summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/bc/libmath.b
diff options
context:
space:
mode:
authorTheo de Raadt <deraadt@cvs.openbsd.org>1995-10-18 08:53:40 +0000
committerTheo de Raadt <deraadt@cvs.openbsd.org>1995-10-18 08:53:40 +0000
commitd6583bb2a13f329cf0332ef2570eb8bb8fc0e39c (patch)
treeece253b876159b39c620e62b6c9b1174642e070e /gnu/usr.bin/bc/libmath.b
initial import of NetBSD tree
Diffstat (limited to 'gnu/usr.bin/bc/libmath.b')
-rw-r--r--gnu/usr.bin/bc/libmath.b281
1 files changed, 281 insertions, 0 deletions
diff --git a/gnu/usr.bin/bc/libmath.b b/gnu/usr.bin/bc/libmath.b
new file mode 100644
index 00000000000..d6fa9152a45
--- /dev/null
+++ b/gnu/usr.bin/bc/libmath.b
@@ -0,0 +1,281 @@
+/* $NetBSD: libmath.b,v 1.2 1994/12/02 00:43:33 phil Exp $ */
+
+/* libmath.b for bc for minix. */
+
+/* This file is part of bc written for MINIX.
+ Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License , or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; see the file COPYING. If not, write to
+ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+
+ You may contact the author by:
+ e-mail: phil@cs.wwu.edu
+ us-mail: Philip A. Nelson
+ Computer Science Department, 9062
+ Western Washington University
+ Bellingham, WA 98226-9062
+
+*************************************************************************/
+
+
+scale = 20
+
+/* Uses the fact that e^x = (e^(x/2))^2
+ When x is small enough, we use the series:
+ e^x = 1 + x + x^2/2! + x^3/3! + ...
+*/
+
+define e(x) {
+ auto a, d, e, f, i, m, n, v, z
+
+ /* a - holds x^y of x^y/y! */
+ /* d - holds y! */
+ /* e - is the value x^y/y! */
+ /* v - is the sum of the e's */
+ /* f - number of times x was divided by 2. */
+ /* m - is 1 if x was minus. */
+ /* i - iteration count. */
+ /* n - the scale to compute the sum. */
+ /* z - orignal scale. */
+
+ /* Check the sign of x. */
+ if (x<0) {
+ m = 1
+ x = -x
+ }
+
+ /* Precondition x. */
+ z = scale;
+ n = 6 + z + .44*x;
+ scale = scale(x)+1;
+ while (x > 1) {
+ f += 1;
+ x /= 2;
+ scale += 1;
+ }
+
+ /* Initialize the variables. */
+ scale = n;
+ v = 1+x
+ a = x
+ d = 1
+
+ for (i=2; 1; i++) {
+ e = (a *= x) / (d *= i)
+ if (e == 0) {
+ if (f>0) while (f--) v = v*v;
+ scale = z
+ if (m) return (1/v);
+ return (v/1);
+ }
+ v += e
+ }
+}
+
+/* Natural log. Uses the fact that ln(x^2) = 2*ln(x)
+ The series used is:
+ ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1)
+*/
+
+define l(x) {
+ auto e, f, i, m, n, v, z
+
+ /* return something for the special case. */
+ if (x <= 0) return (1 - 10^scale)
+
+ /* Precondition x to make .5 < x < 2.0. */
+ z = scale;
+ scale = 6 + scale;
+ f = 2;
+ i=0
+ while (x >= 2) { /* for large numbers */
+ f *= 2;
+ x = sqrt(x);
+ }
+ while (x <= .5) { /* for small numbers */
+ f *= 2;
+ x = sqrt(x);
+ }
+
+ /* Set up the loop. */
+ v = n = (x-1)/(x+1)
+ m = n*n
+
+ /* Sum the series. */
+ for (i=3; 1; i+=2) {
+ e = (n *= m) / i
+ if (e == 0) {
+ v = f*v
+ scale = z
+ return (v/1)
+ }
+ v += e
+ }
+}
+
+/* Sin(x) uses the standard series:
+ sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */
+
+define s(x) {
+ auto e, i, m, n, s, v, z
+
+ /* precondition x. */
+ z = scale
+ scale = 1.1*z + 2;
+ v = a(1)
+ if (x < 0) {
+ m = 1;
+ x = -x;
+ }
+ scale = 0
+ n = (x / v + 2 )/4
+ x = x - 4*n*v
+ if (n%2) x = -x
+
+ /* Do the loop. */
+ scale = z + 2;
+ v = e = x
+ s = -x*x
+ for (i=3; 1; i+=2) {
+ e *= s/(i*(i-1))
+ if (e == 0) {
+ scale = z
+ if (m) return (-v/1);
+ return (v/1);
+ }
+ v += e
+ }
+}
+
+/* Cosine : cos(x) = sin(x+pi/2) */
+define c(x) {
+ auto v;
+ scale += 1;
+ v = s(x+a(1)*2);
+ scale -= 1;
+ return (v/1);
+}
+
+/* Arctan: Using the formula:
+ atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here)
+ For under .2, use the series:
+ atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... */
+
+define a(x) {
+ auto a, e, f, i, m, n, s, v, z
+
+ /* a is the value of a(.2) if it is needed. */
+ /* f is the value to multiply by a in the return. */
+ /* e is the value of the current term in the series. */
+ /* v is the accumulated value of the series. */
+ /* m is 1 or -1 depending on x (-x -> -1). results are divided by m. */
+ /* i is the denominator value for series element. */
+ /* n is the numerator value for the series element. */
+ /* s is -x*x. */
+ /* z is the saved user's scale. */
+
+ /* Negative x? */
+ m = 1;
+ if (x<0) {
+ m = -1;
+ x = -x;
+ }
+
+ /* Special case and for fast answers */
+ if (x==1) {
+ if (scale <= 25) return (.7853981633974483096156608/m)
+ if (scale <= 40) return (.7853981633974483096156608458198757210492/m)
+ if (scale <= 60) \
+ return (.785398163397448309615660845819875721049292349843776455243736/m)
+ }
+ if (x==.2) {
+ if (scale <= 25) return (.1973955598498807583700497/m)
+ if (scale <= 40) return (.1973955598498807583700497651947902934475/m)
+ if (scale <= 60) \
+ return (.197395559849880758370049765194790293447585103787852101517688/m)
+ }
+
+
+ /* Save the scale. */
+ z = scale;
+
+ /* Note: a and f are known to be zero due to being auto vars. */
+ /* Calculate atan of a known number. */
+ if (x > .2) {
+ scale = z+5;
+ a = a(.2);
+ }
+
+ /* Precondition x. */
+ scale = z+3;
+ while (x > .2) {
+ f += 1;
+ x = (x-.2) / (1+x*.2);
+ }
+
+ /* Initialize the series. */
+ v = n = x;
+ s = -x*x;
+
+ /* Calculate the series. */
+ for (i=3; 1; i+=2) {
+ e = (n *= s) / i;
+ if (e == 0) {
+ scale = z;
+ return ((f*a+v)/m);
+ }
+ v += e
+ }
+}
+
+
+/* Bessel function of integer order. Uses the following:
+ j(-n,x) = (-1)^n*j(n,x)
+ j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2))
+ - x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... )
+*/
+define j(n,x) {
+ auto a, d, e, f, i, m, s, v, z
+
+ /* Make n an integer and check for negative n. */
+ z = scale;
+ scale = 0;
+ n = n/1;
+ if (n<0) {
+ n = -n;
+ if (n%2 == 1) m = 1;
+ }
+
+ /* Compute the factor of x^n/(2^n*n!) */
+ f = 1;
+ for (i=2; i<=n; i++) f = f*i;
+ scale = 1.5*z;
+ f = x^n / 2^n / f;
+
+ /* Initialize the loop .*/
+ v = e = 1;
+ s = -x*x/4
+ scale = 1.5*z
+
+ /* The Loop.... */
+ for (i=1; 1; i++) {
+ e = e * s / i / (n+i);
+ if (e == 0) {
+ scale = z
+ if (m) return (-f*v/1);
+ return (f*v/1);
+ }
+ v += e;
+ }
+}