become a NOTE and INSN won't contain a
+ use of ADDR. If a use of ADDR was just placed in
+ the insn before INSN, make that the next use.
+ Otherwise, invalidate it. */
+ if (GET_CODE (PREV_INSN (insn)) == INSN
+ && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
+ && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
+ reg_next_use[regno] = PREV_INSN (insn);
+ else
+ reg_next_use[regno] = 0;
+
+ addr = q;
+ regno = REGNO (q);
+
+ /* REGNO is now used in INCR which is below INSN, but
+ it previously wasn't live here. If we don't mark
+ it as needed, we'll put a REG_DEAD note for it
+ on this insn, which is incorrect. */
+ SET_REGNO_REG_SET (needed, regno);
+
+ /* If there are any calls between INSN and INCR, show
+ that REGNO now crosses them. */
+ for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
+ if (GET_CODE (temp) == CALL_INSN)
+ REG_N_CALLS_CROSSED (regno)++;
+ }
+ else
+ return;
+
+ /* If we haven't returned, it means we were able to make the
+ auto-inc, so update the status. First, record that this insn
+ has an implicit side effect. */
+
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));
+
+ /* Modify the old increment-insn to simply copy
+ the already-incremented value of our register. */
+ if (! validate_change (incr, &SET_SRC (set), addr, 0))
+ abort ();
+
+ /* If that makes it a no-op (copying the register into itself) delete
+ it so it won't appear to be a "use" and a "set" of this
+ register. */
+ if (SET_DEST (set) == addr)
+ {
+ PUT_CODE (incr, NOTE);
+ NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (incr) = 0;
+ }
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ /* Count an extra reference to the reg. When a reg is
+ incremented, spilling it is worse, so we want to make
+ that less likely. */
+ REG_N_REFS (regno) += loop_depth;
+
+ /* Count the increment as a setting of the register,
+ even though it isn't a SET in rtl. */
+ REG_N_SETS (regno)++;
+ }
+ }
+ }
+}
+#endif /* AUTO_INC_DEC */
+
+/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
+ This is done assuming the registers needed from X
+ are those that have 1-bits in NEEDED.
+
+ On the final pass, FINAL is 1. This means try for autoincrement
+ and count the uses and deaths of each pseudo-reg.
+
+ INSN is the containing instruction. If INSN is dead, this function is not
+ called. */
+
+static void
+mark_used_regs (needed, live, x, final, insn)
+ regset needed;
+ regset live;
+ rtx x;
+ int final;
+ rtx insn;
+{
+ register RTX_CODE code;
+ register int regno;
+ int i;
+
+ retry:
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case PC:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return;
+
+#ifdef HAVE_cc0
+ case CC0:
+ cc0_live = 1;
+ return;
+#endif
+
+ case CLOBBER:
+ /* If we are clobbering a MEM, mark any registers inside the address
+ as being used. */
+ if (GET_CODE (XEXP (x, 0)) == MEM)
+ mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
+ return;
+
+ case MEM:
+ /* Invalidate the data for the last MEM stored, but only if MEM is
+ something that can be stored into. */
+ if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
+ ; /* needn't clear the memory set list */
+ else
+ {
+ rtx temp = mem_set_list;
+ rtx prev = NULL_RTX;
+
+ while (temp)
+ {
+ if (anti_dependence (XEXP (temp, 0), x))
+ {
+ /* Splice temp out of the list. */
+ if (prev)
+ XEXP (prev, 1) = XEXP (temp, 1);
+ else
+ mem_set_list = XEXP (temp, 1);
+ }
+ else
+ prev = temp;
+ temp = XEXP (temp, 1);
+ }
+ }
+
+ /* If the memory reference had embedded side effects (autoincrement
+ address modes. Then we may need to kill some entries on the
+ memory set list. */
+ if (insn)
+ invalidate_mems_from_autoinc (insn);
+
+#ifdef AUTO_INC_DEC
+ if (final)
+ find_auto_inc (needed, x, insn);
+#endif
+ break;
+
+ case SUBREG:
+ if (GET_CODE (SUBREG_REG (x)) == REG
+ && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
+ && (GET_MODE_SIZE (GET_MODE (x))
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
+
+ /* While we're here, optimize this case. */
+ x = SUBREG_REG (x);
+
+ /* In case the SUBREG is not of a register, don't optimize */
+ if (GET_CODE (x) != REG)
+ {
+ mark_used_regs (needed, live, x, final, insn);
+ return;
+ }
+
+ /* ... fall through ... */
+
+ case REG:
+ /* See a register other than being set
+ => mark it as needed. */
+
+ regno = REGNO (x);
+ {
+ int some_needed = REGNO_REG_SET_P (needed, regno);
+ int some_not_needed = ! some_needed;
+
+ SET_REGNO_REG_SET (live, regno);
+
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int n;
+
+ /* For stack ptr or fixed arg pointer,
+ nothing below can be necessary, so waste no more time. */
+ if (regno == STACK_POINTER_REGNUM
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ || regno == FRAME_POINTER_REGNUM)
+ {
+ /* If this is a register we are going to try to eliminate,
+ don't mark it live here. If we are successful in
+ eliminating it, it need not be live unless it is used for
+ pseudos, in which case it will have been set live when
+ it was allocated to the pseudos. If the register will not
+ be eliminated, reload will set it live at that point. */
+
+ if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
+ regs_ever_live[regno] = 1;
+ return;
+ }
+ /* No death notes for global register variables;
+ their values are live after this function exits. */
+ if (global_regs[regno])
+ {
+ if (final)
+ reg_next_use[regno] = insn;
+ return;
+ }
+
+ n = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ while (--n > 0)
+ {
+ int regno_n = regno + n;
+ int needed_regno = REGNO_REG_SET_P (needed, regno_n);
+
+ SET_REGNO_REG_SET (live, regno_n);
+ some_needed |= needed_regno;
+ some_not_needed |= ! needed_regno;
+ }
+ }
+ if (final)
+ {
+ /* Record where each reg is used, so when the reg
+ is set we know the next insn that uses it. */
+
+ reg_next_use[regno] = insn;
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ /* If a hard reg is being used,
+ record that this function does use it. */
+
+ i = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ if (i == 0)
+ i = 1;
+ do
+ regs_ever_live[regno + --i] = 1;
+ while (i > 0);
+ }
+ else
+ {
+ /* Keep track of which basic block each reg appears in. */
+
+ register int blocknum = BLOCK_NUM (insn);
+
+ if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
+ REG_BASIC_BLOCK (regno) = blocknum;
+ else if (REG_BASIC_BLOCK (regno) != blocknum)
+ REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
+
+ /* Count (weighted) number of uses of each reg. */
+
+ REG_N_REFS (regno) += loop_depth;
+ }
+
+ /* Record and count the insns in which a reg dies.
+ If it is used in this insn and was dead below the insn
+ then it dies in this insn. If it was set in this insn,
+ we do not make a REG_DEAD note; likewise if we already
+ made such a note. */
+
+ if (some_not_needed
+ && ! dead_or_set_p (insn, x)
+#if 0
+ && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
+#endif
+ )
+ {
+ /* Check for the case where the register dying partially
+ overlaps the register set by this insn. */
+ if (regno < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
+ {
+ int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ while (--n >= 0)
+ some_needed |= dead_or_set_regno_p (insn, regno + n);
+ }
+
+ /* If none of the words in X is needed, make a REG_DEAD
+ note. Otherwise, we must make partial REG_DEAD notes. */
+ if (! some_needed)
+ {
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
+ REG_N_DEATHS (regno)++;
+ }
+ else
+ {
+ int i;
+
+ /* Don't make a REG_DEAD note for a part of a register
+ that is set in the insn. */
+
+ for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
+ i >= 0; i--)
+ if (!REGNO_REG_SET_P (needed, regno + i)
+ && ! dead_or_set_regno_p (insn, regno + i))
+ REG_NOTES (insn)
+ = gen_rtx_EXPR_LIST (REG_DEAD,
+ gen_rtx_REG (reg_raw_mode[regno + i],
+ regno + i),
+ REG_NOTES (insn));
+ }
+ }
+ }
+ }
+ return;
+
+ case SET:
+ {
+ register rtx testreg = SET_DEST (x);
+ int mark_dest = 0;
+
+ /* If storing into MEM, don't show it as being used. But do
+ show the address as being used. */
+ if (GET_CODE (testreg) == MEM)
+ {
+#ifdef AUTO_INC_DEC
+ if (final)
+ find_auto_inc (needed, testreg, insn);
+#endif
+ mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
+ mark_used_regs (needed, live, SET_SRC (x), final, insn);
+ return;
+ }
+
+ /* Storing in STRICT_LOW_PART is like storing in a reg
+ in that this SET might be dead, so ignore it in TESTREG.
+ but in some other ways it is like using the reg.
+
+ Storing in a SUBREG or a bit field is like storing the entire
+ register in that if the register's value is not used
+ then this SET is not needed. */
+ while (GET_CODE (testreg) == STRICT_LOW_PART
+ || GET_CODE (testreg) == ZERO_EXTRACT
+ || GET_CODE (testreg) == SIGN_EXTRACT
+ || GET_CODE (testreg) == SUBREG)
+ {
+ if (GET_CODE (testreg) == SUBREG
+ && GET_CODE (SUBREG_REG (testreg)) == REG
+ && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
+ && (GET_MODE_SIZE (GET_MODE (testreg))
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
+ REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
+
+ /* Modifying a single register in an alternate mode
+ does not use any of the old value. But these other
+ ways of storing in a register do use the old value. */
+ if (GET_CODE (testreg) == SUBREG
+ && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
+ ;
+ else
+ mark_dest = 1;
+
+ testreg = XEXP (testreg, 0);
+ }
+
+ /* If this is a store into a register,
+ recursively scan the value being stored. */
+
+ if ((GET_CODE (testreg) == PARALLEL
+ && GET_MODE (testreg) == BLKmode)
+ || (GET_CODE (testreg) == REG
+ && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ && regno != HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ ))
+ /* We used to exclude global_regs here, but that seems wrong.
+ Storing in them is like storing in mem. */
+ {
+ mark_used_regs (needed, live, SET_SRC (x), final, insn);
+ if (mark_dest)
+ mark_used_regs (needed, live, SET_DEST (x), final, insn);
+ return;
+ }
+ }
+ break;
+
+ case RETURN:
+ /* If exiting needs the right stack value, consider this insn as
+ using the stack pointer. In any event, consider it as using
+ all global registers and all registers used by return. */
+ if (! EXIT_IGNORE_STACK
+ || (! FRAME_POINTER_REQUIRED
+ && ! current_function_calls_alloca
+ && flag_omit_frame_pointer)
+ || current_function_sp_is_unchanging)
+ SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i]
+#ifdef EPILOGUE_USES
+ || EPILOGUE_USES (i)
+#endif
+ )
+ SET_REGNO_REG_SET (live, i);
+ break;
+
+ case ASM_OPERANDS:
+ case UNSPEC_VOLATILE:
+ case TRAP_IF:
+ case ASM_INPUT:
+ {
+ /* Traditional and volatile asm instructions must be considered to use
+ and clobber all hard registers, all pseudo-registers and all of
+ memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
+
+ Consider for instance a volatile asm that changes the fpu rounding
+ mode. An insn should not be moved across this even if it only uses
+ pseudo-regs because it might give an incorrectly rounded result.
+
+ ?!? Unfortunately, marking all hard registers as live causes massive
+ problems for the register allocator and marking all pseudos as live
+ creates mountains of uninitialized variable warnings.
+
+ So for now, just clear the memory set list and mark any regs
+ we can find in ASM_OPERANDS as used. */
+ if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
+ mem_set_list = NULL_RTX;
+
+ /* For all ASM_OPERANDS, we must traverse the vector of input operands.
+ We can not just fall through here since then we would be confused
+ by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
+ traditional asms unlike their normal usage. */
+ if (code == ASM_OPERANDS)
+ {
+ int j;
+
+ for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
+ mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j),
+ final, insn);
+ }
+ break;
+ }
+
+
+ default:
+ break;
+ }
+
+ /* Recursively scan the operands of this expression. */
+
+ {
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ /* Tail recursive case: save a function call level. */
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto retry;
+ }
+ mark_used_regs (needed, live, XEXP (x, i), final, insn);
+ }
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
+ }
+ }
+ }
+}
+
+#ifdef AUTO_INC_DEC
+
+static int
+try_pre_increment_1 (insn)
+ rtx insn;
+{
+ /* Find the next use of this reg. If in same basic block,
+ make it do pre-increment or pre-decrement if appropriate. */
+ rtx x = single_set (insn);
+ HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
+ * INTVAL (XEXP (SET_SRC (x), 1)));
+ int regno = REGNO (SET_DEST (x));
+ rtx y = reg_next_use[regno];
+ if (y != 0
+ && BLOCK_NUM (y) == BLOCK_NUM (insn)
+ /* Don't do this if the reg dies, or gets set in y; a standard addressing
+ mode would be better. */
+ && ! dead_or_set_p (y, SET_DEST (x))
+ && try_pre_increment (y, SET_DEST (x), amount))
+ {
+ /* We have found a suitable auto-increment
+ and already changed insn Y to do it.
+ So flush this increment-instruction. */
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ /* Count a reference to this reg for the increment
+ insn we are deleting. When a reg is incremented.
+ spilling it is worse, so we want to make that
+ less likely. */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ REG_N_REFS (regno) += loop_depth;
+ REG_N_SETS (regno)++;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Try to change INSN so that it does pre-increment or pre-decrement
+ addressing on register REG in order to add AMOUNT to REG.
+ AMOUNT is negative for pre-decrement.
+ Returns 1 if the change could be made.
+ This checks all about the validity of the result of modifying INSN. */
+
+static int
+try_pre_increment (insn, reg, amount)
+ rtx insn, reg;
+ HOST_WIDE_INT amount;
+{
+ register rtx use;
+
+ /* Nonzero if we can try to make a pre-increment or pre-decrement.
+ For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
+ int pre_ok = 0;
+ /* Nonzero if we can try to make a post-increment or post-decrement.
+ For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
+ It is possible for both PRE_OK and POST_OK to be nonzero if the machine
+ supports both pre-inc and post-inc, or both pre-dec and post-dec. */
+ int post_ok = 0;
+
+ /* Nonzero if the opportunity actually requires post-inc or post-dec. */
+ int do_post = 0;
+
+ /* From the sign of increment, see which possibilities are conceivable
+ on this target machine. */
+ if (HAVE_PRE_INCREMENT && amount > 0)
+ pre_ok = 1;
+ if (HAVE_POST_INCREMENT && amount > 0)
+ post_ok = 1;
+
+ if (HAVE_PRE_DECREMENT && amount < 0)
+ pre_ok = 1;
+ if (HAVE_POST_DECREMENT && amount < 0)
+ post_ok = 1;
+
+ if (! (pre_ok || post_ok))
+ return 0;
+
+ /* It is not safe to add a side effect to a jump insn
+ because if the incremented register is spilled and must be reloaded
+ there would be no way to store the incremented value back in memory. */
+
+ if (GET_CODE (insn) == JUMP_INSN)
+ return 0;
+
+ use = 0;
+ if (pre_ok)
+ use = find_use_as_address (PATTERN (insn), reg, 0);
+ if (post_ok && (use == 0 || use == (rtx) 1))
+ {
+ use = find_use_as_address (PATTERN (insn), reg, -amount);
+ do_post = 1;
+ }
+
+ if (use == 0 || use == (rtx) 1)
+ return 0;
+
+ if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
+ return 0;
+
+ /* See if this combination of instruction and addressing mode exists. */
+ if (! validate_change (insn, &XEXP (use, 0),
+ gen_rtx_fmt_e (amount > 0
+ ? (do_post ? POST_INC : PRE_INC)
+ : (do_post ? POST_DEC : PRE_DEC),
+ Pmode, reg), 0))
+ return 0;
+
+ /* Record that this insn now has an implicit side effect on X. */
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
+ return 1;
+}
+
+#endif /* AUTO_INC_DEC */
+
+/* Find the place in the rtx X where REG is used as a memory address.
+ Return the MEM rtx that so uses it.
+ If PLUSCONST is nonzero, search instead for a memory address equivalent to
+ (plus REG (const_int PLUSCONST)).
+
+ If such an address does not appear, return 0.
+ If REG appears more than once, or is used other than in such an address,
+ return (rtx)1. */
+
+rtx
+find_use_as_address (x, reg, plusconst)
+ register rtx x;
+ rtx reg;
+ HOST_WIDE_INT plusconst;
+{
+ enum rtx_code code = GET_CODE (x);
+ char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+ register rtx value = 0;
+ register rtx tem;
+
+ if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
+ return x;
+
+ if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
+ && XEXP (XEXP (x, 0), 0) == reg
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
+ return x;
+
+ if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
+ {
+ /* If REG occurs inside a MEM used in a bit-field reference,
+ that is unacceptable. */
+ if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+
+ if (x == reg)
+ return (rtx) (HOST_WIDE_INT) 1;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ tem = find_use_as_address (XEXP (x, i), reg, plusconst);
+ if (value == 0)
+ value = tem;
+ else if (tem != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
+ if (value == 0)
+ value = tem;
+ else if (tem != 0)
+ return (rtx) (HOST_WIDE_INT) 1;
+ }
+ }
+ }
+
+ return value;
+}
+
+/* Write information about registers and basic blocks into FILE.
+ This is part of making a debugging dump. */
+
+void
+dump_flow_info (file)
+ FILE *file;
+{
+ register int i;
+ static char *reg_class_names[] = REG_CLASS_NAMES;
+
+ fprintf (file, "%d registers.\n", max_regno);
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ if (REG_N_REFS (i))
+ {
+ enum reg_class class, altclass;
+ fprintf (file, "\nRegister %d used %d times across %d insns",
+ i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
+ if (REG_BASIC_BLOCK (i) >= 0)
+ fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
+ if (REG_N_SETS (i))
+ fprintf (file, "; set %d time%s", REG_N_SETS (i),
+ (REG_N_SETS (i) == 1) ? "" : "s");
+ if (REG_USERVAR_P (regno_reg_rtx[i]))
+ fprintf (file, "; user var");
+ if (REG_N_DEATHS (i) != 1)
+ fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
+ if (REG_N_CALLS_CROSSED (i) == 1)
+ fprintf (file, "; crosses 1 call");
+ else if (REG_N_CALLS_CROSSED (i))
+ fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
+ if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
+ fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
+ class = reg_preferred_class (i);
+ altclass = reg_alternate_class (i);
+ if (class != GENERAL_REGS || altclass != ALL_REGS)
+ {
+ if (altclass == ALL_REGS || class == ALL_REGS)
+ fprintf (file, "; pref %s", reg_class_names[(int) class]);
+ else if (altclass == NO_REGS)
+ fprintf (file, "; %s or none", reg_class_names[(int) class]);
+ else
+ fprintf (file, "; pref %s, else %s",
+ reg_class_names[(int) class],
+ reg_class_names[(int) altclass]);
+ }
+ if (REGNO_POINTER_FLAG (i))
+ fprintf (file, "; pointer");
+ fprintf (file, ".\n");
+ }
+
+ fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ register basic_block bb = BASIC_BLOCK (i);
+ register int regno;
+ register edge e;
+
+ fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
+ i, INSN_UID (bb->head), INSN_UID (bb->end));
+
+ fprintf (file, "Predecessors: ");
+ for (e = bb->pred; e ; e = e->pred_next)
+ dump_edge_info (file, e, 0);
+
+ fprintf (file, "\nSuccessors: ");
+ for (e = bb->succ; e ; e = e->succ_next)
+ dump_edge_info (file, e, 1);
+
+ fprintf (file, "\nRegisters live at start:");
+ if (bb->global_live_at_start)
+ {
+ for (regno = 0; regno < max_regno; regno++)
+ if (REGNO_REG_SET_P (bb->global_live_at_start, regno))
+ fprintf (file, " %d", regno);
+ }
+ else
+ fprintf (file, " n/a");
+
+ fprintf (file, "\nRegisters live at end:");
+ if (bb->global_live_at_end)
+ {
+ for (regno = 0; regno < max_regno; regno++)
+ if (REGNO_REG_SET_P (bb->global_live_at_end, regno))
+ fprintf (file, " %d", regno);
+ }
+ else
+ fprintf (file, " n/a");
+
+ putc('\n', file);
+ }
+
+ putc('\n', file);
+}
+
+static void
+dump_edge_info (file, e, do_succ)
+ FILE *file;
+ edge e;
+ int do_succ;
+{
+ basic_block side = (do_succ ? e->dest : e->src);
+
+ if (side == ENTRY_BLOCK_PTR)
+ fputs (" ENTRY", file);
+ else if (side == EXIT_BLOCK_PTR)
+ fputs (" EXIT", file);
+ else
+ fprintf (file, " %d", side->index);
+
+ if (e->flags)
+ {
+ static char * bitnames[] = {
+ "fallthru", "crit", "ab", "abcall", "eh", "fake"
+ };
+ int comma = 0;
+ int i, flags = e->flags;
+
+ fputc (' ', file);
+ fputc ('(', file);
+ for (i = 0; flags; i++)
+ if (flags & (1 << i))
+ {
+ flags &= ~(1 << i);
+
+ if (comma)
+ fputc (',', file);
+ if (i < (int)(sizeof (bitnames) / sizeof (*bitnames)))
+ fputs (bitnames[i], file);
+ else
+ fprintf (file, "%d", i);
+ comma = 1;
+ }
+ fputc (')', file);
+ }
+}
+
+
+/* Like print_rtl, but also print out live information for the start of each
+ basic block. */
+
+void
+print_rtl_with_bb (outf, rtx_first)
+ FILE *outf;
+ rtx rtx_first;
+{
+ register rtx tmp_rtx;
+
+ if (rtx_first == 0)
+ fprintf (outf, "(nil)\n");
+ else
+ {
+ int i;
+ enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
+ int max_uid = get_max_uid ();
+ basic_block *start = (basic_block *)
+ alloca (max_uid * sizeof (basic_block));
+ basic_block *end = (basic_block *)
+ alloca (max_uid * sizeof (basic_block));
+ enum bb_state *in_bb_p = (enum bb_state *)
+ alloca (max_uid * sizeof (enum bb_state));
+
+ memset (start, 0, max_uid * sizeof (basic_block));
+ memset (end, 0, max_uid * sizeof (basic_block));
+ memset (in_bb_p, 0, max_uid * sizeof (enum bb_state));
+
+ for (i = n_basic_blocks - 1; i >= 0; i--)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+ rtx x;
+
+ start[INSN_UID (bb->head)] = bb;
+ end[INSN_UID (bb->end)] = bb;
+ for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
+ {
+ enum bb_state state = IN_MULTIPLE_BB;
+ if (in_bb_p[INSN_UID(x)] == NOT_IN_BB)
+ state = IN_ONE_BB;
+ in_bb_p[INSN_UID(x)] = state;
+
+ if (x == bb->end)
+ break;
+ }
+ }
+
+ for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
+ {
+ int did_output;
+ basic_block bb;
+
+ if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
+ {
+ fprintf (outf, ";; Start of basic block %d, registers live:",
+ bb->index);
+
+ EXECUTE_IF_SET_IN_REG_SET (bb->global_live_at_start, 0, i,
+ {
+ fprintf (outf, " %d", i);
+ if (i < FIRST_PSEUDO_REGISTER)
+ fprintf (outf, " [%s]",
+ reg_names[i]);
+ });
+ putc ('\n', outf);
+ }
+
+ if (in_bb_p[INSN_UID(tmp_rtx)] == NOT_IN_BB
+ && GET_CODE (tmp_rtx) != NOTE
+ && GET_CODE (tmp_rtx) != BARRIER
+ && ! obey_regdecls)
+ fprintf (outf, ";; Insn is not within a basic block\n");
+ else if (in_bb_p[INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
+ fprintf (outf, ";; Insn is in multiple basic blocks\n");
+
+ did_output = print_rtl_single (outf, tmp_rtx);
+
+ if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
+ fprintf (outf, ";; End of basic block %d\n", bb->index);
+
+ if (did_output)
+ putc ('\n', outf);
+ }
+ }
+}
+
+
+/* Integer list support. */
+
+/* Allocate a node from list *HEAD_PTR. */
+
+static int_list_ptr
+alloc_int_list_node (head_ptr)
+ int_list_block **head_ptr;
+{
+ struct int_list_block *first_blk = *head_ptr;
+
+ if (first_blk == NULL || first_blk->nodes_left <= 0)
+ {
+ first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block));
+ first_blk->nodes_left = INT_LIST_NODES_IN_BLK;
+ first_blk->next = *head_ptr;
+ *head_ptr = first_blk;
+ }
+
+ first_blk->nodes_left--;
+ return &first_blk->nodes[first_blk->nodes_left];
+}
+
+/* Pointer to head of predecessor/successor block list. */
+static int_list_block *pred_int_list_blocks;
+
+/* Add a new node to integer list LIST with value VAL.
+ LIST is a pointer to a list object to allow for different implementations.
+ If *LIST is initially NULL, the list is empty.
+ The caller must not care whether the element is added to the front or
+ to the end of the list (to allow for different implementations). */
+
+static int_list_ptr
+add_int_list_node (blk_list, list, val)
+ int_list_block **blk_list;
+ int_list **list;
+ int val;
+{
+ int_list_ptr p = alloc_int_list_node (blk_list);
+
+ p->val = val;
+ p->next = *list;
+ *list = p;
+ return p;
+}
+
+/* Free the blocks of lists at BLK_LIST. */
+
+void
+free_int_list (blk_list)
+ int_list_block **blk_list;
+{
+ int_list_block *p, *next;
+
+ for (p = *blk_list; p != NULL; p = next)
+ {
+ next = p->next;
+ free (p);
+ }
+
+ /* Mark list as empty for the next function we compile. */
+ *blk_list = NULL;
+}
+
+/* Predecessor/successor computation. */
+
+/* Mark PRED_BB a precessor of SUCC_BB,
+ and conversely SUCC_BB a successor of PRED_BB. */
+
+static void
+add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs)
+ int pred_bb;
+ int succ_bb;
+ int_list_ptr *s_preds;
+ int_list_ptr *s_succs;
+ int *num_preds;
+ int *num_succs;
+{
+ if (succ_bb != EXIT_BLOCK)
+ {
+ add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb);
+ num_preds[succ_bb]++;
+ }
+ if (pred_bb != ENTRY_BLOCK)
+ {
+ add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb);
+ num_succs[pred_bb]++;
+ }
+}
+
+/* Convert edge lists into pred/succ lists for backward compatibility. */
+
+void
+compute_preds_succs (s_preds, s_succs, num_preds, num_succs)
+ int_list_ptr *s_preds;
+ int_list_ptr *s_succs;
+ int *num_preds;
+ int *num_succs;
+{
+ int i, n = n_basic_blocks;
+ edge e;
+
+ memset (s_preds, 0, n_basic_blocks * sizeof (int_list_ptr));
+ memset (s_succs, 0, n_basic_blocks * sizeof (int_list_ptr));
+ memset (num_preds, 0, n_basic_blocks * sizeof (int));
+ memset (num_succs, 0, n_basic_blocks * sizeof (int));
+
+ for (i = 0; i < n; ++i)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+
+ for (e = bb->succ; e ; e = e->succ_next)
+ add_pred_succ (i, e->dest->index, s_preds, s_succs,
+ num_preds, num_succs);
+ }
+
+ for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
+ add_pred_succ (ENTRY_BLOCK, e->dest->index, s_preds, s_succs,
+ num_preds, num_succs);
+}
+
+void
+dump_bb_data (file, preds, succs, live_info)
+ FILE *file;
+ int_list_ptr *preds;
+ int_list_ptr *succs;
+ int live_info;
+{
+ int bb;
+ int_list_ptr p;
+
+ fprintf (file, "BB data\n\n");
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ fprintf (file, "BB %d, start %d, end %d\n", bb,
+ INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb)));
+ fprintf (file, " preds:");
+ for (p = preds[bb]; p != NULL; p = p->next)
+ {
+ int pred_bb = INT_LIST_VAL (p);
+ if (pred_bb == ENTRY_BLOCK)
+ fprintf (file, " entry");
+ else
+ fprintf (file, " %d", pred_bb);
+ }
+ fprintf (file, "\n");
+ fprintf (file, " succs:");
+ for (p = succs[bb]; p != NULL; p = p->next)
+ {
+ int succ_bb = INT_LIST_VAL (p);
+ if (succ_bb == EXIT_BLOCK)
+ fprintf (file, " exit");
+ else
+ fprintf (file, " %d", succ_bb);
+ }
+ if (live_info)
+ {
+ int regno;
+ fprintf (file, "\nRegisters live at start:");
+ for (regno = 0; regno < max_regno; regno++)
+ if (REGNO_REG_SET_P (BASIC_BLOCK (bb)->global_live_at_start, regno))
+ fprintf (file, " %d", regno);
+ fprintf (file, "\n");
+ }
+ fprintf (file, "\n");
+ }
+ fprintf (file, "\n");
+}
+
+/* Free basic block data storage. */
+
+void
+free_bb_mem ()
+{
+ free_int_list (&pred_int_list_blocks);
+}
+
+/* Compute dominator relationships. */
+void
+compute_dominators (dominators, post_dominators, s_preds, s_succs)
+ sbitmap *dominators;
+ sbitmap *post_dominators;
+ int_list_ptr *s_preds;
+ int_list_ptr *s_succs;
+{
+ int bb, changed, passes;
+ sbitmap *temp_bitmap;
+
+ temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
+ sbitmap_vector_ones (dominators, n_basic_blocks);
+ sbitmap_vector_ones (post_dominators, n_basic_blocks);
+ sbitmap_vector_zero (temp_bitmap, n_basic_blocks);
+
+ sbitmap_zero (dominators[0]);
+ SET_BIT (dominators[0], 0);
+
+ sbitmap_zero (post_dominators[n_basic_blocks - 1]);
+ SET_BIT (post_dominators[n_basic_blocks - 1], 0);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ {
+ sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators,
+ bb, s_preds);
+ SET_BIT (temp_bitmap[bb], bb);
+ changed |= sbitmap_a_and_b (dominators[bb],
+ dominators[bb],
+ temp_bitmap[bb]);
+ sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators,
+ bb, s_succs);
+ SET_BIT (temp_bitmap[bb], bb);
+ changed |= sbitmap_a_and_b (post_dominators[bb],
+ post_dominators[bb],
+ temp_bitmap[bb]);
+ }
+ passes++;
+ }
+
+ free (temp_bitmap);
+}
+
+/* Given DOMINATORS, compute the immediate dominators into IDOM. */
+
+void
+compute_immediate_dominators (idom, dominators)
+ int *idom;
+ sbitmap *dominators;
+{
+ sbitmap *tmp;
+ int b;
+
+ tmp = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
+
+ /* Begin with tmp(n) = dom(n) - { n }. */
+ for (b = n_basic_blocks; --b >= 0; )
+ {
+ sbitmap_copy (tmp[b], dominators[b]);
+ RESET_BIT (tmp[b], b);
+ }
+
+ /* Subtract out all of our dominator's dominators. */
+ for (b = n_basic_blocks; --b >= 0; )
+ {
+ sbitmap tmp_b = tmp[b];
+ int s;
+
+ for (s = n_basic_blocks; --s >= 0; )
+ if (TEST_BIT (tmp_b, s))
+ sbitmap_difference (tmp_b, tmp_b, tmp[s]);
+ }
+
+ /* Find the one bit set in the bitmap and put it in the output array. */
+ for (b = n_basic_blocks; --b >= 0; )
+ {
+ int t;
+ EXECUTE_IF_SET_IN_SBITMAP (tmp[b], 0, t, { idom[b] = t; });
+ }
+
+ sbitmap_vector_free (tmp);
+}
+
+/* Count for a single SET rtx, X. */
+
+static void
+count_reg_sets_1 (x)
+ rtx x;
+{
+ register int regno;
+ register rtx reg = SET_DEST (x);
+
+ /* Find the register that's set/clobbered. */
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ if (GET_CODE (reg) == PARALLEL
+ && GET_MODE (reg) == BLKmode)
+ {
+ register int i;
+ for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
+ count_reg_sets_1 (XVECEXP (reg, 0, i));
+ return;
+ }
+
+ if (GET_CODE (reg) == REG)
+ {
+ regno = REGNO (reg);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ /* Count (weighted) references, stores, etc. This counts a
+ register twice if it is modified, but that is correct. */
+ REG_N_SETS (regno)++;
+
+ REG_N_REFS (regno) += loop_depth;
+ }
+ }
+}
+
+/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment
+ REG_N_REFS by the current loop depth for each SET or CLOBBER found. */
+
+static void
+count_reg_sets (x)
+ rtx x;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ if (code == SET || code == CLOBBER)
+ count_reg_sets_1 (x);
+ else if (code == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ code = GET_CODE (XVECEXP (x, 0, i));
+ if (code == SET || code == CLOBBER)
+ count_reg_sets_1 (XVECEXP (x, 0, i));
+ }
+ }
+}
+
+/* Increment REG_N_REFS by the current loop depth each register reference
+ found in X. */
+
+static void
+count_reg_references (x)
+ rtx x;
+{
+ register RTX_CODE code;
+
+ retry:
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case PC:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case ASM_INPUT:
+ return;
+
+#ifdef HAVE_cc0
+ case CC0:
+ return;
+#endif
+
+ case CLOBBER:
+ /* If we are clobbering a MEM, mark any registers inside the address
+ as being used. */
+ if (GET_CODE (XEXP (x, 0)) == MEM)
+ count_reg_references (XEXP (XEXP (x, 0), 0));
+ return;
+
+ case SUBREG:
+ /* While we're here, optimize this case. */
+ x = SUBREG_REG (x);
+
+ /* In case the SUBREG is not of a register, don't optimize */
+ if (GET_CODE (x) != REG)
+ {
+ count_reg_references (x);
+ return;
+ }
+
+ /* ... fall through ... */
+
+ case REG:
+ if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
+ REG_N_REFS (REGNO (x)) += loop_depth;
+ return;
+
+ case SET:
+ {
+ register rtx testreg = SET_DEST (x);
+ int mark_dest = 0;
+
+ /* If storing into MEM, don't show it as being used. But do
+ show the address as being used. */
+ if (GET_CODE (testreg) == MEM)
+ {
+ count_reg_references (XEXP (testreg, 0));
+ count_reg_references (SET_SRC (x));
+ return;
+ }
+
+ /* Storing in STRICT_LOW_PART is like storing in a reg
+ in that this SET might be dead, so ignore it in TESTREG.
+ but in some other ways it is like using the reg.
+
+ Storing in a SUBREG or a bit field is like storing the entire
+ register in that if the register's value is not used
+ then this SET is not needed. */
+ while (GET_CODE (testreg) == STRICT_LOW_PART
+ || GET_CODE (testreg) == ZERO_EXTRACT
+ || GET_CODE (testreg) == SIGN_EXTRACT
+ || GET_CODE (testreg) == SUBREG)
+ {
+ /* Modifying a single register in an alternate mode
+ does not use any of the old value. But these other
+ ways of storing in a register do use the old value. */
+ if (GET_CODE (testreg) == SUBREG
+ && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
+ ;
+ else
+ mark_dest = 1;
+
+ testreg = XEXP (testreg, 0);
+ }
+
+ /* If this is a store into a register,
+ recursively scan the value being stored. */
+
+ if ((GET_CODE (testreg) == PARALLEL
+ && GET_MODE (testreg) == BLKmode)
+ || GET_CODE (testreg) == REG)
+ {
+ count_reg_references (SET_SRC (x));
+ if (mark_dest)
+ count_reg_references (SET_DEST (x));
+ return;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Recursively scan the operands of this expression. */
+
+ {
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ /* Tail recursive case: save a function call level. */
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto retry;
+ }
+ count_reg_references (XEXP (x, i));
+ }
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ count_reg_references (XVECEXP (x, i, j));
+ }
+ }
+ }
+}
+
+/* Recompute register set/reference counts immediately prior to register
+ allocation.
+
+ This avoids problems with set/reference counts changing to/from values
+ which have special meanings to the register allocators.
+
+ Additionally, the reference counts are the primary component used by the
+ register allocators to prioritize pseudos for allocation to hard regs.
+ More accurate reference counts generally lead to better register allocation.
+
+ F is the first insn to be scanned.
+ LOOP_STEP denotes how much loop_depth should be incremented per
+ loop nesting level in order to increase the ref count more for references
+ in a loop.
+
+ It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
+ possibly other information which is used by the register allocators. */
+
+void
+recompute_reg_usage (f, loop_step)
+ rtx f;
+ int loop_step;
+{
+ rtx insn;
+ int i, max_reg;
+
+ /* Clear out the old data. */
+ max_reg = max_reg_num ();
+ for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
+ {
+ REG_N_SETS (i) = 0;
+ REG_N_REFS (i) = 0;
+ }
+
+ /* Scan each insn in the chain and count how many times each register is
+ set/used. */
+ loop_depth = 1;
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ /* Keep track of loop depth. */
+ if (GET_CODE (insn) == NOTE)
+ {
+ /* Look for loop boundaries. */
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
+ loop_depth -= loop_step;
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
+ loop_depth += loop_step;
+
+ /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
+ Abort now rather than setting register status incorrectly. */
+ if (loop_depth == 0)
+ abort ();
+ }
+ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ rtx links;
+
+ /* This call will increment REG_N_SETS for each SET or CLOBBER
+ of a register in INSN. It will also increment REG_N_REFS
+ by the loop depth for each set of a register in INSN. */
+ count_reg_sets (PATTERN (insn));
+
+ /* count_reg_sets does not detect autoincrement address modes, so
+ detect them here by looking at the notes attached to INSN. */
+ for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
+ {
+ if (REG_NOTE_KIND (links) == REG_INC)
+ /* Count (weighted) references, stores, etc. This counts a
+ register twice if it is modified, but that is correct. */
+ REG_N_SETS (REGNO (XEXP (links, 0)))++;
+ }
+
+ /* This call will increment REG_N_REFS by the current loop depth for
+ each reference to a register in INSN. */
+ count_reg_references (PATTERN (insn));
+
+ /* count_reg_references will not include counts for arguments to
+ function calls, so detect them here by examining the
+ CALL_INSN_FUNCTION_USAGE data. */
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ rtx note;
+
+ for (note = CALL_INSN_FUNCTION_USAGE (insn);
+ note;
+ note = XEXP (note, 1))
+ if (GET_CODE (XEXP (note, 0)) == USE)
+ count_reg_references (SET_DEST (XEXP (note, 0)));
+ }
+ }
+ }
+}
+
+/* Record INSN's block as BB. */
+
+void
+set_block_for_insn (insn, bb)
+ rtx insn;
+ basic_block bb;
+{
+ size_t uid = INSN_UID (insn);
+ if (uid >= basic_block_for_insn->num_elements)
+ {
+ int new_size;
+
+ /* Add one-eighth the size so we don't keep calling xrealloc. */
+ new_size = uid + (uid + 7) / 8;
+
+ VARRAY_GROW (basic_block_for_insn, new_size);
+ }
+ VARRAY_BB (basic_block_for_insn, uid) = bb;
+}
+
+/* Record INSN's block number as BB. */
+/* ??? This has got to go. */
+
+void
+set_block_num (insn, bb)
+ rtx insn;
+ int bb;
+{
+ set_block_for_insn (insn, BASIC_BLOCK (bb));
+}
+
+/* Verify the CFG consistency. This function check some CFG invariants and
+ aborts when something is wrong. Hope that this function will help to
+ convert many optimization passes to preserve CFG consistent.
+
+ Currently it does following checks:
+
+ - test head/end pointers
+ - overlapping of basic blocks
+ - edge list corectness
+ - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
+ - tails of basic blocks (ensure that boundary is necesary)
+ - scans body of the basic block for JUMP_INSN, CODE_LABEL
+ and NOTE_INSN_BASIC_BLOCK
+ - check that all insns are in the basic blocks
+ (except the switch handling code, barriers and notes)
+
+ In future it can be extended check a lot of other stuff as well
+ (reachability of basic blocks, life information, etc. etc.). */
+
+void
+verify_flow_info ()
+{
+ const int max_uid = get_max_uid ();
+ const rtx rtx_first = get_insns ();
+ basic_block *bb_info;
+ rtx x;
+ int i;
+
+ bb_info = (basic_block *) alloca (max_uid * sizeof (basic_block));
+ memset (bb_info, 0, max_uid * sizeof (basic_block));
+
+ /* First pass check head/end pointers and set bb_info array used by
+ later passes. */
+ for (i = n_basic_blocks - 1; i >= 0; i--)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+
+ /* Check the head pointer and make sure that it is pointing into
+ insn list. */
+ for (x = rtx_first; x != NULL_RTX; x = NEXT_INSN (x))
+ if (x == bb->head)
+ break;
+ if (!x)
+ {
+ fatal ("verify_flow_info: Head insn %d for block %d not found in the insn stream.\n",
+ INSN_UID (bb->head), bb->index);
+ }
+
+ /* Check the end pointer and make sure that it is pointing into
+ insn list. */
+ for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
+ {
+ if (bb_info[INSN_UID (x)] != NULL)
+ {
+ fatal ("verify_flow_info: Insn %d is in multiple basic blocks (%d and %d)",
+ INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
+ }
+ bb_info[INSN_UID (x)] = bb;
+
+ if (x == bb->end)
+ break;
+ }
+ if (!x)
+ {
+ fatal ("verify_flow_info: End insn %d for block %d not found in the insn stream.\n",
+ INSN_UID (bb->end), bb->index);
+ }
+ }
+
+ /* Now check the basic blocks (boundaries etc.) */
+ for (i = n_basic_blocks - 1; i >= 0; i--)
+ {
+ basic_block bb = BASIC_BLOCK (i);
+ /* Check corectness of edge lists */
+ edge e;
+
+ e = bb->succ;
+ while (e)
+ {
+ if (e->src != bb)
+ {
+ fprintf (stderr, "verify_flow_info: Basic block %d succ edge is corrupted\n",
+ bb->index);
+ fprintf (stderr, "Predecessor: ");
+ dump_edge_info (stderr, e, 0);
+ fprintf (stderr, "\nSuccessor: ");
+ dump_edge_info (stderr, e, 1);
+ fflush (stderr);
+ abort ();
+ }
+ if (e->dest != EXIT_BLOCK_PTR)
+ {
+ edge e2 = e->dest->pred;
+ while (e2 && e2 != e)
+ e2 = e2->pred_next;
+ if (!e2)
+ {
+ fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
+ bb->index);
+ }
+ }
+ e = e->succ_next;
+ }
+
+ e = bb->pred;
+ while (e)
+ {
+ if (e->dest != bb)
+ {
+ fprintf (stderr, "verify_flow_info: Basic block %d pred edge is corrupted\n",
+ bb->index);
+ fprintf (stderr, "Predecessor: ");
+ dump_edge_info (stderr, e, 0);
+ fprintf (stderr, "\nSuccessor: ");
+ dump_edge_info (stderr, e, 1);
+ fflush (stderr);
+ abort ();
+ }
+ if (e->src != ENTRY_BLOCK_PTR)
+ {
+ edge e2 = e->src->succ;
+ while (e2 && e2 != e)
+ e2 = e2->succ_next;
+ if (!e2)
+ {
+ fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
+ bb->index);
+ }
+ }
+ e = e->pred_next;
+ }
+
+ /* OK pointers are correct. Now check the header of basic
+ block. It ought to contain optional CODE_LABEL followed
+ by NOTE_BASIC_BLOCK. */
+ x = bb->head;
+ if (GET_CODE (x) == CODE_LABEL)
+ {
+ if (bb->end == x)
+ {
+ fatal ("verify_flow_info: Basic block contains only CODE_LABEL and no NOTE_INSN_BASIC_BLOCK note\n");
+ }
+ x = NEXT_INSN (x);
+ }
+ if (GET_CODE (x) != NOTE
+ || NOTE_LINE_NUMBER (x) != NOTE_INSN_BASIC_BLOCK
+ || NOTE_BASIC_BLOCK (x) != bb)
+ {
+ fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
+ bb->index);
+ }
+
+ if (bb->end == x)
+ {
+ /* Do checks for empty blocks here */
+ }
+ else
+ {
+ x = NEXT_INSN (x);
+ while (x)
+ {
+ if (GET_CODE (x) == NOTE
+ && NOTE_LINE_NUMBER (x) == NOTE_INSN_BASIC_BLOCK)
+ {
+ fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d\n",
+ INSN_UID (x), bb->index);
+ }
+
+ if (x == bb->end)
+ break;
+
+ if (GET_CODE (x) == JUMP_INSN
+ || GET_CODE (x) == CODE_LABEL
+ || GET_CODE (x) == BARRIER)
+ {
+ fatal_insn ("verify_flow_info: Incorrect insn in the middle of basic block %d\n",
+ x, bb->index);
+ }
+
+ x = NEXT_INSN (x);
+ }
+ }
+ }
+
+ x = rtx_first;
+ while (x)
+ {
+ if (!bb_info[INSN_UID (x)])
+ {
+ switch (GET_CODE (x))
+ {
+ case BARRIER:
+ case NOTE:
+ break;
+
+ case CODE_LABEL:
+ /* An addr_vec is placed outside any block block. */
+ if (NEXT_INSN (x)
+ && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
+ && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
+ || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
+ {
+ x = NEXT_INSN (x);
+ }
+
+ /* But in any case, non-deletable labels can appear anywhere. */
+ break;
+
+ default:
+ fatal_insn ("verify_flow_info: Insn outside basic block\n", x);
+ }
+ }
+
+ x = NEXT_INSN (x);
+ }
+}