diff options
author | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
---|---|---|
committer | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
commit | d6583bb2a13f329cf0332ef2570eb8bb8fc0e39c (patch) | |
tree | ece253b876159b39c620e62b6c9b1174642e070e /gnu/usr.bin/gawk/dfa.c |
initial import of NetBSD tree
Diffstat (limited to 'gnu/usr.bin/gawk/dfa.c')
-rw-r--r-- | gnu/usr.bin/gawk/dfa.c | 2589 |
1 files changed, 2589 insertions, 0 deletions
diff --git a/gnu/usr.bin/gawk/dfa.c b/gnu/usr.bin/gawk/dfa.c new file mode 100644 index 00000000000..11a3fed0dd7 --- /dev/null +++ b/gnu/usr.bin/gawk/dfa.c @@ -0,0 +1,2589 @@ +/* dfa.c - deterministic extended regexp routines for GNU + Copyright (C) 1988 Free Software Foundation, Inc. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + +/* Written June, 1988 by Mike Haertel + Modified July, 1988 by Arthur David Olson to assist BMG speedups */ + +#include <assert.h> +#include <ctype.h> +#include <stdio.h> + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#ifdef STDC_HEADERS +#include <stdlib.h> +#else +#include <sys/types.h> +extern char *calloc(), *malloc(), *realloc(); +extern void free(); +#endif + +#if defined(HAVE_STRING_H) || defined(STDC_HEADERS) +#include <string.h> +#undef index +#define index strchr +#else +#include <strings.h> +#endif + +#ifndef DEBUG /* use the same approach as regex.c */ +#undef assert +#define assert(e) +#endif /* DEBUG */ + +#ifndef isgraph +#define isgraph(C) (isprint(C) && !isspace(C)) +#endif + +#ifdef isascii +#define ISALPHA(C) (isascii(C) && isalpha(C)) +#define ISUPPER(C) (isascii(C) && isupper(C)) +#define ISLOWER(C) (isascii(C) && islower(C)) +#define ISDIGIT(C) (isascii(C) && isdigit(C)) +#define ISXDIGIT(C) (isascii(C) && isxdigit(C)) +#define ISSPACE(C) (isascii(C) && isspace(C)) +#define ISPUNCT(C) (isascii(C) && ispunct(C)) +#define ISALNUM(C) (isascii(C) && isalnum(C)) +#define ISPRINT(C) (isascii(C) && isprint(C)) +#define ISGRAPH(C) (isascii(C) && isgraph(C)) +#define ISCNTRL(C) (isascii(C) && iscntrl(C)) +#else +#define ISALPHA(C) isalpha(C) +#define ISUPPER(C) isupper(C) +#define ISLOWER(C) islower(C) +#define ISDIGIT(C) isdigit(C) +#define ISXDIGIT(C) isxdigit(C) +#define ISSPACE(C) isspace(C) +#define ISPUNCT(C) ispunct(C) +#define ISALNUM(C) isalnum(C) +#define ISPRINT(C) isprint(C) +#define ISGRAPH(C) isgraph(C) +#define ISCNTRL(C) iscntrl(C) +#endif + +#include "regex.h" +#include "dfa.h" + +#ifdef __STDC__ +typedef void *ptr_t; +#else +typedef char *ptr_t; +#ifndef const +#define const +#endif +#endif + +static void dfamust _RE_ARGS((struct dfa *dfa)); + +static ptr_t xcalloc _RE_ARGS((size_t n, size_t s)); +static ptr_t xmalloc _RE_ARGS((size_t n)); +static ptr_t xrealloc _RE_ARGS((ptr_t p, size_t n)); +#ifdef DEBUG +static void prtok _RE_ARGS((token t)); +#endif +static int tstbit _RE_ARGS((int b, charclass c)); +static void setbit _RE_ARGS((int b, charclass c)); +static void clrbit _RE_ARGS((int b, charclass c)); +static void copyset _RE_ARGS((charclass src, charclass dst)); +static void zeroset _RE_ARGS((charclass s)); +static void notset _RE_ARGS((charclass s)); +static int equal _RE_ARGS((charclass s1, charclass s2)); +static int charclass_index _RE_ARGS((charclass s)); +static int looking_at _RE_ARGS((const char *s)); +static token lex _RE_ARGS((void)); +static void addtok _RE_ARGS((token t)); +static void atom _RE_ARGS((void)); +static int nsubtoks _RE_ARGS((int tindex)); +static void copytoks _RE_ARGS((int tindex, int ntokens)); +static void closure _RE_ARGS((void)); +static void branch _RE_ARGS((void)); +static void regexp _RE_ARGS((int toplevel)); +static void copy _RE_ARGS((position_set *src, position_set *dst)); +static void insert _RE_ARGS((position p, position_set *s)); +static void merge _RE_ARGS((position_set *s1, position_set *s2, position_set *m)); +static void delete _RE_ARGS((position p, position_set *s)); +static int state_index _RE_ARGS((struct dfa *d, position_set *s, + int newline, int letter)); +static void build_state _RE_ARGS((int s, struct dfa *d)); +static void build_state_zero _RE_ARGS((struct dfa *d)); +static char *icatalloc _RE_ARGS((char *old, char *new)); +static char *icpyalloc _RE_ARGS((char *string)); +static char *istrstr _RE_ARGS((char *lookin, char *lookfor)); +static void ifree _RE_ARGS((char *cp)); +static void freelist _RE_ARGS((char **cpp)); +static char **enlist _RE_ARGS((char **cpp, char *new, size_t len)); +static char **comsubs _RE_ARGS((char *left, char *right)); +static char **addlists _RE_ARGS((char **old, char **new)); +static char **inboth _RE_ARGS((char **left, char **right)); + +static ptr_t +xcalloc(n, s) + size_t n; + size_t s; +{ + ptr_t r = calloc(n, s); + + if (!r) + dfaerror("Memory exhausted"); + return r; +} + +static ptr_t +xmalloc(n) + size_t n; +{ + ptr_t r = malloc(n); + + assert(n != 0); + if (!r) + dfaerror("Memory exhausted"); + return r; +} + +static ptr_t +xrealloc(p, n) + ptr_t p; + size_t n; +{ + ptr_t r = realloc(p, n); + + assert(n != 0); + if (!r) + dfaerror("Memory exhausted"); + return r; +} + +#define CALLOC(p, t, n) ((p) = (t *) xcalloc((size_t)(n), sizeof (t))) +#define MALLOC(p, t, n) ((p) = (t *) xmalloc((n) * sizeof (t))) +#define REALLOC(p, t, n) ((p) = (t *) xrealloc((ptr_t) (p), (n) * sizeof (t))) + +/* Reallocate an array of type t if nalloc is too small for index. */ +#define REALLOC_IF_NECESSARY(p, t, nalloc, index) \ + if ((index) >= (nalloc)) \ + { \ + while ((index) >= (nalloc)) \ + (nalloc) *= 2; \ + REALLOC(p, t, nalloc); \ + } + +#ifdef DEBUG + +static void +prtok(t) + token t; +{ + char *s; + + if (t < 0) + fprintf(stderr, "END"); + else if (t < NOTCHAR) + fprintf(stderr, "%c", t); + else + { + switch (t) + { + case EMPTY: s = "EMPTY"; break; + case BACKREF: s = "BACKREF"; break; + case BEGLINE: s = "BEGLINE"; break; + case ENDLINE: s = "ENDLINE"; break; + case BEGWORD: s = "BEGWORD"; break; + case ENDWORD: s = "ENDWORD"; break; + case LIMWORD: s = "LIMWORD"; break; + case NOTLIMWORD: s = "NOTLIMWORD"; break; + case QMARK: s = "QMARK"; break; + case STAR: s = "STAR"; break; + case PLUS: s = "PLUS"; break; + case CAT: s = "CAT"; break; + case OR: s = "OR"; break; + case ORTOP: s = "ORTOP"; break; + case LPAREN: s = "LPAREN"; break; + case RPAREN: s = "RPAREN"; break; + default: s = "CSET"; break; + } + fprintf(stderr, "%s", s); + } +} +#endif /* DEBUG */ + +/* Stuff pertaining to charclasses. */ + +static int +tstbit(b, c) + int b; + charclass c; +{ + return c[b / INTBITS] & 1 << b % INTBITS; +} + +static void +setbit(b, c) + int b; + charclass c; +{ + c[b / INTBITS] |= 1 << b % INTBITS; +} + +static void +clrbit(b, c) + int b; + charclass c; +{ + c[b / INTBITS] &= ~(1 << b % INTBITS); +} + +static void +copyset(src, dst) + charclass src; + charclass dst; +{ + int i; + + for (i = 0; i < CHARCLASS_INTS; ++i) + dst[i] = src[i]; +} + +static void +zeroset(s) + charclass s; +{ + int i; + + for (i = 0; i < CHARCLASS_INTS; ++i) + s[i] = 0; +} + +static void +notset(s) + charclass s; +{ + int i; + + for (i = 0; i < CHARCLASS_INTS; ++i) + s[i] = ~s[i]; +} + +static int +equal(s1, s2) + charclass s1; + charclass s2; +{ + int i; + + for (i = 0; i < CHARCLASS_INTS; ++i) + if (s1[i] != s2[i]) + return 0; + return 1; +} + +/* A pointer to the current dfa is kept here during parsing. */ +static struct dfa *dfa; + +/* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */ +static int +charclass_index(s) + charclass s; +{ + int i; + + for (i = 0; i < dfa->cindex; ++i) + if (equal(s, dfa->charclasses[i])) + return i; + REALLOC_IF_NECESSARY(dfa->charclasses, charclass, dfa->calloc, dfa->cindex); + ++dfa->cindex; + copyset(s, dfa->charclasses[i]); + return i; +} + +/* Syntax bits controlling the behavior of the lexical analyzer. */ +static reg_syntax_t syntax_bits, syntax_bits_set; + +/* Flag for case-folding letters into sets. */ +static int case_fold; + +/* Entry point to set syntax options. */ +void +dfasyntax(bits, fold) + reg_syntax_t bits; + int fold; +{ + syntax_bits_set = 1; + syntax_bits = bits; + case_fold = fold; +} + +/* Lexical analyzer. All the dross that deals with the obnoxious + GNU Regex syntax bits is located here. The poor, suffering + reader is referred to the GNU Regex documentation for the + meaning of the @#%!@#%^!@ syntax bits. */ + +static char *lexstart; /* Pointer to beginning of input string. */ +static char *lexptr; /* Pointer to next input character. */ +static lexleft; /* Number of characters remaining. */ +static token lasttok; /* Previous token returned; initially END. */ +static int laststart; /* True if we're separated from beginning or (, | + only by zero-width characters. */ +static int parens; /* Count of outstanding left parens. */ +static int minrep, maxrep; /* Repeat counts for {m,n}. */ + +/* Note that characters become unsigned here. */ +#define FETCH(c, eoferr) \ + { \ + if (! lexleft) \ + if (eoferr != 0) \ + dfaerror(eoferr); \ + else \ + return lasttok = END; \ + (c) = (unsigned char) *lexptr++; \ + --lexleft; \ + } + +#ifdef __STDC__ +#define FUNC(F, P) static int F(int c) { return P(c); } +#else +#define FUNC(F, P) static int F(c) int c; { return P(c); } +#endif + +FUNC(is_alpha, ISALPHA) +FUNC(is_upper, ISUPPER) +FUNC(is_lower, ISLOWER) +FUNC(is_digit, ISDIGIT) +FUNC(is_xdigit, ISXDIGIT) +FUNC(is_space, ISSPACE) +FUNC(is_punct, ISPUNCT) +FUNC(is_alnum, ISALNUM) +FUNC(is_print, ISPRINT) +FUNC(is_graph, ISGRAPH) +FUNC(is_cntrl, ISCNTRL) + +/* The following list maps the names of the Posix named character classes + to predicate functions that determine whether a given character is in + the class. The leading [ has already been eaten by the lexical analyzer. */ +static struct { + const char *name; + int (*pred) _RE_ARGS((int)); +} prednames[] = { + { ":alpha:]", is_alpha }, + { ":upper:]", is_upper }, + { ":lower:]", is_lower }, + { ":digit:]", is_digit }, + { ":xdigit:]", is_xdigit }, + { ":space:]", is_space }, + { ":punct:]", is_punct }, + { ":alnum:]", is_alnum }, + { ":print:]", is_print }, + { ":graph:]", is_graph }, + { ":cntrl:]", is_cntrl }, + { 0 } +}; + +static int +looking_at(s) + const char *s; +{ + size_t len; + + len = strlen(s); + if (lexleft < len) + return 0; + return strncmp(s, lexptr, len) == 0; +} + +static token +lex() +{ + token c, c1, c2; + int backslash = 0, invert; + charclass ccl; + int i; + + /* Basic plan: We fetch a character. If it's a backslash, + we set the backslash flag and go through the loop again. + On the plus side, this avoids having a duplicate of the + main switch inside the backslash case. On the minus side, + it means that just about every case begins with + "if (backslash) ...". */ + for (i = 0; i < 2; ++i) + { + FETCH(c, 0); + switch (c) + { + case '\\': + if (backslash) + goto normal_char; + if (lexleft == 0) + dfaerror("Unfinished \\ escape"); + backslash = 1; + break; + + case '^': + if (backslash) + goto normal_char; + if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS + || lasttok == END + || lasttok == LPAREN + || lasttok == OR) + return lasttok = BEGLINE; + goto normal_char; + + case '$': + if (backslash) + goto normal_char; + if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS + || lexleft == 0 + || (syntax_bits & RE_NO_BK_PARENS + ? lexleft > 0 && *lexptr == ')' + : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')') + || (syntax_bits & RE_NO_BK_VBAR + ? lexleft > 0 && *lexptr == '|' + : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|') + || ((syntax_bits & RE_NEWLINE_ALT) + && lexleft > 0 && *lexptr == '\n')) + return lasttok = ENDLINE; + goto normal_char; + + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': + if (backslash && !(syntax_bits & RE_NO_BK_REFS)) + { + laststart = 0; + return lasttok = BACKREF; + } + goto normal_char; + + case '<': + if (syntax_bits & RE_NO_GNU_OPS) + goto normal_char; + if (backslash) + return lasttok = BEGWORD; + goto normal_char; + + case '>': + if (syntax_bits & RE_NO_GNU_OPS) + goto normal_char; + if (backslash) + return lasttok = ENDWORD; + goto normal_char; + + case 'b': + if (syntax_bits & RE_NO_GNU_OPS) + goto normal_char; + if (backslash) + return lasttok = LIMWORD; + goto normal_char; + + case 'B': + if (syntax_bits & RE_NO_GNU_OPS) + goto normal_char; + if (backslash) + return lasttok = NOTLIMWORD; + goto normal_char; + + case '?': + if (syntax_bits & RE_LIMITED_OPS) + goto normal_char; + if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0)) + goto normal_char; + if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) + goto normal_char; + return lasttok = QMARK; + + case '*': + if (backslash) + goto normal_char; + if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) + goto normal_char; + return lasttok = STAR; + + case '+': + if (syntax_bits & RE_LIMITED_OPS) + goto normal_char; + if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0)) + goto normal_char; + if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) + goto normal_char; + return lasttok = PLUS; + + case '{': + if (!(syntax_bits & RE_INTERVALS)) + goto normal_char; + if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0)) + goto normal_char; + minrep = maxrep = 0; + /* Cases: + {M} - exact count + {M,} - minimum count, maximum is infinity + {,M} - 0 through M + {M,N} - M through N */ + FETCH(c, "unfinished repeat count"); + if (ISDIGIT(c)) + { + minrep = c - '0'; + for (;;) + { + FETCH(c, "unfinished repeat count"); + if (!ISDIGIT(c)) + break; + minrep = 10 * minrep + c - '0'; + } + } + else if (c != ',') + dfaerror("malformed repeat count"); + if (c == ',') + for (;;) + { + FETCH(c, "unfinished repeat count"); + if (!ISDIGIT(c)) + break; + maxrep = 10 * maxrep + c - '0'; + } + else + maxrep = minrep; + if (!(syntax_bits & RE_NO_BK_BRACES)) + { + if (c != '\\') + dfaerror("malformed repeat count"); + FETCH(c, "unfinished repeat count"); + } + if (c != '}') + dfaerror("malformed repeat count"); + laststart = 0; + return lasttok = REPMN; + + case '|': + if (syntax_bits & RE_LIMITED_OPS) + goto normal_char; + if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0)) + goto normal_char; + laststart = 1; + return lasttok = OR; + + case '\n': + if (syntax_bits & RE_LIMITED_OPS + || backslash + || !(syntax_bits & RE_NEWLINE_ALT)) + goto normal_char; + laststart = 1; + return lasttok = OR; + + case '(': + if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0)) + goto normal_char; + ++parens; + laststart = 1; + return lasttok = LPAREN; + + case ')': + if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0)) + goto normal_char; + if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_char; + --parens; + laststart = 0; + return lasttok = RPAREN; + + case '.': + if (backslash) + goto normal_char; + zeroset(ccl); + notset(ccl); + if (!(syntax_bits & RE_DOT_NEWLINE)) + clrbit('\n', ccl); + if (syntax_bits & RE_DOT_NOT_NULL) + clrbit('\0', ccl); + laststart = 0; + return lasttok = CSET + charclass_index(ccl); + + case 'w': + case 'W': + if (!backslash || (syntax_bits & RE_NO_GNU_OPS)) + goto normal_char; + zeroset(ccl); + for (c2 = 0; c2 < NOTCHAR; ++c2) + if (ISALNUM(c2)) + setbit(c2, ccl); + if (c == 'W') + notset(ccl); + laststart = 0; + return lasttok = CSET + charclass_index(ccl); + + case '[': + if (backslash) + goto normal_char; + zeroset(ccl); + FETCH(c, "Unbalanced ["); + if (c == '^') + { + FETCH(c, "Unbalanced ["); + invert = 1; + } + else + invert = 0; + do + { + /* Nobody ever said this had to be fast. :-) + Note that if we're looking at some other [:...:] + construct, we just treat it as a bunch of ordinary + characters. We can do this because we assume + regex has checked for syntax errors before + dfa is ever called. */ + if (c == '[' && (syntax_bits & RE_CHAR_CLASSES)) + for (c1 = 0; prednames[c1].name; ++c1) + if (looking_at(prednames[c1].name)) + { + for (c2 = 0; c2 < NOTCHAR; ++c2) + if ((*prednames[c1].pred)(c2)) + setbit(c2, ccl); + lexptr += strlen(prednames[c1].name); + lexleft -= strlen(prednames[c1].name); + FETCH(c1, "Unbalanced ["); + goto skip; + } + if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS)) + FETCH(c, "Unbalanced ["); + FETCH(c1, "Unbalanced ["); + if (c1 == '-') + { + FETCH(c2, "Unbalanced ["); + if (c2 == ']') + { + /* In the case [x-], the - is an ordinary hyphen, + which is left in c1, the lookahead character. */ + --lexptr; + ++lexleft; + c2 = c; + } + else + { + if (c2 == '\\' + && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS)) + FETCH(c2, "Unbalanced ["); + FETCH(c1, "Unbalanced ["); + } + } + else + c2 = c; + while (c <= c2) + { + setbit(c, ccl); + if (case_fold) + if (ISUPPER(c)) + setbit(tolower(c), ccl); + else if (ISLOWER(c)) + setbit(toupper(c), ccl); + ++c; + } + skip: + ; + } + while ((c = c1) != ']'); + if (invert) + { + notset(ccl); + if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE) + clrbit('\n', ccl); + } + laststart = 0; + return lasttok = CSET + charclass_index(ccl); + + default: + normal_char: + laststart = 0; + if (case_fold && ISALPHA(c)) + { + zeroset(ccl); + setbit(c, ccl); + if (isupper(c)) + setbit(tolower(c), ccl); + else + setbit(toupper(c), ccl); + return lasttok = CSET + charclass_index(ccl); + } + return c; + } + } + + /* The above loop should consume at most a backslash + and some other character. */ + abort(); +} + +/* Recursive descent parser for regular expressions. */ + +static token tok; /* Lookahead token. */ +static depth; /* Current depth of a hypothetical stack + holding deferred productions. This is + used to determine the depth that will be + required of the real stack later on in + dfaanalyze(). */ + +/* Add the given token to the parse tree, maintaining the depth count and + updating the maximum depth if necessary. */ +static void +addtok(t) + token t; +{ + REALLOC_IF_NECESSARY(dfa->tokens, token, dfa->talloc, dfa->tindex); + dfa->tokens[dfa->tindex++] = t; + + switch (t) + { + case QMARK: + case STAR: + case PLUS: + break; + + case CAT: + case OR: + case ORTOP: + --depth; + break; + + default: + ++dfa->nleaves; + case EMPTY: + ++depth; + break; + } + if (depth > dfa->depth) + dfa->depth = depth; +} + +/* The grammar understood by the parser is as follows. + + regexp: + regexp OR branch + branch + + branch: + branch closure + closure + + closure: + closure QMARK + closure STAR + closure PLUS + atom + + atom: + <normal character> + CSET + BACKREF + BEGLINE + ENDLINE + BEGWORD + ENDWORD + LIMWORD + NOTLIMWORD + <empty> + + The parser builds a parse tree in postfix form in an array of tokens. */ + +static void +atom() +{ + if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF + || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD + || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD) + { + addtok(tok); + tok = lex(); + } + else if (tok == LPAREN) + { + tok = lex(); + regexp(0); + if (tok != RPAREN) + dfaerror("Unbalanced ("); + tok = lex(); + } + else + addtok(EMPTY); +} + +/* Return the number of tokens in the given subexpression. */ +static int +nsubtoks(tindex) +int tindex; +{ + int ntoks1; + + switch (dfa->tokens[tindex - 1]) + { + default: + return 1; + case QMARK: + case STAR: + case PLUS: + return 1 + nsubtoks(tindex - 1); + case CAT: + case OR: + case ORTOP: + ntoks1 = nsubtoks(tindex - 1); + return 1 + ntoks1 + nsubtoks(tindex - 1 - ntoks1); + } +} + +/* Copy the given subexpression to the top of the tree. */ +static void +copytoks(tindex, ntokens) + int tindex, ntokens; +{ + int i; + + for (i = 0; i < ntokens; ++i) + addtok(dfa->tokens[tindex + i]); +} + +static void +closure() +{ + int tindex, ntokens, i; + + atom(); + while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN) + if (tok == REPMN) + { + ntokens = nsubtoks(dfa->tindex); + tindex = dfa->tindex - ntokens; + if (maxrep == 0) + addtok(PLUS); + if (minrep == 0) + addtok(QMARK); + for (i = 1; i < minrep; ++i) + { + copytoks(tindex, ntokens); + addtok(CAT); + } + for (; i < maxrep; ++i) + { + copytoks(tindex, ntokens); + addtok(QMARK); + addtok(CAT); + } + tok = lex(); + } + else + { + addtok(tok); + tok = lex(); + } +} + +static void +branch() +{ + closure(); + while (tok != RPAREN && tok != OR && tok >= 0) + { + closure(); + addtok(CAT); + } +} + +static void +regexp(toplevel) + int toplevel; +{ + branch(); + while (tok == OR) + { + tok = lex(); + branch(); + if (toplevel) + addtok(ORTOP); + else + addtok(OR); + } +} + +/* Main entry point for the parser. S is a string to be parsed, len is the + length of the string, so s can include NUL characters. D is a pointer to + the struct dfa to parse into. */ +void +dfaparse(s, len, d) + char *s; + size_t len; + struct dfa *d; + +{ + dfa = d; + lexstart = lexptr = s; + lexleft = len; + lasttok = END; + laststart = 1; + parens = 0; + + if (! syntax_bits_set) + dfaerror("No syntax specified"); + + tok = lex(); + depth = d->depth; + + regexp(1); + + if (tok != END) + dfaerror("Unbalanced )"); + + addtok(END - d->nregexps); + addtok(CAT); + + if (d->nregexps) + addtok(ORTOP); + + ++d->nregexps; +} + +/* Some primitives for operating on sets of positions. */ + +/* Copy one set to another; the destination must be large enough. */ +static void +copy(src, dst) + position_set *src; + position_set *dst; +{ + int i; + + for (i = 0; i < src->nelem; ++i) + dst->elems[i] = src->elems[i]; + dst->nelem = src->nelem; +} + +/* Insert a position in a set. Position sets are maintained in sorted + order according to index. If position already exists in the set with + the same index then their constraints are logically or'd together. + S->elems must point to an array large enough to hold the resulting set. */ +static void +insert(p, s) + position p; + position_set *s; +{ + int i; + position t1, t2; + + for (i = 0; i < s->nelem && p.index < s->elems[i].index; ++i) + continue; + if (i < s->nelem && p.index == s->elems[i].index) + s->elems[i].constraint |= p.constraint; + else + { + t1 = p; + ++s->nelem; + while (i < s->nelem) + { + t2 = s->elems[i]; + s->elems[i++] = t1; + t1 = t2; + } + } +} + +/* Merge two sets of positions into a third. The result is exactly as if + the positions of both sets were inserted into an initially empty set. */ +static void +merge(s1, s2, m) + position_set *s1; + position_set *s2; + position_set *m; +{ + int i = 0, j = 0; + + m->nelem = 0; + while (i < s1->nelem && j < s2->nelem) + if (s1->elems[i].index > s2->elems[j].index) + m->elems[m->nelem++] = s1->elems[i++]; + else if (s1->elems[i].index < s2->elems[j].index) + m->elems[m->nelem++] = s2->elems[j++]; + else + { + m->elems[m->nelem] = s1->elems[i++]; + m->elems[m->nelem++].constraint |= s2->elems[j++].constraint; + } + while (i < s1->nelem) + m->elems[m->nelem++] = s1->elems[i++]; + while (j < s2->nelem) + m->elems[m->nelem++] = s2->elems[j++]; +} + +/* Delete a position from a set. */ +static void +delete(p, s) + position p; + position_set *s; +{ + int i; + + for (i = 0; i < s->nelem; ++i) + if (p.index == s->elems[i].index) + break; + if (i < s->nelem) + for (--s->nelem; i < s->nelem; ++i) + s->elems[i] = s->elems[i + 1]; +} + +/* Find the index of the state corresponding to the given position set with + the given preceding context, or create a new state if there is no such + state. Newline and letter tell whether we got here on a newline or + letter, respectively. */ +static int +state_index(d, s, newline, letter) + struct dfa *d; + position_set *s; + int newline; + int letter; +{ + int hash = 0; + int constraint; + int i, j; + + newline = newline ? 1 : 0; + letter = letter ? 1 : 0; + + for (i = 0; i < s->nelem; ++i) + hash ^= s->elems[i].index + s->elems[i].constraint; + + /* Try to find a state that exactly matches the proposed one. */ + for (i = 0; i < d->sindex; ++i) + { + if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem + || newline != d->states[i].newline || letter != d->states[i].letter) + continue; + for (j = 0; j < s->nelem; ++j) + if (s->elems[j].constraint + != d->states[i].elems.elems[j].constraint + || s->elems[j].index != d->states[i].elems.elems[j].index) + break; + if (j == s->nelem) + return i; + } + + /* We'll have to create a new state. */ + REALLOC_IF_NECESSARY(d->states, dfa_state, d->salloc, d->sindex); + d->states[i].hash = hash; + MALLOC(d->states[i].elems.elems, position, s->nelem); + copy(s, &d->states[i].elems); + d->states[i].newline = newline; + d->states[i].letter = letter; + d->states[i].backref = 0; + d->states[i].constraint = 0; + d->states[i].first_end = 0; + for (j = 0; j < s->nelem; ++j) + if (d->tokens[s->elems[j].index] < 0) + { + constraint = s->elems[j].constraint; + if (SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 0) + || SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 1) + || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 0) + || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 1)) + d->states[i].constraint |= constraint; + if (! d->states[i].first_end) + d->states[i].first_end = d->tokens[s->elems[j].index]; + } + else if (d->tokens[s->elems[j].index] == BACKREF) + { + d->states[i].constraint = NO_CONSTRAINT; + d->states[i].backref = 1; + } + + ++d->sindex; + + return i; +} + +/* Find the epsilon closure of a set of positions. If any position of the set + contains a symbol that matches the empty string in some context, replace + that position with the elements of its follow labeled with an appropriate + constraint. Repeat exhaustively until no funny positions are left. + S->elems must be large enough to hold the result. */ +static void epsclosure _RE_ARGS((position_set *s, struct dfa *d)); + +static void +epsclosure(s, d) + position_set *s; + struct dfa *d; +{ + int i, j; + int *visited; + position p, old; + + MALLOC(visited, int, d->tindex); + for (i = 0; i < d->tindex; ++i) + visited[i] = 0; + + for (i = 0; i < s->nelem; ++i) + if (d->tokens[s->elems[i].index] >= NOTCHAR + && d->tokens[s->elems[i].index] != BACKREF + && d->tokens[s->elems[i].index] < CSET) + { + old = s->elems[i]; + p.constraint = old.constraint; + delete(s->elems[i], s); + if (visited[old.index]) + { + --i; + continue; + } + visited[old.index] = 1; + switch (d->tokens[old.index]) + { + case BEGLINE: + p.constraint &= BEGLINE_CONSTRAINT; + break; + case ENDLINE: + p.constraint &= ENDLINE_CONSTRAINT; + break; + case BEGWORD: + p.constraint &= BEGWORD_CONSTRAINT; + break; + case ENDWORD: + p.constraint &= ENDWORD_CONSTRAINT; + break; + case LIMWORD: + p.constraint &= LIMWORD_CONSTRAINT; + break; + case NOTLIMWORD: + p.constraint &= NOTLIMWORD_CONSTRAINT; + break; + default: + break; + } + for (j = 0; j < d->follows[old.index].nelem; ++j) + { + p.index = d->follows[old.index].elems[j].index; + insert(p, s); + } + /* Force rescan to start at the beginning. */ + i = -1; + } + + free(visited); +} + +/* Perform bottom-up analysis on the parse tree, computing various functions. + Note that at this point, we're pretending constructs like \< are real + characters rather than constraints on what can follow them. + + Nullable: A node is nullable if it is at the root of a regexp that can + match the empty string. + * EMPTY leaves are nullable. + * No other leaf is nullable. + * A QMARK or STAR node is nullable. + * A PLUS node is nullable if its argument is nullable. + * A CAT node is nullable if both its arguments are nullable. + * An OR node is nullable if either argument is nullable. + + Firstpos: The firstpos of a node is the set of positions (nonempty leaves) + that could correspond to the first character of a string matching the + regexp rooted at the given node. + * EMPTY leaves have empty firstpos. + * The firstpos of a nonempty leaf is that leaf itself. + * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its + argument. + * The firstpos of a CAT node is the firstpos of the left argument, union + the firstpos of the right if the left argument is nullable. + * The firstpos of an OR node is the union of firstpos of each argument. + + Lastpos: The lastpos of a node is the set of positions that could + correspond to the last character of a string matching the regexp at + the given node. + * EMPTY leaves have empty lastpos. + * The lastpos of a nonempty leaf is that leaf itself. + * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its + argument. + * The lastpos of a CAT node is the lastpos of its right argument, union + the lastpos of the left if the right argument is nullable. + * The lastpos of an OR node is the union of the lastpos of each argument. + + Follow: The follow of a position is the set of positions that could + correspond to the character following a character matching the node in + a string matching the regexp. At this point we consider special symbols + that match the empty string in some context to be just normal characters. + Later, if we find that a special symbol is in a follow set, we will + replace it with the elements of its follow, labeled with an appropriate + constraint. + * Every node in the firstpos of the argument of a STAR or PLUS node is in + the follow of every node in the lastpos. + * Every node in the firstpos of the second argument of a CAT node is in + the follow of every node in the lastpos of the first argument. + + Because of the postfix representation of the parse tree, the depth-first + analysis is conveniently done by a linear scan with the aid of a stack. + Sets are stored as arrays of the elements, obeying a stack-like allocation + scheme; the number of elements in each set deeper in the stack can be + used to determine the address of a particular set's array. */ +void +dfaanalyze(d, searchflag) + struct dfa *d; + int searchflag; +{ + int *nullable; /* Nullable stack. */ + int *nfirstpos; /* Element count stack for firstpos sets. */ + position *firstpos; /* Array where firstpos elements are stored. */ + int *nlastpos; /* Element count stack for lastpos sets. */ + position *lastpos; /* Array where lastpos elements are stored. */ + int *nalloc; /* Sizes of arrays allocated to follow sets. */ + position_set tmp; /* Temporary set for merging sets. */ + position_set merged; /* Result of merging sets. */ + int wants_newline; /* True if some position wants newline info. */ + int *o_nullable; + int *o_nfirst, *o_nlast; + position *o_firstpos, *o_lastpos; + int i, j; + position *pos; + +#ifdef DEBUG + fprintf(stderr, "dfaanalyze:\n"); + for (i = 0; i < d->tindex; ++i) + { + fprintf(stderr, " %d:", i); + prtok(d->tokens[i]); + } + putc('\n', stderr); +#endif + + d->searchflag = searchflag; + + MALLOC(nullable, int, d->depth); + o_nullable = nullable; + MALLOC(nfirstpos, int, d->depth); + o_nfirst = nfirstpos; + MALLOC(firstpos, position, d->nleaves); + o_firstpos = firstpos, firstpos += d->nleaves; + MALLOC(nlastpos, int, d->depth); + o_nlast = nlastpos; + MALLOC(lastpos, position, d->nleaves); + o_lastpos = lastpos, lastpos += d->nleaves; + MALLOC(nalloc, int, d->tindex); + for (i = 0; i < d->tindex; ++i) + nalloc[i] = 0; + MALLOC(merged.elems, position, d->nleaves); + + CALLOC(d->follows, position_set, d->tindex); + + for (i = 0; i < d->tindex; ++i) +#ifdef DEBUG + { /* Nonsyntactic #ifdef goo... */ +#endif + switch (d->tokens[i]) + { + case EMPTY: + /* The empty set is nullable. */ + *nullable++ = 1; + + /* The firstpos and lastpos of the empty leaf are both empty. */ + *nfirstpos++ = *nlastpos++ = 0; + break; + + case STAR: + case PLUS: + /* Every element in the firstpos of the argument is in the follow + of every element in the lastpos. */ + tmp.nelem = nfirstpos[-1]; + tmp.elems = firstpos; + pos = lastpos; + for (j = 0; j < nlastpos[-1]; ++j) + { + merge(&tmp, &d->follows[pos[j].index], &merged); + REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position, + nalloc[pos[j].index], merged.nelem - 1); + copy(&merged, &d->follows[pos[j].index]); + } + + case QMARK: + /* A QMARK or STAR node is automatically nullable. */ + if (d->tokens[i] != PLUS) + nullable[-1] = 1; + break; + + case CAT: + /* Every element in the firstpos of the second argument is in the + follow of every element in the lastpos of the first argument. */ + tmp.nelem = nfirstpos[-1]; + tmp.elems = firstpos; + pos = lastpos + nlastpos[-1]; + for (j = 0; j < nlastpos[-2]; ++j) + { + merge(&tmp, &d->follows[pos[j].index], &merged); + REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position, + nalloc[pos[j].index], merged.nelem - 1); + copy(&merged, &d->follows[pos[j].index]); + } + + /* The firstpos of a CAT node is the firstpos of the first argument, + union that of the second argument if the first is nullable. */ + if (nullable[-2]) + nfirstpos[-2] += nfirstpos[-1]; + else + firstpos += nfirstpos[-1]; + --nfirstpos; + + /* The lastpos of a CAT node is the lastpos of the second argument, + union that of the first argument if the second is nullable. */ + if (nullable[-1]) + nlastpos[-2] += nlastpos[-1]; + else + { + pos = lastpos + nlastpos[-2]; + for (j = nlastpos[-1] - 1; j >= 0; --j) + pos[j] = lastpos[j]; + lastpos += nlastpos[-2]; + nlastpos[-2] = nlastpos[-1]; + } + --nlastpos; + + /* A CAT node is nullable if both arguments are nullable. */ + nullable[-2] = nullable[-1] && nullable[-2]; + --nullable; + break; + + case OR: + case ORTOP: + /* The firstpos is the union of the firstpos of each argument. */ + nfirstpos[-2] += nfirstpos[-1]; + --nfirstpos; + + /* The lastpos is the union of the lastpos of each argument. */ + nlastpos[-2] += nlastpos[-1]; + --nlastpos; + + /* An OR node is nullable if either argument is nullable. */ + nullable[-2] = nullable[-1] || nullable[-2]; + --nullable; + break; + + default: + /* Anything else is a nonempty position. (Note that special + constructs like \< are treated as nonempty strings here; + an "epsilon closure" effectively makes them nullable later. + Backreferences have to get a real position so we can detect + transitions on them later. But they are nullable. */ + *nullable++ = d->tokens[i] == BACKREF; + + /* This position is in its own firstpos and lastpos. */ + *nfirstpos++ = *nlastpos++ = 1; + --firstpos, --lastpos; + firstpos->index = lastpos->index = i; + firstpos->constraint = lastpos->constraint = NO_CONSTRAINT; + + /* Allocate the follow set for this position. */ + nalloc[i] = 1; + MALLOC(d->follows[i].elems, position, nalloc[i]); + break; + } +#ifdef DEBUG + /* ... balance the above nonsyntactic #ifdef goo... */ + fprintf(stderr, "node %d:", i); + prtok(d->tokens[i]); + putc('\n', stderr); + fprintf(stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n"); + fprintf(stderr, " firstpos:"); + for (j = nfirstpos[-1] - 1; j >= 0; --j) + { + fprintf(stderr, " %d:", firstpos[j].index); + prtok(d->tokens[firstpos[j].index]); + } + fprintf(stderr, "\n lastpos:"); + for (j = nlastpos[-1] - 1; j >= 0; --j) + { + fprintf(stderr, " %d:", lastpos[j].index); + prtok(d->tokens[lastpos[j].index]); + } + putc('\n', stderr); + } +#endif + + /* For each follow set that is the follow set of a real position, replace + it with its epsilon closure. */ + for (i = 0; i < d->tindex; ++i) + if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF + || d->tokens[i] >= CSET) + { +#ifdef DEBUG + fprintf(stderr, "follows(%d:", i); + prtok(d->tokens[i]); + fprintf(stderr, "):"); + for (j = d->follows[i].nelem - 1; j >= 0; --j) + { + fprintf(stderr, " %d:", d->follows[i].elems[j].index); + prtok(d->tokens[d->follows[i].elems[j].index]); + } + putc('\n', stderr); +#endif + copy(&d->follows[i], &merged); + epsclosure(&merged, d); + if (d->follows[i].nelem < merged.nelem) + REALLOC(d->follows[i].elems, position, merged.nelem); + copy(&merged, &d->follows[i]); + } + + /* Get the epsilon closure of the firstpos of the regexp. The result will + be the set of positions of state 0. */ + merged.nelem = 0; + for (i = 0; i < nfirstpos[-1]; ++i) + insert(firstpos[i], &merged); + epsclosure(&merged, d); + + /* Check if any of the positions of state 0 will want newline context. */ + wants_newline = 0; + for (i = 0; i < merged.nelem; ++i) + if (PREV_NEWLINE_DEPENDENT(merged.elems[i].constraint)) + wants_newline = 1; + + /* Build the initial state. */ + d->salloc = 1; + d->sindex = 0; + MALLOC(d->states, dfa_state, d->salloc); + state_index(d, &merged, wants_newline, 0); + + free(o_nullable); + free(o_nfirst); + free(o_firstpos); + free(o_nlast); + free(o_lastpos); + free(nalloc); + free(merged.elems); +} + +/* Find, for each character, the transition out of state s of d, and store + it in the appropriate slot of trans. + + We divide the positions of s into groups (positions can appear in more + than one group). Each group is labeled with a set of characters that + every position in the group matches (taking into account, if necessary, + preceding context information of s). For each group, find the union + of the its elements' follows. This set is the set of positions of the + new state. For each character in the group's label, set the transition + on this character to be to a state corresponding to the set's positions, + and its associated backward context information, if necessary. + + If we are building a searching matcher, we include the positions of state + 0 in every state. + + The collection of groups is constructed by building an equivalence-class + partition of the positions of s. + + For each position, find the set of characters C that it matches. Eliminate + any characters from C that fail on grounds of backward context. + + Search through the groups, looking for a group whose label L has nonempty + intersection with C. If L - C is nonempty, create a new group labeled + L - C and having the same positions as the current group, and set L to + the intersection of L and C. Insert the position in this group, set + C = C - L, and resume scanning. + + If after comparing with every group there are characters remaining in C, + create a new group labeled with the characters of C and insert this + position in that group. */ +void +dfastate(s, d, trans) + int s; + struct dfa *d; + int trans[]; +{ + position_set grps[NOTCHAR]; /* As many as will ever be needed. */ + charclass labels[NOTCHAR]; /* Labels corresponding to the groups. */ + int ngrps = 0; /* Number of groups actually used. */ + position pos; /* Current position being considered. */ + charclass matches; /* Set of matching characters. */ + int matchesf; /* True if matches is nonempty. */ + charclass intersect; /* Intersection with some label set. */ + int intersectf; /* True if intersect is nonempty. */ + charclass leftovers; /* Stuff in the label that didn't match. */ + int leftoversf; /* True if leftovers is nonempty. */ + static charclass letters; /* Set of characters considered letters. */ + static charclass newline; /* Set of characters that aren't newline. */ + position_set follows; /* Union of the follows of some group. */ + position_set tmp; /* Temporary space for merging sets. */ + int state; /* New state. */ + int wants_newline; /* New state wants to know newline context. */ + int state_newline; /* New state on a newline transition. */ + int wants_letter; /* New state wants to know letter context. */ + int state_letter; /* New state on a letter transition. */ + static initialized; /* Flag for static initialization. */ + int i, j, k; + + /* Initialize the set of letters, if necessary. */ + if (! initialized) + { + initialized = 1; + for (i = 0; i < NOTCHAR; ++i) + if (ISALNUM(i)) + setbit(i, letters); + setbit('\n', newline); + } + + zeroset(matches); + + for (i = 0; i < d->states[s].elems.nelem; ++i) + { + pos = d->states[s].elems.elems[i]; + if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR) + setbit(d->tokens[pos.index], matches); + else if (d->tokens[pos.index] >= CSET) + copyset(d->charclasses[d->tokens[pos.index] - CSET], matches); + else + continue; + + /* Some characters may need to be eliminated from matches because + they fail in the current context. */ + if (pos.constraint != 0xFF) + { + if (! MATCHES_NEWLINE_CONTEXT(pos.constraint, + d->states[s].newline, 1)) + clrbit('\n', matches); + if (! MATCHES_NEWLINE_CONTEXT(pos.constraint, + d->states[s].newline, 0)) + for (j = 0; j < CHARCLASS_INTS; ++j) + matches[j] &= newline[j]; + if (! MATCHES_LETTER_CONTEXT(pos.constraint, + d->states[s].letter, 1)) + for (j = 0; j < CHARCLASS_INTS; ++j) + matches[j] &= ~letters[j]; + if (! MATCHES_LETTER_CONTEXT(pos.constraint, + d->states[s].letter, 0)) + for (j = 0; j < CHARCLASS_INTS; ++j) + matches[j] &= letters[j]; + + /* If there are no characters left, there's no point in going on. */ + for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j) + continue; + if (j == CHARCLASS_INTS) + continue; + } + + for (j = 0; j < ngrps; ++j) + { + /* If matches contains a single character only, and the current + group's label doesn't contain that character, go on to the + next group. */ + if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR + && !tstbit(d->tokens[pos.index], labels[j])) + continue; + + /* Check if this group's label has a nonempty intersection with + matches. */ + intersectf = 0; + for (k = 0; k < CHARCLASS_INTS; ++k) + (intersect[k] = matches[k] & labels[j][k]) ? (intersectf = 1) : 0; + if (! intersectf) + continue; + + /* It does; now find the set differences both ways. */ + leftoversf = matchesf = 0; + for (k = 0; k < CHARCLASS_INTS; ++k) + { + /* Even an optimizing compiler can't know this for sure. */ + int match = matches[k], label = labels[j][k]; + + (leftovers[k] = ~match & label) ? (leftoversf = 1) : 0; + (matches[k] = match & ~label) ? (matchesf = 1) : 0; + } + + /* If there were leftovers, create a new group labeled with them. */ + if (leftoversf) + { + copyset(leftovers, labels[ngrps]); + copyset(intersect, labels[j]); + MALLOC(grps[ngrps].elems, position, d->nleaves); + copy(&grps[j], &grps[ngrps]); + ++ngrps; + } + + /* Put the position in the current group. Note that there is no + reason to call insert() here. */ + grps[j].elems[grps[j].nelem++] = pos; + + /* If every character matching the current position has been + accounted for, we're done. */ + if (! matchesf) + break; + } + + /* If we've passed the last group, and there are still characters + unaccounted for, then we'll have to create a new group. */ + if (j == ngrps) + { + copyset(matches, labels[ngrps]); + zeroset(matches); + MALLOC(grps[ngrps].elems, position, d->nleaves); + grps[ngrps].nelem = 1; + grps[ngrps].elems[0] = pos; + ++ngrps; + } + } + + MALLOC(follows.elems, position, d->nleaves); + MALLOC(tmp.elems, position, d->nleaves); + + /* If we are a searching matcher, the default transition is to a state + containing the positions of state 0, otherwise the default transition + is to fail miserably. */ + if (d->searchflag) + { + wants_newline = 0; + wants_letter = 0; + for (i = 0; i < d->states[0].elems.nelem; ++i) + { + if (PREV_NEWLINE_DEPENDENT(d->states[0].elems.elems[i].constraint)) + wants_newline = 1; + if (PREV_LETTER_DEPENDENT(d->states[0].elems.elems[i].constraint)) + wants_letter = 1; + } + copy(&d->states[0].elems, &follows); + state = state_index(d, &follows, 0, 0); + if (wants_newline) + state_newline = state_index(d, &follows, 1, 0); + else + state_newline = state; + if (wants_letter) + state_letter = state_index(d, &follows, 0, 1); + else + state_letter = state; + for (i = 0; i < NOTCHAR; ++i) + if (i == '\n') + trans[i] = state_newline; + else if (ISALNUM(i)) + trans[i] = state_letter; + else + trans[i] = state; + } + else + for (i = 0; i < NOTCHAR; ++i) + trans[i] = -1; + + for (i = 0; i < ngrps; ++i) + { + follows.nelem = 0; + + /* Find the union of the follows of the positions of the group. + This is a hideously inefficient loop. Fix it someday. */ + for (j = 0; j < grps[i].nelem; ++j) + for (k = 0; k < d->follows[grps[i].elems[j].index].nelem; ++k) + insert(d->follows[grps[i].elems[j].index].elems[k], &follows); + + /* If we are building a searching matcher, throw in the positions + of state 0 as well. */ + if (d->searchflag) + for (j = 0; j < d->states[0].elems.nelem; ++j) + insert(d->states[0].elems.elems[j], &follows); + + /* Find out if the new state will want any context information. */ + wants_newline = 0; + if (tstbit('\n', labels[i])) + for (j = 0; j < follows.nelem; ++j) + if (PREV_NEWLINE_DEPENDENT(follows.elems[j].constraint)) + wants_newline = 1; + + wants_letter = 0; + for (j = 0; j < CHARCLASS_INTS; ++j) + if (labels[i][j] & letters[j]) + break; + if (j < CHARCLASS_INTS) + for (j = 0; j < follows.nelem; ++j) + if (PREV_LETTER_DEPENDENT(follows.elems[j].constraint)) + wants_letter = 1; + + /* Find the state(s) corresponding to the union of the follows. */ + state = state_index(d, &follows, 0, 0); + if (wants_newline) + state_newline = state_index(d, &follows, 1, 0); + else + state_newline = state; + if (wants_letter) + state_letter = state_index(d, &follows, 0, 1); + else + state_letter = state; + + /* Set the transitions for each character in the current label. */ + for (j = 0; j < CHARCLASS_INTS; ++j) + for (k = 0; k < INTBITS; ++k) + if (labels[i][j] & 1 << k) + { + int c = j * INTBITS + k; + + if (c == '\n') + trans[c] = state_newline; + else if (ISALNUM(c)) + trans[c] = state_letter; + else if (c < NOTCHAR) + trans[c] = state; + } + } + + for (i = 0; i < ngrps; ++i) + free(grps[i].elems); + free(follows.elems); + free(tmp.elems); +} + +/* Some routines for manipulating a compiled dfa's transition tables. + Each state may or may not have a transition table; if it does, and it + is a non-accepting state, then d->trans[state] points to its table. + If it is an accepting state then d->fails[state] points to its table. + If it has no table at all, then d->trans[state] is NULL. + TODO: Improve this comment, get rid of the unnecessary redundancy. */ + +static void +build_state(s, d) + int s; + struct dfa *d; +{ + int *trans; /* The new transition table. */ + int i; + + /* Set an upper limit on the number of transition tables that will ever + exist at once. 1024 is arbitrary. The idea is that the frequently + used transition tables will be quickly rebuilt, whereas the ones that + were only needed once or twice will be cleared away. */ + if (d->trcount >= 1024) + { + for (i = 0; i < d->tralloc; ++i) + if (d->trans[i]) + { + free((ptr_t) d->trans[i]); + d->trans[i] = NULL; + } + else if (d->fails[i]) + { + free((ptr_t) d->fails[i]); + d->fails[i] = NULL; + } + d->trcount = 0; + } + + ++d->trcount; + + /* Set up the success bits for this state. */ + d->success[s] = 0; + if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 1, d->states[s].letter, 0, + s, *d)) + d->success[s] |= 4; + if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 1, + s, *d)) + d->success[s] |= 2; + if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 0, + s, *d)) + d->success[s] |= 1; + + MALLOC(trans, int, NOTCHAR); + dfastate(s, d, trans); + + /* Now go through the new transition table, and make sure that the trans + and fail arrays are allocated large enough to hold a pointer for the + largest state mentioned in the table. */ + for (i = 0; i < NOTCHAR; ++i) + if (trans[i] >= d->tralloc) + { + int oldalloc = d->tralloc; + + while (trans[i] >= d->tralloc) + d->tralloc *= 2; + REALLOC(d->realtrans, int *, d->tralloc + 1); + d->trans = d->realtrans + 1; + REALLOC(d->fails, int *, d->tralloc); + REALLOC(d->success, int, d->tralloc); + REALLOC(d->newlines, int, d->tralloc); + while (oldalloc < d->tralloc) + { + d->trans[oldalloc] = NULL; + d->fails[oldalloc++] = NULL; + } + } + + /* Keep the newline transition in a special place so we can use it as + a sentinel. */ + d->newlines[s] = trans['\n']; + trans['\n'] = -1; + + if (ACCEPTING(s, *d)) + d->fails[s] = trans; + else + d->trans[s] = trans; +} + +static void +build_state_zero(d) + struct dfa *d; +{ + d->tralloc = 1; + d->trcount = 0; + CALLOC(d->realtrans, int *, d->tralloc + 1); + d->trans = d->realtrans + 1; + CALLOC(d->fails, int *, d->tralloc); + MALLOC(d->success, int, d->tralloc); + MALLOC(d->newlines, int, d->tralloc); + build_state(0, d); +} + +/* Search through a buffer looking for a match to the given struct dfa. + Find the first occurrence of a string matching the regexp in the buffer, + and the shortest possible version thereof. Return a pointer to the first + character after the match, or NULL if none is found. Begin points to + the beginning of the buffer, and end points to the first character after + its end. We store a newline in *end to act as a sentinel, so end had + better point somewhere valid. Newline is a flag indicating whether to + allow newlines to be in the matching string. If count is non- + NULL it points to a place we're supposed to increment every time we + see a newline. Finally, if backref is non-NULL it points to a place + where we're supposed to store a 1 if backreferencing happened and the + match needs to be verified by a backtracking matcher. Otherwise + we store a 0 in *backref. */ +char * +dfaexec(d, begin, end, newline, count, backref) + struct dfa *d; + char *begin; + char *end; + int newline; + int *count; + int *backref; +{ + register s, s1, tmp; /* Current state. */ + register unsigned char *p; /* Current input character. */ + register **trans, *t; /* Copy of d->trans so it can be optimized + into a register. */ + static sbit[NOTCHAR]; /* Table for anding with d->success. */ + static sbit_init; + + if (! sbit_init) + { + int i; + + sbit_init = 1; + for (i = 0; i < NOTCHAR; ++i) + if (i == '\n') + sbit[i] = 4; + else if (ISALNUM(i)) + sbit[i] = 2; + else + sbit[i] = 1; + } + + if (! d->tralloc) + build_state_zero(d); + + s = s1 = 0; + p = (unsigned char *) begin; + trans = d->trans; + *end = '\n'; + + for (;;) + { + /* The dreaded inner loop. */ + if ((t = trans[s]) != 0) + do + { + s1 = t[*p++]; + if (! (t = trans[s1])) + goto last_was_s; + s = t[*p++]; + } + while ((t = trans[s]) != 0); + goto last_was_s1; + last_was_s: + tmp = s, s = s1, s1 = tmp; + last_was_s1: + + if (s >= 0 && p <= (unsigned char *) end && d->fails[s]) + { + if (d->success[s] & sbit[*p]) + { + if (backref) + if (d->states[s].backref) + *backref = 1; + else + *backref = 0; + return (char *) p; + } + + s1 = s; + s = d->fails[s][*p++]; + continue; + } + + /* If the previous character was a newline, count it. */ + if (count && (char *) p <= end && p[-1] == '\n') + ++*count; + + /* Check if we've run off the end of the buffer. */ + if ((char *) p > end) + return NULL; + + if (s >= 0) + { + build_state(s, d); + trans = d->trans; + continue; + } + + if (p[-1] == '\n' && newline) + { + s = d->newlines[s1]; + continue; + } + + s = 0; + } +} + +/* Initialize the components of a dfa that the other routines don't + initialize for themselves. */ +void +dfainit(d) + struct dfa *d; +{ + d->calloc = 1; + MALLOC(d->charclasses, charclass, d->calloc); + d->cindex = 0; + + d->talloc = 1; + MALLOC(d->tokens, token, d->talloc); + d->tindex = d->depth = d->nleaves = d->nregexps = 0; + + d->searchflag = 0; + d->tralloc = 0; + + d->musts = 0; +} + +/* Parse and analyze a single string of the given length. */ +void +dfacomp(s, len, d, searchflag) + char *s; + size_t len; + struct dfa *d; + int searchflag; +{ + if (case_fold) /* dummy folding in service of dfamust() */ + { + char *lcopy; + int i; + + lcopy = malloc(len); + if (!lcopy) + dfaerror("out of memory"); + + /* This is a kludge. */ + case_fold = 0; + for (i = 0; i < len; ++i) + if (ISUPPER(s[i])) + lcopy[i] = tolower(s[i]); + else + lcopy[i] = s[i]; + + dfainit(d); + dfaparse(lcopy, len, d); + free(lcopy); + dfamust(d); + d->cindex = d->tindex = d->depth = d->nleaves = d->nregexps = 0; + case_fold = 1; + dfaparse(s, len, d); + dfaanalyze(d, searchflag); + } + else + { + dfainit(d); + dfaparse(s, len, d); + dfamust(d); + dfaanalyze(d, searchflag); + } +} + +/* Free the storage held by the components of a dfa. */ +void +dfafree(d) + struct dfa *d; +{ + int i; + struct dfamust *dm, *ndm; + + free((ptr_t) d->charclasses); + free((ptr_t) d->tokens); + for (i = 0; i < d->sindex; ++i) + free((ptr_t) d->states[i].elems.elems); + free((ptr_t) d->states); + for (i = 0; i < d->tindex; ++i) + if (d->follows[i].elems) + free((ptr_t) d->follows[i].elems); + free((ptr_t) d->follows); + for (i = 0; i < d->tralloc; ++i) + if (d->trans[i]) + free((ptr_t) d->trans[i]); + else if (d->fails[i]) + free((ptr_t) d->fails[i]); + if (d->realtrans) free((ptr_t) d->realtrans); + if (d->fails) free((ptr_t) d->fails); + if (d->newlines) free((ptr_t) d->newlines); + if (d->success) free((ptr_t) d->success); + for (dm = d->musts; dm; dm = ndm) + { + ndm = dm->next; + free(dm->must); + free((ptr_t) dm); + } +} + +/* Having found the postfix representation of the regular expression, + try to find a long sequence of characters that must appear in any line + containing the r.e. + Finding a "longest" sequence is beyond the scope here; + we take an easy way out and hope for the best. + (Take "(ab|a)b"--please.) + + We do a bottom-up calculation of sequences of characters that must appear + in matches of r.e.'s represented by trees rooted at the nodes of the postfix + representation: + sequences that must appear at the left of the match ("left") + sequences that must appear at the right of the match ("right") + lists of sequences that must appear somewhere in the match ("in") + sequences that must constitute the match ("is") + + When we get to the root of the tree, we use one of the longest of its + calculated "in" sequences as our answer. The sequence we find is returned in + d->must (where "d" is the single argument passed to "dfamust"); + the length of the sequence is returned in d->mustn. + + The sequences calculated for the various types of node (in pseudo ANSI c) + are shown below. "p" is the operand of unary operators (and the left-hand + operand of binary operators); "q" is the right-hand operand of binary + operators. + + "ZERO" means "a zero-length sequence" below. + + Type left right is in + ---- ---- ----- -- -- + char c # c # c # c # c + + CSET ZERO ZERO ZERO ZERO + + STAR ZERO ZERO ZERO ZERO + + QMARK ZERO ZERO ZERO ZERO + + PLUS p->left p->right ZERO p->in + + CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus + p->left : q->right : q->is!=ZERO) ? q->in plus + p->is##q->left p->right##q->is p->is##q->is : p->right##q->left + ZERO + + OR longest common longest common (do p->is and substrings common to + leading trailing q->is have same p->in and q->in + (sub)sequence (sub)sequence length and + of p->left of p->right content) ? + and q->left and q->right p->is : NULL + + If there's anything else we recognize in the tree, all four sequences get set + to zero-length sequences. If there's something we don't recognize in the tree, + we just return a zero-length sequence. + + Break ties in favor of infrequent letters (choosing 'zzz' in preference to + 'aaa')? + + And. . .is it here or someplace that we might ponder "optimizations" such as + egrep 'psi|epsilon' -> egrep 'psi' + egrep 'pepsi|epsilon' -> egrep 'epsi' + (Yes, we now find "epsi" as a "string + that must occur", but we might also + simplify the *entire* r.e. being sought) + grep '[c]' -> grep 'c' + grep '(ab|a)b' -> grep 'ab' + grep 'ab*' -> grep 'a' + grep 'a*b' -> grep 'b' + + There are several issues: + + Is optimization easy (enough)? + + Does optimization actually accomplish anything, + or is the automaton you get from "psi|epsilon" (for example) + the same as the one you get from "psi" (for example)? + + Are optimizable r.e.'s likely to be used in real-life situations + (something like 'ab*' is probably unlikely; something like is + 'psi|epsilon' is likelier)? */ + +static char * +icatalloc(old, new) + char *old; + char *new; +{ + char *result; + size_t oldsize, newsize; + + newsize = (new == NULL) ? 0 : strlen(new); + if (old == NULL) + oldsize = 0; + else if (newsize == 0) + return old; + else oldsize = strlen(old); + if (old == NULL) + result = (char *) malloc(newsize + 1); + else + result = (char *) realloc((void *) old, oldsize + newsize + 1); + if (result != NULL && new != NULL) + (void) strcpy(result + oldsize, new); + return result; +} + +static char * +icpyalloc(string) + char *string; +{ + return icatalloc((char *) NULL, string); +} + +static char * +istrstr(lookin, lookfor) + char *lookin; + char *lookfor; +{ + char *cp; + size_t len; + + len = strlen(lookfor); + for (cp = lookin; *cp != '\0'; ++cp) + if (strncmp(cp, lookfor, len) == 0) + return cp; + return NULL; +} + +static void +ifree(cp) + char *cp; +{ + if (cp != NULL) + free(cp); +} + +static void +freelist(cpp) + char **cpp; +{ + int i; + + if (cpp == NULL) + return; + for (i = 0; cpp[i] != NULL; ++i) + { + free(cpp[i]); + cpp[i] = NULL; + } +} + +static char ** +enlist(cpp, new, len) + char **cpp; + char *new; + size_t len; +{ + int i, j; + + if (cpp == NULL) + return NULL; + if ((new = icpyalloc(new)) == NULL) + { + freelist(cpp); + return NULL; + } + new[len] = '\0'; + /* Is there already something in the list that's new (or longer)? */ + for (i = 0; cpp[i] != NULL; ++i) + if (istrstr(cpp[i], new) != NULL) + { + free(new); + return cpp; + } + /* Eliminate any obsoleted strings. */ + j = 0; + while (cpp[j] != NULL) + if (istrstr(new, cpp[j]) == NULL) + ++j; + else + { + free(cpp[j]); + if (--i == j) + break; + cpp[j] = cpp[i]; + cpp[i] = NULL; + } + /* Add the new string. */ + cpp = (char **) realloc((char *) cpp, (i + 2) * sizeof *cpp); + if (cpp == NULL) + return NULL; + cpp[i] = new; + cpp[i + 1] = NULL; + return cpp; +} + +/* Given pointers to two strings, return a pointer to an allocated + list of their distinct common substrings. Return NULL if something + seems wild. */ +static char ** +comsubs(left, right) + char *left; + char *right; +{ + char **cpp; + char *lcp; + char *rcp; + size_t i, len; + + if (left == NULL || right == NULL) + return NULL; + cpp = (char **) malloc(sizeof *cpp); + if (cpp == NULL) + return NULL; + cpp[0] = NULL; + for (lcp = left; *lcp != '\0'; ++lcp) + { + len = 0; + rcp = index(right, *lcp); + while (rcp != NULL) + { + for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i) + continue; + if (i > len) + len = i; + rcp = index(rcp + 1, *lcp); + } + if (len == 0) + continue; + if ((cpp = enlist(cpp, lcp, len)) == NULL) + break; + } + return cpp; +} + +static char ** +addlists(old, new) +char **old; +char **new; +{ + int i; + + if (old == NULL || new == NULL) + return NULL; + for (i = 0; new[i] != NULL; ++i) + { + old = enlist(old, new[i], strlen(new[i])); + if (old == NULL) + break; + } + return old; +} + +/* Given two lists of substrings, return a new list giving substrings + common to both. */ +static char ** +inboth(left, right) + char **left; + char **right; +{ + char **both; + char **temp; + int lnum, rnum; + + if (left == NULL || right == NULL) + return NULL; + both = (char **) malloc(sizeof *both); + if (both == NULL) + return NULL; + both[0] = NULL; + for (lnum = 0; left[lnum] != NULL; ++lnum) + { + for (rnum = 0; right[rnum] != NULL; ++rnum) + { + temp = comsubs(left[lnum], right[rnum]); + if (temp == NULL) + { + freelist(both); + return NULL; + } + both = addlists(both, temp); + freelist(temp); + if (both == NULL) + return NULL; + } + } + return both; +} + +typedef struct +{ + char **in; + char *left; + char *right; + char *is; +} must; + +static void +resetmust(mp) +must *mp; +{ + mp->left[0] = mp->right[0] = mp->is[0] = '\0'; + freelist(mp->in); +} + +static void +dfamust(dfa) +struct dfa *dfa; +{ + must *musts; + must *mp; + char *result; + int ri; + int i; + int exact; + token t; + static must must0; + struct dfamust *dm; + static char empty_string[] = ""; + + result = empty_string; + exact = 0; + musts = (must *) malloc((dfa->tindex + 1) * sizeof *musts); + if (musts == NULL) + return; + mp = musts; + for (i = 0; i <= dfa->tindex; ++i) + mp[i] = must0; + for (i = 0; i <= dfa->tindex; ++i) + { + mp[i].in = (char **) malloc(sizeof *mp[i].in); + mp[i].left = malloc(2); + mp[i].right = malloc(2); + mp[i].is = malloc(2); + if (mp[i].in == NULL || mp[i].left == NULL || + mp[i].right == NULL || mp[i].is == NULL) + goto done; + mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0'; + mp[i].in[0] = NULL; + } +#ifdef DEBUG + fprintf(stderr, "dfamust:\n"); + for (i = 0; i < dfa->tindex; ++i) + { + fprintf(stderr, " %d:", i); + prtok(dfa->tokens[i]); + } + putc('\n', stderr); +#endif + for (ri = 0; ri < dfa->tindex; ++ri) + { + switch (t = dfa->tokens[ri]) + { + case LPAREN: + case RPAREN: + goto done; /* "cannot happen" */ + case EMPTY: + case BEGLINE: + case ENDLINE: + case BEGWORD: + case ENDWORD: + case LIMWORD: + case NOTLIMWORD: + case BACKREF: + resetmust(mp); + break; + case STAR: + case QMARK: + if (mp <= musts) + goto done; /* "cannot happen" */ + --mp; + resetmust(mp); + break; + case OR: + case ORTOP: + if (mp < &musts[2]) + goto done; /* "cannot happen" */ + { + char **new; + must *lmp; + must *rmp; + int j, ln, rn, n; + + rmp = --mp; + lmp = --mp; + /* Guaranteed to be. Unlikely, but. . . */ + if (strcmp(lmp->is, rmp->is) != 0) + lmp->is[0] = '\0'; + /* Left side--easy */ + i = 0; + while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i]) + ++i; + lmp->left[i] = '\0'; + /* Right side */ + ln = strlen(lmp->right); + rn = strlen(rmp->right); + n = ln; + if (n > rn) + n = rn; + for (i = 0; i < n; ++i) + if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1]) + break; + for (j = 0; j < i; ++j) + lmp->right[j] = lmp->right[(ln - i) + j]; + lmp->right[j] = '\0'; + new = inboth(lmp->in, rmp->in); + if (new == NULL) + goto done; + freelist(lmp->in); + free((char *) lmp->in); + lmp->in = new; + } + break; + case PLUS: + if (mp <= musts) + goto done; /* "cannot happen" */ + --mp; + mp->is[0] = '\0'; + break; + case END: + if (mp != &musts[1]) + goto done; /* "cannot happen" */ + for (i = 0; musts[0].in[i] != NULL; ++i) + if (strlen(musts[0].in[i]) > strlen(result)) + result = musts[0].in[i]; + if (strcmp(result, musts[0].is) == 0) + exact = 1; + goto done; + case CAT: + if (mp < &musts[2]) + goto done; /* "cannot happen" */ + { + must *lmp; + must *rmp; + + rmp = --mp; + lmp = --mp; + /* In. Everything in left, plus everything in + right, plus catenation of + left's right and right's left. */ + lmp->in = addlists(lmp->in, rmp->in); + if (lmp->in == NULL) + goto done; + if (lmp->right[0] != '\0' && + rmp->left[0] != '\0') + { + char *tp; + + tp = icpyalloc(lmp->right); + if (tp == NULL) + goto done; + tp = icatalloc(tp, rmp->left); + if (tp == NULL) + goto done; + lmp->in = enlist(lmp->in, tp, + strlen(tp)); + free(tp); + if (lmp->in == NULL) + goto done; + } + /* Left-hand */ + if (lmp->is[0] != '\0') + { + lmp->left = icatalloc(lmp->left, + rmp->left); + if (lmp->left == NULL) + goto done; + } + /* Right-hand */ + if (rmp->is[0] == '\0') + lmp->right[0] = '\0'; + lmp->right = icatalloc(lmp->right, rmp->right); + if (lmp->right == NULL) + goto done; + /* Guaranteed to be */ + if (lmp->is[0] != '\0' && rmp->is[0] != '\0') + { + lmp->is = icatalloc(lmp->is, rmp->is); + if (lmp->is == NULL) + goto done; + } + else + lmp->is[0] = '\0'; + } + break; + default: + if (t < END) + { + /* "cannot happen" */ + goto done; + } + else if (t == '\0') + { + /* not on *my* shift */ + goto done; + } + else if (t >= CSET) + { + /* easy enough */ + resetmust(mp); + } + else + { + /* plain character */ + resetmust(mp); + mp->is[0] = mp->left[0] = mp->right[0] = t; + mp->is[1] = mp->left[1] = mp->right[1] = '\0'; + mp->in = enlist(mp->in, mp->is, (size_t)1); + if (mp->in == NULL) + goto done; + } + break; + } +#ifdef DEBUG + fprintf(stderr, " node: %d:", ri); + prtok(dfa->tokens[ri]); + fprintf(stderr, "\n in:"); + for (i = 0; mp->in[i]; ++i) + fprintf(stderr, " \"%s\"", mp->in[i]); + fprintf(stderr, "\n is: \"%s\"\n", mp->is); + fprintf(stderr, " left: \"%s\"\n", mp->left); + fprintf(stderr, " right: \"%s\"\n", mp->right); +#endif + ++mp; + } + done: + if (strlen(result)) + { + dm = (struct dfamust *) malloc(sizeof (struct dfamust)); + dm->exact = exact; + dm->must = malloc(strlen(result) + 1); + strcpy(dm->must, result); + dm->next = dfa->musts; + dfa->musts = dm; + } + mp = musts; + for (i = 0; i <= dfa->tindex; ++i) + { + freelist(mp[i].in); + ifree((char *) mp[i].in); + ifree(mp[i].left); + ifree(mp[i].right); + ifree(mp[i].is); + } + free((char *) mp); +} |