diff options
author | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1995-12-20 01:06:22 +0000 |
---|---|---|
committer | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1995-12-20 01:06:22 +0000 |
commit | c482518380683ee38d14024c1e362a0d681cf967 (patch) | |
tree | e69b4f6d3fee3aced20a41f3fdf543fc1c77fb5d /gnu/usr.bin/gcc/caller-save.c | |
parent | 76a62188d0db49c65b696d474c855a799fd96dce (diff) |
FSF GCC version 2.7.2
Diffstat (limited to 'gnu/usr.bin/gcc/caller-save.c')
-rw-r--r-- | gnu/usr.bin/gcc/caller-save.c | 770 |
1 files changed, 770 insertions, 0 deletions
diff --git a/gnu/usr.bin/gcc/caller-save.c b/gnu/usr.bin/gcc/caller-save.c new file mode 100644 index 00000000000..6dc90189ee6 --- /dev/null +++ b/gnu/usr.bin/gcc/caller-save.c @@ -0,0 +1,770 @@ +/* Save and restore call-clobbered registers which are live across a call. + Copyright (C) 1989, 1992, 1994, 1995 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include "rtl.h" +#include "insn-config.h" +#include "flags.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "recog.h" +#include "basic-block.h" +#include "reload.h" +#include "expr.h" + +#ifndef MAX_MOVE_MAX +#define MAX_MOVE_MAX MOVE_MAX +#endif + +#ifndef MIN_UNITS_PER_WORD +#define MIN_UNITS_PER_WORD UNITS_PER_WORD +#endif + +/* Modes for each hard register that we can save. The smallest mode is wide + enough to save the entire contents of the register. When saving the + register because it is live we first try to save in multi-register modes. + If that is not possible the save is done one register at a time. */ + +static enum machine_mode + regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; + +/* For each hard register, a place on the stack where it can be saved, + if needed. */ + +static rtx + regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; + +/* We will only make a register eligible for caller-save if it can be + saved in its widest mode with a simple SET insn as long as the memory + address is valid. We record the INSN_CODE is those insns here since + when we emit them, the addresses might not be valid, so they might not + be recognized. */ + +static enum insn_code + reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; +static enum insn_code + reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; + +/* Set of hard regs currently live (during scan of all insns). */ + +static HARD_REG_SET hard_regs_live; + +/* Set of hard regs currently residing in save area (during insn scan). */ + +static HARD_REG_SET hard_regs_saved; + +/* Set of hard regs which need to be restored before referenced. */ + +static HARD_REG_SET hard_regs_need_restore; + +/* Number of registers currently in hard_regs_saved. */ + +int n_regs_saved; + +static void set_reg_live PROTO((rtx, rtx)); +static void clear_reg_live PROTO((rtx)); +static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode)); +static int insert_save_restore PROTO((rtx, int, int, + enum machine_mode, int)); + +/* Initialize for caller-save. + + Look at all the hard registers that are used by a call and for which + regclass.c has not already excluded from being used across a call. + + Ensure that we can find a mode to save the register and that there is a + simple insn to save and restore the register. This latter check avoids + problems that would occur if we tried to save the MQ register of some + machines directly into memory. */ + +void +init_caller_save () +{ + char *first_obj = (char *) oballoc (0); + rtx addr_reg; + int offset; + rtx address; + int i, j; + + /* First find all the registers that we need to deal with and all + the modes that they can have. If we can't find a mode to use, + we can't have the register live over calls. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (call_used_regs[i] && ! call_fixed_regs[i]) + { + for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) + { + regno_save_mode[i][j] = choose_hard_reg_mode (i, j); + if (regno_save_mode[i][j] == VOIDmode && j == 1) + { + call_fixed_regs[i] = 1; + SET_HARD_REG_BIT (call_fixed_reg_set, i); + } + } + } + else + regno_save_mode[i][1] = VOIDmode; + } + + /* The following code tries to approximate the conditions under which + we can easily save and restore a register without scratch registers or + other complexities. It will usually work, except under conditions where + the validity of an insn operand is dependent on the address offset. + No such cases are currently known. + + We first find a typical offset from some BASE_REG_CLASS register. + This address is chosen by finding the first register in the class + and by finding the smallest power of two that is a valid offset from + that register in every mode we will use to save registers. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i)) + break; + + if (i == FIRST_PSEUDO_REGISTER) + abort (); + + addr_reg = gen_rtx (REG, Pmode, i); + + for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1) + { + address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset)); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regno_save_mode[i][1] != VOIDmode + && ! strict_memory_address_p (regno_save_mode[i][1], address)) + break; + + if (i == FIRST_PSEUDO_REGISTER) + break; + } + + /* If we didn't find a valid address, we must use register indirect. */ + if (offset == 0) + address = addr_reg; + + /* Next we try to form an insn to save and restore the register. We + see if such an insn is recognized and meets its constraints. */ + + start_sequence (); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) + if (regno_save_mode[i][j] != VOIDmode) + { + rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address); + rtx reg = gen_rtx (REG, regno_save_mode[i][j], i); + rtx savepat = gen_rtx (SET, VOIDmode, mem, reg); + rtx restpat = gen_rtx (SET, VOIDmode, reg, mem); + rtx saveinsn = emit_insn (savepat); + rtx restinsn = emit_insn (restpat); + int ok; + + reg_save_code[i][j] = recog_memoized (saveinsn); + reg_restore_code[i][j] = recog_memoized (restinsn); + + /* Now extract both insns and see if we can meet their constraints. */ + ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1); + if (ok) + { + insn_extract (saveinsn); + ok = constrain_operands (reg_save_code[i][j], 1); + insn_extract (restinsn); + ok &= constrain_operands (reg_restore_code[i][j], 1); + } + + if (! ok) + { + regno_save_mode[i][j] = VOIDmode; + if (j == 1) + { + call_fixed_regs[i] = 1; + SET_HARD_REG_BIT (call_fixed_reg_set, i); + } + } + } + + end_sequence (); + + obfree (first_obj); +} + +/* Initialize save areas by showing that we haven't allocated any yet. */ + +void +init_save_areas () +{ + int i, j; + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) + regno_save_mem[i][j] = 0; +} + +/* Allocate save areas for any hard registers that might need saving. + We take a conservative approach here and look for call-clobbered hard + registers that are assigned to pseudos that cross calls. This may + overestimate slightly (especially if some of these registers are later + used as spill registers), but it should not be significant. + + Then perform register elimination in the addresses of the save area + locations; return 1 if all eliminated addresses are strictly valid. + We assume that our caller has set up the elimination table to the + worst (largest) possible offsets. + + Set *PCHANGED to 1 if we had to allocate some memory for the save area. + + Future work: + + In the fallback case we should iterate backwards across all possible + modes for the save, choosing the largest available one instead of + falling back to the smallest mode immediately. (eg TF -> DF -> SF). + + We do not try to use "move multiple" instructions that exist + on some machines (such as the 68k moveml). It could be a win to try + and use them when possible. The hard part is doing it in a way that is + machine independent since they might be saving non-consecutive + registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */ + +int +setup_save_areas (pchanged) + int *pchanged; +{ + int i, j, k; + HARD_REG_SET hard_regs_used; + int ok = 1; + + + /* Allocate space in the save area for the largest multi-register + pseudos first, then work backwards to single register + pseudos. */ + + /* Find and record all call-used hard-registers in this function. */ + CLEAR_HARD_REG_SET (hard_regs_used); + for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) + if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0) + { + int regno = reg_renumber[i]; + int endregno + = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i])); + int nregs = endregno - regno; + + for (j = 0; j < nregs; j++) + { + if (call_used_regs[regno+j]) + SET_HARD_REG_BIT (hard_regs_used, regno+j); + } + } + + /* Now run through all the call-used hard-registers and allocate + space for them in the caller-save area. Try to allocate space + in a manner which allows multi-register saves/restores to be done. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--) + { + int ok = 1; + int do_save; + + /* If no mode exists for this size, try another. Also break out + if we have already saved this hard register. */ + if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0) + continue; + + /* See if any register in this group has been saved. */ + do_save = 1; + for (k = 0; k < j; k++) + if (regno_save_mem[i + k][1]) + { + do_save = 0; + break; + } + if (! do_save) + continue; + + for (k = 0; k < j; k++) + { + int regno = i + k; + ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0); + } + + /* We have found an acceptable mode to store in. */ + if (ok) + { + + regno_save_mem[i][j] + = assign_stack_local (regno_save_mode[i][j], + GET_MODE_SIZE (regno_save_mode[i][j]), 0); + + /* Setup single word save area just in case... */ + for (k = 0; k < j; k++) + { + /* This should not depend on WORDS_BIG_ENDIAN. + The order of words in regs is the same as in memory. */ + rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1], + XEXP (regno_save_mem[i][j], 0)); + + regno_save_mem[i+k][1] + = adj_offsettable_operand (temp, k * UNITS_PER_WORD); + } + *pchanged = 1; + } + } + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) + if (regno_save_mem[i][j] != 0) + ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]), + XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0)); + + return ok; +} + +/* Find the places where hard regs are live across calls and save them. + + INSN_MODE is the mode to assign to any insns that we add. This is used + by reload to determine whether or not reloads or register eliminations + need be done on these insns. */ + +void +save_call_clobbered_regs (insn_mode) + enum machine_mode insn_mode; +{ + rtx insn; + int b; + + for (b = 0; b < n_basic_blocks; b++) + { + regset regs_live = basic_block_live_at_start[b]; + rtx prev_block_last = PREV_INSN (basic_block_head[b]); + REGSET_ELT_TYPE bit; + int offset, i, j; + int regno; + + /* Compute hard regs live at start of block -- this is the + real hard regs marked live, plus live pseudo regs that + have been renumbered to hard regs. No registers have yet been + saved because we restore all of them before the end of the basic + block. */ + +#ifdef HARD_REG_SET + hard_regs_live = *regs_live; +#else + COPY_HARD_REG_SET (hard_regs_live, regs_live); +#endif + + CLEAR_HARD_REG_SET (hard_regs_saved); + CLEAR_HARD_REG_SET (hard_regs_need_restore); + n_regs_saved = 0; + + for (offset = 0, i = 0; offset < regset_size; offset++) + { + if (regs_live[offset] == 0) + i += REGSET_ELT_BITS; + else + for (bit = 1; bit && i < max_regno; bit <<= 1, i++) + if ((regs_live[offset] & bit) + && (regno = reg_renumber[i]) >= 0) + for (j = regno; + j < regno + HARD_REGNO_NREGS (regno, + PSEUDO_REGNO_MODE (i)); + j++) + SET_HARD_REG_BIT (hard_regs_live, j); + + } + + /* Now scan the insns in the block, keeping track of what hard + regs are live as we go. When we see a call, save the live + call-clobbered hard regs. */ + + for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn)) + { + RTX_CODE code = GET_CODE (insn); + + if (GET_RTX_CLASS (code) == 'i') + { + rtx link; + + /* If some registers have been saved, see if INSN references + any of them. We must restore them before the insn if so. */ + + if (n_regs_saved) + restore_referenced_regs (PATTERN (insn), insn, insn_mode); + + /* NB: the normal procedure is to first enliven any + registers set by insn, then deaden any registers that + had their last use at insn. This is incorrect now, + since multiple pseudos may have been mapped to the + same hard reg, and the death notes are ambiguous. So + it must be done in the other, safe, order. */ + + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD) + clear_reg_live (XEXP (link, 0)); + + /* When we reach a call, we need to save all registers that are + live, call-used, not fixed, and not already saved. We must + test at this point because registers that die in a CALL_INSN + are not live across the call and likewise for registers that + are born in the CALL_INSN. + + If registers are filled with parameters for this function, + and some of these are also being set by this function, then + they will not appear to die (no REG_DEAD note for them), + to check if in fact they do, collect the set registers in + hard_regs_live first. */ + + if (code == CALL_INSN) + { + HARD_REG_SET this_call_sets; + { + HARD_REG_SET old_hard_regs_live; + + /* Save the hard_regs_live information. */ + COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live); + + /* Now calculate hard_regs_live for this CALL_INSN + only. */ + CLEAR_HARD_REG_SET (hard_regs_live); + note_stores (PATTERN (insn), set_reg_live); + COPY_HARD_REG_SET (this_call_sets, hard_regs_live); + + /* Restore the hard_regs_live information. */ + COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live); + } + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (call_used_regs[regno] && ! call_fixed_regs[regno] + && TEST_HARD_REG_BIT (hard_regs_live, regno) + /* It must not be set by this instruction. */ + && ! TEST_HARD_REG_BIT (this_call_sets, regno) + && ! TEST_HARD_REG_BIT (hard_regs_saved, regno)) + regno += insert_save_restore (insn, 1, regno, + insn_mode, 0); + + /* Put the information for this CALL_INSN on top of what + we already had. */ + IOR_HARD_REG_SET (hard_regs_live, this_call_sets); + COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved); + + /* Must recompute n_regs_saved. */ + n_regs_saved = 0; + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) + n_regs_saved++; + } + else + { + note_stores (PATTERN (insn), set_reg_live); +#ifdef AUTO_INC_DEC + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_INC) + set_reg_live (XEXP (link, 0), NULL_RTX); +#endif + } + + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_UNUSED) + clear_reg_live (XEXP (link, 0)); + } + + if (insn == basic_block_end[b]) + break; + } + + /* At the end of the basic block, we must restore any registers that + remain saved. If the last insn in the block is a JUMP_INSN, put + the restore before the insn, otherwise, put it after the insn. */ + + if (n_regs_saved) + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno)) + regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN + ? insn : NEXT_INSN (insn)), 0, + regno, insn_mode, MOVE_MAX / UNITS_PER_WORD); + + /* If we added any insns at the start of the block, update the start + of the block to point at those insns. */ + basic_block_head[b] = NEXT_INSN (prev_block_last); + } +} + +/* Here from note_stores when an insn stores a value in a register. + Set the proper bit or bits in hard_regs_live. All pseudos that have + been assigned hard regs have had their register number changed already, + so we can ignore pseudos. */ + +static void +set_reg_live (reg, setter) + rtx reg, setter; +{ + register int regno, endregno, i; + enum machine_mode mode = GET_MODE (reg); + int word = 0; + + if (GET_CODE (reg) == SUBREG) + { + word = SUBREG_WORD (reg); + reg = SUBREG_REG (reg); + } + + if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) + return; + + regno = REGNO (reg) + word; + endregno = regno + HARD_REGNO_NREGS (regno, mode); + + for (i = regno; i < endregno; i++) + { + SET_HARD_REG_BIT (hard_regs_live, i); + CLEAR_HARD_REG_BIT (hard_regs_saved, i); + CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); + } +} + +/* Here when a REG_DEAD note records the last use of a reg. Clear + the appropriate bit or bits in hard_regs_live. Again we can ignore + pseudos. */ + +static void +clear_reg_live (reg) + rtx reg; +{ + register int regno, endregno, i; + + if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) + return; + + regno = REGNO (reg); + endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); + + for (i = regno; i < endregno; i++) + { + CLEAR_HARD_REG_BIT (hard_regs_live, i); + CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); + CLEAR_HARD_REG_BIT (hard_regs_saved, i); + } +} + +/* If any register currently residing in the save area is referenced in X, + which is part of INSN, emit code to restore the register in front of INSN. + INSN_MODE is the mode to assign to any insns that we add. */ + +static void +restore_referenced_regs (x, insn, insn_mode) + rtx x; + rtx insn; + enum machine_mode insn_mode; +{ + enum rtx_code code = GET_CODE (x); + char *fmt; + int i, j; + + if (code == CLOBBER) + return; + + if (code == REG) + { + int regno = REGNO (x); + + /* If this is a pseudo, scan its memory location, since it might + involve the use of another register, which might be saved. */ + + if (regno >= FIRST_PSEUDO_REGISTER + && reg_equiv_mem[regno] != 0) + restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0), + insn, insn_mode); + else if (regno >= FIRST_PSEUDO_REGISTER + && reg_equiv_address[regno] != 0) + restore_referenced_regs (reg_equiv_address[regno], + insn, insn_mode); + + /* Otherwise if this is a hard register, restore any piece of it that + is currently saved. */ + + else if (regno < FIRST_PSEUDO_REGISTER) + { + int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x)); + /* Save at most SAVEREGS at a time. This can not be larger than + MOVE_MAX, because that causes insert_save_restore to fail. */ + int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD); + int endregno = regno + numregs; + + for (i = regno; i < endregno; i++) + if (TEST_HARD_REG_BIT (hard_regs_need_restore, i)) + i += insert_save_restore (insn, 0, i, insn_mode, saveregs); + } + + return; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + restore_referenced_regs (XEXP (x, i), insn, insn_mode); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode); + } +} + +/* Insert a sequence of insns to save or restore, SAVE_P says which, + REGNO. Place these insns in front of INSN. INSN_MODE is the mode + to assign to these insns. MAXRESTORE is the maximum number of registers + which should be restored during this call (when SAVE_P == 0). It should + never be less than 1 since we only work with entire registers. + + Note that we have verified in init_caller_save that we can do this + with a simple SET, so use it. Set INSN_CODE to what we save there + since the address might not be valid so the insn might not be recognized. + These insns will be reloaded and have register elimination done by + find_reload, so we need not worry about that here. + + Return the extra number of registers saved. */ + +static int +insert_save_restore (insn, save_p, regno, insn_mode, maxrestore) + rtx insn; + int save_p; + int regno; + enum machine_mode insn_mode; + int maxrestore; +{ + rtx pat; + enum insn_code code; + int i, numregs; + + /* A common failure mode if register status is not correct in the RTL + is for this routine to be called with a REGNO we didn't expect to + save. That will cause us to write an insn with a (nil) SET_DEST + or SET_SRC. Instead of doing so and causing a crash later, check + for this common case and abort here instead. This will remove one + step in debugging such problems. */ + + if (regno_save_mem[regno][1] == 0) + abort (); + +#ifdef HAVE_cc0 + /* If INSN references CC0, put our insns in front of the insn that sets + CC0. This is always safe, since the only way we could be passed an + insn that references CC0 is for a restore, and doing a restore earlier + isn't a problem. We do, however, assume here that CALL_INSNs don't + reference CC0. Guard against non-INSN's like CODE_LABEL. */ + + if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) + && reg_referenced_p (cc0_rtx, PATTERN (insn))) + insn = prev_nonnote_insn (insn); +#endif + + /* Get the pattern to emit and update our status. */ + if (save_p) + { + int i, j, k; + int ok; + + /* See if we can save several registers with a single instruction. + Work backwards to the single register case. */ + for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--) + { + ok = 1; + if (regno_save_mem[regno][i] != 0) + for (j = 0; j < i; j++) + { + if (! call_used_regs[regno + j] || call_fixed_regs[regno + j] + || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j) + || TEST_HARD_REG_BIT (hard_regs_saved, regno + j)) + ok = 0; + } + else + continue; + + /* Must do this one save at a time */ + if (! ok) + continue; + + pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i], + gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno)); + code = reg_save_code[regno][i]; + + /* Set hard_regs_saved for all the registers we saved. */ + for (k = 0; k < i; k++) + { + SET_HARD_REG_BIT (hard_regs_saved, regno + k); + SET_HARD_REG_BIT (hard_regs_need_restore, regno + k); + n_regs_saved++; + } + + numregs = i; + break; + } + } + else + { + int i, j, k; + int ok; + + /* See if we can restore `maxrestore' registers at once. Work + backwards to the single register case. */ + for (i = maxrestore; i > 0; i--) + { + ok = 1; + if (regno_save_mem[regno][i]) + for (j = 0; j < i; j++) + { + if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j)) + ok = 0; + } + else + continue; + + /* Must do this one restore at a time */ + if (! ok) + continue; + + pat = gen_rtx (SET, VOIDmode, + gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), + regno), + regno_save_mem[regno][i]); + code = reg_restore_code[regno][i]; + + + /* Clear status for all registers we restored. */ + for (k = 0; k < i; k++) + { + CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k); + n_regs_saved--; + } + + numregs = i; + break; + } + } + /* Emit the insn and set the code and mode. */ + + insn = emit_insn_before (pat, insn); + PUT_MODE (insn, insn_mode); + INSN_CODE (insn) = code; + + /* Tell our callers how many extra registers we saved/restored */ + return numregs - 1; +} |