summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gcc/config/i960/i960.c
diff options
context:
space:
mode:
authorNiklas Hallqvist <niklas@cvs.openbsd.org>1995-12-20 01:06:22 +0000
committerNiklas Hallqvist <niklas@cvs.openbsd.org>1995-12-20 01:06:22 +0000
commitc482518380683ee38d14024c1e362a0d681cf967 (patch)
treee69b4f6d3fee3aced20a41f3fdf543fc1c77fb5d /gnu/usr.bin/gcc/config/i960/i960.c
parent76a62188d0db49c65b696d474c855a799fd96dce (diff)
FSF GCC version 2.7.2
Diffstat (limited to 'gnu/usr.bin/gcc/config/i960/i960.c')
-rw-r--r--gnu/usr.bin/gcc/config/i960/i960.c2593
1 files changed, 2593 insertions, 0 deletions
diff --git a/gnu/usr.bin/gcc/config/i960/i960.c b/gnu/usr.bin/gcc/config/i960/i960.c
new file mode 100644
index 00000000000..fde2e43e786
--- /dev/null
+++ b/gnu/usr.bin/gcc/config/i960/i960.c
@@ -0,0 +1,2593 @@
+/* Subroutines used for code generation on intel 80960.
+ Copyright (C) 1992, 1995 Free Software Foundation, Inc.
+ Contributed by Steven McGeady, Intel Corp.
+ Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
+ Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include <stdio.h>
+
+#include "config.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "tree.h"
+#include "insn-codes.h"
+#include "assert.h"
+#include "expr.h"
+#include "function.h"
+#include "recog.h"
+#include <math.h>
+
+/* Save the operands last given to a compare for use when we
+ generate a scc or bcc insn. */
+
+rtx i960_compare_op0, i960_compare_op1;
+
+/* Used to implement #pragma align/noalign. Initialized by OVERRIDE_OPTIONS
+ macro in i960.h. */
+
+static int i960_maxbitalignment;
+static int i960_last_maxbitalignment;
+
+/* Used to implement switching between MEM and ALU insn types, for better
+ C series performance. */
+
+enum insn_types i960_last_insn_type;
+
+/* The leaf-procedure return register. Set only if this is a leaf routine. */
+
+static int i960_leaf_ret_reg;
+
+/* True if replacing tail calls with jumps is OK. */
+
+static int tail_call_ok;
+
+/* A string containing a list of insns to emit in the epilogue so as to
+ restore all registers saved by the prologue. Created by the prologue
+ code as it saves registers away. */
+
+char epilogue_string[1000];
+
+/* A unique number (per function) for return labels. */
+
+static int ret_label = 0;
+
+/* This is true if FNDECL is either a varargs or a stdarg function.
+ This is used to help identify functions that use an argument block. */
+
+#define VARARGS_STDARG_FUNCTION(FNDECL) \
+((TYPE_ARG_TYPES (TREE_TYPE (FNDECL)) != 0 \
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (FNDECL)))) != void_type_node)) \
+ || current_function_varargs)
+
+/* Handle pragmas for compatibility with Intel's compilers. */
+
+/* ??? This is incomplete, since it does not handle all pragmas that the
+ intel compilers understand. */
+
+void
+process_pragma (finput)
+ FILE *finput;
+{
+ int c;
+ int i;
+
+ c = getc (finput);
+ while (c == ' ' || c == '\t')
+ c = getc (finput);
+
+ if (c == 'a'
+ && getc (finput) == 'l'
+ && getc (finput) == 'i'
+ && getc (finput) == 'g'
+ && getc (finput) == 'n'
+ && ((c = getc (finput)) == ' ' || c == '\t' || c == '\n'))
+ {
+ char buf[20];
+ char *s = buf;
+ int align;
+
+ while (c == ' ' || c == '\t')
+ c = getc (finput);
+ if (c == '(')
+ c = getc (finput);
+ while (c >= '0' && c <= '9')
+ {
+ if (s < buf + sizeof buf - 1)
+ *s++ = c;
+ c = getc (finput);
+ }
+ *s = '\0';
+
+ align = atoi (buf);
+ switch (align)
+ {
+ case 0:
+ /* Return to last alignment. */
+ align = i960_last_maxbitalignment / 8;
+ /* Fall through. */
+ case 16:
+ case 8:
+ case 4:
+ case 2:
+ case 1:
+ i960_last_maxbitalignment = i960_maxbitalignment;
+ i960_maxbitalignment = align * 8;
+ break;
+
+ default:
+ /* Silently ignore bad values. */
+ break;
+ }
+
+ /* NOTE: ic960 R3.0 pragma align definition:
+
+ #pragma align [(size)] | (identifier=size[,...])
+ #pragma noalign [(identifier)[,...]]
+
+ (all parens are optional)
+
+ - size is [1,2,4,8,16]
+ - noalign means size==1
+ - applies only to component elements of a struct (and union?)
+ - identifier applies to structure tag (only)
+ - missing identifier means next struct
+
+ - alignment rules for bitfields need more investigation */
+ }
+
+ /* Should be pragma 'far' or equivalent for callx/balx here. */
+
+ ungetc (c, finput);
+}
+
+/* Initialize variables before compiling any files. */
+
+void
+i960_initialize ()
+{
+ if (TARGET_IC_COMPAT2_0)
+ {
+ i960_maxbitalignment = 8;
+ i960_last_maxbitalignment = 128;
+ }
+ else
+ {
+ i960_maxbitalignment = 128;
+ i960_last_maxbitalignment = 8;
+ }
+}
+
+/* Return true if OP can be used as the source of an fp move insn. */
+
+int
+fpmove_src_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (GET_CODE (op) == CONST_DOUBLE || general_operand (op, mode));
+}
+
+#if 0
+/* Return true if OP is a register or zero. */
+
+int
+reg_or_zero_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return register_operand (op, mode) || op == const0_rtx;
+}
+#endif
+
+/* Return truth value of whether OP can be used as an operands in a three
+ address arithmetic insn (such as add %o1,7,%l2) of mode MODE. */
+
+int
+arith_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (register_operand (op, mode) || literal (op, mode));
+}
+
+/* Return true if OP is a register or a valid floating point literal. */
+
+int
+fp_arith_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (register_operand (op, mode) || fp_literal (op, mode));
+}
+
+/* Return true is OP is a register or a valid signed integer literal. */
+
+int
+signed_arith_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (register_operand (op, mode) || signed_literal (op, mode));
+}
+
+/* Return truth value of whether OP is a integer which fits the
+ range constraining immediate operands in three-address insns. */
+
+int
+literal (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return ((GET_CODE (op) == CONST_INT) && INTVAL(op) >= 0 && INTVAL(op) < 32);
+}
+
+/* Return true if OP is a float constant of 1. */
+
+int
+fp_literal_one (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (TARGET_NUMERICS && mode == GET_MODE (op) && op == CONST1_RTX (mode));
+}
+
+/* Return true if OP is a float constant of 0. */
+
+int
+fp_literal_zero (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (TARGET_NUMERICS && mode == GET_MODE (op) && op == CONST0_RTX (mode));
+}
+
+/* Return true if OP is a valid floating point literal. */
+
+int
+fp_literal(op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return fp_literal_zero (op, mode) || fp_literal_one (op, mode);
+}
+
+/* Return true if OP is a valid signed immediate constant. */
+
+int
+signed_literal(op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return ((GET_CODE (op) == CONST_INT) && INTVAL(op) > -32 && INTVAL(op) < 32);
+}
+
+/* Return truth value of statement that OP is a symbolic memory
+ operand of mode MODE. */
+
+int
+symbolic_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == SUBREG)
+ op = SUBREG_REG (op);
+ if (GET_CODE (op) != MEM)
+ return 0;
+ op = XEXP (op, 0);
+ return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
+ || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
+}
+
+/* Return truth value of whether OP is EQ or NE. */
+
+int
+eq_or_neq (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
+}
+
+/* OP is an integer register or a constant. */
+
+int
+arith32_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (register_operand (op, mode))
+ return 1;
+ return (CONSTANT_P (op));
+}
+
+/* Return true if OP is an integer constant which is a power of 2. */
+
+int
+power2_operand (op,mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ return exact_log2 (INTVAL (op)) >= 0;
+}
+
+/* Return true if OP is an integer constant which is the complement of a
+ power of 2. */
+
+int
+cmplpower2_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ return exact_log2 (~ INTVAL (op)) >= 0;
+}
+
+/* If VAL has only one bit set, return the index of that bit. Otherwise
+ return -1. */
+
+int
+bitpos (val)
+ unsigned int val;
+{
+ register int i;
+
+ for (i = 0; val != 0; i++, val >>= 1)
+ {
+ if (val & 1)
+ {
+ if (val != 1)
+ return -1;
+ return i;
+ }
+ }
+ return -1;
+}
+
+/* Return non-zero if OP is a mask, i.e. all one bits are consecutive.
+ The return value indicates how many consecutive non-zero bits exist
+ if this is a mask. This is the same as the next function, except that
+ it does not indicate what the start and stop bit positions are. */
+
+int
+is_mask (val)
+ unsigned int val;
+{
+ register int start, end, i;
+
+ start = -1;
+ for (i = 0; val != 0; val >>= 1, i++)
+ {
+ if (val & 1)
+ {
+ if (start < 0)
+ start = i;
+
+ end = i;
+ continue;
+ }
+ /* Still looking for the first bit. */
+ if (start < 0)
+ continue;
+
+ /* We've seen the start of a bit sequence, and now a zero. There
+ must be more one bits, otherwise we would have exited the loop.
+ Therefore, it is not a mask. */
+ if (val)
+ return 0;
+ }
+
+ /* The bit string has ones from START to END bit positions only. */
+ return end - start + 1;
+}
+
+/* If VAL is a mask, then return nonzero, with S set to the starting bit
+ position and E set to the ending bit position of the mask. The return
+ value indicates how many consecutive bits exist in the mask. This is
+ the same as the previous function, except that it also indicates the
+ start and end bit positions of the mask. */
+
+int
+bitstr (val, s, e)
+ unsigned int val;
+ int *s, *e;
+{
+ register int start, end, i;
+
+ start = -1;
+ end = -1;
+ for (i = 0; val != 0; val >>= 1, i++)
+ {
+ if (val & 1)
+ {
+ if (start < 0)
+ start = i;
+
+ end = i;
+ continue;
+ }
+
+ /* Still looking for the first bit. */
+ if (start < 0)
+ continue;
+
+ /* We've seen the start of a bit sequence, and now a zero. There
+ must be more one bits, otherwise we would have exited the loop.
+ Therefor, it is not a mask. */
+ if (val)
+ {
+ start = -1;
+ end = -1;
+ break;
+ }
+ }
+
+ /* The bit string has ones from START to END bit positions only. */
+ *s = start;
+ *e = end;
+ return ((start < 0) ? 0 : end - start + 1);
+}
+
+/* Return the machine mode to use for a comparison. */
+
+enum machine_mode
+select_cc_mode (op, x)
+ RTX_CODE op;
+ rtx x;
+{
+ if (op == GTU || op == LTU || op == GEU || op == LEU)
+ return CC_UNSmode;
+ return CCmode;
+}
+
+/* X and Y are two things to compare using CODE. Emit the compare insn and
+ return the rtx for register 36 in the proper mode. */
+
+rtx
+gen_compare_reg (code, x, y)
+ enum rtx_code code;
+ rtx x, y;
+{
+ rtx cc_reg;
+ enum machine_mode ccmode = SELECT_CC_MODE (code, x, y);
+ enum machine_mode mode
+ = GET_MODE (x) == VOIDmode ? GET_MODE (y) : GET_MODE (x);
+
+ if (mode == SImode)
+ {
+ if (! arith_operand (x, mode))
+ x = force_reg (SImode, x);
+ if (! arith_operand (y, mode))
+ y = force_reg (SImode, y);
+ }
+
+ cc_reg = gen_rtx (REG, ccmode, 36);
+ emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
+ gen_rtx (COMPARE, ccmode, x, y)));
+
+ return cc_reg;
+}
+
+/* For the i960, REG is cost 1, REG+immed CONST is cost 2, REG+REG is cost 2,
+ REG+nonimmed CONST is cost 4. REG+SYMBOL_REF, SYMBOL_REF, and similar
+ are 4. Indexed addresses are cost 6. */
+
+/* ??? Try using just RTX_COST, i.e. not defining ADDRESS_COST. */
+
+int
+i960_address_cost (x)
+ rtx x;
+{
+#if 0
+ /* Handled before calling here. */
+ if (GET_CODE (x) == REG)
+ return 1;
+#endif
+ if (GET_CODE (x) == PLUS)
+ {
+ rtx base = XEXP (x, 0);
+ rtx offset = XEXP (x, 1);
+
+ if (GET_CODE (base) == SUBREG)
+ base = SUBREG_REG (base);
+ if (GET_CODE (offset) == SUBREG)
+ offset = SUBREG_REG (offset);
+
+ if (GET_CODE (base) == REG)
+ {
+ if (GET_CODE (offset) == REG)
+ return 2;
+ if (GET_CODE (offset) == CONST_INT)
+ {
+ if ((unsigned)INTVAL (offset) < 2047)
+ return 2;
+ return 4;
+ }
+ if (CONSTANT_P (offset))
+ return 4;
+ }
+ if (GET_CODE (base) == PLUS || GET_CODE (base) == MULT)
+ return 6;
+
+ /* This is an invalid address. The return value doesn't matter, but
+ for convenience we make this more expensive than anything else. */
+ return 12;
+ }
+ if (GET_CODE (x) == MULT)
+ return 6;
+
+ /* Symbol_refs and other unrecognized addresses are cost 4. */
+ return 4;
+}
+
+/* Emit insns to move operands[1] into operands[0].
+
+ Return 1 if we have written out everything that needs to be done to
+ do the move. Otherwise, return 0 and the caller will emit the move
+ normally. */
+
+int
+emit_move_sequence (operands, mode)
+ rtx *operands;
+ enum machine_mode mode;
+{
+ /* We can only store registers to memory. */
+
+ if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) != REG)
+ operands[1] = force_reg (mode, operands[1]);
+
+ /* Storing multi-word values in unaligned hard registers to memory may
+ require a scratch since we have to store them a register at a time and
+ adding 4 to the memory address may not yield a valid insn. */
+ /* ??? We don't always need the scratch, but that would complicate things.
+ Maybe later. */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && GET_CODE (operands[0]) == MEM
+ && GET_CODE (operands[1]) == REG
+ && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER
+ && ! HARD_REGNO_MODE_OK (REGNO (operands[1]), mode))
+ {
+ emit_insn (gen_rtx (PARALLEL, VOIDmode,
+ gen_rtvec (2,
+ gen_rtx (SET, VOIDmode,
+ operands[0], operands[1]),
+ gen_rtx (CLOBBER, VOIDmode,
+ gen_rtx (SCRATCH, Pmode)))));
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Output assembler to move a double word value. */
+
+char *
+i960_output_move_double (dst, src)
+ rtx dst, src;
+{
+ rtx operands[5];
+
+ if (GET_CODE (dst) == REG
+ && GET_CODE (src) == REG)
+ {
+ if ((REGNO (src) & 1)
+ || (REGNO (dst) & 1))
+ {
+ /* We normally copy the low-numbered register first. However, if
+ the second source register is the same as the first destination
+ register, we must copy in the opposite order. */
+ if (REGNO (src) + 1 == REGNO (dst))
+ return "mov %D1,%D0\n\tmov %1,%0";
+ else
+ return "mov %1,%0\n\tmov %D1,%D0";
+ }
+ else
+ return "movl %1,%0";
+ }
+ else if (GET_CODE (dst) == REG
+ && GET_CODE (src) == CONST_INT
+ && CONST_OK_FOR_LETTER_P (INTVAL (src), 'I'))
+ {
+ if (REGNO (dst) & 1)
+ return "mov %1,%0\n\tmov 0,%D0";
+ else
+ return "movl %1,%0";
+ }
+ else if (GET_CODE (dst) == REG
+ && GET_CODE (src) == MEM)
+ {
+ if (REGNO (dst) & 1)
+ {
+ /* One can optimize a few cases here, but you have to be
+ careful of clobbering registers used in the address and
+ edge conditions. */
+ operands[0] = dst;
+ operands[1] = src;
+ operands[2] = gen_rtx (REG, Pmode, REGNO (dst) + 1);
+ operands[3] = gen_rtx (MEM, word_mode, operands[2]);
+ operands[4] = adj_offsettable_operand (operands[3], UNITS_PER_WORD);
+ output_asm_insn ("lda %1,%2\n\tld %3,%0\n\tld %4,%D0", operands);
+ return "";
+ }
+ else
+ return "ldl %1,%0";
+ }
+ else if (GET_CODE (dst) == MEM
+ && GET_CODE (src) == REG)
+ {
+ if (REGNO (src) & 1)
+ {
+ /* This is handled by emit_move_sequence so we shouldn't get here. */
+ abort ();
+ }
+ return "stl %1,%0";
+ }
+ else
+ abort ();
+}
+
+/* Output assembler to move a quad word value. */
+
+char *
+i960_output_move_quad (dst, src)
+ rtx dst, src;
+{
+ rtx operands[7];
+
+ if (GET_CODE (dst) == REG
+ && GET_CODE (src) == REG)
+ {
+ if ((REGNO (src) & 3)
+ || (REGNO (dst) & 3))
+ {
+ /* We normally copy starting with the low numbered register.
+ However, if there is an overlap such that the first dest reg
+ is <= the last source reg but not < the first source reg, we
+ must copy in the opposite order. */
+ if (REGNO (dst) <= REGNO (src) + 3
+ && REGNO (dst) >= REGNO (src))
+ return "mov %F1,%F0\n\tmov %E1,%E0\n\tmov %D1,%D0\n\tmov %1,%0";
+ else
+ return "mov %1,%0\n\tmov %D1,%D0\n\tmov %E1,%E0\n\tmov %F1,%F0";
+ }
+ else
+ return "movq %1,%0";
+ }
+ else if (GET_CODE (dst) == REG
+ && GET_CODE (src) == CONST_INT
+ && CONST_OK_FOR_LETTER_P (INTVAL (src), 'I'))
+ {
+ if (REGNO (dst) & 3)
+ return "mov %1,%0\n\tmov 0,%D0\n\tmov 0,%E0\n\tmov 0,%F0";
+ else
+ return "movq %1,%0";
+ }
+ else if (GET_CODE (dst) == REG
+ && GET_CODE (src) == MEM)
+ {
+ if (REGNO (dst) & 3)
+ {
+ /* One can optimize a few cases here, but you have to be
+ careful of clobbering registers used in the address and
+ edge conditions. */
+ operands[0] = dst;
+ operands[1] = src;
+ operands[2] = gen_rtx (REG, Pmode, REGNO (dst) + 3);
+ operands[3] = gen_rtx (MEM, word_mode, operands[2]);
+ operands[4] = adj_offsettable_operand (operands[3], UNITS_PER_WORD);
+ operands[5] = adj_offsettable_operand (operands[4], UNITS_PER_WORD);
+ operands[6] = adj_offsettable_operand (operands[5], UNITS_PER_WORD);
+ output_asm_insn ("lda %1,%2\n\tld %3,%0\n\tld %4,%D0\n\tld %5,%E0\n\tld %6,%F0", operands);
+ return "";
+ }
+ else
+ return "ldq %1,%0";
+ }
+ else if (GET_CODE (dst) == MEM
+ && GET_CODE (src) == REG)
+ {
+ if (REGNO (src) & 3)
+ {
+ /* This is handled by emit_move_sequence so we shouldn't get here. */
+ abort ();
+ }
+ return "stq %1,%0";
+ }
+ else
+ abort ();
+}
+
+/* Emit insns to load a constant to non-floating point registers.
+ Uses several strategies to try to use as few insns as possible. */
+
+char *
+i960_output_ldconst (dst, src)
+ register rtx dst, src;
+{
+ register int rsrc1;
+ register unsigned rsrc2;
+ enum machine_mode mode = GET_MODE (dst);
+ rtx operands[4];
+
+ operands[0] = operands[2] = dst;
+ operands[1] = operands[3] = src;
+
+ /* Anything that isn't a compile time constant, such as a SYMBOL_REF,
+ must be a ldconst insn. */
+
+ if (GET_CODE (src) != CONST_INT && GET_CODE (src) != CONST_DOUBLE)
+ {
+ output_asm_insn ("ldconst %1,%0", operands);
+ return "";
+ }
+ else if (mode == XFmode)
+ {
+ REAL_VALUE_TYPE d;
+ long value_long[3];
+ int i;
+
+ if (fp_literal_zero (src, XFmode))
+ return "movt 0,%0";
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, src);
+ REAL_VALUE_TO_TARGET_LONG_DOUBLE (d, value_long);
+
+ output_asm_insn ("# ldconst %1,%0",operands);
+
+ for (i = 0; i < 3; i++)
+ {
+ operands[0] = gen_rtx (REG, SImode, REGNO (dst) + i);
+ operands[1] = GEN_INT (value_long[i]);
+ output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
+ operands);
+ }
+
+ return "";
+ }
+ else if (mode == DFmode)
+ {
+ rtx first, second;
+
+ if (fp_literal_zero (src, DFmode))
+ return "movl 0,%0";
+
+ split_double (src, &first, &second);
+
+ output_asm_insn ("# ldconst %1,%0",operands);
+
+ operands[0] = gen_rtx (REG, SImode, REGNO (dst));
+ operands[1] = first;
+ output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
+ operands);
+ operands[0] = gen_rtx (REG, SImode, REGNO (dst) + 1);
+ operands[1] = second;
+ output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
+ operands);
+ return "";
+ }
+ else if (mode == SFmode)
+ {
+ REAL_VALUE_TYPE d;
+ long value;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, src);
+ REAL_VALUE_TO_TARGET_SINGLE (d, value);
+
+ output_asm_insn ("# ldconst %1,%0",operands);
+ operands[0] = gen_rtx (REG, SImode, REGNO (dst));
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, value);
+ output_asm_insn (i960_output_ldconst (operands[0], operands[1]),
+ operands);
+ return "";
+ }
+ else if (mode == TImode)
+ {
+ /* ??? This is currently not handled at all. */
+ abort ();
+
+ /* Note: lowest order word goes in lowest numbered reg. */
+ rsrc1 = INTVAL (src);
+ if (rsrc1 >= 0 && rsrc1 < 32)
+ return "movq %1,%0";
+ else
+ output_asm_insn ("movq\t0,%0\t# ldconstq %1,%0",operands);
+ /* Go pick up the low-order word. */
+ }
+ else if (mode == DImode)
+ {
+ rtx upperhalf, lowerhalf, xoperands[2];
+
+ if (GET_CODE (src) == CONST_DOUBLE || GET_CODE (src) == CONST_INT)
+ split_double (src, &lowerhalf, &upperhalf);
+
+ else
+ abort ();
+
+ /* Note: lowest order word goes in lowest numbered reg. */
+ /* Numbers from 0 to 31 can be handled with a single insn. */
+ rsrc1 = INTVAL (lowerhalf);
+ if (upperhalf == const0_rtx && rsrc1 >= 0 && rsrc1 < 32)
+ return "movl %1,%0";
+
+ /* Output the upper half with a recursive call. */
+ xoperands[0] = gen_rtx (REG, SImode, REGNO (dst) + 1);
+ xoperands[1] = upperhalf;
+ output_asm_insn (i960_output_ldconst (xoperands[0], xoperands[1]),
+ xoperands);
+ /* The lower word is emitted as normally. */
+ }
+ else
+ {
+ rsrc1 = INTVAL (src);
+ if (mode == QImode)
+ {
+ if (rsrc1 > 0xff)
+ rsrc1 &= 0xff;
+ }
+ else if (mode == HImode)
+ {
+ if (rsrc1 > 0xffff)
+ rsrc1 &= 0xffff;
+ }
+ }
+
+ if (rsrc1 >= 0)
+ {
+ /* ldconst 0..31,X -> mov 0..31,X */
+ if (rsrc1 < 32)
+ {
+ if (i960_last_insn_type == I_TYPE_REG && TARGET_C_SERIES)
+ return "lda %1,%0";
+ return "mov %1,%0";
+ }
+
+ /* ldconst 32..63,X -> add 31,nn,X */
+ if (rsrc1 < 63)
+ {
+ if (i960_last_insn_type == I_TYPE_REG && TARGET_C_SERIES)
+ return "lda %1,%0";
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, rsrc1 - 31);
+ output_asm_insn ("addo\t31,%1,%0\t# ldconst %3,%0", operands);
+ return "";
+ }
+ }
+ else if (rsrc1 < 0)
+ {
+ /* ldconst -1..-31 -> sub 0,0..31,X */
+ if (rsrc1 >= -31)
+ {
+ /* return 'sub -(%1),0,%0' */
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, - rsrc1);
+ output_asm_insn ("subo\t%1,0,%0\t# ldconst %3,%0", operands);
+ return "";
+ }
+
+ /* ldconst -32 -> not 31,X */
+ if (rsrc1 == -32)
+ {
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, ~rsrc1);
+ output_asm_insn ("not\t%1,%0 # ldconst %3,%0", operands);
+ return "";
+ }
+ }
+
+ /* If const is a single bit. */
+ if (bitpos (rsrc1) >= 0)
+ {
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, bitpos (rsrc1));
+ output_asm_insn ("setbit\t%1,0,%0\t# ldconst %3,%0", operands);
+ return "";
+ }
+
+ /* If const is a bit string of less than 6 bits (1..31 shifted). */
+ if (is_mask (rsrc1))
+ {
+ int s, e;
+
+ if (bitstr (rsrc1, &s, &e) < 6)
+ {
+ rsrc2 = ((unsigned int) rsrc1) >> s;
+ operands[1] = gen_rtx (CONST_INT, VOIDmode, rsrc2);
+ operands[2] = gen_rtx (CONST_INT, VOIDmode, s);
+ output_asm_insn ("shlo\t%2,%1,%0\t# ldconst %3,%0", operands);
+ return "";
+ }
+ }
+
+ /* Unimplemented cases:
+ const is in range 0..31 but rotated around end of word:
+ ror 31,3,g0 -> ldconst 0xe0000003,g0
+
+ and any 2 instruction cases that might be worthwhile */
+
+ output_asm_insn ("ldconst %1,%0", operands);
+ return "";
+}
+
+/* Determine if there is an opportunity for a bypass optimization.
+ Bypass succeeds on the 960K* if the destination of the previous
+ instruction is the second operand of the current instruction.
+ Bypass always succeeds on the C*.
+
+ Return 1 if the pattern should interchange the operands.
+
+ CMPBR_FLAG is true if this is for a compare-and-branch insn.
+ OP1 and OP2 are the two source operands of a 3 operand insn. */
+
+int
+i960_bypass (insn, op1, op2, cmpbr_flag)
+ register rtx insn, op1, op2;
+ int cmpbr_flag;
+{
+ register rtx prev_insn, prev_dest;
+
+ if (TARGET_C_SERIES)
+ return 0;
+
+ /* Can't do this if op1 isn't a register. */
+ if (! REG_P (op1))
+ return 0;
+
+ /* Can't do this for a compare-and-branch if both ops aren't regs. */
+ if (cmpbr_flag && ! REG_P (op2))
+ return 0;
+
+ prev_insn = prev_real_insn (insn);
+
+ if (prev_insn && GET_CODE (prev_insn) == INSN
+ && GET_CODE (PATTERN (prev_insn)) == SET)
+ {
+ prev_dest = SET_DEST (PATTERN (prev_insn));
+ if ((GET_CODE (prev_dest) == REG && REGNO (prev_dest) == REGNO (op1))
+ || (GET_CODE (prev_dest) == SUBREG
+ && GET_CODE (SUBREG_REG (prev_dest)) == REG
+ && REGNO (SUBREG_REG (prev_dest)) == REGNO (op1)))
+ return 1;
+ }
+ return 0;
+}
+
+/* Output the code which declares the function name. This also handles
+ leaf routines, which have special requirements, and initializes some
+ global variables. */
+
+void
+i960_function_name_declare (file, name, fndecl)
+ FILE *file;
+ char *name;
+ tree fndecl;
+{
+ register int i, j;
+ int leaf_proc_ok;
+ rtx insn;
+
+ /* Increment global return label. */
+
+ ret_label++;
+
+ /* Compute whether tail calls and leaf routine optimizations can be performed
+ for this function. */
+
+ if (TARGET_TAILCALL)
+ tail_call_ok = 1;
+ else
+ tail_call_ok = 0;
+
+ if (TARGET_LEAFPROC)
+ leaf_proc_ok = 1;
+ else
+ leaf_proc_ok = 0;
+
+ /* Even if nobody uses extra parms, can't have leafproc or tail calls if
+ argblock, because argblock uses g14 implicitly. */
+
+ if (current_function_args_size != 0 || VARARGS_STDARG_FUNCTION (fndecl))
+ {
+ tail_call_ok = 0;
+ leaf_proc_ok = 0;
+ }
+
+ /* See if caller passes in an address to return value. */
+
+ if (aggregate_value_p (DECL_RESULT (fndecl)))
+ {
+ tail_call_ok = 0;
+ leaf_proc_ok = 0;
+ }
+
+ /* Can not use tail calls or make this a leaf routine if there is a non
+ zero frame size. */
+
+ if (get_frame_size () != 0)
+ leaf_proc_ok = 0;
+
+ /* I don't understand this condition, and do not think that it is correct.
+ Apparently this is just checking whether the frame pointer is used, and
+ we can't trust regs_ever_live[fp] since it is (almost?) always set. */
+
+ if (tail_call_ok)
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == INSN
+ && reg_mentioned_p (frame_pointer_rtx, insn))
+ {
+ tail_call_ok = 0;
+ break;
+ }
+
+ /* Check for CALL insns. Can not be a leaf routine if there are any. */
+
+ if (leaf_proc_ok)
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ leaf_proc_ok = 0;
+ break;
+ }
+
+ /* Can not be a leaf routine if any non-call clobbered registers are
+ used in this function. */
+
+ if (leaf_proc_ok)
+ for (i = 0, j = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (regs_ever_live[i]
+ && ((! call_used_regs[i]) || (i > 7 && i < 12)))
+ {
+ /* Global registers. */
+ if (i < 16 && i > 7 && i != 13)
+ leaf_proc_ok = 0;
+ /* Local registers. */
+ else if (i < 32)
+ leaf_proc_ok = 0;
+ }
+
+ /* Now choose a leaf return register, if we can find one, and if it is
+ OK for this to be a leaf routine. */
+
+ i960_leaf_ret_reg = -1;
+
+ if (optimize && leaf_proc_ok)
+ {
+ for (i960_leaf_ret_reg = -1, i = 0; i < 8; i++)
+ if (regs_ever_live[i] == 0)
+ {
+ i960_leaf_ret_reg = i;
+ regs_ever_live[i] = 1;
+ break;
+ }
+ }
+
+ /* Do this after choosing the leaf return register, so it will be listed
+ if one was chosen. */
+
+ fprintf (file, "\t# Function '%s'\n", (name[0] == '*' ? &name[1] : name));
+ fprintf (file, "\t# Registers used: ");
+
+ for (i = 0, j = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (regs_ever_live[i])
+ {
+ fprintf (file, "%s%s ", reg_names[i], call_used_regs[i] ? "" : "*");
+
+ if (i > 15 && j == 0)
+ {
+ fprintf (file,"\n\t#\t\t ");
+ j++;
+ }
+ }
+ }
+
+ fprintf (file, "\n");
+
+ if (i960_leaf_ret_reg >= 0)
+ {
+ /* Make it a leaf procedure. */
+
+ if (TREE_PUBLIC (fndecl))
+ fprintf (file,"\t.globl\t%s.lf\n", (name[0] == '*' ? &name[1] : name));
+
+ fprintf (file, "\t.leafproc\t");
+ assemble_name (file, name);
+ fprintf (file, ",%s.lf\n", (name[0] == '*' ? &name[1] : name));
+ ASM_OUTPUT_LABEL (file, name);
+ fprintf (file, "\tlda LR%d,g14\n", ret_label);
+ fprintf (file, "%s.lf:\n", (name[0] == '*' ? &name[1] : name));
+ fprintf (file, "\tmov g14,g%d\n", i960_leaf_ret_reg);
+
+ if (TARGET_C_SERIES)
+ {
+ fprintf (file, "\tlda 0,g14\n");
+ i960_last_insn_type = I_TYPE_MEM;
+ }
+ else
+ {
+ fprintf (file, "\tmov 0,g14\n");
+ i960_last_insn_type = I_TYPE_REG;
+ }
+ }
+ else
+ {
+ ASM_OUTPUT_LABEL (file, name);
+ i960_last_insn_type = I_TYPE_CTRL;
+ }
+}
+
+/* Compute and return the frame size. */
+
+int
+compute_frame_size (size)
+ int size;
+{
+ int actual_fsize;
+ int outgoing_args_size = current_function_outgoing_args_size;
+
+ /* The STARTING_FRAME_OFFSET is totally hidden to us as far
+ as size is concerned. */
+ actual_fsize = (size + 15) & -16;
+ actual_fsize += (outgoing_args_size + 15) & -16;
+
+ return actual_fsize;
+}
+
+/* Output code for the function prologue. */
+
+void
+i960_function_prologue (file, size)
+ FILE *file;
+ unsigned int size;
+{
+ register int i, j, nr;
+ int n_iregs = 0;
+ int rsize = 0;
+ int actual_fsize, offset;
+ char tmpstr[1000];
+ /* -1 if reg must be saved on proc entry, 0 if available, 1 if saved
+ somewhere. */
+ int regs[FIRST_PSEUDO_REGISTER];
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (regs_ever_live[i]
+ && ((! call_used_regs[i]) || (i > 7 && i < 12)))
+ {
+ regs[i] = -1;
+ /* Count global registers that need saving. */
+ if (i < 16)
+ n_iregs++;
+ }
+ else
+ regs[i] = 0;
+
+ epilogue_string[0] = '\0';
+
+ if (profile_flag || profile_block_flag)
+ {
+ /* When profiling, we may use registers 20 to 27 to save arguments, so
+ they can't be used here for saving globals. J is the number of
+ argument registers the mcount call will save. */
+ for (j = 7; j >= 0 && ! regs_ever_live[j]; j--)
+ ;
+
+ for (i = 20; i <= j + 20; i++)
+ regs[i] = -1;
+ }
+
+ /* First look for local registers to save globals in. */
+ for (i = 0; i < 16; i++)
+ {
+ if (regs[i] == 0)
+ continue;
+
+ /* Start at r4, not r3. */
+ for (j = 20; j < 32; j++)
+ {
+ if (regs[j] != 0)
+ continue;
+
+ regs[i] = 1;
+ regs[j] = -1;
+ regs_ever_live[j] = 1;
+ nr = 1;
+ if (i <= 14 && i % 2 == 0 && j <= 30 && j % 2 == 0
+ && regs[i+1] != 0 && regs[j+1] == 0)
+ {
+ nr = 2;
+ regs[i+1] = 1;
+ regs[j+1] = -1;
+ regs_ever_live[j+1] = 1;
+ }
+ if (nr == 2 && i <= 12 && i % 4 == 0 && j <= 28 && j % 4 == 0
+ && regs[i+2] != 0 && regs[j+2] == 0)
+ {
+ nr = 3;
+ regs[i+2] = 1;
+ regs[j+2] = -1;
+ regs_ever_live[j+2] = 1;
+ }
+ if (nr == 3 && regs[i+3] != 0 && regs[j+3] == 0)
+ {
+ nr = 4;
+ regs[i+3] = 1;
+ regs[j+3] = -1;
+ regs_ever_live[j+3] = 1;
+ }
+
+ fprintf (file, "\tmov%s %s,%s\n",
+ ((nr == 4) ? "q" :
+ (nr == 3) ? "t" :
+ (nr == 2) ? "l" : ""),
+ reg_names[i], reg_names[j]);
+ sprintf (tmpstr, "\tmov%s %s,%s\n",
+ ((nr == 4) ? "q" :
+ (nr == 3) ? "t" :
+ (nr == 2) ? "l" : ""),
+ reg_names[j], reg_names[i]);
+ strcat (epilogue_string, tmpstr);
+
+ n_iregs -= nr;
+ i += nr-1;
+ break;
+ }
+ }
+
+ /* N_iregs is now the number of global registers that haven't been saved
+ yet. */
+
+ rsize = (n_iregs * 4);
+ actual_fsize = compute_frame_size (size) + rsize;
+#if 0
+ /* ??? The 1.2.1 compiler does this also. This is meant to round the frame
+ size up to the nearest multiple of 16. I don't know whether this is
+ necessary, or even desirable.
+
+ The frame pointer must be aligned, but the call instruction takes care of
+ that. If we leave the stack pointer unaligned, we may save a little on
+ dynamic stack allocation. And we don't lose, at least according to the
+ i960CA manual. */
+ actual_fsize = (actual_fsize + 15) & ~0xF;
+#endif
+
+ /* Allocate space for register save and locals. */
+ if (actual_fsize > 0)
+ {
+ if (actual_fsize < 32)
+ fprintf (file, "\taddo %d,sp,sp\n", actual_fsize);
+ else
+ fprintf (file, "\tlda\t%d(sp),sp\n", actual_fsize);
+ }
+
+ /* Take hardware register save area created by the call instruction
+ into account, but store them before the argument block area. */
+ offset = 64 + actual_fsize - compute_frame_size (0) - rsize;
+ /* Save registers on stack if needed. */
+ for (i = 0, j = n_iregs; j > 0 && i < 16; i++)
+ {
+ if (regs[i] != -1)
+ continue;
+
+ nr = 1;
+
+ if (i <= 14 && i % 2 == 0 && regs[i+1] == -1 && offset % 2 == 0)
+ nr = 2;
+
+ if (nr == 2 && i <= 12 && i % 4 == 0 && regs[i+2] == -1
+ && offset % 4 == 0)
+ nr = 3;
+
+ if (nr == 3 && regs[i+3] == -1)
+ nr = 4;
+
+ fprintf (file,"\tst%s %s,%d(fp)\n",
+ ((nr == 4) ? "q" :
+ (nr == 3) ? "t" :
+ (nr == 2) ? "l" : ""),
+ reg_names[i], offset);
+ sprintf (tmpstr,"\tld%s %d(fp),%s\n",
+ ((nr == 4) ? "q" :
+ (nr == 3) ? "t" :
+ (nr == 2) ? "l" : ""),
+ offset, reg_names[i]);
+ strcat (epilogue_string, tmpstr);
+ i += nr-1;
+ j -= nr;
+ offset += nr * 4;
+ }
+
+ if (actual_fsize == 0 && size == 0 && rsize == 0)
+ return;
+
+ fprintf (file, "\t#Prologue stats:\n");
+ fprintf (file, "\t# Total Frame Size: %d bytes\n", actual_fsize);
+
+ if (size)
+ fprintf (file, "\t# Local Variable Size: %d bytes\n", size);
+ if (rsize)
+ fprintf (file, "\t# Register Save Size: %d regs, %d bytes\n",
+ n_iregs, rsize);
+ fprintf (file, "\t#End Prologue#\n");
+}
+
+/* Output code for the function profiler. */
+
+void
+output_function_profiler (file, labelno)
+ FILE *file;
+ int labelno;
+{
+ /* The last used parameter register. */
+ int last_parm_reg;
+ int i, j, increment;
+ int varargs_stdarg_function
+ = VARARGS_STDARG_FUNCTION (current_function_decl);
+
+ /* Figure out the last used parameter register. The proper thing to do
+ is to walk incoming args of the function. A function might have live
+ parameter registers even if it has no incoming args. Note that we
+ don't have to save parameter registers g8 to g11 because they are
+ call preserved. */
+
+ /* See also output_function_prologue, which tries to use local registers
+ for preserved call-saved global registers. */
+
+ for (last_parm_reg = 7;
+ last_parm_reg >= 0 && ! regs_ever_live[last_parm_reg];
+ last_parm_reg--)
+ ;
+
+ /* Save parameter registers in regs r4 (20) to r11 (27). */
+
+ for (i = 0, j = 4; i <= last_parm_reg; i += increment, j += increment)
+ {
+ if (i % 4 == 0 && (last_parm_reg - i) >= 3)
+ increment = 4;
+ else if (i % 4 == 0 && (last_parm_reg - i) >= 2)
+ increment = 3;
+ else if (i % 2 == 0 && (last_parm_reg - i) >= 1)
+ increment = 2;
+ else
+ increment = 1;
+
+ fprintf (file, "\tmov%s g%d,r%d\n",
+ (increment == 4 ? "q" : increment == 3 ? "t"
+ : increment == 2 ? "l": ""), i, j);
+ }
+
+ /* If this function uses the arg pointer, then save it in r3 and then
+ set it to zero. */
+
+ if (current_function_args_size != 0 || varargs_stdarg_function)
+ fprintf (file, "\tmov g14,r3\n\tmov 0,g14\n");
+
+ /* Load location address into g0 and call mcount. */
+
+ fprintf (file, "\tlda\tLP%d,g0\n\tcallx\tmcount\n", labelno);
+
+ /* If this function uses the arg pointer, restore it. */
+
+ if (current_function_args_size != 0 || varargs_stdarg_function)
+ fprintf (file, "\tmov r3,g14\n");
+
+ /* Restore parameter registers. */
+
+ for (i = 0, j = 4; i <= last_parm_reg; i += increment, j += increment)
+ {
+ if (i % 4 == 0 && (last_parm_reg - i) >= 3)
+ increment = 4;
+ else if (i % 4 == 0 && (last_parm_reg - i) >= 2)
+ increment = 3;
+ else if (i % 2 == 0 && (last_parm_reg - i) >= 1)
+ increment = 2;
+ else
+ increment = 1;
+
+ fprintf (file, "\tmov%s r%d,g%d\n",
+ (increment == 4 ? "q" : increment == 3 ? "t"
+ : increment == 2 ? "l": ""), j, i);
+ }
+}
+
+/* Output code for the function epilogue. */
+
+void
+i960_function_epilogue (file, size)
+ FILE *file;
+ unsigned int size;
+{
+ if (i960_leaf_ret_reg >= 0)
+ {
+ fprintf (file, "LR%d: ret\n", ret_label);
+ return;
+ }
+
+ if (*epilogue_string == 0)
+ {
+ register rtx tmp;
+
+ /* Emit a return insn, but only if control can fall through to here. */
+
+ tmp = get_last_insn ();
+ while (tmp)
+ {
+ if (GET_CODE (tmp) == BARRIER)
+ return;
+ if (GET_CODE (tmp) == CODE_LABEL)
+ break;
+ if (GET_CODE (tmp) == JUMP_INSN)
+ {
+ if (GET_CODE (PATTERN (tmp)) == RETURN)
+ return;
+ break;
+ }
+ if (GET_CODE (tmp) == NOTE)
+ {
+ tmp = PREV_INSN (tmp);
+ continue;
+ }
+ break;
+ }
+ fprintf (file, "LR%d: ret\n", ret_label);
+ return;
+ }
+
+ fprintf (file, "LR%d:\n", ret_label);
+
+ fprintf (file, "\t#EPILOGUE#\n");
+
+ /* Output the string created by the prologue which will restore all
+ registers saved by the prologue. */
+
+ if (epilogue_string[0] != '\0')
+ fprintf (file, "%s", epilogue_string);
+
+ /* Must clear g14 on return if this function set it.
+ Only varargs/stdarg functions modify g14. */
+
+ if (VARARGS_STDARG_FUNCTION (current_function_decl))
+ fprintf (file, "\tmov 0,g14\n");
+
+ fprintf (file, "\tret\n");
+ fprintf (file, "\t#End Epilogue#\n");
+}
+
+/* Output code for a call insn. */
+
+char *
+i960_output_call_insn (target, argsize_rtx, arg_pointer, insn)
+ register rtx target, argsize_rtx, arg_pointer, insn;
+{
+ int argsize = INTVAL (argsize_rtx);
+ rtx nexti = next_real_insn (insn);
+ rtx operands[2];
+ int varargs_stdarg_function
+ = VARARGS_STDARG_FUNCTION (current_function_decl);
+
+ operands[0] = target;
+ operands[1] = arg_pointer;
+
+ if (current_function_args_size != 0 || varargs_stdarg_function)
+ output_asm_insn ("mov g14,r3", operands);
+
+ if (argsize > 48)
+ output_asm_insn ("lda %a1,g14", operands);
+ else if (current_function_args_size != 0 || varargs_stdarg_function)
+ output_asm_insn ("mov 0,g14", operands);
+
+ /* The code used to assume that calls to SYMBOL_REFs could not be more
+ than 24 bits away (b vs bx, callj vs callx). This is not true. This
+ feature is now implemented by relaxing in the GNU linker. It can convert
+ bx to b if in range, and callx to calls/call/balx/bal as appropriate. */
+
+ /* Nexti could be zero if the called routine is volatile. */
+ if (optimize && (*epilogue_string == 0) && argsize == 0 && tail_call_ok
+ && (nexti == 0 || GET_CODE (PATTERN (nexti)) == RETURN))
+ {
+ /* Delete following return insn. */
+ if (nexti && no_labels_between_p (insn, nexti))
+ delete_insn (nexti);
+ output_asm_insn ("bx %0", operands);
+ return "# notreached";
+ }
+
+ output_asm_insn ("callx %0", operands);
+
+ /* If the caller sets g14 to the address of the argblock, then the caller
+ must clear it after the return. */
+
+ if (current_function_args_size != 0 || varargs_stdarg_function)
+ output_asm_insn ("mov r3,g14", operands);
+ else if (argsize > 48)
+ output_asm_insn ("mov 0,g14", operands);
+
+ return "";
+}
+
+/* Output code for a return insn. */
+
+char *
+i960_output_ret_insn (insn)
+ register rtx insn;
+{
+ static char lbuf[20];
+
+ if (*epilogue_string != 0)
+ {
+ if (! TARGET_CODE_ALIGN && next_real_insn (insn) == 0)
+ return "";
+
+ sprintf (lbuf, "b LR%d", ret_label);
+ return lbuf;
+ }
+
+ /* Must clear g14 on return if this function set it.
+ Only varargs/stdarg functions modify g14. */
+
+ if (VARARGS_STDARG_FUNCTION (current_function_decl))
+ output_asm_insn ("mov 0,g14", 0);
+
+ if (i960_leaf_ret_reg >= 0)
+ {
+ sprintf (lbuf, "bx (%s)", reg_names[i960_leaf_ret_reg]);
+ return lbuf;
+ }
+ return "ret";
+}
+
+#if 0
+/* Return a character string representing the branch prediction
+ opcode to be tacked on an instruction. This must at least
+ return a null string. */
+
+char *
+i960_br_predict_opcode (lab_ref, insn)
+ rtx lab_ref, insn;
+{
+ if (TARGET_BRANCH_PREDICT)
+ {
+ unsigned long label_uid;
+
+ if (GET_CODE (lab_ref) == CODE_LABEL)
+ label_uid = INSN_UID (lab_ref);
+ else if (GET_CODE (lab_ref) == LABEL_REF)
+ label_uid = INSN_UID (XEXP (lab_ref, 0));
+ else
+ return ".f";
+
+ /* If not optimizing, then the insn_addresses array will not be
+ valid. In this case, always return ".t" since most branches
+ are taken. If optimizing, return .t for backward branches
+ and .f for forward branches. */
+ if (! optimize
+ || insn_addresses[label_uid] < insn_addresses[INSN_UID (insn)])
+ return ".t";
+ return ".f";
+ }
+
+ return "";
+}
+#endif
+
+/* Print the operand represented by rtx X formatted by code CODE. */
+
+void
+i960_print_operand (file, x, code)
+ FILE *file;
+ rtx x;
+ char code;
+{
+ enum rtx_code rtxcode = GET_CODE (x);
+
+ if (rtxcode == REG)
+ {
+ switch (code)
+ {
+ case 'D':
+ /* Second reg of a double or quad. */
+ fprintf (file, "%s", reg_names[REGNO (x)+1]);
+ break;
+
+ case 'E':
+ /* Third reg of a quad. */
+ fprintf (file, "%s", reg_names[REGNO (x)+2]);
+ break;
+
+ case 'F':
+ /* Fourth reg of a quad. */
+ fprintf (file, "%s", reg_names[REGNO (x)+3]);
+ break;
+
+ case 0:
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ break;
+
+ default:
+ abort ();
+ }
+ return;
+ }
+ else if (rtxcode == MEM)
+ {
+ output_address (XEXP (x, 0));
+ return;
+ }
+ else if (rtxcode == CONST_INT)
+ {
+ if (INTVAL (x) > 9999 || INTVAL (x) < -999)
+ fprintf (file, "0x%x", INTVAL (x));
+ else
+ fprintf (file, "%d", INTVAL (x));
+ return;
+ }
+ else if (rtxcode == CONST_DOUBLE)
+ {
+ REAL_VALUE_TYPE d;
+ char dstr[30];
+
+ if (x == CONST0_RTX (GET_MODE (x)))
+ {
+ fprintf (file, "0f0.0");
+ return;
+ }
+ else if (x == CONST1_RTX (GET_MODE (x)))
+ {
+ fprintf (file, "0f1.0");
+ return;
+ }
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, x);
+ REAL_VALUE_TO_DECIMAL (d, "%#g", dstr);
+ fprintf (file, "0f%s", dstr);
+ return;
+ }
+
+ switch(code)
+ {
+ case 'B':
+ /* Branch or jump, depending on assembler. */
+ if (TARGET_ASM_COMPAT)
+ fputs ("j", file);
+ else
+ fputs ("b", file);
+ break;
+
+ case 'S':
+ /* Sign of condition. */
+ if ((rtxcode == EQ) || (rtxcode == NE) || (rtxcode == GTU)
+ || (rtxcode == LTU) || (rtxcode == GEU) || (rtxcode == LEU))
+ fputs ("o", file);
+ else if ((rtxcode == GT) || (rtxcode == LT)
+ || (rtxcode == GE) || (rtxcode == LE))
+ fputs ("i", file);
+ else
+ abort();
+ break;
+
+ case 'I':
+ /* Inverted condition. */
+ rtxcode = reverse_condition (rtxcode);
+ goto normal;
+
+ case 'X':
+ /* Inverted condition w/ reversed operands. */
+ rtxcode = reverse_condition (rtxcode);
+ /* Fallthrough. */
+
+ case 'R':
+ /* Reversed operand condition. */
+ rtxcode = swap_condition (rtxcode);
+ /* Fallthrough. */
+
+ case 'C':
+ /* Normal condition. */
+ normal:
+ if (rtxcode == EQ) { fputs ("e", file); return; }
+ else if (rtxcode == NE) { fputs ("ne", file); return; }
+ else if (rtxcode == GT) { fputs ("g", file); return; }
+ else if (rtxcode == GTU) { fputs ("g", file); return; }
+ else if (rtxcode == LT) { fputs ("l", file); return; }
+ else if (rtxcode == LTU) { fputs ("l", file); return; }
+ else if (rtxcode == GE) { fputs ("ge", file); return; }
+ else if (rtxcode == GEU) { fputs ("ge", file); return; }
+ else if (rtxcode == LE) { fputs ("le", file); return; }
+ else if (rtxcode == LEU) { fputs ("le", file); return; }
+ else abort ();
+ break;
+
+ case 0:
+ output_addr_const (file, x);
+ break;
+
+ default:
+ abort ();
+ }
+
+ return;
+}
+
+/* Print a memory address as an operand to reference that memory location.
+
+ This is exactly the same as legitimate_address_p, except that it the prints
+ addresses instead of recognizing them. */
+
+void
+i960_print_operand_addr (file, addr)
+ FILE *file;
+ register rtx addr;
+{
+ rtx breg, ireg;
+ rtx scale, offset;
+
+ ireg = 0;
+ breg = 0;
+ offset = 0;
+ scale = const1_rtx;
+
+ if (GET_CODE (addr) == REG)
+ breg = addr;
+ else if (CONSTANT_P (addr))
+ offset = addr;
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx op0, op1;
+
+ op0 = XEXP (addr, 0);
+ op1 = XEXP (addr, 1);
+
+ if (GET_CODE (op0) == REG)
+ {
+ breg = op0;
+ if (GET_CODE (op1) == REG)
+ ireg = op1;
+ else if (CONSTANT_P (op1))
+ offset = op1;
+ else
+ abort ();
+ }
+ else if (GET_CODE (op0) == PLUS)
+ {
+ if (GET_CODE (XEXP (op0, 0)) == MULT)
+ {
+ ireg = XEXP (XEXP (op0, 0), 0);
+ scale = XEXP (XEXP (op0, 0), 1);
+ if (GET_CODE (XEXP (op0, 1)) == REG)
+ {
+ breg = XEXP (op0, 1);
+ offset = op1;
+ }
+ else
+ abort ();
+ }
+ else if (GET_CODE (XEXP (op0, 0)) == REG)
+ {
+ breg = XEXP (op0, 0);
+ if (GET_CODE (XEXP (op0, 1)) == REG)
+ {
+ ireg = XEXP (op0, 1);
+ offset = op1;
+ }
+ else
+ abort ();
+ }
+ else
+ abort ();
+ }
+ else if (GET_CODE (op0) == MULT)
+ {
+ ireg = XEXP (op0, 0);
+ scale = XEXP (op0, 1);
+ if (GET_CODE (op1) == REG)
+ breg = op1;
+ else if (CONSTANT_P (op1))
+ offset = op1;
+ else
+ abort ();
+ }
+ else
+ abort ();
+ }
+ else if (GET_CODE (addr) == MULT)
+ {
+ ireg = XEXP (addr, 0);
+ scale = XEXP (addr, 1);
+ }
+ else
+ abort ();
+
+ if (offset)
+ output_addr_const (file, offset);
+ if (breg)
+ fprintf (file, "(%s)", reg_names[REGNO (breg)]);
+ if (ireg)
+ fprintf (file, "[%s*%d]", reg_names[REGNO (ireg)], INTVAL (scale));
+}
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ On 80960, legitimate addresses are:
+ base ld (g0),r0
+ disp (12 or 32 bit) ld foo,r0
+ base + index ld (g0)[g1*1],r0
+ base + displ ld 0xf00(g0),r0
+ base + index*scale + displ ld 0xf00(g0)[g1*4],r0
+ index*scale + base ld (g0)[g1*4],r0
+ index*scale + displ ld 0xf00[g1*4],r0
+ index*scale ld [g1*4],r0
+ index + base + displ ld 0xf00(g0)[g1*1],r0
+
+ In each case, scale can be 1, 2, 4, 8, or 16. */
+
+/* This is exactly the same as i960_print_operand_addr, except that
+ it recognizes addresses instead of printing them.
+
+ It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
+ convert common non-canonical forms to canonical form so that they will
+ be recognized. */
+
+/* These two macros allow us to accept either a REG or a SUBREG anyplace
+ where a register is valid. */
+
+#define RTX_OK_FOR_BASE_P(X, STRICT) \
+ ((GET_CODE (X) == REG \
+ && (STRICT ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P (X))) \
+ || (GET_CODE (X) == SUBREG \
+ && GET_CODE (SUBREG_REG (X)) == REG \
+ && (STRICT ? REG_OK_FOR_BASE_P_STRICT (SUBREG_REG (X)) \
+ : REG_OK_FOR_BASE_P (SUBREG_REG (X)))))
+
+#define RTX_OK_FOR_INDEX_P(X, STRICT) \
+ ((GET_CODE (X) == REG \
+ && (STRICT ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P (X)))\
+ || (GET_CODE (X) == SUBREG \
+ && GET_CODE (SUBREG_REG (X)) == REG \
+ && (STRICT ? REG_OK_FOR_INDEX_P_STRICT (SUBREG_REG (X)) \
+ : REG_OK_FOR_INDEX_P (SUBREG_REG (X)))))
+
+int
+legitimate_address_p (mode, addr, strict)
+ enum machine_mode mode;
+ register rtx addr;
+ int strict;
+{
+ if (RTX_OK_FOR_BASE_P (addr, strict))
+ return 1;
+ else if (CONSTANT_P (addr))
+ return 1;
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx op0, op1;
+
+ if (! TARGET_COMPLEX_ADDR && ! reload_completed)
+ return 0;
+
+ op0 = XEXP (addr, 0);
+ op1 = XEXP (addr, 1);
+
+ if (RTX_OK_FOR_BASE_P (op0, strict))
+ {
+ if (RTX_OK_FOR_INDEX_P (op1, strict))
+ return 1;
+ else if (CONSTANT_P (op1))
+ return 1;
+ else
+ return 0;
+ }
+ else if (GET_CODE (op0) == PLUS)
+ {
+ if (GET_CODE (XEXP (op0, 0)) == MULT)
+ {
+ if (! (RTX_OK_FOR_INDEX_P (XEXP (XEXP (op0, 0), 0), strict)
+ && SCALE_TERM_P (XEXP (XEXP (op0, 0), 1))))
+ return 0;
+
+ if (RTX_OK_FOR_BASE_P (XEXP (op0, 1), strict)
+ && CONSTANT_P (op1))
+ return 1;
+ else
+ return 0;
+ }
+ else if (RTX_OK_FOR_BASE_P (XEXP (op0, 0), strict))
+ {
+ if (RTX_OK_FOR_INDEX_P (XEXP (op0, 1), strict)
+ && CONSTANT_P (op1))
+ return 1;
+ else
+ return 0;
+ }
+ else
+ return 0;
+ }
+ else if (GET_CODE (op0) == MULT)
+ {
+ if (! (RTX_OK_FOR_INDEX_P (XEXP (op0, 0), strict)
+ && SCALE_TERM_P (XEXP (op0, 1))))
+ return 0;
+
+ if (RTX_OK_FOR_BASE_P (op1, strict))
+ return 1;
+ else if (CONSTANT_P (op1))
+ return 1;
+ else
+ return 0;
+ }
+ else
+ return 0;
+ }
+ else if (GET_CODE (addr) == MULT)
+ {
+ if (! TARGET_COMPLEX_ADDR && ! reload_completed)
+ return 0;
+
+ return (RTX_OK_FOR_INDEX_P (XEXP (addr, 0), strict)
+ && SCALE_TERM_P (XEXP (addr, 1)));
+ }
+ else
+ return 0;
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ This converts some non-canonical addresses to canonical form so they
+ can be recognized. */
+
+rtx
+legitimize_address (x, oldx, mode)
+ register rtx x;
+ register rtx oldx;
+ enum machine_mode mode;
+{
+ if (GET_CODE (x) == SYMBOL_REF)
+ {
+ abort ();
+ x = copy_to_reg (x);
+ }
+
+ if (! TARGET_COMPLEX_ADDR && ! reload_completed)
+ return x;
+
+ /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
+ into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
+ created by virtual register instantiation, register elimination, and
+ similar optimizations. */
+ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT
+ && GET_CODE (XEXP (x, 1)) == PLUS)
+ x = gen_rtx (PLUS, Pmode,
+ gen_rtx (PLUS, Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)),
+ XEXP (XEXP (x, 1), 1));
+
+ /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
+ into (plus (plus (mult (reg) (const)) (reg)) (const)). */
+ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
+ && CONSTANT_P (XEXP (x, 1)))
+ {
+ rtx constant, other;
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ constant = XEXP (x, 1);
+ other = XEXP (XEXP (XEXP (x, 0), 1), 1);
+ }
+ else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
+ {
+ constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
+ other = XEXP (x, 1);
+ }
+ else
+ constant = 0;
+
+ if (constant)
+ x = gen_rtx (PLUS, Pmode,
+ gen_rtx (PLUS, Pmode, XEXP (XEXP (x, 0), 0),
+ XEXP (XEXP (XEXP (x, 0), 1), 0)),
+ plus_constant (other, INTVAL (constant)));
+ }
+
+ return x;
+}
+
+#if 0
+/* Return the most stringent alignment that we are willing to consider
+ objects of size SIZE and known alignment ALIGN as having. */
+
+int
+i960_alignment (size, align)
+ int size;
+ int align;
+{
+ int i;
+
+ if (! TARGET_STRICT_ALIGN)
+ if (TARGET_IC_COMPAT2_0 || align >= 4)
+ {
+ i = i960_object_bytes_bitalign (size) / BITS_PER_UNIT;
+ if (i > align)
+ align = i;
+ }
+
+ return align;
+}
+#endif
+
+/* Modes for condition codes. */
+#define C_MODES \
+ ((1 << (int) CCmode) | (1 << (int) CC_UNSmode) | (1<< (int) CC_CHKmode))
+
+/* Modes for single-word (and smaller) quantities. */
+#define S_MODES \
+ (~C_MODES \
+ & ~ ((1 << (int) DImode) | (1 << (int) TImode) \
+ | (1 << (int) DFmode) | (1 << (int) XFmode)))
+
+/* Modes for double-word (and smaller) quantities. */
+#define D_MODES \
+ (~C_MODES \
+ & ~ ((1 << (int) TImode) | (1 << (int) XFmode)))
+
+/* Modes for quad-word quantities. */
+#define T_MODES (~C_MODES)
+
+/* Modes for single-float quantities. */
+#define SF_MODES ((1 << (int) SFmode))
+
+/* Modes for double-float quantities. */
+#define DF_MODES (SF_MODES | (1 << (int) DFmode) | (1 << (int) SCmode))
+
+/* Modes for quad-float quantities. */
+#define XF_MODES (DF_MODES | (1 << (int) XFmode) | (1 << (int) DCmode))
+
+unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] = {
+ T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
+ T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
+ T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
+ T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
+
+ XF_MODES, XF_MODES, XF_MODES, XF_MODES, C_MODES};
+
+
+/* Return the minimum alignment of an expression rtx X in bytes. This takes
+ advantage of machine specific facts, such as knowing that the frame pointer
+ is always 16 byte aligned. */
+
+int
+i960_expr_alignment (x, size)
+ rtx x;
+ int size;
+{
+ int align = 1;
+
+ if (x == 0)
+ return 1;
+
+ switch (GET_CODE(x))
+ {
+ case CONST_INT:
+ align = INTVAL(x);
+
+ if ((align & 0xf) == 0)
+ align = 16;
+ else if ((align & 0x7) == 0)
+ align = 8;
+ else if ((align & 0x3) == 0)
+ align = 4;
+ else if ((align & 0x1) == 0)
+ align = 2;
+ else
+ align = 1;
+ break;
+
+ case PLUS:
+ align = MIN (i960_expr_alignment (XEXP (x, 0), size),
+ i960_expr_alignment (XEXP (x, 1), size));
+ break;
+
+ case SYMBOL_REF:
+ /* If this is a valid program, objects are guaranteed to be
+ correctly aligned for whatever size the reference actually is. */
+ align = i960_object_bytes_bitalign (size) / BITS_PER_UNIT;
+ break;
+
+ case REG:
+ if (REGNO (x) == FRAME_POINTER_REGNUM)
+ align = 16;
+ break;
+
+ case ASHIFT:
+ align = i960_expr_alignment (XEXP (x, 0));
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ align = align << INTVAL (XEXP (x, 1));
+ align = MIN (align, 16);
+ }
+ break;
+
+ case MULT:
+ align = (i960_expr_alignment (XEXP (x, 0), size) *
+ i960_expr_alignment (XEXP (x, 1), size));
+
+ align = MIN (align, 16);
+ break;
+ }
+
+ return align;
+}
+
+/* Return true if it is possible to reference both BASE and OFFSET, which
+ have alignment at least as great as 4 byte, as if they had alignment valid
+ for an object of size SIZE. */
+
+int
+i960_improve_align (base, offset, size)
+ rtx base;
+ rtx offset;
+ int size;
+{
+ int i, j;
+
+ /* We have at least a word reference to the object, so we know it has to
+ be aligned at least to 4 bytes. */
+
+ i = MIN (i960_expr_alignment (base, 4),
+ i960_expr_alignment (offset, 4));
+
+ i = MAX (i, 4);
+
+ /* We know the size of the request. If strict align is not enabled, we
+ can guess that the alignment is OK for the requested size. */
+
+ if (! TARGET_STRICT_ALIGN)
+ if ((j = (i960_object_bytes_bitalign (size) / BITS_PER_UNIT)) > i)
+ i = j;
+
+ return (i >= size);
+}
+
+/* Return true if it is possible to access BASE and OFFSET, which have 4 byte
+ (SImode) alignment as if they had 16 byte (TImode) alignment. */
+
+int
+i960_si_ti (base, offset)
+ rtx base;
+ rtx offset;
+{
+ return i960_improve_align (base, offset, 16);
+}
+
+/* Return true if it is possible to access BASE and OFFSET, which have 4 byte
+ (SImode) alignment as if they had 8 byte (DImode) alignment. */
+
+int
+i960_si_di (base, offset)
+ rtx base;
+ rtx offset;
+{
+ return i960_improve_align (base, offset, 8);
+}
+
+/* Return raw values of size and alignment (in words) for the data
+ type being accessed. These values will be rounded by the caller. */
+
+static void
+i960_arg_size_and_align (mode, type, size_out, align_out)
+ enum machine_mode mode;
+ tree type;
+ int *size_out;
+ int *align_out;
+{
+ int size, align;
+
+ /* Use formal alignment requirements of type being passed, except make
+ it at least a word. If we don't have a type, this is a library call,
+ and the parm has to be of scalar type. In this case, consider its
+ formal alignment requirement to be its size in words. */
+
+ if (mode == BLKmode)
+ size = (int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ else if (mode == VOIDmode)
+ {
+ /* End of parm list. */
+ assert (type != 0 && TYPE_MODE (type) == VOIDmode);
+ size = 1;
+ }
+ else
+ size = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ if (type == 0)
+ {
+ /* ??? This is a hack to properly correct the alignment of XFmode
+ values without affecting anything else. */
+ if (size == 3)
+ align = 4;
+ else
+ align = size;
+ }
+ else if (TYPE_ALIGN (type) >= BITS_PER_WORD)
+ align = TYPE_ALIGN (type) / BITS_PER_WORD;
+ else
+ align = 1;
+
+ *size_out = size;
+ *align_out = align;
+}
+
+/* On the 80960 the first 12 args are in registers and the rest are pushed.
+ Any arg that is bigger than 4 words is placed on the stack and all
+ subsequent arguments are placed on the stack.
+
+ Additionally, parameters with an alignment requirement stronger than
+ a word must be aligned appropriately. Note that this means that a
+ 64 bit object with a 32 bit alignment is not 64 bit aligned and may be
+ passed in an odd/even register pair. */
+
+/* Update CUM to advance past an argument described by MODE and TYPE. */
+
+void
+i960_function_arg_advance (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type;
+ int named;
+{
+ int size, align;
+
+ i960_arg_size_and_align (mode, type, &size, &align);
+
+ if (size > 4 || cum->ca_nstackparms != 0
+ || (size + ROUND_PARM (cum->ca_nregparms, align)) > NPARM_REGS
+ || MUST_PASS_IN_STACK (mode, type))
+ {
+ /* Indicate that all the registers are in use, even if all are not,
+ so va_start will compute the right value. */
+ cum->ca_nregparms = NPARM_REGS;
+ cum->ca_nstackparms = ROUND_PARM (cum->ca_nstackparms, align) + size;
+ }
+ else
+ cum->ca_nregparms = ROUND_PARM (cum->ca_nregparms, align) + size;
+}
+
+/* Return the register that the argument described by MODE and TYPE is
+ passed in, or else return 0 if it is passed on the stack. */
+
+rtx
+i960_function_arg (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type;
+ int named;
+{
+ rtx ret;
+ int size, align;
+
+ i960_arg_size_and_align (mode, type, &size, &align);
+
+ if (size > 4 || cum->ca_nstackparms != 0
+ || (size + ROUND_PARM (cum->ca_nregparms, align)) > NPARM_REGS
+ || MUST_PASS_IN_STACK (mode, type))
+ {
+ cum->ca_nstackparms = ROUND_PARM (cum->ca_nstackparms, align);
+ ret = 0;
+ }
+ else
+ {
+ cum->ca_nregparms = ROUND_PARM (cum->ca_nregparms, align);
+ ret = gen_rtx (REG, mode, cum->ca_nregparms);
+ }
+
+ return ret;
+}
+
+/* Floating-point support. */
+
+void
+i960_output_long_double (file, value)
+ FILE *file;
+ REAL_VALUE_TYPE value;
+{
+ long value_long[3];
+ char dstr[30];
+
+ REAL_VALUE_TO_TARGET_LONG_DOUBLE (value, value_long);
+ REAL_VALUE_TO_DECIMAL (value, "%.20g", dstr);
+
+ fprintf (file,
+ "\t.word\t0x%08lx\t\t# %s\n\t.word\t0x%08lx\n\t.word\t0x%08lx\n",
+ value_long[0], dstr, value_long[1], value_long[2]);
+ fprintf (file, "\t.word\t0x0\n");
+}
+
+void
+i960_output_double (file, value)
+ FILE *file;
+ REAL_VALUE_TYPE value;
+{
+ long value_long[2];
+ char dstr[30];
+
+ REAL_VALUE_TO_TARGET_DOUBLE (value, value_long);
+ REAL_VALUE_TO_DECIMAL (value, "%.20g", dstr);
+
+ fprintf (file, "\t.word\t0x%08lx\t\t# %s\n\t.word\t0x%08lx\n",
+ value_long[0], dstr, value_long[1]);
+}
+
+void
+i960_output_float (file, value)
+ FILE *file;
+ REAL_VALUE_TYPE value;
+{
+ long value_long;
+ char dstr[30];
+
+ REAL_VALUE_TO_TARGET_SINGLE (value, value_long);
+ REAL_VALUE_TO_DECIMAL (value, "%.12g", dstr);
+
+ fprintf (file, "\t.word\t0x%08lx\t\t# %s (float)\n", value_long, dstr);
+}
+
+/* Return the number of bits that an object of size N bytes is aligned to. */
+
+int
+i960_object_bytes_bitalign (n)
+ int n;
+{
+ if (n > 8) n = 128;
+ else if (n > 4) n = 64;
+ else if (n > 2) n = 32;
+ else if (n > 1) n = 16;
+ else n = 8;
+
+ return n;
+}
+
+/* Compute the alignment for an aggregate type TSIZE.
+ Alignment is MAX (greatest member alignment,
+ MIN (pragma align, structure size alignment)). */
+
+int
+i960_round_align (align, tsize)
+ int align;
+ tree tsize;
+{
+ int new_align;
+
+ if (TREE_CODE (tsize) != INTEGER_CST)
+ return align;
+
+ new_align = i960_object_bytes_bitalign (TREE_INT_CST_LOW (tsize)
+ / BITS_PER_UNIT);
+ /* Handle #pragma align. */
+ if (new_align > i960_maxbitalignment)
+ new_align = i960_maxbitalignment;
+
+ if (align < new_align)
+ align = new_align;
+
+ return align;
+}
+
+/* Do any needed setup for a varargs function. For the i960, we must
+ create a register parameter block if one doesn't exist, and then copy
+ all register parameters to memory. */
+
+void
+i960_setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type;
+ int *pretend_size;
+ int no_rtl;
+{
+ /* Note: for a varargs fn with only a va_alist argument, this is 0. */
+ int first_reg = cum->ca_nregparms;
+
+ /* Copy only unnamed register arguments to memory. If there are
+ any stack parms, there are no unnamed arguments in registers, and
+ an argument block was already allocated by the caller.
+ Remember that any arg bigger than 4 words is passed on the stack as
+ are all subsequent args.
+
+ If there are no stack arguments but there are exactly NPARM_REGS
+ registers, either there were no extra arguments or the caller
+ allocated an argument block. */
+
+ if (cum->ca_nstackparms == 0 && first_reg < NPARM_REGS && !no_rtl)
+ {
+ rtx label = gen_label_rtx ();
+ rtx regblock;
+
+ /* If arg_pointer_rtx == 0, no arguments were passed on the stack
+ and we need to allocate a chunk to save the registers (if any
+ arguments were passed on the stack the caller would allocate the
+ 48 bytes as well). We must allocate all 48 bytes (12*4) because
+ va_start assumes it. */
+ emit_insn (gen_cmpsi (arg_pointer_rtx, const0_rtx));
+ emit_jump_insn (gen_bne (label));
+ emit_insn (gen_rtx (SET, VOIDmode, arg_pointer_rtx,
+ stack_pointer_rtx));
+ emit_insn (gen_rtx (SET, VOIDmode, stack_pointer_rtx,
+ memory_address (SImode,
+ plus_constant (stack_pointer_rtx,
+ 48))));
+ emit_label (label);
+
+ /* ??? Note that we unnecessarily store one extra register for stdarg
+ fns. We could optimize this, but it's kept as for now. */
+ regblock = gen_rtx (MEM, BLKmode,
+ plus_constant (arg_pointer_rtx,
+ first_reg * 4));
+ move_block_from_reg (first_reg, regblock,
+ NPARM_REGS - first_reg,
+ (NPARM_REGS - first_reg) * UNITS_PER_WORD);
+ }
+}
+
+/* Calculate the final size of the reg parm stack space for the current
+ function, based on how many bytes would be allocated on the stack. */
+
+int
+i960_final_reg_parm_stack_space (const_size, var_size)
+ int const_size;
+ tree var_size;
+{
+ if (var_size || const_size > 48)
+ return 48;
+ else
+ return 0;
+}
+
+/* Calculate the size of the reg parm stack space. This is a bit complicated
+ on the i960. */
+
+int
+i960_reg_parm_stack_space (fndecl)
+ tree fndecl;
+{
+ /* In this case, we are called from emit_library_call, and we don't need
+ to pretend we have more space for parameters than what's apparent. */
+ if (fndecl == 0)
+ return 0;
+
+ /* In this case, we are called from locate_and_pad_parms when we're
+ not IN_REGS, so we have an arg block. */
+ if (fndecl != current_function_decl)
+ return 48;
+
+ /* Otherwise, we have an arg block if the current function has more than
+ 48 bytes of parameters. */
+ if (current_function_args_size != 0 || VARARGS_STDARG_FUNCTION (fndecl))
+ return 48;
+ else
+ return 0;
+}
+
+/* Return the register class of a scratch register needed to copy IN into
+ or out of a register in CLASS in MODE. If it can be done directly,
+ NO_REGS is returned. */
+
+enum reg_class
+secondary_reload_class (class, mode, in)
+ enum reg_class class;
+ enum machine_mode mode;
+ rtx in;
+{
+ int regno = -1;
+
+ if (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
+ regno = true_regnum (in);
+
+ /* We can place anything into LOCAL_OR_GLOBAL_REGS and can put
+ LOCAL_OR_GLOBAL_REGS into anything. */
+ if (class == LOCAL_OR_GLOBAL_REGS || class == LOCAL_REGS
+ || class == GLOBAL_REGS || (regno >= 0 && regno < 32))
+ return NO_REGS;
+
+ /* We can place any hard register, 0.0, and 1.0 into FP_REGS. */
+ if (class == FP_REGS
+ && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
+ || in == CONST0_RTX (mode) || in == CONST1_RTX (mode)))
+ return NO_REGS;
+
+ return LOCAL_OR_GLOBAL_REGS;
+}
+
+/* Look at the opcode P, and set i96_last_insn_type to indicate which
+ function unit it executed on. */
+
+/* ??? This would make more sense as an attribute. */
+
+void
+i960_scan_opcode (p)
+ char *p;
+{
+ switch (*p)
+ {
+ case 'a':
+ case 'd':
+ case 'e':
+ case 'm':
+ case 'n':
+ case 'o':
+ case 'r':
+ /* Ret is not actually of type REG, but it won't matter, because no
+ insn will ever follow it. */
+ case 'u':
+ case 'x':
+ i960_last_insn_type = I_TYPE_REG;
+ break;
+
+ case 'b':
+ if (p[1] == 'x' || p[3] == 'x')
+ i960_last_insn_type = I_TYPE_MEM;
+ i960_last_insn_type = I_TYPE_CTRL;
+ break;
+
+ case 'f':
+ case 't':
+ i960_last_insn_type = I_TYPE_CTRL;
+ break;
+
+ case 'c':
+ if (p[1] == 'a')
+ {
+ if (p[4] == 'x')
+ i960_last_insn_type = I_TYPE_MEM;
+ else
+ i960_last_insn_type = I_TYPE_CTRL;
+ }
+ else if (p[1] == 'm')
+ {
+ if (p[3] == 'd')
+ i960_last_insn_type = I_TYPE_REG;
+ else if (p[4] == 'b' || p[4] == 'j')
+ i960_last_insn_type = I_TYPE_CTRL;
+ else
+ i960_last_insn_type = I_TYPE_REG;
+ }
+ else
+ i960_last_insn_type = I_TYPE_REG;
+ break;
+
+ case 'l':
+ i960_last_insn_type = I_TYPE_MEM;
+ break;
+
+ case 's':
+ if (p[1] == 't')
+ i960_last_insn_type = I_TYPE_MEM;
+ else
+ i960_last_insn_type = I_TYPE_REG;
+ break;
+ }
+}