diff options
author | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1995-12-20 01:06:22 +0000 |
---|---|---|
committer | Niklas Hallqvist <niklas@cvs.openbsd.org> | 1995-12-20 01:06:22 +0000 |
commit | c482518380683ee38d14024c1e362a0d681cf967 (patch) | |
tree | e69b4f6d3fee3aced20a41f3fdf543fc1c77fb5d /gnu/usr.bin/gcc/config/rs6000/rs6000.c | |
parent | 76a62188d0db49c65b696d474c855a799fd96dce (diff) |
FSF GCC version 2.7.2
Diffstat (limited to 'gnu/usr.bin/gcc/config/rs6000/rs6000.c')
-rw-r--r-- | gnu/usr.bin/gcc/config/rs6000/rs6000.c | 3401 |
1 files changed, 3401 insertions, 0 deletions
diff --git a/gnu/usr.bin/gcc/config/rs6000/rs6000.c b/gnu/usr.bin/gcc/config/rs6000/rs6000.c new file mode 100644 index 00000000000..08ebd4e37da --- /dev/null +++ b/gnu/usr.bin/gcc/config/rs6000/rs6000.c @@ -0,0 +1,3401 @@ +/* Subroutines used for code generation on IBM RS/6000. + Copyright (C) 1991, 1993, 1994, 1995 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include <stdio.h> +#include <ctype.h> +#include "config.h" +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "insn-flags.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "recog.h" +#include "expr.h" +#include "obstack.h" +#include "tree.h" + +extern char *language_string; +extern int profile_block_flag; + +#define min(A,B) ((A) < (B) ? (A) : (B)) +#define max(A,B) ((A) > (B) ? (A) : (B)) + +/* Target cpu type */ + +enum processor_type rs6000_cpu; +char *rs6000_cpu_string; + +/* Set to non-zero by "fix" operation to indicate that itrunc and + uitrunc must be defined. */ + +int rs6000_trunc_used; + +/* Set to non-zero once they have been defined. */ + +static int trunc_defined; + +/* Set to non-zero once AIX common-mode calls have been defined. */ +static int common_mode_defined; +/* Save information from a "cmpxx" operation until the branch or scc is + emitted. */ + +rtx rs6000_compare_op0, rs6000_compare_op1; +int rs6000_compare_fp_p; + +#ifdef USING_SVR4_H +/* Label number of label created for -mrelocatable, to call to so we can + get the address of the GOT section */ +int rs6000_pic_labelno; +#endif + +/* Whether a System V.4 varargs area was created. */ +int rs6000_sysv_varargs_p; + +/* Temporary memory used to convert integer -> float */ +static rtx stack_temps[NUM_MACHINE_MODES]; + + +/* Print the options used in the assembly file. */ + +extern char *version_string, *language_string; + +struct asm_option +{ + char *string; + int *variable; + int on_value; +}; + +#define MAX_LINE 79 + +static int +output_option (file, type, name, pos) + FILE *file; + char *type; + char *name; + int pos; +{ + int type_len = strlen (type); + int name_len = strlen (name); + + if (1 + type_len + name_len + pos > MAX_LINE) + { + fprintf (file, "\n # %s%s", type, name); + return 3 + type_len + name_len; + } + fprintf (file, " %s%s", type, name); + return pos + 1 + type_len + name_len; +} + +static struct { char *name; int value; } m_options[] = TARGET_SWITCHES; + +void +output_options (file, f_options, f_len, W_options, W_len) + FILE *file; + struct asm_option *f_options; + int f_len; + struct asm_option *W_options; + int W_len; +{ + int j; + int flags = target_flags; + int pos = 32767; + + fprintf (file, " # %s %s", language_string, version_string); + + if (optimize) + { + char opt_string[20]; + sprintf (opt_string, "%d", optimize); + pos = output_option (file, "-O", opt_string, pos); + } + + if (profile_flag) + pos = output_option (file, "-p", "", pos); + + if (profile_block_flag) + pos = output_option (file, "-a", "", pos); + + if (inhibit_warnings) + pos = output_option (file, "-w", "", pos); + + for (j = 0; j < f_len; j++) + { + if (*f_options[j].variable == f_options[j].on_value) + pos = output_option (file, "-f", f_options[j].string, pos); + } + + for (j = 0; j < W_len; j++) + { + if (*W_options[j].variable == W_options[j].on_value) + pos = output_option (file, "-W", W_options[j].string, pos); + } + + for (j = 0; j < sizeof m_options / sizeof m_options[0]; j++) + { + if (m_options[j].name[0] != '\0' + && m_options[j].value > 0 + && ((m_options[j].value & flags) == m_options[j].value)) + { + pos = output_option (file, "-m", m_options[j].name, pos); + flags &= ~ m_options[j].value; + } + } + + if (rs6000_cpu_string != (char *)0) + pos = output_option (file, "-mcpu=", rs6000_cpu_string, pos); + + fputs ("\n\n", file); +} + + +/* Override command line options. Mostly we process the processor + type and sometimes adjust other TARGET_ options. */ + +void +rs6000_override_options () +{ + int i; + + /* Simplify the entries below by making a mask for any POWER + variant and any PowerPC variant. */ + +#define POWER_MASKS (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING) +#define POWERPC_MASKS (MASK_POWERPC | MASK_PPC_GPOPT \ + | MASK_PPC_GFXOPT | MASK_POWERPC64) +#define POWERPC_OPT_MASKS (MASK_PPC_GPOPT | MASK_PPC_GFXOPT) + + static struct ptt + { + char *name; /* Canonical processor name. */ + enum processor_type processor; /* Processor type enum value. */ + int target_enable; /* Target flags to enable. */ + int target_disable; /* Target flags to disable. */ + } processor_target_table[] + = {{"common", PROCESSOR_COMMON, 0, POWER_MASKS | POWERPC_MASKS}, + {"power", PROCESSOR_POWER, + MASK_POWER | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"powerpc", PROCESSOR_POWERPC, + MASK_POWERPC | MASK_NEW_MNEMONICS, + POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, + {"rios", PROCESSOR_RIOS1, + MASK_POWER | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"rios1", PROCESSOR_RIOS1, + MASK_POWER | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"rsc", PROCESSOR_PPC601, + MASK_POWER | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"rsc1", PROCESSOR_PPC601, + MASK_POWER | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"rios2", PROCESSOR_RIOS2, + MASK_POWER | MASK_MULTIPLE | MASK_STRING | MASK_POWER2, + POWERPC_MASKS | MASK_NEW_MNEMONICS}, + {"403", PROCESSOR_PPC403, + MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS, + POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}, + {"601", PROCESSOR_PPC601, + MASK_POWER | MASK_POWERPC | MASK_NEW_MNEMONICS | MASK_MULTIPLE | MASK_STRING, + MASK_POWER2 | POWERPC_OPT_MASKS | MASK_POWERPC64}, + {"603", PROCESSOR_PPC603, + MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, + POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}, + {"604", PROCESSOR_PPC604, + MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS, + POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}}; + + int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt); + + int multiple = TARGET_MULTIPLE; /* save current -mmultiple/-mno-multiple status */ + int string = TARGET_STRING; /* save current -mstring/-mno-string status */ + + profile_block_flag = 0; + + /* Identify the processor type */ + if (rs6000_cpu_string == 0) + rs6000_cpu = PROCESSOR_DEFAULT; + else + { + for (i = 0; i < ptt_size; i++) + if (! strcmp (rs6000_cpu_string, processor_target_table[i].name)) + { + rs6000_cpu = processor_target_table[i].processor; + target_flags |= processor_target_table[i].target_enable; + target_flags &= ~processor_target_table[i].target_disable; + break; + } + + if (i == ptt_size) + { + error ("bad value (%s) for -mcpu= switch", rs6000_cpu_string); + rs6000_cpu_string = "default"; + rs6000_cpu = PROCESSOR_DEFAULT; + } + } + + /* If -mmultiple or -mno-multiple was explicitly used, don't + override with the processor default */ + if (TARGET_MULTIPLE_SET) + target_flags = (target_flags & ~MASK_MULTIPLE) | multiple; + + /* If -mstring or -mno-string was explicitly used, don't + override with the processor default */ + if (TARGET_STRING_SET) + target_flags = (target_flags & ~MASK_STRING) | string; + + /* Don't allow -mmultiple or -mstring on little endian systems, because the + hardware doesn't support the instructions used in little endian mode */ + if (!BYTES_BIG_ENDIAN) + { + if (TARGET_MULTIPLE) + { + target_flags &= ~MASK_MULTIPLE; + if (TARGET_MULTIPLE_SET) + warning ("-mmultiple is not supported on little endian systems"); + } + + if (TARGET_STRING) + { + target_flags &= ~MASK_STRING; + if (TARGET_STRING_SET) + warning ("-mstring is not supported on little endian systems"); + } + } + +#ifdef SUBTARGET_OVERRIDE_OPTIONS + SUBTARGET_OVERRIDE_OPTIONS; +#endif +} + +/* Create a CONST_DOUBLE from a string. */ + +struct rtx_def * +rs6000_float_const (string, mode) + char *string; + enum machine_mode mode; +{ + REAL_VALUE_TYPE value = REAL_VALUE_ATOF (string, mode); + return immed_real_const_1 (value, mode); +} + + +/* Create a CONST_DOUBLE like immed_double_const, except reverse the + two parts of the constant if the target is little endian. */ + +struct rtx_def * +rs6000_immed_double_const (i0, i1, mode) + HOST_WIDE_INT i0, i1; + enum machine_mode mode; +{ + if (! WORDS_BIG_ENDIAN) + return immed_double_const (i1, i0, mode); + + return immed_double_const (i0, i1, mode); +} + + +/* Return non-zero if this function is known to have a null epilogue. */ + +int +direct_return () +{ + if (reload_completed) + { + rs6000_stack_t *info = rs6000_stack_info (); + + if (info->first_gp_reg_save == 32 + && info->first_fp_reg_save == 64 + && !info->lr_save_p + && !info->cr_save_p + && !info->push_p) + return 1; + } + + return 0; +} + +/* Returns 1 always. */ + +int +any_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return 1; +} + +/* Return 1 if OP is a constant that can fit in a D field. */ + +int +short_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT + && (unsigned) (INTVAL (op) + 0x8000) < 0x10000); +} + +/* Similar for a unsigned D field. */ + +int +u_short_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff0000) == 0); +} + +/* Return 1 if OP is a CONST_INT that cannot fit in a signed D field. */ + +int +non_short_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT + && (unsigned) (INTVAL (op) + 0x8000) >= 0x10000); +} + +/* Returns 1 if OP is a register that is not special (i.e., not MQ, + ctr, or lr). */ + +int +gpc_reg_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (register_operand (op, mode) + && (GET_CODE (op) != REG || REGNO (op) >= 67 || REGNO (op) < 64)); +} + +/* Returns 1 if OP is either a pseudo-register or a register denoting a + CR field. */ + +int +cc_reg_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (register_operand (op, mode) + && (GET_CODE (op) != REG + || REGNO (op) >= FIRST_PSEUDO_REGISTER + || CR_REGNO_P (REGNO (op)))); +} + +/* Returns 1 if OP is either a constant integer valid for a D-field or a + non-special register. If a register, it must be in the proper mode unless + MODE is VOIDmode. */ + +int +reg_or_short_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return short_cint_operand (op, mode) || gpc_reg_operand (op, mode); +} + +/* Similar, except check if the negation of the constant would be valid for + a D-field. */ + +int +reg_or_neg_short_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT) + return CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'); + + return gpc_reg_operand (op, mode); +} + +/* Return 1 if the operand is either a register or an integer whose high-order + 16 bits are zero. */ + +int +reg_or_u_short_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT + && (INTVAL (op) & 0xffff0000) == 0) + return 1; + + return gpc_reg_operand (op, mode); +} + +/* Return 1 is the operand is either a non-special register or ANY + constant integer. */ + +int +reg_or_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT || gpc_reg_operand (op, mode); +} + +/* Return 1 if the operand is a CONST_DOUBLE and it can be put into a register + with one instruction per word. We only do this if we can safely read + CONST_DOUBLE_{LOW,HIGH}. */ + +int +easy_fp_constant (op, mode) + register rtx op; + register enum machine_mode mode; +{ + rtx low, high; + + if (GET_CODE (op) != CONST_DOUBLE + || GET_MODE (op) != mode + || GET_MODE_CLASS (mode) != MODE_FLOAT) + return 0; + + high = operand_subword (op, 0, 0, mode); + low = operand_subword (op, 1, 0, mode); + + if (high == 0 || ! input_operand (high, word_mode)) + return 0; + + return (mode == SFmode + || (low != 0 && input_operand (low, word_mode))); +} + +/* Return 1 if the operand is an offsettable memory address. */ + +int +offsettable_addr_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return offsettable_address_p (reload_completed | reload_in_progress, + mode, op); +} + +/* Return 1 if the operand is either a floating-point register, a pseudo + register, or memory. */ + +int +fp_reg_or_mem_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (memory_operand (op, mode) + || (register_operand (op, mode) + && (GET_CODE (op) != REG + || REGNO (op) >= FIRST_PSEUDO_REGISTER + || FP_REGNO_P (REGNO (op))))); +} + +/* Return 1 if the operand is either an easy FP constant (see above) or + memory. */ + +int +mem_or_easy_const_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return memory_operand (op, mode) || easy_fp_constant (op, mode); +} + +/* Return 1 if the operand is either a non-special register or an item + that can be used as the operand of an SI add insn. */ + +int +add_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (reg_or_short_operand (op, mode) + || (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff) == 0)); +} + +/* Return 1 if OP is a constant but not a valid add_operand. */ + +int +non_add_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT + && (unsigned) (INTVAL (op) + 0x8000) >= 0x10000 + && (INTVAL (op) & 0xffff) != 0); +} + +/* Return 1 if the operand is a non-special register or a constant that + can be used as the operand of an OR or XOR insn on the RS/6000. */ + +int +logical_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (gpc_reg_operand (op, mode) + || (GET_CODE (op) == CONST_INT + && ((INTVAL (op) & 0xffff0000) == 0 + || (INTVAL (op) & 0xffff) == 0))); +} + +/* Return 1 if C is a constant that is not a logical operand (as + above). */ + +int +non_logical_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == CONST_INT + && (INTVAL (op) & 0xffff0000) != 0 + && (INTVAL (op) & 0xffff) != 0); +} + +/* Return 1 if C is a constant that can be encoded in a mask on the + RS/6000. It is if there are no more than two 1->0 or 0->1 transitions. + Reject all ones and all zeros, since these should have been optimized + away and confuse the making of MB and ME. */ + +int +mask_constant (c) + register int c; +{ + int i; + int last_bit_value; + int transitions = 0; + + if (c == 0 || c == ~0) + return 0; + + last_bit_value = c & 1; + + for (i = 1; i < 32; i++) + if (((c >>= 1) & 1) != last_bit_value) + last_bit_value ^= 1, transitions++; + + return transitions <= 2; +} + +/* Return 1 if the operand is a constant that is a mask on the RS/6000. */ + +int +mask_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT && mask_constant (INTVAL (op)); +} + +/* Return 1 if the operand is either a non-special register or a + constant that can be used as the operand of an RS/6000 logical AND insn. */ + +int +and_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (reg_or_short_operand (op, mode) + || logical_operand (op, mode) + || mask_operand (op, mode)); +} + +/* Return 1 if the operand is a constant but not a valid operand for an AND + insn. */ + +int +non_and_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT && ! and_operand (op, mode); +} + +/* Return 1 if the operand is a general register or memory operand. */ + +int +reg_or_mem_operand (op, mode) + register rtx op; + register enum machine_mode mode; +{ + return gpc_reg_operand (op, mode) || memory_operand (op, mode); +} + +/* Return 1 if the operand is a general register or memory operand without + pre-inc or pre_dec which produces invalid form of PowerPC lwa + instruction. */ + +int +lwa_operand (op, mode) + register rtx op; + register enum machine_mode mode; +{ + rtx inner = op; + + if (reload_completed && GET_CODE (inner) == SUBREG) + inner = SUBREG_REG (inner); + + return gpc_reg_operand (inner, mode) + || (memory_operand (inner, mode) + && GET_CODE (XEXP (inner, 0)) != PRE_INC + && GET_CODE (XEXP (inner, 0)) != PRE_DEC); +} + +/* Return 1 if the operand, used inside a MEM, is a valid first argument + to CALL. This is a SYMBOL_REF or a pseudo-register, which will be + forced to lr. */ + +int +call_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (mode != VOIDmode && GET_MODE (op) != mode) + return 0; + + return (GET_CODE (op) == SYMBOL_REF + || (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)); +} + + +/* Return 1 if the operand is a SYMBOL_REF for a function known to be in + this file. */ + +int +current_file_function_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == SYMBOL_REF + && (SYMBOL_REF_FLAG (op) + || op == XEXP (DECL_RTL (current_function_decl), 0))); +} + + +/* Return 1 if this operand is a valid input for a move insn. */ + +int +input_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + /* Memory is always valid. */ + if (memory_operand (op, mode)) + return 1; + + /* For floating-point, easy constants are valid. */ + if (GET_MODE_CLASS (mode) == MODE_FLOAT + && CONSTANT_P (op) + && easy_fp_constant (op, mode)) + return 1; + + /* For floating-point or multi-word mode, the only remaining valid type + is a register. */ + if (GET_MODE_CLASS (mode) == MODE_FLOAT + || GET_MODE_SIZE (mode) > UNITS_PER_WORD) + return register_operand (op, mode); + + /* The only cases left are integral modes one word or smaller (we + do not get called for MODE_CC values). These can be in any + register. */ + if (register_operand (op, mode)) + return 1; + + /* For HImode and QImode, any constant is valid. */ + if ((mode == HImode || mode == QImode) + && GET_CODE (op) == CONST_INT) + return 1; + + /* A SYMBOL_REF referring to the TOC is valid. */ + if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (op)) + return 1; + + /* Otherwise, we will be doing this SET with an add, so anything valid + for an add will be valid. */ + return add_operand (op, mode); +} + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + For incoming args we set the number of arguments in the prototype large + so we never return an EXPR_LIST. */ + +void +init_cumulative_args (cum, fntype, libname, incoming) + CUMULATIVE_ARGS *cum; + tree fntype; + rtx libname; + int incoming; +{ + static CUMULATIVE_ARGS zero_cumulative; + + *cum = zero_cumulative; + cum->words = 0; + cum->fregno = FP_ARG_MIN_REG; + cum->prototype = (fntype && TYPE_ARG_TYPES (fntype)); + + if (incoming) + { + cum->nargs_prototype = 1000; /* don't return an EXPR_LIST */ +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS) + cum->varargs_offset = RS6000_VARARGS_OFFSET; +#endif + } + + else if (cum->prototype) + cum->nargs_prototype = (list_length (TYPE_ARG_TYPES (fntype)) - 1 + + (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode + || RETURN_IN_MEMORY (TREE_TYPE (fntype)))); + + else + cum->nargs_prototype = 0; + + cum->orig_nargs = cum->nargs_prototype; + if (TARGET_DEBUG_ARG) + { + fprintf (stderr, "\ninit_cumulative_args:"); + if (fntype) + { + tree ret_type = TREE_TYPE (fntype); + fprintf (stderr, " ret code = %s,", + tree_code_name[ (int)TREE_CODE (ret_type) ]); + } + +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS && incoming) + fprintf (stderr, " varargs = %d, ", cum->varargs_offset); +#endif + + fprintf (stderr, " proto = %d, nargs = %d\n", + cum->prototype, cum->nargs_prototype); + } +} + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +void +function_arg_advance (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ + cum->nargs_prototype--; + +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS) + { + /* Long longs must not be split between registers and stack */ + if ((GET_MODE_CLASS (mode) != MODE_FLOAT || TARGET_SOFT_FLOAT) + && type && !AGGREGATE_TYPE_P (type) + && cum->words < GP_ARG_NUM_REG + && cum->words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG) + { + cum->words = GP_ARG_NUM_REG; + } + + /* Aggregates get passed as pointers */ + if (type && AGGREGATE_TYPE_P (type)) + cum->words++; + + /* Floats go in registers, & don't occupy space in the GP registers + like they do for AIX unless software floating point. */ + else if (GET_MODE_CLASS (mode) == MODE_FLOAT + && TARGET_HARD_FLOAT + && cum->fregno <= FP_ARG_V4_MAX_REG) + cum->fregno++; + + else + cum->words += RS6000_ARG_SIZE (mode, type, 1); + } + else +#endif + if (named) + { + cum->words += RS6000_ARG_SIZE (mode, type, named); + if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_HARD_FLOAT) + cum->fregno++; + } + + if (TARGET_DEBUG_ARG) + fprintf (stderr, + "function_adv: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d\n", + cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named); +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On RS/6000 the first eight words of non-FP are normally in registers + and the rest are pushed. Under AIX, the first 13 FP args are in registers. + Under V.4, the first 8 FP args are in registers. + + If this is floating-point and no prototype is specified, we use + both an FP and integer register (or possibly FP reg and stack). Library + functions (when TYPE is zero) always have the proper types for args, + so we can pass the FP value just in one register. emit_library_function + doesn't support EXPR_LIST anyway. */ + +struct rtx_def * +function_arg (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ + if (TARGET_DEBUG_ARG) + fprintf (stderr, + "function_arg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d\n", + cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named); + + /* Return a marker to indicate whether CR1 needs to set or clear the bit that V.4 + uses to say fp args were passed in registers. Assume that we don't need the + marker for software floating point, or compiler generated library calls. */ + if (mode == VOIDmode) + { +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS && TARGET_HARD_FLOAT && cum->nargs_prototype < 0 + && type && (cum->prototype || TARGET_NO_PROTOTYPE)) + return GEN_INT ((cum->fregno == FP_ARG_MIN_REG) ? -1 : 1); +#endif + + return GEN_INT (0); + } + + if (!named) + { +#ifdef TARGET_V4_CALLS + if (!TARGET_V4_CALLS) +#endif + return NULL_RTX; + } + + if (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) + return NULL_RTX; + + if (USE_FP_FOR_ARG_P (*cum, mode, type)) + { + if ((cum->nargs_prototype > 0) +#ifdef TARGET_V4_CALLS + || TARGET_V4_CALLS /* V.4 never passes FP values in GP registers */ +#endif + || !type) + return gen_rtx (REG, mode, cum->fregno); + + return gen_rtx (EXPR_LIST, VOIDmode, + ((cum->words < GP_ARG_NUM_REG) + ? gen_rtx (REG, mode, GP_ARG_MIN_REG + cum->words) + : NULL_RTX), + gen_rtx (REG, mode, cum->fregno)); + } + +#ifdef TARGET_V4_CALLS + /* Long longs won't be split between register and stack */ + else if (TARGET_V4_CALLS && + cum->words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG) + { + return NULL_RTX; + } +#endif + + else if (cum->words < GP_ARG_NUM_REG) + return gen_rtx (REG, mode, GP_ARG_MIN_REG + cum->words); + + return NULL_RTX; +} + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +int +function_arg_partial_nregs (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ + if (! named) + return 0; + +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS) + return 0; +#endif + + if (USE_FP_FOR_ARG_P (*cum, mode, type)) + { + if (cum->nargs_prototype >= 0) + return 0; + } + + if (cum->words < GP_ARG_NUM_REG + && GP_ARG_NUM_REG < (cum->words + RS6000_ARG_SIZE (mode, type, named))) + { + int ret = GP_ARG_NUM_REG - cum->words; + if (ret && TARGET_DEBUG_ARG) + fprintf (stderr, "function_arg_partial_nregs: %d\n", ret); + + return ret; + } + + return 0; +} + +/* A C expression that indicates when an argument must be passed by + reference. If nonzero for an argument, a copy of that argument is + made in memory and a pointer to the argument is passed instead of + the argument itself. The pointer is passed in whatever way is + appropriate for passing a pointer to that type. + + Under V.4, structures and unions are passed by reference. */ + +int +function_arg_pass_by_reference (cum, mode, type, named) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int named; +{ +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS && type && AGGREGATE_TYPE_P (type)) + { + if (TARGET_DEBUG_ARG) + fprintf (stderr, "function_arg_pass_by_reference: aggregate\n"); + + return 1; + } +#endif + + return 0; +} + + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. + + CUM is as above. + + MODE and TYPE are the mode and type of the current parameter. + + PRETEND_SIZE is a variable that should be set to the amount of stack + that must be pushed by the prolog to pretend that our caller pushed + it. + + Normally, this macro will push all remaining incoming registers on the + stack and set PRETEND_SIZE to the length of the registers pushed. */ + +void +setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl) + CUMULATIVE_ARGS *cum; + enum machine_mode mode; + tree type; + int *pretend_size; + int no_rtl; + +{ + rtx save_area = virtual_incoming_args_rtx; + int reg_size = (TARGET_64BIT) ? 8 : 4; + + if (TARGET_DEBUG_ARG) + fprintf (stderr, + "setup_vararg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, no_rtl= %d\n", + cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), no_rtl); + +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS && !no_rtl) + { + rs6000_sysv_varargs_p = 1; + save_area = plus_constant (frame_pointer_rtx, RS6000_VARARGS_OFFSET); + } +#endif + + if (cum->words < 8) + { + int first_reg_offset = cum->words; + + if (MUST_PASS_IN_STACK (mode, type)) + first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (type), type, 1); + + if (first_reg_offset > GP_ARG_NUM_REG) + first_reg_offset = GP_ARG_NUM_REG; + + if (!no_rtl && first_reg_offset != GP_ARG_NUM_REG) + move_block_from_reg + (GP_ARG_MIN_REG + first_reg_offset, + gen_rtx (MEM, BLKmode, + plus_constant (save_area, first_reg_offset * reg_size)), + GP_ARG_NUM_REG - first_reg_offset, + (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD); + + *pretend_size = (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD; + } + +#ifdef TARGET_V4_CALLS + /* Save FP registers if needed. */ + if (TARGET_V4_CALLS && TARGET_HARD_FLOAT && !no_rtl) + { + int fregno = cum->fregno; + int num_fp_reg = FP_ARG_V4_MAX_REG + 1 - fregno; + + if (num_fp_reg >= 0) + { + rtx cr1 = gen_rtx (REG, CCmode, 69); + rtx lab = gen_label_rtx (); + int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG) * 8); + + emit_jump_insn (gen_rtx (SET, VOIDmode, + pc_rtx, + gen_rtx (IF_THEN_ELSE, VOIDmode, + gen_rtx (NE, VOIDmode, cr1, const0_rtx), + gen_rtx (LABEL_REF, VOIDmode, lab), + pc_rtx))); + + while ( num_fp_reg-- >= 0) + { + emit_move_insn (gen_rtx (MEM, DFmode, plus_constant (save_area, off)), + gen_rtx (REG, DFmode, fregno++)); + off += 8; + } + + emit_label (lab); + } + } +#endif +} + +/* If defined, is a C expression that produces the machine-specific + code for a call to `__builtin_saveregs'. This code will be moved + to the very beginning of the function, before any parameter access + are made. The return value of this function should be an RTX that + contains the value to use as the return of `__builtin_saveregs'. + + The argument ARGS is a `tree_list' containing the arguments that + were passed to `__builtin_saveregs'. + + If this macro is not defined, the compiler will output an ordinary + call to the library function `__builtin_saveregs'. + + On the Power/PowerPC return the address of the area on the stack + used to hold arguments. Under AIX, this includes the 8 word register + save area. Under V.4 this does not. */ + +struct rtx_def * +expand_builtin_saveregs (args) + tree args; +{ + return virtual_incoming_args_rtx; +} + + +/* Allocate a stack temp. Only allocate one stack temp per type for a + function. */ + +struct rtx_def * +rs6000_stack_temp (mode, size) + enum machine_mode mode; + int size; +{ + rtx temp = stack_temps[ (int)mode ]; + rtx addr; + + if (temp == NULL_RTX) + { + temp = assign_stack_local (mode, size, 0); + addr = XEXP (temp, 0); + + if ((size > 4 && !offsettable_address_p (0, mode, addr)) + || (size <= 4 && !memory_address_p (mode, addr))) + { + XEXP (temp, 0) = copy_addr_to_reg (addr); + } + + stack_temps[ (int)mode ] = temp; + } + + return temp; +} + + +/* Generate a memory reference for expand_block_move, copying volatile, + and other bits from an original memory reference. */ + +static rtx +expand_block_move_mem (mode, addr, orig_mem) + enum machine_mode mode; + rtx addr; + rtx orig_mem; +{ + rtx mem = gen_rtx (MEM, mode, addr); + MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem); + MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (orig_mem); + return mem; +} + +/* Expand a block move operation, and return 1 if successful. Return 0 + if we should let the compiler generate normal code. + + operands[0] is the destination + operands[1] is the source + operands[2] is the length + operands[3] is the alignment */ + +#define MAX_MOVE_REG 4 + +int +expand_block_move (operands) + rtx operands[]; +{ + rtx bytes_rtx = operands[2]; + rtx align_rtx = operands[3]; + int constp = (GET_CODE (bytes_rtx) == CONST_INT); + int align = XINT (align_rtx, 0); + int bytes; + int offset; + int num_reg; + int i; + rtx src_reg; + rtx dest_reg; + rtx src_addr; + rtx dest_addr; + rtx tmp_reg; + rtx stores[MAX_MOVE_REG]; + int move_bytes; + + /* If this is not a fixed size move, just call memcpy */ + if (!constp) + return 0; + + /* Anything to move? */ + bytes = INTVAL (bytes_rtx); + if (bytes <= 0) + return 1; + + /* Don't support real large moves. If string instructions are not used, + then don't generate more than 8 loads. */ + if (TARGET_STRING) + { + if (bytes > 4*8) + return 0; + } + else if (!STRICT_ALIGNMENT) + { + if (bytes > 4*8) + return 0; + } + else if (bytes > 8*align) + return 0; + + /* Move the address into scratch registers. */ + dest_reg = copy_addr_to_reg (XEXP (operands[0], 0)); + src_reg = copy_addr_to_reg (XEXP (operands[1], 0)); + + if (TARGET_STRING) /* string instructions are available */ + { + for ( ; bytes > 0; bytes -= move_bytes) + { + if (bytes > 24 /* move up to 32 bytes at a time */ + && !fixed_regs[5] + && !fixed_regs[6] + && !fixed_regs[7] + && !fixed_regs[8] + && !fixed_regs[9] + && !fixed_regs[10] + && !fixed_regs[11] + && !fixed_regs[12]) + { + move_bytes = (bytes > 32) ? 32 : bytes; + emit_insn (gen_movstrsi_8reg (dest_reg, + src_reg, + GEN_INT ((move_bytes == 32) ? 0 : move_bytes), + align_rtx)); + } + else if (bytes > 16 /* move up to 24 bytes at a time */ + && !fixed_regs[7] + && !fixed_regs[8] + && !fixed_regs[9] + && !fixed_regs[10] + && !fixed_regs[11] + && !fixed_regs[12]) + { + move_bytes = (bytes > 24) ? 24 : bytes; + emit_insn (gen_movstrsi_6reg (dest_reg, + src_reg, + GEN_INT (move_bytes), + align_rtx)); + } + else if (bytes > 8 /* move up to 16 bytes at a time */ + && !fixed_regs[9] + && !fixed_regs[10] + && !fixed_regs[11] + && !fixed_regs[12]) + { + move_bytes = (bytes > 16) ? 16 : bytes; + emit_insn (gen_movstrsi_4reg (dest_reg, + src_reg, + GEN_INT (move_bytes), + align_rtx)); + } + else if (bytes > 4 && !TARGET_64BIT) + { /* move up to 8 bytes at a time */ + move_bytes = (bytes > 8) ? 8 : bytes; + emit_insn (gen_movstrsi_2reg (dest_reg, + src_reg, + GEN_INT (move_bytes), + align_rtx)); + } + else if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT)) + { /* move 4 bytes */ + move_bytes = 4; + tmp_reg = gen_reg_rtx (SImode); + emit_move_insn (tmp_reg, gen_rtx (MEM, SImode, src_reg)); + emit_move_insn (gen_rtx (MEM, SImode, dest_reg), tmp_reg); + } + else if (bytes == 2 && (align >= 2 || !STRICT_ALIGNMENT)) + { /* move 2 bytes */ + move_bytes = 2; + tmp_reg = gen_reg_rtx (HImode); + emit_move_insn (tmp_reg, gen_rtx (MEM, HImode, src_reg)); + emit_move_insn (gen_rtx (MEM, HImode, dest_reg), tmp_reg); + } + else if (bytes == 1) /* move 1 byte */ + { + move_bytes = 1; + tmp_reg = gen_reg_rtx (QImode); + emit_move_insn (tmp_reg, gen_rtx (MEM, QImode, src_reg)); + emit_move_insn (gen_rtx (MEM, QImode, dest_reg), tmp_reg); + } + else + { /* move up to 4 bytes at a time */ + move_bytes = (bytes > 4) ? 4 : bytes; + emit_insn (gen_movstrsi_1reg (dest_reg, + src_reg, + GEN_INT (move_bytes), + align_rtx)); + } + + if (bytes > move_bytes) + { + emit_insn (gen_addsi3 (src_reg, src_reg, GEN_INT (move_bytes))); + emit_insn (gen_addsi3 (dest_reg, dest_reg, GEN_INT (move_bytes))); + } + } + } + + else /* string instructions not available */ + { + num_reg = offset = 0; + for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes)) + { + /* Calculate the correct offset for src/dest */ + if (offset == 0) + { + src_addr = src_reg; + dest_addr = dest_reg; + } + else + { + src_addr = gen_rtx (PLUS, Pmode, src_reg, GEN_INT (offset)); + dest_addr = gen_rtx (PLUS, Pmode, dest_reg, GEN_INT (offset)); + } + + /* Generate the appropriate load and store, saving the stores for later */ + if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT)) + { + move_bytes = 4; + tmp_reg = gen_reg_rtx (SImode); + emit_insn (gen_movsi (tmp_reg, gen_rtx (MEM, SImode, src_addr))); + stores[ num_reg++ ] = gen_movsi (gen_rtx (MEM, SImode, dest_addr), tmp_reg); + } + else if (bytes >= 2 && (align >= 2 || !STRICT_ALIGNMENT)) + { + move_bytes = 2; + tmp_reg = gen_reg_rtx (HImode); + emit_insn (gen_movhi (tmp_reg, gen_rtx (MEM, HImode, src_addr))); + stores[ num_reg++ ] = gen_movhi (gen_rtx (MEM, HImode, dest_addr), tmp_reg); + } + else + { + move_bytes = 1; + tmp_reg = gen_reg_rtx (QImode); + emit_insn (gen_movqi (tmp_reg, gen_rtx (MEM, QImode, src_addr))); + stores[ num_reg++ ] = gen_movqi (gen_rtx (MEM, QImode, dest_addr), tmp_reg); + } + + if (num_reg >= MAX_MOVE_REG) + { + for (i = 0; i < num_reg; i++) + emit_insn (stores[i]); + num_reg = 0; + } + } + + if (num_reg > 0) + { + for (i = 0; i < num_reg; i++) + emit_insn (stores[i]); + } + } + + return 1; +} + + +/* Return 1 if OP is a load multiple operation. It is known to be a + PARALLEL and the first section will be tested. */ + +int +load_multiple_operation (op, mode) + rtx op; + enum machine_mode mode; +{ + int count = XVECLEN (op, 0); + int dest_regno; + rtx src_addr; + int i; + + /* Perform a quick check so we don't blow up below. */ + if (count <= 1 + || GET_CODE (XVECEXP (op, 0, 0)) != SET + || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG + || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) + return 0; + + dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); + src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); + + for (i = 1; i < count; i++) + { + rtx elt = XVECEXP (op, 0, i); + + if (GET_CODE (elt) != SET + || GET_CODE (SET_DEST (elt)) != REG + || GET_MODE (SET_DEST (elt)) != SImode + || REGNO (SET_DEST (elt)) != dest_regno + i + || GET_CODE (SET_SRC (elt)) != MEM + || GET_MODE (SET_SRC (elt)) != SImode + || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS + || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) + || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT + || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4) + return 0; + } + + return 1; +} + +/* Similar, but tests for store multiple. Here, the second vector element + is a CLOBBER. It will be tested later. */ + +int +store_multiple_operation (op, mode) + rtx op; + enum machine_mode mode; +{ + int count = XVECLEN (op, 0) - 1; + int src_regno; + rtx dest_addr; + int i; + + /* Perform a quick check so we don't blow up below. */ + if (count <= 1 + || GET_CODE (XVECEXP (op, 0, 0)) != SET + || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM + || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) + return 0; + + src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); + dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); + + for (i = 1; i < count; i++) + { + rtx elt = XVECEXP (op, 0, i + 1); + + if (GET_CODE (elt) != SET + || GET_CODE (SET_SRC (elt)) != REG + || GET_MODE (SET_SRC (elt)) != SImode + || REGNO (SET_SRC (elt)) != src_regno + i + || GET_CODE (SET_DEST (elt)) != MEM + || GET_MODE (SET_DEST (elt)) != SImode + || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS + || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) + || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT + || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4) + return 0; + } + + return 1; +} + +/* Return 1 if OP is a comparison operation that is valid for a branch insn. + We only check the opcode against the mode of the CC value here. */ + +int +branch_comparison_operator (op, mode) + register rtx op; + enum machine_mode mode; +{ + enum rtx_code code = GET_CODE (op); + enum machine_mode cc_mode; + + if (GET_RTX_CLASS (code) != '<') + return 0; + + cc_mode = GET_MODE (XEXP (op, 0)); + if (GET_MODE_CLASS (cc_mode) != MODE_CC) + return 0; + + if ((code == GT || code == LT || code == GE || code == LE) + && cc_mode == CCUNSmode) + return 0; + + if ((code == GTU || code == LTU || code == GEU || code == LEU) + && (cc_mode != CCUNSmode)) + return 0; + + return 1; +} + +/* Return 1 if OP is a comparison operation that is valid for an scc insn. + We check the opcode against the mode of the CC value and disallow EQ or + NE comparisons for integers. */ + +int +scc_comparison_operator (op, mode) + register rtx op; + enum machine_mode mode; +{ + enum rtx_code code = GET_CODE (op); + enum machine_mode cc_mode; + + if (GET_MODE (op) != mode && mode != VOIDmode) + return 0; + + if (GET_RTX_CLASS (code) != '<') + return 0; + + cc_mode = GET_MODE (XEXP (op, 0)); + if (GET_MODE_CLASS (cc_mode) != MODE_CC) + return 0; + + if (code == NE && cc_mode != CCFPmode) + return 0; + + if ((code == GT || code == LT || code == GE || code == LE) + && cc_mode == CCUNSmode) + return 0; + + if ((code == GTU || code == LTU || code == GEU || code == LEU) + && (cc_mode != CCUNSmode)) + return 0; + + if (cc_mode == CCEQmode && code != EQ && code != NE) + return 0; + + return 1; +} + +/* Return 1 if ANDOP is a mask that has no bits on that are not in the + mask required to convert the result of a rotate insn into a shift + left insn of SHIFTOP bits. Both are known to be CONST_INT. */ + +int +includes_lshift_p (shiftop, andop) + register rtx shiftop; + register rtx andop; +{ + int shift_mask = (~0 << INTVAL (shiftop)); + + return (INTVAL (andop) & ~shift_mask) == 0; +} + +/* Similar, but for right shift. */ + +int +includes_rshift_p (shiftop, andop) + register rtx shiftop; + register rtx andop; +{ + unsigned shift_mask = ~0; + + shift_mask >>= INTVAL (shiftop); + + return (INTVAL (andop) & ~ shift_mask) == 0; +} + +/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates + for lfq and stfq insns. + + Note reg1 and reg2 *must* be hard registers. To be sure we will + abort if we are passed pseudo registers. */ + +int +registers_ok_for_quad_peep (reg1, reg2) + rtx reg1, reg2; +{ + /* We might have been passed a SUBREG. */ + if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) + return 0; + + return (REGNO (reg1) == REGNO (reg2) - 1); +} + +/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn. addr1 and + addr2 must be in consecutive memory locations (addr2 == addr1 + 8). */ + +int +addrs_ok_for_quad_peep (addr1, addr2) + register rtx addr1; + register rtx addr2; +{ + int reg1; + int offset1; + + /* Extract an offset (if used) from the first addr. */ + if (GET_CODE (addr1) == PLUS) + { + /* If not a REG, return zero. */ + if (GET_CODE (XEXP (addr1, 0)) != REG) + return 0; + else + { + reg1 = REGNO (XEXP (addr1, 0)); + /* The offset must be constant! */ + if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) + return 0; + offset1 = INTVAL (XEXP (addr1, 1)); + } + } + else if (GET_CODE (addr1) != REG) + return 0; + else + { + reg1 = REGNO (addr1); + /* This was a simple (mem (reg)) expression. Offset is 0. */ + offset1 = 0; + } + + /* Make sure the second address is a (mem (plus (reg) (const_int). */ + if (GET_CODE (addr2) != PLUS) + return 0; + + if (GET_CODE (XEXP (addr2, 0)) != REG + || GET_CODE (XEXP (addr2, 1)) != CONST_INT) + return 0; + + if (reg1 != REGNO (XEXP (addr2, 0))) + return 0; + + /* The offset for the second addr must be 8 more than the first addr. */ + if (INTVAL (XEXP (addr2, 1)) != offset1 + 8) + return 0; + + /* All the tests passed. addr1 and addr2 are valid for lfq or stfq + instructions. */ + return 1; +} + +/* Return the register class of a scratch register needed to copy IN into + or out of a register in CLASS in MODE. If it can be done directly, + NO_REGS is returned. */ + +enum reg_class +secondary_reload_class (class, mode, in) + enum reg_class class; + enum machine_mode mode; + rtx in; +{ + int regno = true_regnum (in); + + if (regno >= FIRST_PSEUDO_REGISTER) + regno = -1; + + /* We can place anything into GENERAL_REGS and can put GENERAL_REGS + into anything. */ + if (class == GENERAL_REGS || class == BASE_REGS + || (regno >= 0 && INT_REGNO_P (regno))) + return NO_REGS; + + /* Constants, memory, and FP registers can go into FP registers. */ + if ((regno == -1 || FP_REGNO_P (regno)) + && (class == FLOAT_REGS || class == NON_SPECIAL_REGS)) + return NO_REGS; + + /* We can copy among the CR registers. */ + if ((class == CR_REGS || class == CR0_REGS) + && regno >= 0 && CR_REGNO_P (regno)) + return NO_REGS; + + /* Otherwise, we need GENERAL_REGS. */ + return GENERAL_REGS; +} + +/* Given a comparison operation, return the bit number in CCR to test. We + know this is a valid comparison. + + SCC_P is 1 if this is for an scc. That means that %D will have been + used instead of %C, so the bits will be in different places. + + Return -1 if OP isn't a valid comparison for some reason. */ + +int +ccr_bit (op, scc_p) + register rtx op; + int scc_p; +{ + enum rtx_code code = GET_CODE (op); + enum machine_mode cc_mode; + int cc_regnum; + int base_bit; + + if (GET_RTX_CLASS (code) != '<') + return -1; + + cc_mode = GET_MODE (XEXP (op, 0)); + cc_regnum = REGNO (XEXP (op, 0)); + base_bit = 4 * (cc_regnum - 68); + + /* In CCEQmode cases we have made sure that the result is always in the + third bit of the CR field. */ + + if (cc_mode == CCEQmode) + return base_bit + 3; + + switch (code) + { + case NE: + return scc_p ? base_bit + 3 : base_bit + 2; + case EQ: + return base_bit + 2; + case GT: case GTU: + return base_bit + 1; + case LT: case LTU: + return base_bit; + + case GE: case GEU: + /* If floating-point, we will have done a cror to put the bit in the + unordered position. So test that bit. For integer, this is ! LT + unless this is an scc insn. */ + return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit; + + case LE: case LEU: + return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit + 1; + + default: + abort (); + } +} + +/* Print an operand. Recognize special options, documented below. */ + +void +print_operand (file, x, code) + FILE *file; + rtx x; + char code; +{ + int i; + int val; + + /* These macros test for integers and extract the low-order bits. */ +#define INT_P(X) \ +((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \ + && GET_MODE (X) == VOIDmode) + +#define INT_LOWPART(X) \ + (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X)) + + switch (code) + { + case '.': + /* Write out an instruction after the call which may be replaced + with glue code by the loader. This depends on the AIX version. */ + asm_fprintf (file, RS6000_CALL_GLUE); + return; + + case '*': + /* Write the register number of the TOC register. */ + fputs (TARGET_MINIMAL_TOC ? reg_names[30] : reg_names[2], file); + return; + + case 'A': + /* If X is a constant integer whose low-order 5 bits are zero, + write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug + in the AIX assembler where "sri" with a zero shift count + write a trash instruction. */ + if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0) + putc ('l', file); + else + putc ('r', file); + return; + + case 'b': + /* Low-order 16 bits of constant, unsigned. */ + if (! INT_P (x)) + output_operand_lossage ("invalid %%b value"); + + fprintf (file, "%d", INT_LOWPART (x) & 0xffff); + return; + + case 'C': + /* This is an optional cror needed for LE or GE floating-point + comparisons. Otherwise write nothing. */ + if ((GET_CODE (x) == LE || GET_CODE (x) == GE) + && GET_MODE (XEXP (x, 0)) == CCFPmode) + { + int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); + + fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3, + base_bit + 2, base_bit + (GET_CODE (x) == GE)); + } + return; + + case 'D': + /* Similar, except that this is for an scc, so we must be able to + encode the test in a single bit that is one. We do the above + for any LE, GE, GEU, or LEU and invert the bit for NE. */ + if (GET_CODE (x) == LE || GET_CODE (x) == GE + || GET_CODE (x) == LEU || GET_CODE (x) == GEU) + { + int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); + + fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3, + base_bit + 2, + base_bit + (GET_CODE (x) == GE || GET_CODE (x) == GEU)); + } + + else if (GET_CODE (x) == NE) + { + int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); + + fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 3, + base_bit + 2, base_bit + 2); + } + return; + + case 'E': + /* X is a CR register. Print the number of the third bit of the CR */ + if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) + output_operand_lossage ("invalid %%E value"); + + fprintf(file, "%d", 4 * (REGNO (x) - 68) + 3); + return; + + case 'f': + /* X is a CR register. Print the shift count needed to move it + to the high-order four bits. */ + if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) + output_operand_lossage ("invalid %%f value"); + else + fprintf (file, "%d", 4 * (REGNO (x) - 68)); + return; + + case 'F': + /* Similar, but print the count for the rotate in the opposite + direction. */ + if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) + output_operand_lossage ("invalid %%F value"); + else + fprintf (file, "%d", 32 - 4 * (REGNO (x) - 68)); + return; + + case 'G': + /* X is a constant integer. If it is negative, print "m", + otherwise print "z". This is to make a aze or ame insn. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%G value"); + else if (INTVAL (x) >= 0) + putc ('z', file); + else + putc ('m', file); + return; + + case 'h': + /* If constant, output low-order five bits. Otherwise, + write normally. */ + if (INT_P (x)) + fprintf (file, "%d", INT_LOWPART (x) & 31); + else + print_operand (file, x, 0); + return; + + case 'I': + /* Print `i' if this is a constant, else nothing. */ + if (INT_P (x)) + putc ('i', file); + return; + + case 'j': + /* Write the bit number in CCR for jump. */ + i = ccr_bit (x, 0); + if (i == -1) + output_operand_lossage ("invalid %%j code"); + else + fprintf (file, "%d", i); + return; + + case 'J': + /* Similar, but add one for shift count in rlinm for scc and pass + scc flag to `ccr_bit'. */ + i = ccr_bit (x, 1); + if (i == -1) + output_operand_lossage ("invalid %%J code"); + else + /* If we want bit 31, write a shift count of zero, not 32. */ + fprintf (file, "%d", i == 31 ? 0 : i + 1); + return; + + case 'k': + /* X must be a constant. Write the 1's complement of the + constant. */ + if (! INT_P (x)) + output_operand_lossage ("invalid %%k value"); + + fprintf (file, "%d", ~ INT_LOWPART (x)); + return; + + case 'L': + /* Write second word of DImode or DFmode reference. Works on register + or non-indexed memory only. */ + if (GET_CODE (x) == REG) + fprintf (file, "%d", REGNO (x) + 1); + else if (GET_CODE (x) == MEM) + { + /* Handle possible auto-increment. Since it is pre-increment and + we have already done it, we can just use an offset of four. */ + if (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC) + output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4)); + else + output_address (plus_constant (XEXP (x, 0), 4)); + } + return; + + case 'm': + /* MB value for a mask operand. */ + if (! mask_operand (x, VOIDmode)) + output_operand_lossage ("invalid %%m value"); + + val = INT_LOWPART (x); + + /* If the high bit is set and the low bit is not, the value is zero. + If the high bit is zero, the value is the first 1 bit we find from + the left. */ + if (val < 0 && (val & 1) == 0) + { + fprintf (file, "0"); + return; + } + else if (val >= 0) + { + for (i = 1; i < 32; i++) + if ((val <<= 1) < 0) + break; + fprintf (file, "%d", i); + return; + } + + /* Otherwise, look for the first 0 bit from the right. The result is its + number plus 1. We know the low-order bit is one. */ + for (i = 0; i < 32; i++) + if (((val >>= 1) & 1) == 0) + break; + + /* If we ended in ...01, I would be 0. The correct value is 31, so + we want 31 - i. */ + fprintf (file, "%d", 31 - i); + return; + + case 'M': + /* ME value for a mask operand. */ + if (! mask_operand (x, VOIDmode)) + output_operand_lossage ("invalid %%m value"); + + val = INT_LOWPART (x); + + /* If the low bit is set and the high bit is not, the value is 31. + If the low bit is zero, the value is the first 1 bit we find from + the right. */ + if ((val & 1) && val >= 0) + { + fputs ("31", file); + return; + } + else if ((val & 1) == 0) + { + for (i = 0; i < 32; i++) + if ((val >>= 1) & 1) + break; + + /* If we had ....10, I would be 0. The result should be + 30, so we need 30 - i. */ + fprintf (file, "%d", 30 - i); + return; + } + + /* Otherwise, look for the first 0 bit from the left. The result is its + number minus 1. We know the high-order bit is one. */ + for (i = 0; i < 32; i++) + if ((val <<= 1) >= 0) + break; + + fprintf (file, "%d", i); + return; + + case 'N': + /* Write the number of elements in the vector times 4. */ + if (GET_CODE (x) != PARALLEL) + output_operand_lossage ("invalid %%N value"); + + fprintf (file, "%d", XVECLEN (x, 0) * 4); + return; + + case 'O': + /* Similar, but subtract 1 first. */ + if (GET_CODE (x) != PARALLEL) + output_operand_lossage ("invalid %%N value"); + + fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4); + return; + + case 'p': + /* X is a CONST_INT that is a power of two. Output the logarithm. */ + if (! INT_P (x) + || (i = exact_log2 (INT_LOWPART (x))) < 0) + output_operand_lossage ("invalid %%p value"); + + fprintf (file, "%d", i); + return; + + case 'P': + /* The operand must be an indirect memory reference. The result + is the register number. */ + if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG + || REGNO (XEXP (x, 0)) >= 32) + output_operand_lossage ("invalid %%P value"); + + fprintf (file, "%d", REGNO (XEXP (x, 0))); + return; + + case 'R': + /* X is a CR register. Print the mask for `mtcrf'. */ + if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x))) + output_operand_lossage ("invalid %%R value"); + else + fprintf (file, "%d", 128 >> (REGNO (x) - 68)); + return; + + case 's': + /* Low 5 bits of 32 - value */ + if (! INT_P (x)) + output_operand_lossage ("invalid %%s value"); + + fprintf (file, "%d", (32 - INT_LOWPART (x)) & 31); + return; + + case 't': + /* Write 12 if this jump operation will branch if true, 4 otherwise. + All floating-point operations except NE branch true and integer + EQ, LT, GT, LTU and GTU also branch true. */ + if (GET_RTX_CLASS (GET_CODE (x)) != '<') + output_operand_lossage ("invalid %%t value"); + + else if ((GET_MODE (XEXP (x, 0)) == CCFPmode + && GET_CODE (x) != NE) + || GET_CODE (x) == EQ + || GET_CODE (x) == LT || GET_CODE (x) == GT + || GET_CODE (x) == LTU || GET_CODE (x) == GTU) + fputs ("12", file); + else + putc ('4', file); + return; + + case 'T': + /* Opposite of 't': write 4 if this jump operation will branch if true, + 12 otherwise. */ + if (GET_RTX_CLASS (GET_CODE (x)) != '<') + output_operand_lossage ("invalid %%t value"); + + else if ((GET_MODE (XEXP (x, 0)) == CCFPmode + && GET_CODE (x) != NE) + || GET_CODE (x) == EQ + || GET_CODE (x) == LT || GET_CODE (x) == GT + || GET_CODE (x) == LTU || GET_CODE (x) == GTU) + putc ('4', file); + else + fputs ("12", file); + return; + + case 'u': + /* High-order 16 bits of constant. */ + if (! INT_P (x)) + output_operand_lossage ("invalid %%u value"); + + fprintf (file, "0x%x", (INT_LOWPART (x) >> 16) & 0xffff); + return; + + case 'U': + /* Print `u' if this has an auto-increment or auto-decrement. */ + if (GET_CODE (x) == MEM + && (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC)) + putc ('u', file); + return; + + case 'w': + /* If constant, low-order 16 bits of constant, signed. Otherwise, write + normally. */ + if (INT_P (x)) + fprintf (file, "%d", + (INT_LOWPART (x) & 0xffff) - 2 * (INT_LOWPART (x) & 0x8000)); + else + print_operand (file, x, 0); + return; + + case 'W': + /* If constant, low-order 16 bits of constant, unsigned. + Otherwise, write normally. */ + if (INT_P (x)) + fprintf (file, "%d", INT_LOWPART (x) & 0xffff); + else + print_operand (file, x, 0); + return; + + case 'X': + if (GET_CODE (x) == MEM + && LEGITIMATE_INDEXED_ADDRESS_P (XEXP (x, 0))) + putc ('x', file); + return; + + case 'Y': + /* Like 'L', for third word of TImode */ + if (GET_CODE (x) == REG) + fprintf (file, "%d", REGNO (x) + 2); + else if (GET_CODE (x) == MEM) + { + if (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC) + output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8)); + else + output_address (plus_constant (XEXP (x, 0), 8)); + } + return; + + case 'z': + /* X is a SYMBOL_REF. Write out the name preceded by a + period and without any trailing data in brackets. Used for function + names. If we are configured for System V (or the embedded ABI) on + the PowerPC, do not emit the period, since those systems do not use + TOCs and the like. */ + if (GET_CODE (x) != SYMBOL_REF) + abort (); + +#ifndef USING_SVR4_H + putc ('.', file); +#endif + RS6000_OUTPUT_BASENAME (file, XSTR (x, 0)); + return; + + case 'Z': + /* Like 'L', for last word of TImode. */ + if (GET_CODE (x) == REG) + fprintf (file, "%d", REGNO (x) + 3); + else if (GET_CODE (x) == MEM) + { + if (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC) + output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12)); + else + output_address (plus_constant (XEXP (x, 0), 12)); + } + return; + + case 0: + if (GET_CODE (x) == REG) + fprintf (file, "%s", reg_names[REGNO (x)]); + else if (GET_CODE (x) == MEM) + { + /* We need to handle PRE_INC and PRE_DEC here, since we need to + know the width from the mode. */ + if (GET_CODE (XEXP (x, 0)) == PRE_INC) + fprintf (file, "%d(%d)", GET_MODE_SIZE (GET_MODE (x)), + REGNO (XEXP (XEXP (x, 0), 0))); + else if (GET_CODE (XEXP (x, 0)) == PRE_DEC) + fprintf (file, "%d(%d)", - GET_MODE_SIZE (GET_MODE (x)), + REGNO (XEXP (XEXP (x, 0), 0))); + else + output_address (XEXP (x, 0)); + } + else + output_addr_const (file, x); + return; + + default: + output_operand_lossage ("invalid %%xn code"); + } +} + +/* Print the address of an operand. */ + +void +print_operand_address (file, x) + FILE *file; + register rtx x; +{ + if (GET_CODE (x) == REG) + fprintf (file, "0(%s)", reg_names[ REGNO (x) ]); + else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST) + { + output_addr_const (file, x); + /* When TARGET_MINIMAL_TOC, use the indirected toc table pointer instead + of the toc pointer. */ +#ifdef TARGET_NO_TOC + if (TARGET_NO_TOC) + ; + else +#endif + fprintf (file, "(%s)", reg_names[ TARGET_MINIMAL_TOC ? 30 : 2 ]); + } + else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG) + { + if (REGNO (XEXP (x, 0)) == 0) + fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ], + reg_names[ REGNO (XEXP (x, 0)) ]); + else + fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ], + reg_names[ REGNO (XEXP (x, 1)) ]); + } + else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) + fprintf (file, "%d(%s)", INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]); + else if (TARGET_ELF && !TARGET_64BIT && GET_CODE (x) == LO_SUM + && GET_CODE (XEXP (x, 0)) == REG && CONSTANT_P (XEXP (x, 1))) + { + output_addr_const (file, XEXP (x, 1)); + fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]); + } + else + abort (); +} + +/* This page contains routines that are used to determine what the function + prologue and epilogue code will do and write them out. */ + +/* Return the first fixed-point register that is required to be saved. 32 if + none. */ + +int +first_reg_to_save () +{ + int first_reg; + + /* Find lowest numbered live register. */ + for (first_reg = 13; first_reg <= 31; first_reg++) + if (regs_ever_live[first_reg]) + break; + + /* If profiling, then we must save/restore every register that contains + a parameter before/after the .mcount call. Use registers from 30 down + to 23 to do this. Don't use the frame pointer in reg 31. + + For now, save enough room for all of the parameter registers. */ +#ifndef USING_SVR4_H + if (profile_flag) + if (first_reg > 23) + first_reg = 23; +#endif + + return first_reg; +} + +/* Similar, for FP regs. */ + +int +first_fp_reg_to_save () +{ + int first_reg; + + /* Find lowest numbered live register. */ + for (first_reg = 14 + 32; first_reg <= 63; first_reg++) + if (regs_ever_live[first_reg]) + break; + + return first_reg; +} + +/* Return non-zero if this function makes calls. */ + +int +rs6000_makes_calls () +{ + rtx insn; + + /* If we are profiling, we will be making a call to mcount. */ + if (profile_flag) + return 1; + + for (insn = get_insns (); insn; insn = next_insn (insn)) + if (GET_CODE (insn) == CALL_INSN) + return 1; + + return 0; +} + + +/* Calculate the stack information for the current function. This is + complicated by having two separate calling sequences, the AIX calling + sequence and the V.4 calling sequence. + + AIX stack frames look like: + + SP----> +---------------------------------------+ + | back chain to caller | 0 + +---------------------------------------+ + | saved CR | 4 + +---------------------------------------+ + | saved LR | 8 + +---------------------------------------+ + | reserved for compilers | 12 + +---------------------------------------+ + | reserved for binders | 16 + +---------------------------------------+ + | saved TOC pointer | 20 + +---------------------------------------+ + | Parameter save area (P) | 24 + +---------------------------------------+ + | Alloca space (A) | 24+P + +---------------------------------------+ + | Local variable space (L) | 24+P+A + +---------------------------------------+ + | Save area for GP registers (G) | 24+P+A+L + +---------------------------------------+ + | Save area for FP registers (F) | 24+P+A+L+G + +---------------------------------------+ + old SP->| back chain to caller's caller | + +---------------------------------------+ + + V.4 stack frames look like: + + SP----> +---------------------------------------+ + | back chain to caller | 0 + +---------------------------------------+ + | caller's saved LR | 4 + +---------------------------------------+ + | Parameter save area (P) | 8 + +---------------------------------------+ + | Alloca space (A) | 8+P + +---------------------------------------+ + | Varargs save area (V) | 8+P+A + +---------------------------------------+ + | Local variable space (L) | 8+P+A+V + +---------------------------------------+ + | saved CR (C) | 8+P+A+V+L + +---------------------------------------+ + | Save area for GP registers (G) | 8+P+A+V+L+C + +---------------------------------------+ + | Save area for FP registers (F) | 8+P+A+V+L+C+G + +---------------------------------------+ + old SP->| back chain to caller's caller | + +---------------------------------------+ +*/ + +rs6000_stack_t * +rs6000_stack_info () +{ + static rs6000_stack_t info, zero_info; + rs6000_stack_t *info_ptr = &info; + int reg_size = TARGET_64BIT ? 8 : 4; + enum rs6000_abi abi; + + /* Zero all fields portably */ + info = zero_info; + + /* Select which calling sequence */ +#ifdef TARGET_V4_CALLS + if (TARGET_V4_CALLS) + abi = ABI_V4; + else +#endif + abi = ABI_AIX; + + info_ptr->abi = abi; + + /* Calculate which registers need to be saved & save area size */ + info_ptr->first_gp_reg_save = first_reg_to_save (); + info_ptr->gp_size = reg_size * (32 - info_ptr->first_gp_reg_save); + + info_ptr->first_fp_reg_save = first_fp_reg_to_save (); + info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save); + + /* Does this function call anything? */ + info_ptr->calls_p = rs6000_makes_calls (); + + /* Determine if we need to save the link register */ + if (regs_ever_live[65] || profile_flag +#ifdef TARGET_RELOCATABLE + || (TARGET_RELOCATABLE && (get_pool_size () != 0)) +#endif + || (info_ptr->first_fp_reg_save != 64 + && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save)) + || (abi == ABI_V4 && current_function_calls_alloca) + || info_ptr->calls_p) + { + info_ptr->lr_save_p = 1; + regs_ever_live[65] = 1; + } + + /* Determine if we need to save the condition code registers */ + if (regs_ever_live[70] || regs_ever_live[71] || regs_ever_live[72]) + { + info_ptr->cr_save_p = 1; + if (abi == ABI_V4) + info_ptr->cr_size = reg_size; + } + + /* Determine various sizes */ + info_ptr->reg_size = reg_size; + info_ptr->fixed_size = RS6000_SAVE_AREA; + info_ptr->varargs_size = RS6000_VARARGS_AREA; + info_ptr->vars_size = ALIGN (get_frame_size (), 8); + info_ptr->parm_size = ALIGN (current_function_outgoing_args_size, 8); + info_ptr->save_size = ALIGN (info_ptr->fp_size + info_ptr->gp_size + info_ptr->cr_size, 8); + info_ptr->total_size = ALIGN (info_ptr->vars_size + + info_ptr->parm_size + + info_ptr->save_size + + info_ptr->varargs_size + + info_ptr->fixed_size, STACK_BOUNDARY / BITS_PER_UNIT); + + /* Determine if we need to allocate any stack frame. + For AIX We need to push the stack if a frame pointer is needed (because + the stack might be dynamically adjusted), if we are debugging, if the + total stack size is more than 220 bytes, or if we make calls. + + For V.4 we don't have the stack cushion that AIX uses, but assume that + the debugger can handle stackless frames. */ + + if (info_ptr->calls_p) + info_ptr->push_p = 1; + + else if (abi == ABI_V4) + info_ptr->push_p = (info_ptr->total_size > info_ptr->fixed_size + || info_ptr->lr_save_p); + + else + info_ptr->push_p = (frame_pointer_needed + || write_symbols != NO_DEBUG + || info_ptr->total_size > 220); + + /* Calculate the offsets */ + info_ptr->fp_save_offset = - info_ptr->fp_size; + info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size; + switch (abi) + { + default: + info_ptr->cr_save_offset = 4; + info_ptr->lr_save_offset = 8; + break; + + case ABI_V4: + info_ptr->cr_save_offset = info_ptr->gp_save_offset - reg_size; + info_ptr->lr_save_offset = reg_size; + break; + } + + /* Zero offsets if we're not saving those registers */ + if (!info_ptr->fp_size) + info_ptr->fp_save_offset = 0; + + if (!info_ptr->gp_size) + info_ptr->gp_save_offset = 0; + + if (!info_ptr->lr_save_p) + info_ptr->lr_save_offset = 0; + + if (!info_ptr->cr_save_p) + info_ptr->cr_save_offset = 0; + + return info_ptr; +} + +void +debug_stack_info (info) + rs6000_stack_t *info; +{ + char *abi_string; + + if (!info) + info = rs6000_stack_info (); + + fprintf (stderr, "\nStack information for function %s:\n", + ((current_function_decl && DECL_NAME (current_function_decl)) + ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl)) + : "<unknown>")); + + switch (info->abi) + { + default: abi_string = "Unknown"; break; + case ABI_NONE: abi_string = "NONE"; break; + case ABI_AIX: abi_string = "AIX"; break; + case ABI_V4: abi_string = "V.4"; break; + } + + fprintf (stderr, "\tABI = %5s\n", abi_string); + + if (info->first_gp_reg_save != 32) + fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save); + + if (info->first_fp_reg_save != 64) + fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save); + + if (info->lr_save_p) + fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p); + + if (info->cr_save_p) + fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p); + + if (info->push_p) + fprintf (stderr, "\tpush_p = %5d\n", info->push_p); + + if (info->calls_p) + fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p); + + if (info->gp_save_offset) + fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset); + + if (info->fp_save_offset) + fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset); + + if (info->lr_save_offset) + fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset); + + if (info->cr_save_offset) + fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset); + + if (info->varargs_save_offset) + fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset); + + if (info->total_size) + fprintf (stderr, "\ttotal_size = %5d\n", info->total_size); + + if (info->varargs_size) + fprintf (stderr, "\tvarargs_size = %5d\n", info->varargs_size); + + if (info->vars_size) + fprintf (stderr, "\tvars_size = %5d\n", info->vars_size); + + if (info->parm_size) + fprintf (stderr, "\tparm_size = %5d\n", info->parm_size); + + if (info->fixed_size) + fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size); + + if (info->gp_size) + fprintf (stderr, "\tgp_size = %5d\n", info->gp_size); + + if (info->fp_size) + fprintf (stderr, "\tfp_size = %5d\n", info->fp_size); + + if (info->cr_size) + fprintf (stderr, "\tcr_size = %5d\n", info->cr_size); + + if (info->save_size) + fprintf (stderr, "\tsave_size = %5d\n", info->save_size); + + if (info->reg_size != 4) + fprintf (stderr, "\treg_size = %5d\n", info->reg_size); + + fprintf (stderr, "\n"); +} + + + +#ifdef USING_SVR4_H +/* Write out a System V.4 style traceback table before the prologue + + At present, only emit the basic tag table (ie, do not emit tag_types other + than 0, which might use more than 1 tag word). + + The first tag word looks like: + + 0 1 2 3 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | 0 |ver| tag |e|s| alloca | # fprs | # gprs |s|l|c|f| + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +*/ + +void +svr4_traceback (file, name, decl) + FILE *file; + tree name, decl; +{ + rs6000_stack_t *info = rs6000_stack_info (); + long tag; + long version = 0; /* version number */ + long tag_type = 0; /* function type */ + long extended_tag = 0; /* additional tag words needed */ + long spare = 0; /* reserved for future use */ + long fpscr_max = 0; /* 1 if the function has a FPSCR save word */ + long fpr_max = 64 - info->first_fp_reg_save; /* # of floating point registers saved */ + long gpr_max = 32 - info->first_gp_reg_save; /* # of general purpose registers saved */ + long alloca_reg; /* stack/frame register */ + + if (frame_pointer_needed) + alloca_reg = 31; + + else if (info->push_p != 0) + alloca_reg = 1; + + else + alloca_reg = 0; + + tag = ((version << 24) + | (tag_type << 21) + | (extended_tag << 20) + | (spare << 19) + | (alloca_reg << 14) + | (fpr_max << 9) + | (gpr_max << 4) + | (info->push_p << 3) + | (info->lr_save_p << 2) + | (info->cr_save_p << 1) + | (fpscr_max << 0)); + + fprintf (file, "\t.long 0x%lx\n", tag); +} + +#endif /* USING_SVR4_H */ + +/* Write function prologue. */ +void +output_prolog (file, size) + FILE *file; + int size; +{ + rs6000_stack_t *info = rs6000_stack_info (); + char *store_reg = (TARGET_64BIT) ? "\tstd %s,%d(%s)" : "\t{st|stw} %s,%d(%s)\n"; + + if (TARGET_DEBUG_STACK) + debug_stack_info (info); + + /* Write .extern for any function we will call to save and restore fp + values. */ +#ifndef USING_SVR4_H + if (info->first_fp_reg_save < 62) + fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n", + SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX, + RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX); +#endif + + /* Write .extern for truncation routines, if needed. */ + if (rs6000_trunc_used && ! trunc_defined) + { + fprintf (file, "\t.extern .%s\n\t.extern .%s\n", + RS6000_ITRUNC, RS6000_UITRUNC); + trunc_defined = 1; + } + + /* Write .extern for AIX common mode routines, if needed. */ + if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined) + { + fputs ("\t.extern __mulh\n", file); + fputs ("\t.extern __mull\n", file); + fputs ("\t.extern __divss\n", file); + fputs ("\t.extern __divus\n", file); + fputs ("\t.extern __quoss\n", file); + fputs ("\t.extern __quous\n", file); + common_mode_defined = 1; + } + + /* If we use the link register, get it into r0. */ + if (info->lr_save_p) + asm_fprintf (file, "\tmflr %s\n", reg_names[0]); + + /* If we need to save CR, put it into r12. */ + if (info->cr_save_p) + asm_fprintf (file, "\tmfcr %s\n", reg_names[12]); + + /* Do any required saving of fpr's. If only one or two to save, do it + ourself. Otherwise, call function. Note that since they are statically + linked, we do not need a nop following them. */ + if (FP_SAVE_INLINE (info->first_fp_reg_save)) + { + int regno = info->first_fp_reg_save; + int loc = info->fp_save_offset; + + for ( ; regno < 64; regno++, loc += 8) + asm_fprintf (file, "\tstfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[1]); + } + else if (info->first_fp_reg_save != 64) + asm_fprintf (file, "\tbl %s%d%s\n", SAVE_FP_PREFIX, + info->first_fp_reg_save - 32, SAVE_FP_SUFFIX); + + /* Now save gpr's. */ + if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT) + { + int regno = info->first_gp_reg_save; + int loc = info->gp_save_offset; + int reg_size = (TARGET_64BIT) ? 8 : 4; + + for ( ; regno < 32; regno++, loc += reg_size) + asm_fprintf (file, store_reg, reg_names[regno], loc, reg_names[1]); + } + + else if (info->first_gp_reg_save != 32) + asm_fprintf (file, "\t{stm|stmw} %s,%d(%s)\n", + reg_names[info->first_gp_reg_save], + info->gp_save_offset, + reg_names[1]); + + /* Save lr if we used it. */ + if (info->lr_save_p) + asm_fprintf (file, store_reg, reg_names[0], info->lr_save_offset, reg_names[1]); + + /* Save CR if we use any that must be preserved. */ + if (info->cr_save_p) + asm_fprintf (file, store_reg, reg_names[12], info->cr_save_offset, reg_names[1]); + + /* Update stack and set back pointer. */ + if (info->push_p) + { + if (info->total_size < 32767) + asm_fprintf (file, + (TARGET_64BIT) ? "\tstdu %s,%d(%s)\n" : "\t{stu|stwu} %s,%d(%s)\n", + reg_names[1], - info->total_size, reg_names[1]); + else + { + int neg_size = - info->total_size; + asm_fprintf (file, "\t{liu|lis} %s,%d\n\t{oril|ori} %s,%s,%d\n", + reg_names[0], (neg_size >> 16) & 0xffff, + reg_names[0], reg_names[0], neg_size & 0xffff); + asm_fprintf (file, + (TARGET_64BIT) ? "\tstdux %s,%s,%s\n" : "\t{stux|stwux} %s,%s,%s\n", + reg_names[1], reg_names[1], reg_names[0]); + } + } + + /* Set frame pointer, if needed. */ + if (frame_pointer_needed) + asm_fprintf (file, "\tmr %s,%s\n", reg_names[31], reg_names[1]); + + /* If TARGET_MINIMAL_TOC, and the constant pool is needed, then load the + TOC_TABLE address into register 30. */ + if (TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0) + { + char buf[256]; + +#ifdef USING_SVR4_H + if (TARGET_RELOCATABLE) + { + ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno); + fprintf (file, "\tbl "); + assemble_name (file, buf); + fprintf (file, "\n"); + + ASM_OUTPUT_INTERNAL_LABEL (file, "LCF", rs6000_pic_labelno); + fprintf (file, "\tmflr %s\n", reg_names[30]); + + if (TARGET_POWERPC64) + fprintf (file, "\tld"); + else if (TARGET_NEW_MNEMONICS) + fprintf (file, "\tlwz"); + else + fprintf (file, "\tl"); + + fprintf (file, " %s,(", reg_names[0]); + ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno); + assemble_name (file, buf); + fprintf (file, "-"); + ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno); + assemble_name (file, buf); + fprintf (file, ")(%s)\n", reg_names[30]); + asm_fprintf (file, "\t{cax|add} %s,%s,%s\n", + reg_names[30], reg_names[0], reg_names[30]); + rs6000_pic_labelno++; + } + else if (!TARGET_64BIT) + { + ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1); + asm_fprintf (file, "\t{cau|addis} %s,%s,", reg_names[30], reg_names[0]); + assemble_name (file, buf); + asm_fprintf (file, "@ha\n"); + if (TARGET_NEW_MNEMONICS) + { + asm_fprintf (file, "\taddi %s,%s,", reg_names[30], reg_names[30]); + assemble_name (file, buf); + asm_fprintf (file, "@l\n"); + } + else + { + asm_fprintf (file, "\tcal %s,", reg_names[30]); + assemble_name (file, buf); + asm_fprintf (file, "@l(%s)\n", reg_names[30]); + } + } + else + abort (); + +#else /* !USING_SVR4_H */ + ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 0); + asm_fprintf (file, "\t{l|lwz} %s,", reg_names[30]); + assemble_name (file, buf); + asm_fprintf (file, "(%s)\n", reg_names[2]); +#endif /* USING_SVR4_H */ + } +} + +/* Write function epilogue. */ + +void +output_epilog (file, size) + FILE *file; + int size; +{ + rs6000_stack_t *info = rs6000_stack_info (); + char *load_reg = (TARGET_64BIT) ? "\tld %s,%d(%s)" : "\t{l|lwz} %s,%d(%s)\n"; + rtx insn = get_last_insn (); + int i; + + /* Forget about any temporaries created */ + for (i = 0; i < NUM_MACHINE_MODES; i++) + stack_temps[i] = NULL_RTX; + + /* If the last insn was a BARRIER, we don't have to write anything except + the trace table. */ + if (GET_CODE (insn) == NOTE) + insn = prev_nonnote_insn (insn); + if (insn == 0 || GET_CODE (insn) != BARRIER) + { + /* If we have a frame pointer, a call to alloca, or a large stack + frame, restore the old stack pointer using the backchain. Otherwise, + we know what size to update it with. */ + if (frame_pointer_needed || current_function_calls_alloca + || info->total_size > 32767) + asm_fprintf (file, load_reg, reg_names[1], 0, reg_names[1]); + else if (info->push_p) + { + if (TARGET_NEW_MNEMONICS) + asm_fprintf (file, "\taddi %s,%s,%d\n", reg_names[1], reg_names[1], info->total_size); + else + asm_fprintf (file, "\tcal %s,%d(%s)\n", reg_names[1], info->total_size, reg_names[1]); + } + + /* Get the old lr if we saved it. */ + if (info->lr_save_p) + asm_fprintf (file, load_reg, reg_names[0], info->lr_save_offset, reg_names[1]); + + /* Get the old cr if we saved it. */ + if (info->cr_save_p) + asm_fprintf (file, load_reg, reg_names[12], info->cr_save_offset, reg_names[1]); + + /* Set LR here to try to overlap restores below. */ + if (info->lr_save_p) + asm_fprintf (file, "\tmtlr %s\n", reg_names[0]); + + /* Restore gpr's. */ + if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT) + { + int regno = info->first_gp_reg_save; + int loc = info->gp_save_offset; + int reg_size = (TARGET_64BIT) ? 8 : 4; + + for ( ; regno < 32; regno++, loc += reg_size) + asm_fprintf (file, load_reg, reg_names[regno], loc, reg_names[1]); + } + + else if (info->first_gp_reg_save != 32) + asm_fprintf (file, "\t{lm|lmw} %s,%d(%s)\n", + reg_names[info->first_gp_reg_save], + info->gp_save_offset, + reg_names[1]); + + /* Restore fpr's if we can do it without calling a function. */ + if (FP_SAVE_INLINE (info->first_fp_reg_save)) + { + int regno = info->first_fp_reg_save; + int loc = info->fp_save_offset; + + for ( ; regno < 64; regno++, loc += 8) + asm_fprintf (file, "\tlfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[1]); + } + + /* If we saved cr, restore it here. Just those of cr2, cr3, and cr4 + that were used. */ + if (info->cr_save_p) + asm_fprintf (file, "\tmtcrf %d,%s\n", + (regs_ever_live[70] != 0) * 0x20 + + (regs_ever_live[71] != 0) * 0x10 + + (regs_ever_live[72] != 0) * 0x8, reg_names[12]); + + /* If we have to restore more than two FP registers, branch to the + restore function. It will return to our caller. */ + if (info->first_fp_reg_save != 64 && !FP_SAVE_INLINE (info->first_fp_reg_save)) + asm_fprintf (file, "\tb %s%d%s\n", RESTORE_FP_PREFIX, + info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX); + else + asm_fprintf (file, "\t{br|blr}\n"); + } + + /* Output a traceback table here. See /usr/include/sys/debug.h for info + on its format. + + We don't output a traceback table if -finhibit-size-directive was + used. The documentation for -finhibit-size-directive reads + ``don't output a @code{.size} assembler directive, or anything + else that would cause trouble if the function is split in the + middle, and the two halves are placed at locations far apart in + memory.'' The traceback table has this property, since it + includes the offset from the start of the function to the + traceback table itself. + + System V.4 Powerpc's (and the embedded ABI derived from it) use a + different traceback table located before the prologue. */ +#ifndef USING_SVR4_H + if (! flag_inhibit_size_directive) + { + char *fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); + int fixed_parms, float_parms, parm_info; + int i; + + /* Need label immediately before tbtab, so we can compute its offset + from the function start. */ + if (*fname == '*') + ++fname; + ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT"); + ASM_OUTPUT_LABEL (file, fname); + + /* The .tbtab pseudo-op can only be used for the first eight + expressions, since it can't handle the possibly variable + length fields that follow. However, if you omit the optional + fields, the assembler outputs zeros for all optional fields + anyways, giving each variable length field is minimum length + (as defined in sys/debug.h). Thus we can not use the .tbtab + pseudo-op at all. */ + + /* An all-zero word flags the start of the tbtab, for debuggers + that have to find it by searching forward from the entry + point or from the current pc. */ + fprintf (file, "\t.long 0\n"); + + /* Tbtab format type. Use format type 0. */ + fprintf (file, "\t.byte 0,"); + + /* Language type. Unfortunately, there doesn't seem to be any + official way to get this info, so we use language_string. C + is 0. C++ is 9. No number defined for Obj-C, so use the + value for C for now. */ + if (! strcmp (language_string, "GNU C") + || ! strcmp (language_string, "GNU Obj-C")) + i = 0; + else if (! strcmp (language_string, "GNU F77")) + i = 1; + else if (! strcmp (language_string, "GNU Ada")) + i = 3; + else if (! strcmp (language_string, "GNU PASCAL")) + i = 2; + else if (! strcmp (language_string, "GNU C++")) + i = 9; + else + abort (); + fprintf (file, "%d,", i); + + /* 8 single bit fields: global linkage (not set for C extern linkage, + apparently a PL/I convention?), out-of-line epilogue/prologue, offset + from start of procedure stored in tbtab, internal function, function + has controlled storage, function has no toc, function uses fp, + function logs/aborts fp operations. */ + /* Assume that fp operations are used if any fp reg must be saved. */ + fprintf (file, "%d,", (1 << 5) | ((info->first_fp_reg_save != 64) << 1)); + + /* 6 bitfields: function is interrupt handler, name present in + proc table, function calls alloca, on condition directives + (controls stack walks, 3 bits), saves condition reg, saves + link reg. */ + /* The `function calls alloca' bit seems to be set whenever reg 31 is + set up as a frame pointer, even when there is no alloca call. */ + fprintf (file, "%d,", + ((1 << 6) | (frame_pointer_needed << 5) + | (info->cr_save_p << 1) | (info->lr_save_p))); + + /* 3 bitfields: saves backchain, spare bit, number of fpr saved + (6 bits). */ + fprintf (file, "%d,", + (info->push_p << 7) | (64 - info->first_fp_reg_save)); + + /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */ + fprintf (file, "%d,", (32 - first_reg_to_save ())); + + { + /* Compute the parameter info from the function decl argument + list. */ + tree decl; + int next_parm_info_bit; + + next_parm_info_bit = 31; + parm_info = 0; + fixed_parms = 0; + float_parms = 0; + + for (decl = DECL_ARGUMENTS (current_function_decl); + decl; decl = TREE_CHAIN (decl)) + { + rtx parameter = DECL_INCOMING_RTL (decl); + enum machine_mode mode = GET_MODE (parameter); + + if (GET_CODE (parameter) == REG) + { + if (GET_MODE_CLASS (mode) == MODE_FLOAT) + { + int bits; + + float_parms++; + + if (mode == SFmode) + bits = 0x2; + else if (mode == DFmode) + bits = 0x3; + else + abort (); + + /* If only one bit will fit, don't or in this entry. */ + if (next_parm_info_bit > 0) + parm_info |= (bits << (next_parm_info_bit - 1)); + next_parm_info_bit -= 2; + } + else + { + fixed_parms += ((GET_MODE_SIZE (mode) + + (UNITS_PER_WORD - 1)) + / UNITS_PER_WORD); + next_parm_info_bit -= 1; + } + } + } + } + + /* Number of fixed point parameters. */ + /* This is actually the number of words of fixed point parameters; thus + an 8 byte struct counts as 2; and thus the maximum value is 8. */ + fprintf (file, "%d,", fixed_parms); + + /* 2 bitfields: number of floating point parameters (7 bits), parameters + all on stack. */ + /* This is actually the number of fp registers that hold parameters; + and thus the maximum value is 13. */ + /* Set parameters on stack bit if parameters are not in their original + registers, regardless of whether they are on the stack? Xlc + seems to set the bit when not optimizing. */ + fprintf (file, "%d\n", ((float_parms << 1) | (! optimize))); + + /* Optional fields follow. Some are variable length. */ + + /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float, + 11 double float. */ + /* There is an entry for each parameter in a register, in the order that + they occur in the parameter list. Any intervening arguments on the + stack are ignored. If the list overflows a long (max possible length + 34 bits) then completely leave off all elements that don't fit. */ + /* Only emit this long if there was at least one parameter. */ + if (fixed_parms || float_parms) + fprintf (file, "\t.long %d\n", parm_info); + + /* Offset from start of code to tb table. */ + fprintf (file, "\t.long "); + ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT"); + RS6000_OUTPUT_BASENAME (file, fname); + fprintf (file, "-."); + RS6000_OUTPUT_BASENAME (file, fname); + fprintf (file, "\n"); + + /* Interrupt handler mask. */ + /* Omit this long, since we never set the interrupt handler bit + above. */ + + /* Number of CTL (controlled storage) anchors. */ + /* Omit this long, since the has_ctl bit is never set above. */ + + /* Displacement into stack of each CTL anchor. */ + /* Omit this list of longs, because there are no CTL anchors. */ + + /* Length of function name. */ + fprintf (file, "\t.short %d\n", strlen (fname)); + + /* Function name. */ + assemble_string (fname, strlen (fname)); + + /* Register for alloca automatic storage; this is always reg 31. + Only emit this if the alloca bit was set above. */ + if (frame_pointer_needed) + fprintf (file, "\t.byte 31\n"); + } +#endif /* !USING_SVR4_H */ + + /* Reset varargs indicator */ + rs6000_sysv_varargs_p = 0; +} + +/* Output a TOC entry. We derive the entry name from what is + being written. */ + +void +output_toc (file, x, labelno) + FILE *file; + rtx x; + int labelno; +{ + char buf[256]; + char *name = buf; + rtx base = x; + int offset = 0; + + if (TARGET_NO_TOC) + abort (); + + /* if we're going to put a double constant in the TOC, make sure it's + aligned properly when strict alignment is on. */ + if (GET_CODE (x) == CONST_DOUBLE + && STRICT_ALIGNMENT + && GET_MODE (x) == DFmode + && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) { + ASM_OUTPUT_ALIGN (file, 3); + } + + +#ifdef USING_SVR4_H + if (TARGET_MINIMAL_TOC) + { + ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC"); + fprintf (file, "%d = .-", labelno); + ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCTOC"); + fprintf (file, "1\n"); + } + else +#endif /* USING_SVR4_H */ + ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno); + + /* Handle FP constants specially. Note that if we have a minimal + TOC, things we put here aren't actually in the TOC, so we can allow + FP constants. */ + if (GET_CODE (x) == CONST_DOUBLE + && GET_MODE (x) == DFmode + && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) + { + REAL_VALUE_TYPE r; + long l[2]; + + REAL_VALUE_FROM_CONST_DOUBLE (r, x); + REAL_VALUE_TO_TARGET_DOUBLE (r, l); + if (TARGET_MINIMAL_TOC) + fprintf (file, "\t.long %ld\n\t.long %ld\n", l[0], l[1]); + else + fprintf (file, "\t.tc FD_%lx_%lx[TC],%ld,%ld\n", + l[0], l[1], l[0], l[1]); + return; + } + else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode + && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) + { + rtx val = operand_subword (x, 0, 0, SFmode); + + if (val == 0 || GET_CODE (val) != CONST_INT) + abort (); + + if (TARGET_MINIMAL_TOC) + fprintf (file, "\t.long %d\n", INTVAL (val)); + else + fprintf (file, "\t.tc FS_%x[TC],%d\n", INTVAL (val), INTVAL (val)); + return; + } + + if (GET_CODE (x) == CONST) + { + base = XEXP (XEXP (x, 0), 0); + offset = INTVAL (XEXP (XEXP (x, 0), 1)); + } + + if (GET_CODE (base) == SYMBOL_REF) + name = XSTR (base, 0); + else if (GET_CODE (base) == LABEL_REF) + ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (base, 0))); + else if (GET_CODE (base) == CODE_LABEL) + ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base)); + else + abort (); + + if (TARGET_MINIMAL_TOC) + fprintf (file, "\t.long "); + else + { + fprintf (file, "\t.tc "); + RS6000_OUTPUT_BASENAME (file, name); + + if (offset < 0) + fprintf (file, ".N%d", - offset); + else if (offset) + fprintf (file, ".P%d", offset); + + fprintf (file, "[TC],"); + } + output_addr_const (file, x); + fprintf (file, "\n"); +} + +/* Output an assembler pseudo-op to write an ASCII string of N characters + starting at P to FILE. + + On the RS/6000, we have to do this using the .byte operation and + write out special characters outside the quoted string. + Also, the assembler is broken; very long strings are truncated, + so we must artificially break them up early. */ + +void +output_ascii (file, p, n) + FILE *file; + char *p; + int n; +{ + char c; + int i, count_string; + char *for_string = "\t.byte \""; + char *for_decimal = "\t.byte "; + char *to_close = NULL; + + count_string = 0; + for (i = 0; i < n; i++) + { + c = *p++; + if (c >= ' ' && c < 0177) + { + if (for_string) + fputs (for_string, file); + putc (c, file); + + /* Write two quotes to get one. */ + if (c == '"') + { + putc (c, file); + ++count_string; + } + + for_string = NULL; + for_decimal = "\"\n\t.byte "; + to_close = "\"\n"; + ++count_string; + + if (count_string >= 512) + { + fputs (to_close, file); + + for_string = "\t.byte \""; + for_decimal = "\t.byte "; + to_close = NULL; + count_string = 0; + } + } + else + { + if (for_decimal) + fputs (for_decimal, file); + fprintf (file, "%d", c); + + for_string = "\n\t.byte \""; + for_decimal = ", "; + to_close = "\n"; + count_string = 0; + } + } + + /* Now close the string if we have written one. Then end the line. */ + if (to_close) + fprintf (file, to_close); +} + +/* Generate a unique section name for FILENAME for a section type + represented by SECTION_DESC. Output goes into BUF. + + SECTION_DESC can be any string, as long as it is different for each + possible section type. + + We name the section in the same manner as xlc. The name begins with an + underscore followed by the filename (after stripping any leading directory + names) with the last period replaced by the string SECTION_DESC. If + FILENAME does not contain a period, SECTION_DESC is appended to the end of + the name. */ + +void +rs6000_gen_section_name (buf, filename, section_desc) + char **buf; + char *filename; + char *section_desc; +{ + char *q, *after_last_slash, *last_period; + char *p; + int len; + + after_last_slash = filename; + for (q = filename; *q; q++) + { + if (*q == '/') + after_last_slash = q + 1; + else if (*q == '.') + last_period = q; + } + + len = strlen (after_last_slash) + strlen (section_desc) + 2; + *buf = (char *) permalloc (len); + + p = *buf; + *p++ = '_'; + + for (q = after_last_slash; *q; q++) + { + if (q == last_period) + { + strcpy (p, section_desc); + p += strlen (section_desc); + } + + else if (isalnum (*q)) + *p++ = *q; + } + + if (last_period == 0) + strcpy (p, section_desc); + else + *p = '\0'; +} + +/* Write function profiler code. */ + +void +output_function_profiler (file, labelno) + FILE *file; + int labelno; +{ +#ifdef USING_SVR4_H + abort (); +#else + /* The last used parameter register. */ + int last_parm_reg; + int i, j; + char buf[100]; + + /* Set up a TOC entry for the profiler label. */ + toc_section (); + ASM_OUTPUT_INTERNAL_LABEL (file, "LPC", labelno); + ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); + if (TARGET_MINIMAL_TOC) + { + fprintf (file, "\t.long "); + assemble_name (file, buf); + fprintf (file, "\n"); + } + else + { + fprintf (file, "\t.tc\t"); + assemble_name (file, buf); + fprintf (file, "[TC],"); + assemble_name (file, buf); + fprintf (file, "\n"); + } + text_section (); + + /* Figure out last used parameter register. The proper thing to do is + to walk incoming args of the function. A function might have live + parameter registers even if it has no incoming args. */ + + for (last_parm_reg = 10; + last_parm_reg > 2 && ! regs_ever_live [last_parm_reg]; + last_parm_reg--) + ; + + /* Save parameter registers in regs 23-30. Don't overwrite reg 31, since + it might be set up as the frame pointer. */ + + for (i = 3, j = 30; i <= last_parm_reg; i++, j--) + fprintf (file, "\tai %d,%d,0\n", j, i); + + /* Load location address into r3, and call mcount. */ + + ASM_GENERATE_INTERNAL_LABEL (buf, "LPC", labelno); + fprintf (file, "\tl 3,"); + assemble_name (file, buf); + fprintf (file, "(2)\n\tbl .mcount\n"); + + /* Restore parameter registers. */ + + for (i = 3, j = 30; i <= last_parm_reg; i++, j--) + fprintf (file, "\tai %d,%d,0\n", i, j); +#endif +} + +/* Adjust the cost of a scheduling dependency. Return the new cost of + a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ + +int +rs6000_adjust_cost (insn, link, dep_insn, cost) + rtx insn; + rtx link; + rtx dep_insn; + int cost; +{ + if (! recog_memoized (insn)) + return 0; + + if (REG_NOTE_KIND (link) != 0) + return 0; + + if (REG_NOTE_KIND (link) == 0) + { + /* Data dependency; DEP_INSN writes a register that INSN reads some + cycles later. */ + + /* Tell the first scheduling pass about the latency between a mtctr + and bctr (and mtlr and br/blr). The first scheduling pass will not + know about this latency since the mtctr instruction, which has the + latency associated to it, will be generated by reload. */ + if (get_attr_type (insn) == TYPE_JMPREG) + return TARGET_POWER ? 5 : 4; + + /* Fall out to return default cost. */ + } + + return cost; +} |