diff options
author | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1996-11-23 04:12:06 +0000 |
---|---|---|
committer | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1996-11-23 04:12:06 +0000 |
commit | 37d4621bd4a912b6a032bc21906f7032e602cbf2 (patch) | |
tree | 6e6f3dad18baebc5f90abdcbbf4a8ba242555627 /gnu/usr.bin/binutils/gdb/hppa-tdep.c | |
parent | fb7c7a778840ea235dd0bb550cfd2e2ac8ccb37c (diff) |
Merge to Cygnus 961112 + add some support (not ready) for shared libs
Diffstat (limited to 'gnu/usr.bin/binutils/gdb/hppa-tdep.c')
-rw-r--r-- | gnu/usr.bin/binutils/gdb/hppa-tdep.c | 2876 |
1 files changed, 2876 insertions, 0 deletions
diff --git a/gnu/usr.bin/binutils/gdb/hppa-tdep.c b/gnu/usr.bin/binutils/gdb/hppa-tdep.c new file mode 100644 index 00000000000..05463b4f7d7 --- /dev/null +++ b/gnu/usr.bin/binutils/gdb/hppa-tdep.c @@ -0,0 +1,2876 @@ +/* Target-dependent code for the HP PA architecture, for GDB. + Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 + Free Software Foundation, Inc. + + Contributed by the Center for Software Science at the + University of Utah (pa-gdb-bugs@cs.utah.edu). + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "frame.h" +#include "inferior.h" +#include "value.h" + +/* For argument passing to the inferior */ +#include "symtab.h" + +#ifdef USG +#include <sys/types.h> +#endif + +#include <sys/param.h> +#include <signal.h> + +#ifdef COFF_ENCAPSULATE +#include "a.out.encap.h" +#else +#endif +#ifndef N_SET_MAGIC +#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) +#endif + +/*#include <sys/user.h> After a.out.h */ +#include <sys/file.h> +#include "gdb_stat.h" +#include "wait.h" + +#include "gdbcore.h" +#include "gdbcmd.h" +#include "target.h" +#include "symfile.h" +#include "objfiles.h" + +static int extract_5_load PARAMS ((unsigned int)); + +static unsigned extract_5R_store PARAMS ((unsigned int)); + +static unsigned extract_5r_store PARAMS ((unsigned int)); + +static void find_dummy_frame_regs PARAMS ((struct frame_info *, + struct frame_saved_regs *)); + +static int find_proc_framesize PARAMS ((CORE_ADDR)); + +static int find_return_regnum PARAMS ((CORE_ADDR)); + +struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR)); + +static int extract_17 PARAMS ((unsigned int)); + +static unsigned deposit_21 PARAMS ((unsigned int, unsigned int)); + +static int extract_21 PARAMS ((unsigned)); + +static unsigned deposit_14 PARAMS ((int, unsigned int)); + +static int extract_14 PARAMS ((unsigned)); + +static void unwind_command PARAMS ((char *, int)); + +static int low_sign_extend PARAMS ((unsigned int, unsigned int)); + +static int sign_extend PARAMS ((unsigned int, unsigned int)); + +static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); + +static int hppa_alignof PARAMS ((struct type *)); + +static int prologue_inst_adjust_sp PARAMS ((unsigned long)); + +static int is_branch PARAMS ((unsigned long)); + +static int inst_saves_gr PARAMS ((unsigned long)); + +static int inst_saves_fr PARAMS ((unsigned long)); + +static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); + +static int pc_in_linker_stub PARAMS ((CORE_ADDR)); + +static int compare_unwind_entries PARAMS ((const void *, const void *)); + +static void read_unwind_info PARAMS ((struct objfile *)); + +static void internalize_unwinds PARAMS ((struct objfile *, + struct unwind_table_entry *, + asection *, unsigned int, + unsigned int, CORE_ADDR)); +static void pa_print_registers PARAMS ((char *, int, int)); +static void pa_print_fp_reg PARAMS ((int)); + + +/* Routines to extract various sized constants out of hppa + instructions. */ + +/* This assumes that no garbage lies outside of the lower bits of + value. */ + +static int +sign_extend (val, bits) + unsigned val, bits; +{ + return (int)(val >> (bits - 1) ? (-1 << bits) | val : val); +} + +/* For many immediate values the sign bit is the low bit! */ + +static int +low_sign_extend (val, bits) + unsigned val, bits; +{ + return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); +} + +/* extract the immediate field from a ld{bhw}s instruction */ + +#if 0 + +unsigned +get_field (val, from, to) + unsigned val, from, to; +{ + val = val >> 31 - to; + return val & ((1 << 32 - from) - 1); +} + +unsigned +set_field (val, from, to, new_val) + unsigned *val, from, to; +{ + unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); + return *val = *val & mask | (new_val << (31 - from)); +} + +/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ + +int +extract_3 (word) + unsigned word; +{ + return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); +} + +#endif + +static int +extract_5_load (word) + unsigned word; +{ + return low_sign_extend (word >> 16 & MASK_5, 5); +} + +#if 0 + +/* extract the immediate field from a st{bhw}s instruction */ + +int +extract_5_store (word) + unsigned word; +{ + return low_sign_extend (word & MASK_5, 5); +} + +#endif /* 0 */ + +/* extract the immediate field from a break instruction */ + +static unsigned +extract_5r_store (word) + unsigned word; +{ + return (word & MASK_5); +} + +/* extract the immediate field from a {sr}sm instruction */ + +static unsigned +extract_5R_store (word) + unsigned word; +{ + return (word >> 16 & MASK_5); +} + +/* extract an 11 bit immediate field */ + +#if 0 + +int +extract_11 (word) + unsigned word; +{ + return low_sign_extend (word & MASK_11, 11); +} + +#endif + +/* extract a 14 bit immediate field */ + +static int +extract_14 (word) + unsigned word; +{ + return low_sign_extend (word & MASK_14, 14); +} + +/* deposit a 14 bit constant in a word */ + +static unsigned +deposit_14 (opnd, word) + int opnd; + unsigned word; +{ + unsigned sign = (opnd < 0 ? 1 : 0); + + return word | ((unsigned)opnd << 1 & MASK_14) | sign; +} + +/* extract a 21 bit constant */ + +static int +extract_21 (word) + unsigned word; +{ + int val; + + word &= MASK_21; + word <<= 11; + val = GET_FIELD (word, 20, 20); + val <<= 11; + val |= GET_FIELD (word, 9, 19); + val <<= 2; + val |= GET_FIELD (word, 5, 6); + val <<= 5; + val |= GET_FIELD (word, 0, 4); + val <<= 2; + val |= GET_FIELD (word, 7, 8); + return sign_extend (val, 21) << 11; +} + +/* deposit a 21 bit constant in a word. Although 21 bit constants are + usually the top 21 bits of a 32 bit constant, we assume that only + the low 21 bits of opnd are relevant */ + +static unsigned +deposit_21 (opnd, word) + unsigned opnd, word; +{ + unsigned val = 0; + + val |= GET_FIELD (opnd, 11 + 14, 11 + 18); + val <<= 2; + val |= GET_FIELD (opnd, 11 + 12, 11 + 13); + val <<= 2; + val |= GET_FIELD (opnd, 11 + 19, 11 + 20); + val <<= 11; + val |= GET_FIELD (opnd, 11 + 1, 11 + 11); + val <<= 1; + val |= GET_FIELD (opnd, 11 + 0, 11 + 0); + return word | val; +} + +/* extract a 12 bit constant from branch instructions */ + +#if 0 + +int +extract_12 (word) + unsigned word; +{ + return sign_extend (GET_FIELD (word, 19, 28) | + GET_FIELD (word, 29, 29) << 10 | + (word & 0x1) << 11, 12) << 2; +} + +/* Deposit a 17 bit constant in an instruction (like bl). */ + +unsigned int +deposit_17 (opnd, word) + unsigned opnd, word; +{ + word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */ + word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */ + word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */ + word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */ + + return word; +} + +#endif + +/* extract a 17 bit constant from branch instructions, returning the + 19 bit signed value. */ + +static int +extract_17 (word) + unsigned word; +{ + return sign_extend (GET_FIELD (word, 19, 28) | + GET_FIELD (word, 29, 29) << 10 | + GET_FIELD (word, 11, 15) << 11 | + (word & 0x1) << 16, 17) << 2; +} + + +/* Compare the start address for two unwind entries returning 1 if + the first address is larger than the second, -1 if the second is + larger than the first, and zero if they are equal. */ + +static int +compare_unwind_entries (arg1, arg2) + const void *arg1; + const void *arg2; +{ + const struct unwind_table_entry *a = arg1; + const struct unwind_table_entry *b = arg2; + + if (a->region_start > b->region_start) + return 1; + else if (a->region_start < b->region_start) + return -1; + else + return 0; +} + +static void +internalize_unwinds (objfile, table, section, entries, size, text_offset) + struct objfile *objfile; + struct unwind_table_entry *table; + asection *section; + unsigned int entries, size; + CORE_ADDR text_offset; +{ + /* We will read the unwind entries into temporary memory, then + fill in the actual unwind table. */ + if (size > 0) + { + unsigned long tmp; + unsigned i; + char *buf = alloca (size); + + bfd_get_section_contents (objfile->obfd, section, buf, 0, size); + + /* Now internalize the information being careful to handle host/target + endian issues. */ + for (i = 0; i < entries; i++) + { + table[i].region_start = bfd_get_32 (objfile->obfd, + (bfd_byte *)buf); + table[i].region_start += text_offset; + buf += 4; + table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); + table[i].region_end += text_offset; + buf += 4; + tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); + buf += 4; + table[i].Cannot_unwind = (tmp >> 31) & 0x1; + table[i].Millicode = (tmp >> 30) & 0x1; + table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; + table[i].Region_description = (tmp >> 27) & 0x3; + table[i].reserved1 = (tmp >> 26) & 0x1; + table[i].Entry_SR = (tmp >> 25) & 0x1; + table[i].Entry_FR = (tmp >> 21) & 0xf; + table[i].Entry_GR = (tmp >> 16) & 0x1f; + table[i].Args_stored = (tmp >> 15) & 0x1; + table[i].Variable_Frame = (tmp >> 14) & 0x1; + table[i].Separate_Package_Body = (tmp >> 13) & 0x1; + table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; + table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; + table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; + table[i].Ada_Region = (tmp >> 9) & 0x1; + table[i].reserved2 = (tmp >> 5) & 0xf; + table[i].Save_SP = (tmp >> 4) & 0x1; + table[i].Save_RP = (tmp >> 3) & 0x1; + table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; + table[i].extn_ptr_defined = (tmp >> 1) & 0x1; + table[i].Cleanup_defined = tmp & 0x1; + tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); + buf += 4; + table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; + table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; + table[i].Large_frame = (tmp >> 29) & 0x1; + table[i].reserved4 = (tmp >> 27) & 0x3; + table[i].Total_frame_size = tmp & 0x7ffffff; + } + } +} + +/* Read in the backtrace information stored in the `$UNWIND_START$' section of + the object file. This info is used mainly by find_unwind_entry() to find + out the stack frame size and frame pointer used by procedures. We put + everything on the psymbol obstack in the objfile so that it automatically + gets freed when the objfile is destroyed. */ + +static void +read_unwind_info (objfile) + struct objfile *objfile; +{ + asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; + unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; + unsigned index, unwind_entries, elf_unwind_entries; + unsigned stub_entries, total_entries; + CORE_ADDR text_offset; + struct obj_unwind_info *ui; + + text_offset = ANOFFSET (objfile->section_offsets, 0); + ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack, + sizeof (struct obj_unwind_info)); + + ui->table = NULL; + ui->cache = NULL; + ui->last = -1; + + /* Get hooks to all unwind sections. Note there is no linker-stub unwind + section in ELF at the moment. */ + unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); + elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); + stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); + + /* Get sizes and unwind counts for all sections. */ + if (unwind_sec) + { + unwind_size = bfd_section_size (objfile->obfd, unwind_sec); + unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; + } + else + { + unwind_size = 0; + unwind_entries = 0; + } + + if (elf_unwind_sec) + { + elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); + elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; + } + else + { + elf_unwind_size = 0; + elf_unwind_entries = 0; + } + + if (stub_unwind_sec) + { + stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); + stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; + } + else + { + stub_unwind_size = 0; + stub_entries = 0; + } + + /* Compute total number of unwind entries and their total size. */ + total_entries = unwind_entries + elf_unwind_entries + stub_entries; + total_size = total_entries * sizeof (struct unwind_table_entry); + + /* Allocate memory for the unwind table. */ + ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); + ui->last = total_entries - 1; + + /* Internalize the standard unwind entries. */ + index = 0; + internalize_unwinds (objfile, &ui->table[index], unwind_sec, + unwind_entries, unwind_size, text_offset); + index += unwind_entries; + internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, + elf_unwind_entries, elf_unwind_size, text_offset); + index += elf_unwind_entries; + + /* Now internalize the stub unwind entries. */ + if (stub_unwind_size > 0) + { + unsigned int i; + char *buf = alloca (stub_unwind_size); + + /* Read in the stub unwind entries. */ + bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, + 0, stub_unwind_size); + + /* Now convert them into regular unwind entries. */ + for (i = 0; i < stub_entries; i++, index++) + { + /* Clear out the next unwind entry. */ + memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); + + /* Convert offset & size into region_start and region_end. + Stuff away the stub type into "reserved" fields. */ + ui->table[index].region_start = bfd_get_32 (objfile->obfd, + (bfd_byte *) buf); + ui->table[index].region_start += text_offset; + buf += 4; + ui->table[index].stub_type = bfd_get_8 (objfile->obfd, + (bfd_byte *) buf); + buf += 2; + ui->table[index].region_end + = ui->table[index].region_start + 4 * + (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); + buf += 2; + } + + } + + /* Unwind table needs to be kept sorted. */ + qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), + compare_unwind_entries); + + /* Keep a pointer to the unwind information. */ + objfile->obj_private = (PTR) ui; +} + +/* Lookup the unwind (stack backtrace) info for the given PC. We search all + of the objfiles seeking the unwind table entry for this PC. Each objfile + contains a sorted list of struct unwind_table_entry. Since we do a binary + search of the unwind tables, we depend upon them to be sorted. */ + +struct unwind_table_entry * +find_unwind_entry(pc) + CORE_ADDR pc; +{ + int first, middle, last; + struct objfile *objfile; + + ALL_OBJFILES (objfile) + { + struct obj_unwind_info *ui; + + ui = OBJ_UNWIND_INFO (objfile); + + if (!ui) + { + read_unwind_info (objfile); + ui = OBJ_UNWIND_INFO (objfile); + } + + /* First, check the cache */ + + if (ui->cache + && pc >= ui->cache->region_start + && pc <= ui->cache->region_end) + return ui->cache; + + /* Not in the cache, do a binary search */ + + first = 0; + last = ui->last; + + while (first <= last) + { + middle = (first + last) / 2; + if (pc >= ui->table[middle].region_start + && pc <= ui->table[middle].region_end) + { + ui->cache = &ui->table[middle]; + return &ui->table[middle]; + } + + if (pc < ui->table[middle].region_start) + last = middle - 1; + else + first = middle + 1; + } + } /* ALL_OBJFILES() */ + return NULL; +} + +/* Return the adjustment necessary to make for addresses on the stack + as presented by hpread.c. + + This is necessary because of the stack direction on the PA and the + bizarre way in which someone (?) decided they wanted to handle + frame pointerless code in GDB. */ +int +hpread_adjust_stack_address (func_addr) + CORE_ADDR func_addr; +{ + struct unwind_table_entry *u; + + u = find_unwind_entry (func_addr); + if (!u) + return 0; + else + return u->Total_frame_size << 3; +} + +/* Called to determine if PC is in an interrupt handler of some + kind. */ + +static int +pc_in_interrupt_handler (pc) + CORE_ADDR pc; +{ + struct unwind_table_entry *u; + struct minimal_symbol *msym_us; + + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though + its frame isn't a pure interrupt frame. Deal with this. */ + msym_us = lookup_minimal_symbol_by_pc (pc); + + return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); +} + +/* Called when no unwind descriptor was found for PC. Returns 1 if it + appears that PC is in a linker stub. */ + +static int +pc_in_linker_stub (pc) + CORE_ADDR pc; +{ + int found_magic_instruction = 0; + int i; + char buf[4]; + + /* If unable to read memory, assume pc is not in a linker stub. */ + if (target_read_memory (pc, buf, 4) != 0) + return 0; + + /* We are looking for something like + + ; $$dyncall jams RP into this special spot in the frame (RP') + ; before calling the "call stub" + ldw -18(sp),rp + + ldsid (rp),r1 ; Get space associated with RP into r1 + mtsp r1,sp ; Move it into space register 0 + be,n 0(sr0),rp) ; back to your regularly scheduled program + */ + + /* Maximum known linker stub size is 4 instructions. Search forward + from the given PC, then backward. */ + for (i = 0; i < 4; i++) + { + /* If we hit something with an unwind, stop searching this direction. */ + + if (find_unwind_entry (pc + i * 4) != 0) + break; + + /* Check for ldsid (rp),r1 which is the magic instruction for a + return from a cross-space function call. */ + if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) + { + found_magic_instruction = 1; + break; + } + /* Add code to handle long call/branch and argument relocation stubs + here. */ + } + + if (found_magic_instruction != 0) + return 1; + + /* Now look backward. */ + for (i = 0; i < 4; i++) + { + /* If we hit something with an unwind, stop searching this direction. */ + + if (find_unwind_entry (pc - i * 4) != 0) + break; + + /* Check for ldsid (rp),r1 which is the magic instruction for a + return from a cross-space function call. */ + if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) + { + found_magic_instruction = 1; + break; + } + /* Add code to handle long call/branch and argument relocation stubs + here. */ + } + return found_magic_instruction; +} + +static int +find_return_regnum(pc) + CORE_ADDR pc; +{ + struct unwind_table_entry *u; + + u = find_unwind_entry (pc); + + if (!u) + return RP_REGNUM; + + if (u->Millicode) + return 31; + + return RP_REGNUM; +} + +/* Return size of frame, or -1 if we should use a frame pointer. */ +static int +find_proc_framesize (pc) + CORE_ADDR pc; +{ + struct unwind_table_entry *u; + struct minimal_symbol *msym_us; + + u = find_unwind_entry (pc); + + if (!u) + { + if (pc_in_linker_stub (pc)) + /* Linker stubs have a zero size frame. */ + return 0; + else + return -1; + } + + msym_us = lookup_minimal_symbol_by_pc (pc); + + /* If Save_SP is set, and we're not in an interrupt or signal caller, + then we have a frame pointer. Use it. */ + if (u->Save_SP && !pc_in_interrupt_handler (pc) + && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) + return -1; + + return u->Total_frame_size << 3; +} + +/* Return offset from sp at which rp is saved, or 0 if not saved. */ +static int rp_saved PARAMS ((CORE_ADDR)); + +static int +rp_saved (pc) + CORE_ADDR pc; +{ + struct unwind_table_entry *u; + + u = find_unwind_entry (pc); + + if (!u) + { + if (pc_in_linker_stub (pc)) + /* This is the so-called RP'. */ + return -24; + else + return 0; + } + + if (u->Save_RP) + return -20; + else if (u->stub_type != 0) + { + switch (u->stub_type) + { + case EXPORT: + case IMPORT: + return -24; + case PARAMETER_RELOCATION: + return -8; + default: + return 0; + } + } + else + return 0; +} + +int +frameless_function_invocation (frame) + struct frame_info *frame; +{ + struct unwind_table_entry *u; + + u = find_unwind_entry (frame->pc); + + if (u == 0) + return 0; + + return (u->Total_frame_size == 0 && u->stub_type == 0); +} + +CORE_ADDR +saved_pc_after_call (frame) + struct frame_info *frame; +{ + int ret_regnum; + CORE_ADDR pc; + struct unwind_table_entry *u; + + ret_regnum = find_return_regnum (get_frame_pc (frame)); + pc = read_register (ret_regnum) & ~0x3; + + /* If PC is in a linker stub, then we need to dig the address + the stub will return to out of the stack. */ + u = find_unwind_entry (pc); + if (u && u->stub_type != 0) + return FRAME_SAVED_PC (frame); + else + return pc; +} + +CORE_ADDR +hppa_frame_saved_pc (frame) + struct frame_info *frame; +{ + CORE_ADDR pc = get_frame_pc (frame); + struct unwind_table_entry *u; + + /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner + at the base of the frame in an interrupt handler. Registers within + are saved in the exact same order as GDB numbers registers. How + convienent. */ + if (pc_in_interrupt_handler (pc)) + return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; + +#ifdef FRAME_SAVED_PC_IN_SIGTRAMP + /* Deal with signal handler caller frames too. */ + if (frame->signal_handler_caller) + { + CORE_ADDR rp; + FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); + return rp & ~0x3; + } +#endif + + if (frameless_function_invocation (frame)) + { + int ret_regnum; + + ret_regnum = find_return_regnum (pc); + + /* If the next frame is an interrupt frame or a signal + handler caller, then we need to look in the saved + register area to get the return pointer (the values + in the registers may not correspond to anything useful). */ + if (frame->next + && (frame->next->signal_handler_caller + || pc_in_interrupt_handler (frame->next->pc))) + { + struct frame_saved_regs saved_regs; + + get_frame_saved_regs (frame->next, &saved_regs); + if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) + { + pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; + + /* Syscalls are really two frames. The syscall stub itself + with a return pointer in %rp and the kernel call with + a return pointer in %r31. We return the %rp variant + if %r31 is the same as frame->pc. */ + if (pc == frame->pc) + pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; + } + else + pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; + } + else + pc = read_register (ret_regnum) & ~0x3; + } + else + { + int rp_offset; + +restart: + rp_offset = rp_saved (pc); + /* Similar to code in frameless function case. If the next + frame is a signal or interrupt handler, then dig the right + information out of the saved register info. */ + if (rp_offset == 0 + && frame->next + && (frame->next->signal_handler_caller + || pc_in_interrupt_handler (frame->next->pc))) + { + struct frame_saved_regs saved_regs; + + get_frame_saved_regs (frame->next, &saved_regs); + if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) + { + pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; + + /* Syscalls are really two frames. The syscall stub itself + with a return pointer in %rp and the kernel call with + a return pointer in %r31. We return the %rp variant + if %r31 is the same as frame->pc. */ + if (pc == frame->pc) + pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; + } + else + pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; + } + else if (rp_offset == 0) + pc = read_register (RP_REGNUM) & ~0x3; + else + pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; + } + + /* If PC is inside a linker stub, then dig out the address the stub + will return to. + + Don't do this for long branch stubs. Why? For some unknown reason + _start is marked as a long branch stub in hpux10. */ + u = find_unwind_entry (pc); + if (u && u->stub_type != 0 + && u->stub_type != LONG_BRANCH) + { + unsigned int insn; + + /* If this is a dynamic executable, and we're in a signal handler, + then the call chain will eventually point us into the stub for + _sigreturn. Unlike most cases, we'll be pointed to the branch + to the real sigreturn rather than the code after the real branch!. + + Else, try to dig the address the stub will return to in the normal + fashion. */ + insn = read_memory_integer (pc, 4); + if ((insn & 0xfc00e000) == 0xe8000000) + return (pc + extract_17 (insn) + 8) & ~0x3; + else + goto restart; + } + + return pc; +} + +/* We need to correct the PC and the FP for the outermost frame when we are + in a system call. */ + +void +init_extra_frame_info (fromleaf, frame) + int fromleaf; + struct frame_info *frame; +{ + int flags; + int framesize; + + if (frame->next && !fromleaf) + return; + + /* If the next frame represents a frameless function invocation + then we have to do some adjustments that are normally done by + FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ + if (fromleaf) + { + /* Find the framesize of *this* frame without peeking at the PC + in the current frame structure (it isn't set yet). */ + framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); + + /* Now adjust our base frame accordingly. If we have a frame pointer + use it, else subtract the size of this frame from the current + frame. (we always want frame->frame to point at the lowest address + in the frame). */ + if (framesize == -1) + frame->frame = read_register (FP_REGNUM); + else + frame->frame -= framesize; + return; + } + + flags = read_register (FLAGS_REGNUM); + if (flags & 2) /* In system call? */ + frame->pc = read_register (31) & ~0x3; + + /* The outermost frame is always derived from PC-framesize + + One might think frameless innermost frames should have + a frame->frame that is the same as the parent's frame->frame. + That is wrong; frame->frame in that case should be the *high* + address of the parent's frame. It's complicated as hell to + explain, but the parent *always* creates some stack space for + the child. So the child actually does have a frame of some + sorts, and its base is the high address in its parent's frame. */ + framesize = find_proc_framesize(frame->pc); + if (framesize == -1) + frame->frame = read_register (FP_REGNUM); + else + frame->frame = read_register (SP_REGNUM) - framesize; +} + +/* Given a GDB frame, determine the address of the calling function's frame. + This will be used to create a new GDB frame struct, and then + INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. + + This may involve searching through prologues for several functions + at boundaries where GCC calls HP C code, or where code which has + a frame pointer calls code without a frame pointer. */ + +CORE_ADDR +frame_chain (frame) + struct frame_info *frame; +{ + int my_framesize, caller_framesize; + struct unwind_table_entry *u; + CORE_ADDR frame_base; + struct frame_info *tmp_frame; + + /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These + are easy; at *sp we have a full save state strucutre which we can + pull the old stack pointer from. Also see frame_saved_pc for + code to dig a saved PC out of the save state structure. */ + if (pc_in_interrupt_handler (frame->pc)) + frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); +#ifdef FRAME_BASE_BEFORE_SIGTRAMP + else if (frame->signal_handler_caller) + { + FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); + } +#endif + else + frame_base = frame->frame; + + /* Get frame sizes for the current frame and the frame of the + caller. */ + my_framesize = find_proc_framesize (frame->pc); + caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); + + /* If caller does not have a frame pointer, then its frame + can be found at current_frame - caller_framesize. */ + if (caller_framesize != -1) + return frame_base - caller_framesize; + + /* Both caller and callee have frame pointers and are GCC compiled + (SAVE_SP bit in unwind descriptor is on for both functions. + The previous frame pointer is found at the top of the current frame. */ + if (caller_framesize == -1 && my_framesize == -1) + return read_memory_integer (frame_base, 4); + + /* Caller has a frame pointer, but callee does not. This is a little + more difficult as GCC and HP C lay out locals and callee register save + areas very differently. + + The previous frame pointer could be in a register, or in one of + several areas on the stack. + + Walk from the current frame to the innermost frame examining + unwind descriptors to determine if %r3 ever gets saved into the + stack. If so return whatever value got saved into the stack. + If it was never saved in the stack, then the value in %r3 is still + valid, so use it. + + We use information from unwind descriptors to determine if %r3 + is saved into the stack (Entry_GR field has this information). */ + + tmp_frame = frame; + while (tmp_frame) + { + u = find_unwind_entry (tmp_frame->pc); + + if (!u) + { + /* We could find this information by examining prologues. I don't + think anyone has actually written any tools (not even "strip") + which leave them out of an executable, so maybe this is a moot + point. */ + warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); + return 0; + } + + /* Entry_GR specifies the number of callee-saved general registers + saved in the stack. It starts at %r3, so %r3 would be 1. */ + if (u->Entry_GR >= 1 || u->Save_SP + || tmp_frame->signal_handler_caller + || pc_in_interrupt_handler (tmp_frame->pc)) + break; + else + tmp_frame = tmp_frame->next; + } + + if (tmp_frame) + { + /* We may have walked down the chain into a function with a frame + pointer. */ + if (u->Save_SP + && !tmp_frame->signal_handler_caller + && !pc_in_interrupt_handler (tmp_frame->pc)) + return read_memory_integer (tmp_frame->frame, 4); + /* %r3 was saved somewhere in the stack. Dig it out. */ + else + { + struct frame_saved_regs saved_regs; + + /* Sick. + + For optimization purposes many kernels don't have the + callee saved registers into the save_state structure upon + entry into the kernel for a syscall; the optimization + is usually turned off if the process is being traced so + that the debugger can get full register state for the + process. + + This scheme works well except for two cases: + + * Attaching to a process when the process is in the + kernel performing a system call (debugger can't get + full register state for the inferior process since + the process wasn't being traced when it entered the + system call). + + * Register state is not complete if the system call + causes the process to core dump. + + + The following heinous code is an attempt to deal with + the lack of register state in a core dump. It will + fail miserably if the function which performs the + system call has a variable sized stack frame. */ + + get_frame_saved_regs (tmp_frame, &saved_regs); + + /* Abominable hack. */ + if (current_target.to_has_execution == 0 + && ((saved_regs.regs[FLAGS_REGNUM] + && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) + & 0x2)) + || (saved_regs.regs[FLAGS_REGNUM] == 0 + && read_register (FLAGS_REGNUM) & 0x2))) + { + u = find_unwind_entry (FRAME_SAVED_PC (frame)); + if (!u) + return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); + else + return frame_base - (u->Total_frame_size << 3); + } + + return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); + } + } + else + { + struct frame_saved_regs saved_regs; + + /* Get the innermost frame. */ + tmp_frame = frame; + while (tmp_frame->next != NULL) + tmp_frame = tmp_frame->next; + + get_frame_saved_regs (tmp_frame, &saved_regs); + /* Abominable hack. See above. */ + if (current_target.to_has_execution == 0 + && ((saved_regs.regs[FLAGS_REGNUM] + && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) + & 0x2)) + || (saved_regs.regs[FLAGS_REGNUM] == 0 + && read_register (FLAGS_REGNUM) & 0x2))) + { + u = find_unwind_entry (FRAME_SAVED_PC (frame)); + if (!u) + return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); + else + return frame_base - (u->Total_frame_size << 3); + } + + /* The value in %r3 was never saved into the stack (thus %r3 still + holds the value of the previous frame pointer). */ + return read_register (FP_REGNUM); + } +} + + +/* To see if a frame chain is valid, see if the caller looks like it + was compiled with gcc. */ + +int +frame_chain_valid (chain, thisframe) + CORE_ADDR chain; + struct frame_info *thisframe; +{ + struct minimal_symbol *msym_us; + struct minimal_symbol *msym_start; + struct unwind_table_entry *u, *next_u = NULL; + struct frame_info *next; + + if (!chain) + return 0; + + u = find_unwind_entry (thisframe->pc); + + if (u == NULL) + return 1; + + /* We can't just check that the same of msym_us is "_start", because + someone idiotically decided that they were going to make a Ltext_end + symbol with the same address. This Ltext_end symbol is totally + indistinguishable (as nearly as I can tell) from the symbol for a function + which is (legitimately, since it is in the user's namespace) + named Ltext_end, so we can't just ignore it. */ + msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); + msym_start = lookup_minimal_symbol ("_start", NULL, NULL); + if (msym_us + && msym_start + && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) + return 0; + + /* Grrrr. Some new idiot decided that they don't want _start for the + PRO configurations; $START$ calls main directly.... Deal with it. */ + msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); + if (msym_us + && msym_start + && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) + return 0; + + next = get_next_frame (thisframe); + if (next) + next_u = find_unwind_entry (next->pc); + + /* If this frame does not save SP, has no stack, isn't a stub, + and doesn't "call" an interrupt routine or signal handler caller, + then its not valid. */ + if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 + || (thisframe->next && thisframe->next->signal_handler_caller) + || (next_u && next_u->HP_UX_interrupt_marker)) + return 1; + + if (pc_in_linker_stub (thisframe->pc)) + return 1; + + return 0; +} + +/* + * These functions deal with saving and restoring register state + * around a function call in the inferior. They keep the stack + * double-word aligned; eventually, on an hp700, the stack will have + * to be aligned to a 64-byte boundary. + */ + +void +push_dummy_frame (inf_status) + struct inferior_status *inf_status; +{ + CORE_ADDR sp, pc, pcspace; + register int regnum; + int int_buffer; + double freg_buffer; + + /* Oh, what a hack. If we're trying to perform an inferior call + while the inferior is asleep, we have to make sure to clear + the "in system call" bit in the flag register (the call will + start after the syscall returns, so we're no longer in the system + call!) This state is kept in "inf_status", change it there. + + We also need a number of horrid hacks to deal with lossage in the + PC queue registers (apparently they're not valid when the in syscall + bit is set). */ + pc = target_read_pc (inferior_pid); + int_buffer = read_register (FLAGS_REGNUM); + if (int_buffer & 0x2) + { + unsigned int sid; + int_buffer &= ~0x2; + memcpy (inf_status->registers, &int_buffer, 4); + memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); + pc += 4; + memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); + pc -= 4; + sid = (pc >> 30) & 0x3; + if (sid == 0) + pcspace = read_register (SR4_REGNUM); + else + pcspace = read_register (SR4_REGNUM + 4 + sid); + memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), + &pcspace, 4); + memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), + &pcspace, 4); + } + else + pcspace = read_register (PCSQ_HEAD_REGNUM); + + /* Space for "arguments"; the RP goes in here. */ + sp = read_register (SP_REGNUM) + 48; + int_buffer = read_register (RP_REGNUM) | 0x3; + write_memory (sp - 20, (char *)&int_buffer, 4); + + int_buffer = read_register (FP_REGNUM); + write_memory (sp, (char *)&int_buffer, 4); + + write_register (FP_REGNUM, sp); + + sp += 8; + + for (regnum = 1; regnum < 32; regnum++) + if (regnum != RP_REGNUM && regnum != FP_REGNUM) + sp = push_word (sp, read_register (regnum)); + + sp += 4; + + for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) + { + read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); + sp = push_bytes (sp, (char *)&freg_buffer, 8); + } + sp = push_word (sp, read_register (IPSW_REGNUM)); + sp = push_word (sp, read_register (SAR_REGNUM)); + sp = push_word (sp, pc); + sp = push_word (sp, pcspace); + sp = push_word (sp, pc + 4); + sp = push_word (sp, pcspace); + write_register (SP_REGNUM, sp); +} + +static void +find_dummy_frame_regs (frame, frame_saved_regs) + struct frame_info *frame; + struct frame_saved_regs *frame_saved_regs; +{ + CORE_ADDR fp = frame->frame; + int i; + + frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; + frame_saved_regs->regs[FP_REGNUM] = fp; + frame_saved_regs->regs[1] = fp + 8; + + for (fp += 12, i = 3; i < 32; i++) + { + if (i != FP_REGNUM) + { + frame_saved_regs->regs[i] = fp; + fp += 4; + } + } + + fp += 4; + for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) + frame_saved_regs->regs[i] = fp; + + frame_saved_regs->regs[IPSW_REGNUM] = fp; + frame_saved_regs->regs[SAR_REGNUM] = fp + 4; + frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; + frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; + frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; + frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; +} + +void +hppa_pop_frame () +{ + register struct frame_info *frame = get_current_frame (); + register CORE_ADDR fp, npc, target_pc; + register int regnum; + struct frame_saved_regs fsr; + double freg_buffer; + + fp = FRAME_FP (frame); + get_frame_saved_regs (frame, &fsr); + +#ifndef NO_PC_SPACE_QUEUE_RESTORE + if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ + restore_pc_queue (&fsr); +#endif + + for (regnum = 31; regnum > 0; regnum--) + if (fsr.regs[regnum]) + write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); + + for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) + if (fsr.regs[regnum]) + { + read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); + write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); + } + + if (fsr.regs[IPSW_REGNUM]) + write_register (IPSW_REGNUM, + read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); + + if (fsr.regs[SAR_REGNUM]) + write_register (SAR_REGNUM, + read_memory_integer (fsr.regs[SAR_REGNUM], 4)); + + /* If the PC was explicitly saved, then just restore it. */ + if (fsr.regs[PCOQ_TAIL_REGNUM]) + { + npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); + write_register (PCOQ_TAIL_REGNUM, npc); + } + /* Else use the value in %rp to set the new PC. */ + else + { + npc = read_register (RP_REGNUM); + write_pc (npc); + } + + write_register (FP_REGNUM, read_memory_integer (fp, 4)); + + if (fsr.regs[IPSW_REGNUM]) /* call dummy */ + write_register (SP_REGNUM, fp - 48); + else + write_register (SP_REGNUM, fp); + + /* The PC we just restored may be inside a return trampoline. If so + we want to restart the inferior and run it through the trampoline. + + Do this by setting a momentary breakpoint at the location the + trampoline returns to. + + Don't skip through the trampoline if we're popping a dummy frame. */ + target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; + if (target_pc && !fsr.regs[IPSW_REGNUM]) + { + struct symtab_and_line sal; + struct breakpoint *breakpoint; + struct cleanup *old_chain; + + /* Set up our breakpoint. Set it to be silent as the MI code + for "return_command" will print the frame we returned to. */ + sal = find_pc_line (target_pc, 0); + sal.pc = target_pc; + breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); + breakpoint->silent = 1; + + /* So we can clean things up. */ + old_chain = make_cleanup (delete_breakpoint, breakpoint); + + /* Start up the inferior. */ + clear_proceed_status (); + proceed_to_finish = 1; + proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); + + /* Perform our cleanups. */ + do_cleanups (old_chain); + } + flush_cached_frames (); +} + +/* + * After returning to a dummy on the stack, restore the instruction + * queue space registers. */ + +static int +restore_pc_queue (fsr) + struct frame_saved_regs *fsr; +{ + CORE_ADDR pc = read_pc (); + CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); + struct target_waitstatus w; + int insn_count; + + /* Advance past break instruction in the call dummy. */ + write_register (PCOQ_HEAD_REGNUM, pc + 4); + write_register (PCOQ_TAIL_REGNUM, pc + 8); + + /* + * HPUX doesn't let us set the space registers or the space + * registers of the PC queue through ptrace. Boo, hiss. + * Conveniently, the call dummy has this sequence of instructions + * after the break: + * mtsp r21, sr0 + * ble,n 0(sr0, r22) + * + * So, load up the registers and single step until we are in the + * right place. + */ + + write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); + write_register (22, new_pc); + + for (insn_count = 0; insn_count < 3; insn_count++) + { + /* FIXME: What if the inferior gets a signal right now? Want to + merge this into wait_for_inferior (as a special kind of + watchpoint? By setting a breakpoint at the end? Is there + any other choice? Is there *any* way to do this stuff with + ptrace() or some equivalent?). */ + resume (1, 0); + target_wait (inferior_pid, &w); + + if (w.kind == TARGET_WAITKIND_SIGNALLED) + { + stop_signal = w.value.sig; + terminal_ours_for_output (); + printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", + target_signal_to_name (stop_signal), + target_signal_to_string (stop_signal)); + gdb_flush (gdb_stdout); + return 0; + } + } + target_terminal_ours (); + target_fetch_registers (-1); + return 1; +} + +CORE_ADDR +hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + int struct_return; + CORE_ADDR struct_addr; +{ + /* array of arguments' offsets */ + int *offset = (int *)alloca(nargs * sizeof (int)); + int cum = 0; + int i, alignment; + + for (i = 0; i < nargs; i++) + { + cum += TYPE_LENGTH (VALUE_TYPE (args[i])); + + /* value must go at proper alignment. Assume alignment is a + power of two.*/ + alignment = hppa_alignof (VALUE_TYPE (args[i])); + if (cum % alignment) + cum = (cum + alignment) & -alignment; + offset[i] = -cum; + } + sp += max ((cum + 7) & -8, 16); + + for (i = 0; i < nargs; i++) + write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), + TYPE_LENGTH (VALUE_TYPE (args[i]))); + + if (struct_return) + write_register (28, struct_addr); + return sp + 32; +} + +/* + * Insert the specified number of args and function address + * into a call sequence of the above form stored at DUMMYNAME. + * + * On the hppa we need to call the stack dummy through $$dyncall. + * Therefore our version of FIX_CALL_DUMMY takes an extra argument, + * real_pc, which is the location where gdb should start up the + * inferior to do the function call. + */ + +CORE_ADDR +hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) + char *dummy; + CORE_ADDR pc; + CORE_ADDR fun; + int nargs; + value_ptr *args; + struct type *type; + int gcc_p; +{ + CORE_ADDR dyncall_addr; + struct minimal_symbol *msymbol; + struct minimal_symbol *trampoline; + int flags = read_register (FLAGS_REGNUM); + struct unwind_table_entry *u; + + trampoline = NULL; + msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); + if (msymbol == NULL) + error ("Can't find an address for $$dyncall trampoline"); + + dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); + + /* FUN could be a procedure label, in which case we have to get + its real address and the value of its GOT/DP. */ + if (fun & 0x2) + { + /* Get the GOT/DP value for the target function. It's + at *(fun+4). Note the call dummy is *NOT* allowed to + trash %r19 before calling the target function. */ + write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); + + /* Now get the real address for the function we are calling, it's + at *fun. */ + fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); + } + else + { + +#ifndef GDB_TARGET_IS_PA_ELF + /* FUN could be either an export stub, or the real address of a + function in a shared library. We must call an import stub + rather than the export stub or real function for lazy binding + to work correctly. */ + if (som_solib_get_got_by_pc (fun)) + { + struct objfile *objfile; + struct minimal_symbol *funsymbol, *stub_symbol; + CORE_ADDR newfun = 0; + + funsymbol = lookup_minimal_symbol_by_pc (fun); + if (!funsymbol) + error ("Unable to find minimal symbol for target fucntion.\n"); + + /* Search all the object files for an import symbol with the + right name. */ + ALL_OBJFILES (objfile) + { + stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), + NULL, objfile); + /* Found a symbol with the right name. */ + if (stub_symbol) + { + struct unwind_table_entry *u; + /* It must be a shared library trampoline. */ + if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) + continue; + + /* It must also be an import stub. */ + u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); + if (!u || u->stub_type != IMPORT) + continue; + + /* OK. Looks like the correct import stub. */ + newfun = SYMBOL_VALUE (stub_symbol); + fun = newfun; + } + } + if (newfun == 0) + write_register (19, som_solib_get_got_by_pc (fun)); + } +#endif + } + + /* If we are calling an import stub (eg calling into a dynamic library) + then have sr4export call the magic __d_plt_call routine which is linked + in from end.o. (You can't use _sr4export to call the import stub as + the value in sp-24 will get fried and you end up returning to the + wrong location. You can't call the import stub directly as the code + to bind the PLT entry to a function can't return to a stack address.) */ + u = find_unwind_entry (fun); + if (u && u->stub_type == IMPORT) + { + CORE_ADDR new_fun; + + /* Prefer __gcc_plt_call over the HP supplied routine because + __gcc_plt_call works for any number of arguments. */ + trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); + if (trampoline == NULL) + trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); + + if (trampoline == NULL) + error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline"); + + /* This is where sr4export will jump to. */ + new_fun = SYMBOL_VALUE_ADDRESS (trampoline); + + if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0) + { + /* We have to store the address of the stub in __shlib_funcptr. */ + msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, + (struct objfile *)NULL); + if (msymbol == NULL) + error ("Can't find an address for __shlib_funcptr"); + + target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); + + /* We want sr4export to call __d_plt_call, so we claim it is + the final target. Clear trampoline. */ + fun = new_fun; + trampoline = NULL; + } + } + + /* Store upper 21 bits of function address into ldil. fun will either be + the final target (most cases) or __d_plt_call when calling into a shared + library and __gcc_plt_call is not available. */ + store_unsigned_integer + (&dummy[FUNC_LDIL_OFFSET], + INSTRUCTION_SIZE, + deposit_21 (fun >> 11, + extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], + INSTRUCTION_SIZE))); + + /* Store lower 11 bits of function address into ldo */ + store_unsigned_integer + (&dummy[FUNC_LDO_OFFSET], + INSTRUCTION_SIZE, + deposit_14 (fun & MASK_11, + extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], + INSTRUCTION_SIZE))); +#ifdef SR4EXPORT_LDIL_OFFSET + + { + CORE_ADDR trampoline_addr; + + /* We may still need sr4export's address too. */ + + if (trampoline == NULL) + { + msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); + if (msymbol == NULL) + error ("Can't find an address for _sr4export trampoline"); + + trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); + } + else + trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); + + + /* Store upper 21 bits of trampoline's address into ldil */ + store_unsigned_integer + (&dummy[SR4EXPORT_LDIL_OFFSET], + INSTRUCTION_SIZE, + deposit_21 (trampoline_addr >> 11, + extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], + INSTRUCTION_SIZE))); + + /* Store lower 11 bits of trampoline's address into ldo */ + store_unsigned_integer + (&dummy[SR4EXPORT_LDO_OFFSET], + INSTRUCTION_SIZE, + deposit_14 (trampoline_addr & MASK_11, + extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], + INSTRUCTION_SIZE))); + } +#endif + + write_register (22, pc); + + /* If we are in a syscall, then we should call the stack dummy + directly. $$dyncall is not needed as the kernel sets up the + space id registers properly based on the value in %r31. In + fact calling $$dyncall will not work because the value in %r22 + will be clobbered on the syscall exit path. + + Similarly if the current PC is in a shared library. Note however, + this scheme won't work if the shared library isn't mapped into + the same space as the stack. */ + if (flags & 2) + return pc; +#ifndef GDB_TARGET_IS_PA_ELF + else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) + return pc; +#endif + else + return dyncall_addr; + +} + +/* Get the PC from %r31 if currently in a syscall. Also mask out privilege + bits. */ + +CORE_ADDR +target_read_pc (pid) + int pid; +{ + int flags = read_register_pid (FLAGS_REGNUM, pid); + + /* The following test does not belong here. It is OS-specific, and belongs + in native code. */ + /* Test SS_INSYSCALL */ + if (flags & 2) + return read_register_pid (31, pid) & ~0x3; + + return read_register_pid (PC_REGNUM, pid) & ~0x3; +} + +/* Write out the PC. If currently in a syscall, then also write the new + PC value into %r31. */ + +void +target_write_pc (v, pid) + CORE_ADDR v; + int pid; +{ + int flags = read_register_pid (FLAGS_REGNUM, pid); + + /* The following test does not belong here. It is OS-specific, and belongs + in native code. */ + /* If in a syscall, then set %r31. Also make sure to get the + privilege bits set correctly. */ + /* Test SS_INSYSCALL */ + if (flags & 2) + write_register_pid (31, v | 0x3, pid); + + write_register_pid (PC_REGNUM, v, pid); + write_register_pid (NPC_REGNUM, v + 4, pid); +} + +/* return the alignment of a type in bytes. Structures have the maximum + alignment required by their fields. */ + +static int +hppa_alignof (type) + struct type *type; +{ + int max_align, align, i; + CHECK_TYPEDEF (type); + switch (TYPE_CODE (type)) + { + case TYPE_CODE_PTR: + case TYPE_CODE_INT: + case TYPE_CODE_FLT: + return TYPE_LENGTH (type); + case TYPE_CODE_ARRAY: + return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); + case TYPE_CODE_STRUCT: + case TYPE_CODE_UNION: + max_align = 1; + for (i = 0; i < TYPE_NFIELDS (type); i++) + { + /* Bit fields have no real alignment. */ + if (!TYPE_FIELD_BITPOS (type, i)) + { + align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); + max_align = max (max_align, align); + } + } + return max_align; + default: + return 4; + } +} + +/* Print the register regnum, or all registers if regnum is -1 */ + +void +pa_do_registers_info (regnum, fpregs) + int regnum; + int fpregs; +{ + char raw_regs [REGISTER_BYTES]; + int i; + + for (i = 0; i < NUM_REGS; i++) + read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); + if (regnum == -1) + pa_print_registers (raw_regs, regnum, fpregs); + else if (regnum < FP0_REGNUM) + printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + + REGISTER_BYTE (regnum))); + else + pa_print_fp_reg (regnum); +} + +static void +pa_print_registers (raw_regs, regnum, fpregs) + char *raw_regs; + int regnum; + int fpregs; +{ + int i,j; + long val; + + for (i = 0; i < 18; i++) + { + for (j = 0; j < 4; j++) + { + val = + extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4); + printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val); + } + printf_unfiltered ("\n"); + } + + if (fpregs) + for (i = 72; i < NUM_REGS; i++) + pa_print_fp_reg (i); +} + +static void +pa_print_fp_reg (i) + int i; +{ + unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; + unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; + + /* Get 32bits of data. */ + read_relative_register_raw_bytes (i, raw_buffer); + + /* Put it in the buffer. No conversions are ever necessary. */ + memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); + + fputs_filtered (reg_names[i], gdb_stdout); + print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); + fputs_filtered ("(single precision) ", gdb_stdout); + + val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, + 1, 0, Val_pretty_default); + printf_filtered ("\n"); + + /* If "i" is even, then this register can also be a double-precision + FP register. Dump it out as such. */ + if ((i % 2) == 0) + { + /* Get the data in raw format for the 2nd half. */ + read_relative_register_raw_bytes (i + 1, raw_buffer); + + /* Copy it into the appropriate part of the virtual buffer. */ + memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, + REGISTER_RAW_SIZE (i)); + + /* Dump it as a double. */ + fputs_filtered (reg_names[i], gdb_stdout); + print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); + fputs_filtered ("(double precision) ", gdb_stdout); + + val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, + 1, 0, Val_pretty_default); + printf_filtered ("\n"); + } +} + +/* Return one if PC is in the call path of a trampoline, else return zero. + + Note we return one for *any* call trampoline (long-call, arg-reloc), not + just shared library trampolines (import, export). */ + +int +in_solib_call_trampoline (pc, name) + CORE_ADDR pc; + char *name; +{ + struct minimal_symbol *minsym; + struct unwind_table_entry *u; + static CORE_ADDR dyncall = 0; + static CORE_ADDR sr4export = 0; + +/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a + new exec file */ + + /* First see if PC is in one of the two C-library trampolines. */ + if (!dyncall) + { + minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); + if (minsym) + dyncall = SYMBOL_VALUE_ADDRESS (minsym); + else + dyncall = -1; + } + + if (!sr4export) + { + minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); + if (minsym) + sr4export = SYMBOL_VALUE_ADDRESS (minsym); + else + sr4export = -1; + } + + if (pc == dyncall || pc == sr4export) + return 1; + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub, then return now. */ + if (u->stub_type == 0) + return 0; + + /* By definition a long-branch stub is a call stub. */ + if (u->stub_type == LONG_BRANCH) + return 1; + + /* The call and return path execute the same instructions within + an IMPORT stub! So an IMPORT stub is both a call and return + trampoline. */ + if (u->stub_type == IMPORT) + return 1; + + /* Parameter relocation stubs always have a call path and may have a + return path. */ + if (u->stub_type == PARAMETER_RELOCATION + || u->stub_type == EXPORT) + { + CORE_ADDR addr; + + /* Search forward from the current PC until we hit a branch + or the end of the stub. */ + for (addr = pc; addr <= u->region_end; addr += 4) + { + unsigned long insn; + + insn = read_memory_integer (addr, 4); + + /* Does it look like a bl? If so then it's the call path, if + we find a bv or be first, then we're on the return path. */ + if ((insn & 0xfc00e000) == 0xe8000000) + return 1; + else if ((insn & 0xfc00e001) == 0xe800c000 + || (insn & 0xfc000000) == 0xe0000000) + return 0; + } + + /* Should never happen. */ + warning ("Unable to find branch in parameter relocation stub.\n"); + return 0; + } + + /* Unknown stub type. For now, just return zero. */ + return 0; +} + +/* Return one if PC is in the return path of a trampoline, else return zero. + + Note we return one for *any* call trampoline (long-call, arg-reloc), not + just shared library trampolines (import, export). */ + +int +in_solib_return_trampoline (pc, name) + CORE_ADDR pc; + char *name; +{ + struct unwind_table_entry *u; + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub or it's just a long branch stub, then + return zero. */ + if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) + return 0; + + /* The call and return path execute the same instructions within + an IMPORT stub! So an IMPORT stub is both a call and return + trampoline. */ + if (u->stub_type == IMPORT) + return 1; + + /* Parameter relocation stubs always have a call path and may have a + return path. */ + if (u->stub_type == PARAMETER_RELOCATION + || u->stub_type == EXPORT) + { + CORE_ADDR addr; + + /* Search forward from the current PC until we hit a branch + or the end of the stub. */ + for (addr = pc; addr <= u->region_end; addr += 4) + { + unsigned long insn; + + insn = read_memory_integer (addr, 4); + + /* Does it look like a bl? If so then it's the call path, if + we find a bv or be first, then we're on the return path. */ + if ((insn & 0xfc00e000) == 0xe8000000) + return 0; + else if ((insn & 0xfc00e001) == 0xe800c000 + || (insn & 0xfc000000) == 0xe0000000) + return 1; + } + + /* Should never happen. */ + warning ("Unable to find branch in parameter relocation stub.\n"); + return 0; + } + + /* Unknown stub type. For now, just return zero. */ + return 0; + +} + +/* Figure out if PC is in a trampoline, and if so find out where + the trampoline will jump to. If not in a trampoline, return zero. + + Simple code examination probably is not a good idea since the code + sequences in trampolines can also appear in user code. + + We use unwinds and information from the minimal symbol table to + determine when we're in a trampoline. This won't work for ELF + (yet) since it doesn't create stub unwind entries. Whether or + not ELF will create stub unwinds or normal unwinds for linker + stubs is still being debated. + + This should handle simple calls through dyncall or sr4export, + long calls, argument relocation stubs, and dyncall/sr4export + calling an argument relocation stub. It even handles some stubs + used in dynamic executables. */ + +CORE_ADDR +skip_trampoline_code (pc, name) + CORE_ADDR pc; + char *name; +{ + long orig_pc = pc; + long prev_inst, curr_inst, loc; + static CORE_ADDR dyncall = 0; + static CORE_ADDR sr4export = 0; + struct minimal_symbol *msym; + struct unwind_table_entry *u; + +/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a + new exec file */ + + if (!dyncall) + { + msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); + if (msym) + dyncall = SYMBOL_VALUE_ADDRESS (msym); + else + dyncall = -1; + } + + if (!sr4export) + { + msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); + if (msym) + sr4export = SYMBOL_VALUE_ADDRESS (msym); + else + sr4export = -1; + } + + /* Addresses passed to dyncall may *NOT* be the actual address + of the function. So we may have to do something special. */ + if (pc == dyncall) + { + pc = (CORE_ADDR) read_register (22); + + /* If bit 30 (counting from the left) is on, then pc is the address of + the PLT entry for this function, not the address of the function + itself. Bit 31 has meaning too, but only for MPE. */ + if (pc & 0x2) + pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); + } + else if (pc == sr4export) + pc = (CORE_ADDR) (read_register (22)); + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub, then return now. */ + if (u->stub_type == 0) + return orig_pc == pc ? 0 : pc & ~0x3; + + /* It's a stub. Search for a branch and figure out where it goes. + Note we have to handle multi insn branch sequences like ldil;ble. + Most (all?) other branches can be determined by examining the contents + of certain registers and the stack. */ + loc = pc; + curr_inst = 0; + prev_inst = 0; + while (1) + { + /* Make sure we haven't walked outside the range of this stub. */ + if (u != find_unwind_entry (loc)) + { + warning ("Unable to find branch in linker stub"); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + prev_inst = curr_inst; + curr_inst = read_memory_integer (loc, 4); + + /* Does it look like a branch external using %r1? Then it's the + branch from the stub to the actual function. */ + if ((curr_inst & 0xffe0e000) == 0xe0202000) + { + /* Yup. See if the previous instruction loaded + a value into %r1. If so compute and return the jump address. */ + if ((prev_inst & 0xffe00000) == 0x20200000) + return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; + else + { + warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); + return orig_pc == pc ? 0 : pc & ~0x3; + } + } + + /* Does it look like a be 0(sr0,%r21)? That's the branch from an + import stub to an export stub. + + It is impossible to determine the target of the branch via + simple examination of instructions and/or data (consider + that the address in the plabel may be the address of the + bind-on-reference routine in the dynamic loader). + + So we have try an alternative approach. + + Get the name of the symbol at our current location; it should + be a stub symbol with the same name as the symbol in the + shared library. + + Then lookup a minimal symbol with the same name; we should + get the minimal symbol for the target routine in the shared + library as those take precedence of import/export stubs. */ + if (curr_inst == 0xe2a00000) + { + struct minimal_symbol *stubsym, *libsym; + + stubsym = lookup_minimal_symbol_by_pc (loc); + if (stubsym == NULL) + { + warning ("Unable to find symbol for 0x%x", loc); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); + if (libsym == NULL) + { + warning ("Unable to find library symbol for %s\n", + SYMBOL_NAME (stubsym)); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + return SYMBOL_VALUE (libsym); + } + + /* Does it look like bl X,%rp or bl X,%r0? Another way to do a + branch from the stub to the actual function. */ + else if ((curr_inst & 0xffe0e000) == 0xe8400000 + || (curr_inst & 0xffe0e000) == 0xe8000000) + return (loc + extract_17 (curr_inst) + 8) & ~0x3; + + /* Does it look like bv (rp)? Note this depends on the + current stack pointer being the same as the stack + pointer in the stub itself! This is a branch on from the + stub back to the original caller. */ + else if ((curr_inst & 0xffe0e000) == 0xe840c000) + { + /* Yup. See if the previous instruction loaded + rp from sp - 8. */ + if (prev_inst == 0x4bc23ff1) + return (read_memory_integer + (read_register (SP_REGNUM) - 8, 4)) & ~0x3; + else + { + warning ("Unable to find restore of %%rp before bv (%%rp)."); + return orig_pc == pc ? 0 : pc & ~0x3; + } + } + + /* What about be,n 0(sr0,%rp)? It's just another way we return to + the original caller from the stub. Used in dynamic executables. */ + else if (curr_inst == 0xe0400002) + { + /* The value we jump to is sitting in sp - 24. But that's + loaded several instructions before the be instruction. + I guess we could check for the previous instruction being + mtsp %r1,%sr0 if we want to do sanity checking. */ + return (read_memory_integer + (read_register (SP_REGNUM) - 24, 4)) & ~0x3; + } + + /* Haven't found the branch yet, but we're still in the stub. + Keep looking. */ + loc += 4; + } +} + +/* For the given instruction (INST), return any adjustment it makes + to the stack pointer or zero for no adjustment. + + This only handles instructions commonly found in prologues. */ + +static int +prologue_inst_adjust_sp (inst) + unsigned long inst; +{ + /* This must persist across calls. */ + static int save_high21; + + /* The most common way to perform a stack adjustment ldo X(sp),sp */ + if ((inst & 0xffffc000) == 0x37de0000) + return extract_14 (inst); + + /* stwm X,D(sp) */ + if ((inst & 0xffe00000) == 0x6fc00000) + return extract_14 (inst); + + /* addil high21,%r1; ldo low11,(%r1),%r30) + save high bits in save_high21 for later use. */ + if ((inst & 0xffe00000) == 0x28200000) + { + save_high21 = extract_21 (inst); + return 0; + } + + if ((inst & 0xffff0000) == 0x343e0000) + return save_high21 + extract_14 (inst); + + /* fstws as used by the HP compilers. */ + if ((inst & 0xffffffe0) == 0x2fd01220) + return extract_5_load (inst); + + /* No adjustment. */ + return 0; +} + +/* Return nonzero if INST is a branch of some kind, else return zero. */ + +static int +is_branch (inst) + unsigned long inst; +{ + switch (inst >> 26) + { + case 0x20: + case 0x21: + case 0x22: + case 0x23: + case 0x28: + case 0x29: + case 0x2a: + case 0x2b: + case 0x30: + case 0x31: + case 0x32: + case 0x33: + case 0x38: + case 0x39: + case 0x3a: + return 1; + + default: + return 0; + } +} + +/* Return the register number for a GR which is saved by INST or + zero it INST does not save a GR. */ + +static int +inst_saves_gr (inst) + unsigned long inst; +{ + /* Does it look like a stw? */ + if ((inst >> 26) == 0x1a) + return extract_5R_store (inst); + + /* Does it look like a stwm? GCC & HPC may use this in prologues. */ + if ((inst >> 26) == 0x1b) + return extract_5R_store (inst); + + /* Does it look like sth or stb? HPC versions 9.0 and later use these + too. */ + if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) + return extract_5R_store (inst); + + return 0; +} + +/* Return the register number for a FR which is saved by INST or + zero it INST does not save a FR. + + Note we only care about full 64bit register stores (that's the only + kind of stores the prologue will use). + + FIXME: What about argument stores with the HP compiler in ANSI mode? */ + +static int +inst_saves_fr (inst) + unsigned long inst; +{ + if ((inst & 0xfc00dfc0) == 0x2c001200) + return extract_5r_store (inst); + return 0; +} + +/* Advance PC across any function entry prologue instructions + to reach some "real" code. + + Use information in the unwind table to determine what exactly should + be in the prologue. */ + +CORE_ADDR +skip_prologue (pc) + CORE_ADDR pc; +{ + char buf[4]; + CORE_ADDR orig_pc = pc; + unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; + unsigned long args_stored, status, i, restart_gr, restart_fr; + struct unwind_table_entry *u; + + restart_gr = 0; + restart_fr = 0; + +restart: + u = find_unwind_entry (pc); + if (!u) + return pc; + + /* If we are not at the beginning of a function, then return now. */ + if ((pc & ~0x3) != u->region_start) + return pc; + + /* This is how much of a frame adjustment we need to account for. */ + stack_remaining = u->Total_frame_size << 3; + + /* Magic register saves we want to know about. */ + save_rp = u->Save_RP; + save_sp = u->Save_SP; + + /* An indication that args may be stored into the stack. Unfortunately + the HPUX compilers tend to set this in cases where no args were + stored too!. */ + args_stored = 1; + + /* Turn the Entry_GR field into a bitmask. */ + save_gr = 0; + for (i = 3; i < u->Entry_GR + 3; i++) + { + /* Frame pointer gets saved into a special location. */ + if (u->Save_SP && i == FP_REGNUM) + continue; + + save_gr |= (1 << i); + } + save_gr &= ~restart_gr; + + /* Turn the Entry_FR field into a bitmask too. */ + save_fr = 0; + for (i = 12; i < u->Entry_FR + 12; i++) + save_fr |= (1 << i); + save_fr &= ~restart_fr; + + /* Loop until we find everything of interest or hit a branch. + + For unoptimized GCC code and for any HP CC code this will never ever + examine any user instructions. + + For optimzied GCC code we're faced with problems. GCC will schedule + its prologue and make prologue instructions available for delay slot + filling. The end result is user code gets mixed in with the prologue + and a prologue instruction may be in the delay slot of the first branch + or call. + + Some unexpected things are expected with debugging optimized code, so + we allow this routine to walk past user instructions in optimized + GCC code. */ + while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 + || args_stored) + { + unsigned int reg_num; + unsigned long old_stack_remaining, old_save_gr, old_save_fr; + unsigned long old_save_rp, old_save_sp, next_inst; + + /* Save copies of all the triggers so we can compare them later + (only for HPC). */ + old_save_gr = save_gr; + old_save_fr = save_fr; + old_save_rp = save_rp; + old_save_sp = save_sp; + old_stack_remaining = stack_remaining; + + status = target_read_memory (pc, buf, 4); + inst = extract_unsigned_integer (buf, 4); + + /* Yow! */ + if (status != 0) + return pc; + + /* Note the interesting effects of this instruction. */ + stack_remaining -= prologue_inst_adjust_sp (inst); + + /* There is only one instruction used for saving RP into the stack. */ + if (inst == 0x6bc23fd9) + save_rp = 0; + + /* This is the only way we save SP into the stack. At this time + the HP compilers never bother to save SP into the stack. */ + if ((inst & 0xffffc000) == 0x6fc10000) + save_sp = 0; + + /* Account for general and floating-point register saves. */ + reg_num = inst_saves_gr (inst); + save_gr &= ~(1 << reg_num); + + /* Ugh. Also account for argument stores into the stack. + Unfortunately args_stored only tells us that some arguments + where stored into the stack. Not how many or what kind! + + This is a kludge as on the HP compiler sets this bit and it + never does prologue scheduling. So once we see one, skip past + all of them. We have similar code for the fp arg stores below. + + FIXME. Can still die if we have a mix of GR and FR argument + stores! */ + if (reg_num >= 23 && reg_num <= 26) + { + while (reg_num >= 23 && reg_num <= 26) + { + pc += 4; + status = target_read_memory (pc, buf, 4); + inst = extract_unsigned_integer (buf, 4); + if (status != 0) + return pc; + reg_num = inst_saves_gr (inst); + } + args_stored = 0; + continue; + } + + reg_num = inst_saves_fr (inst); + save_fr &= ~(1 << reg_num); + + status = target_read_memory (pc + 4, buf, 4); + next_inst = extract_unsigned_integer (buf, 4); + + /* Yow! */ + if (status != 0) + return pc; + + /* We've got to be read to handle the ldo before the fp register + save. */ + if ((inst & 0xfc000000) == 0x34000000 + && inst_saves_fr (next_inst) >= 4 + && inst_saves_fr (next_inst) <= 7) + { + /* So we drop into the code below in a reasonable state. */ + reg_num = inst_saves_fr (next_inst); + pc -= 4; + } + + /* Ugh. Also account for argument stores into the stack. + This is a kludge as on the HP compiler sets this bit and it + never does prologue scheduling. So once we see one, skip past + all of them. */ + if (reg_num >= 4 && reg_num <= 7) + { + while (reg_num >= 4 && reg_num <= 7) + { + pc += 8; + status = target_read_memory (pc, buf, 4); + inst = extract_unsigned_integer (buf, 4); + if (status != 0) + return pc; + if ((inst & 0xfc000000) != 0x34000000) + break; + status = target_read_memory (pc + 4, buf, 4); + next_inst = extract_unsigned_integer (buf, 4); + if (status != 0) + return pc; + reg_num = inst_saves_fr (next_inst); + } + args_stored = 0; + continue; + } + + /* Quit if we hit any kind of branch. This can happen if a prologue + instruction is in the delay slot of the first call/branch. */ + if (is_branch (inst)) + break; + + /* What a crock. The HP compilers set args_stored even if no + arguments were stored into the stack (boo hiss). This could + cause this code to then skip a bunch of user insns (up to the + first branch). + + To combat this we try to identify when args_stored was bogusly + set and clear it. We only do this when args_stored is nonzero, + all other resources are accounted for, and nothing changed on + this pass. */ + if (args_stored + && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) + && old_save_gr == save_gr && old_save_fr == save_fr + && old_save_rp == save_rp && old_save_sp == save_sp + && old_stack_remaining == stack_remaining) + break; + + /* Bump the PC. */ + pc += 4; + } + + /* We've got a tenative location for the end of the prologue. However + because of limitations in the unwind descriptor mechanism we may + have went too far into user code looking for the save of a register + that does not exist. So, if there registers we expected to be saved + but never were, mask them out and restart. + + This should only happen in optimized code, and should be very rare. */ + if (save_gr || (save_fr && ! (restart_fr || restart_gr))) + { + pc = orig_pc; + restart_gr = save_gr; + restart_fr = save_fr; + goto restart; + } + + return pc; +} + +/* Put here the code to store, into a struct frame_saved_regs, + the addresses of the saved registers of frame described by FRAME_INFO. + This includes special registers such as pc and fp saved in special + ways in the stack frame. sp is even more special: + the address we return for it IS the sp for the next frame. */ + +void +hppa_frame_find_saved_regs (frame_info, frame_saved_regs) + struct frame_info *frame_info; + struct frame_saved_regs *frame_saved_regs; +{ + CORE_ADDR pc; + struct unwind_table_entry *u; + unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; + int status, i, reg; + char buf[4]; + int fp_loc = -1; + + /* Zero out everything. */ + memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); + + /* Call dummy frames always look the same, so there's no need to + examine the dummy code to determine locations of saved registers; + instead, let find_dummy_frame_regs fill in the correct offsets + for the saved registers. */ + if ((frame_info->pc >= frame_info->frame + && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH + + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 + + 6 * 4))) + find_dummy_frame_regs (frame_info, frame_saved_regs); + + /* Interrupt handlers are special too. They lay out the register + state in the exact same order as the register numbers in GDB. */ + if (pc_in_interrupt_handler (frame_info->pc)) + { + for (i = 0; i < NUM_REGS; i++) + { + /* SP is a little special. */ + if (i == SP_REGNUM) + frame_saved_regs->regs[SP_REGNUM] + = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); + else + frame_saved_regs->regs[i] = frame_info->frame + i * 4; + } + return; + } + +#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP + /* Handle signal handler callers. */ + if (frame_info->signal_handler_caller) + { + FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); + return; + } +#endif + + /* Get the starting address of the function referred to by the PC + saved in frame. */ + pc = get_pc_function_start (frame_info->pc); + + /* Yow! */ + u = find_unwind_entry (pc); + if (!u) + return; + + /* This is how much of a frame adjustment we need to account for. */ + stack_remaining = u->Total_frame_size << 3; + + /* Magic register saves we want to know about. */ + save_rp = u->Save_RP; + save_sp = u->Save_SP; + + /* Turn the Entry_GR field into a bitmask. */ + save_gr = 0; + for (i = 3; i < u->Entry_GR + 3; i++) + { + /* Frame pointer gets saved into a special location. */ + if (u->Save_SP && i == FP_REGNUM) + continue; + + save_gr |= (1 << i); + } + + /* Turn the Entry_FR field into a bitmask too. */ + save_fr = 0; + for (i = 12; i < u->Entry_FR + 12; i++) + save_fr |= (1 << i); + + /* The frame always represents the value of %sp at entry to the + current function (and is thus equivalent to the "saved" stack + pointer. */ + frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; + + /* Loop until we find everything of interest or hit a branch. + + For unoptimized GCC code and for any HP CC code this will never ever + examine any user instructions. + + For optimzied GCC code we're faced with problems. GCC will schedule + its prologue and make prologue instructions available for delay slot + filling. The end result is user code gets mixed in with the prologue + and a prologue instruction may be in the delay slot of the first branch + or call. + + Some unexpected things are expected with debugging optimized code, so + we allow this routine to walk past user instructions in optimized + GCC code. */ + while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) + { + status = target_read_memory (pc, buf, 4); + inst = extract_unsigned_integer (buf, 4); + + /* Yow! */ + if (status != 0) + return; + + /* Note the interesting effects of this instruction. */ + stack_remaining -= prologue_inst_adjust_sp (inst); + + /* There is only one instruction used for saving RP into the stack. */ + if (inst == 0x6bc23fd9) + { + save_rp = 0; + frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; + } + + /* Just note that we found the save of SP into the stack. The + value for frame_saved_regs was computed above. */ + if ((inst & 0xffffc000) == 0x6fc10000) + save_sp = 0; + + /* Account for general and floating-point register saves. */ + reg = inst_saves_gr (inst); + if (reg >= 3 && reg <= 18 + && (!u->Save_SP || reg != FP_REGNUM)) + { + save_gr &= ~(1 << reg); + + /* stwm with a positive displacement is a *post modify*. */ + if ((inst >> 26) == 0x1b + && extract_14 (inst) >= 0) + frame_saved_regs->regs[reg] = frame_info->frame; + else + { + /* Handle code with and without frame pointers. */ + if (u->Save_SP) + frame_saved_regs->regs[reg] + = frame_info->frame + extract_14 (inst); + else + frame_saved_regs->regs[reg] + = frame_info->frame + (u->Total_frame_size << 3) + + extract_14 (inst); + } + } + + + /* GCC handles callee saved FP regs a little differently. + + It emits an instruction to put the value of the start of + the FP store area into %r1. It then uses fstds,ma with + a basereg of %r1 for the stores. + + HP CC emits them at the current stack pointer modifying + the stack pointer as it stores each register. */ + + /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ + if ((inst & 0xffffc000) == 0x34610000 + || (inst & 0xffffc000) == 0x37c10000) + fp_loc = extract_14 (inst); + + reg = inst_saves_fr (inst); + if (reg >= 12 && reg <= 21) + { + /* Note +4 braindamage below is necessary because the FP status + registers are internally 8 registers rather than the expected + 4 registers. */ + save_fr &= ~(1 << reg); + if (fp_loc == -1) + { + /* 1st HP CC FP register store. After this instruction + we've set enough state that the GCC and HPCC code are + both handled in the same manner. */ + frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; + fp_loc = 8; + } + else + { + frame_saved_regs->regs[reg + FP0_REGNUM + 4] + = frame_info->frame + fp_loc; + fp_loc += 8; + } + } + + /* Quit if we hit any kind of branch. This can happen if a prologue + instruction is in the delay slot of the first call/branch. */ + if (is_branch (inst)) + break; + + /* Bump the PC. */ + pc += 4; + } +} + +#ifdef MAINTENANCE_CMDS + +static void +unwind_command (exp, from_tty) + char *exp; + int from_tty; +{ + CORE_ADDR address; + struct unwind_table_entry *u; + + /* If we have an expression, evaluate it and use it as the address. */ + + if (exp != 0 && *exp != 0) + address = parse_and_eval_address (exp); + else + return; + + u = find_unwind_entry (address); + + if (!u) + { + printf_unfiltered ("Can't find unwind table entry for %s\n", exp); + return; + } + + printf_unfiltered ("unwind_table_entry (0x%x):\n", u); + + printf_unfiltered ("\tregion_start = "); + print_address (u->region_start, gdb_stdout); + + printf_unfiltered ("\n\tregion_end = "); + print_address (u->region_end, gdb_stdout); + +#ifdef __STDC__ +#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); +#else +#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD"); +#endif + + printf_unfiltered ("\n\tflags ="); + pif (Cannot_unwind); + pif (Millicode); + pif (Millicode_save_sr0); + pif (Entry_SR); + pif (Args_stored); + pif (Variable_Frame); + pif (Separate_Package_Body); + pif (Frame_Extension_Millicode); + pif (Stack_Overflow_Check); + pif (Two_Instruction_SP_Increment); + pif (Ada_Region); + pif (Save_SP); + pif (Save_RP); + pif (Save_MRP_in_frame); + pif (extn_ptr_defined); + pif (Cleanup_defined); + pif (MPE_XL_interrupt_marker); + pif (HP_UX_interrupt_marker); + pif (Large_frame); + + putchar_unfiltered ('\n'); + +#ifdef __STDC__ +#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); +#else +#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD); +#endif + + pin (Region_description); + pin (Entry_FR); + pin (Entry_GR); + pin (Total_frame_size); +} +#endif /* MAINTENANCE_CMDS */ + +void +_initialize_hppa_tdep () +{ + tm_print_insn = print_insn_hppa; + +#ifdef MAINTENANCE_CMDS + add_cmd ("unwind", class_maintenance, unwind_command, + "Print unwind table entry at given address.", + &maintenanceprintlist); +#endif /* MAINTENANCE_CMDS */ +} |