diff options
author | Todd C. Miller <millert@cvs.openbsd.org> | 1997-11-30 08:00:32 +0000 |
---|---|---|
committer | Todd C. Miller <millert@cvs.openbsd.org> | 1997-11-30 08:00:32 +0000 |
commit | 3d06de7fcff1d605886d3c63220956f7260ddb84 (patch) | |
tree | da5aa4b971926e3ef1f9263bbdeb714053206d02 /gnu/usr.bin/perl/lib/Math | |
parent | c54c74271308a8fd18f1bc3a193343d079ebe481 (diff) |
perl 5.004_04
Diffstat (limited to 'gnu/usr.bin/perl/lib/Math')
-rw-r--r-- | gnu/usr.bin/perl/lib/Math/BigInt.pm | 30 | ||||
-rw-r--r-- | gnu/usr.bin/perl/lib/Math/Complex.pm | 1659 |
2 files changed, 1564 insertions, 125 deletions
diff --git a/gnu/usr.bin/perl/lib/Math/BigInt.pm b/gnu/usr.bin/perl/lib/Math/BigInt.pm index 68856aea6e0..422dca42fd6 100644 --- a/gnu/usr.bin/perl/lib/Math/BigInt.pm +++ b/gnu/usr.bin/perl/lib/Math/BigInt.pm @@ -106,13 +106,23 @@ sub bcmp { #(num_str, num_str) return cond_code sub cmp { # post-normalized compare for internal use local($cx, $cy) = @_; - $cx cmp $cy - && - ( - ord($cy) <=> ord($cx) - || - ($cx cmp ',') * (length($cy) <=> length($cx) || $cy cmp $cx) - ); + + return 0 if ($cx eq $cy); + + local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1)); + local($ld); + + if ($sx eq '+') { + return 1 if ($sy eq '-' || $cy eq '+0'); + $ld = length($cx) - length($cy); + return $ld if ($ld); + return $cx cmp $cy; + } else { # $sx eq '-' + return -1 if ($sy eq '+'); + $ld = length($cy) - length($cx); + return $ld if ($ld); + return $cy cmp $cx; + } } sub badd { #(num_str, num_str) return num_str @@ -161,11 +171,11 @@ sub add { #(int_num_array, int_num_array) return int_num_array $car = 0; for $x (@x) { last unless @y || $car; - $x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5); + $x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5) ? 1 : 0; } for $y (@y) { last unless $car; - $y -= 1e5 if $car = (($y += $car) >= 1e5); + $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0; } (@x, @y, $car); } @@ -204,7 +214,7 @@ sub mul { #(*int_num_array, *int_num_array) return int_num_array for $x (@x) { ($car, $cty) = (0, $[); for $y (@y) { - $prod = $x * $y + $prod[$cty] + $car; + $prod = $x * $y + ($prod[$cty] || 0) + $car; $prod[$cty++] = $prod - ($car = int($prod * 1e-5)) * 1e5; } diff --git a/gnu/usr.bin/perl/lib/Math/Complex.pm b/gnu/usr.bin/perl/lib/Math/Complex.pm index 969f3c2c79e..b3d7e6084f2 100644 --- a/gnu/usr.bin/perl/lib/Math/Complex.pm +++ b/gnu/usr.bin/perl/lib/Math/Complex.pm @@ -1,123 +1,1198 @@ -package Math::Complex; +# +# Complex numbers and associated mathematical functions +# -- Raphael Manfredi September 1996 +# -- Jarkko Hietaniemi March-October 1997 +# -- Daniel S. Lewart September-October 1997 +# require Exporter; +package Math::Complex; + +$VERSION = 1.05; + +# $Id: Complex.pm,v 1.2 1997/11/30 07:57:47 millert Exp $ + +use strict; -@ISA = ('Exporter'); +use vars qw($VERSION @ISA + @EXPORT %EXPORT_TAGS + $package $display + $i $ip2 $logn %logn); -# just to make use happy +@ISA = qw(Exporter); + +my @trig = qw( + pi + tan + csc cosec sec cot cotan + asin acos atan + acsc acosec asec acot acotan + sinh cosh tanh + csch cosech sech coth cotanh + asinh acosh atanh + acsch acosech asech acoth acotanh + ); + +@EXPORT = (qw( + i Re Im arg + sqrt log ln + log10 logn cbrt root + cplx cplxe + ), + @trig); + +%EXPORT_TAGS = ( + 'trig' => [@trig], +); use overload - '+' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1+$x2, $y1+$y2]; - }, - - '-' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1-$x2, $y1-$y2]; - }, - - '*' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - bless [ $x1*$x2-$y1*$y2,$x1*$y2+$x2*$y1]; - }, - - '/' => sub { my($x1,$y1,$x2,$y2) = (@{$_[0]},@{$_[1]}); - my $q = $x2*$x2+$y2*$y2; - bless [($x1*$x2+$y1*$y2)/$q, ($y1*$x2-$y2*$x1)/$q]; - }, - - 'neg' => sub { my($x,$y) = @{$_[0]}; bless [ -$x, -$y]; - }, - - '~' => sub { my($x,$y) = @{$_[0]}; bless [ $x, -$y]; - }, - - 'abs' => sub { my($x,$y) = @{$_[0]}; sqrt $x*$x+$y*$y; - }, - - 'cos' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $y, cos $x, sin $x); - my $abr = 1/(2*$ab); $ab /= 2; - bless [ ($abr+$ab)*$c, ($abr-$ab)*$s]; - }, - - 'sin' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $y, cos $x, sin $x); - my $abr = 1/(2*$ab); $ab /= 2; - bless [ (-$abr-$ab)*$s, ($abr-$ab)*$c]; - }, - - 'exp' => sub { my($x,$y) = @{$_[0]}; - my ($ab,$c,$s) = (exp $x, cos $y, sin $y); - bless [ $ab*$c, $ab*$s ]; - }, - - 'sqrt' => sub { - my($zr,$zi) = @{$_[0]}; - my ($x, $y, $r, $w); - my $c = new Math::Complex (0,0); - if (($zr == 0) && ($zi == 0)) { - # nothing, $c already set - } - else { - $x = abs($zr); - $y = abs($zi); - if ($x >= $y) { - $r = $y/$x; - $w = sqrt($x) * sqrt(0.5*(1.0+sqrt(1.0+$r*$r))); - } - else { - $r = $x/$y; - $w = sqrt($y) * sqrt($y) * sqrt(0.5*($r+sqrt(1.0+$r*$r))); - } - if ( $zr >= 0) { - @$c = ($w, $zi/(2 * $w) ); - } - else { - $c->[1] = ($zi >= 0) ? $w : -$w; - $c->[0] = $zi/(2.0* $c->[1]); - } - } - return $c; - }, - - qw("" stringify) -; - -sub new { - my $class = shift; - my @C = @_; - bless \@C, $class; + '+' => \&plus, + '-' => \&minus, + '*' => \&multiply, + '/' => \÷, + '**' => \&power, + '<=>' => \&spaceship, + 'neg' => \&negate, + '~' => \&conjugate, + 'abs' => \&abs, + 'sqrt' => \&sqrt, + 'exp' => \&exp, + 'log' => \&log, + 'sin' => \&sin, + 'cos' => \&cos, + 'tan' => \&tan, + 'atan2' => \&atan2, + qw("" stringify); + +# +# Package globals +# + +$package = 'Math::Complex'; # Package name +$display = 'cartesian'; # Default display format + +# +# Object attributes (internal): +# cartesian [real, imaginary] -- cartesian form +# polar [rho, theta] -- polar form +# c_dirty cartesian form not up-to-date +# p_dirty polar form not up-to-date +# display display format (package's global when not set) +# + +# +# ->make +# +# Create a new complex number (cartesian form) +# +sub make { + my $self = bless {}, shift; + my ($re, $im) = @_; + $self->{'cartesian'} = [$re, $im]; + $self->{c_dirty} = 0; + $self->{p_dirty} = 1; + return $self; +} + +# +# ->emake +# +# Create a new complex number (exponential form) +# +sub emake { + my $self = bless {}, shift; + my ($rho, $theta) = @_; + if ($rho < 0) { + $rho = -$rho; + $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); + } + $self->{'polar'} = [$rho, $theta]; + $self->{p_dirty} = 0; + $self->{c_dirty} = 1; + return $self; +} + +sub new { &make } # For backward compatibility only. + +# +# cplx +# +# Creates a complex number from a (re, im) tuple. +# This avoids the burden of writing Math::Complex->make(re, im). +# +sub cplx { + my ($re, $im) = @_; + return $package->make($re, defined $im ? $im : 0); +} + +# +# cplxe +# +# Creates a complex number from a (rho, theta) tuple. +# This avoids the burden of writing Math::Complex->emake(rho, theta). +# +sub cplxe { + my ($rho, $theta) = @_; + return $package->emake($rho, defined $theta ? $theta : 0); +} + +# +# pi +# +# The number defined as pi = 180 degrees +# +use constant pi => 4 * atan2(1, 1); + +# +# pit2 +# +# The full circle +# +use constant pit2 => 2 * pi; + +# +# pip2 +# +# The quarter circle +# +use constant pip2 => pi / 2; + +# +# uplog10 +# +# Used in log10(). +# +use constant uplog10 => 1 / log(10); + +# +# i +# +# The number defined as i*i = -1; +# +sub i () { + return $i if ($i); + $i = bless {}; + $i->{'cartesian'} = [0, 1]; + $i->{'polar'} = [1, pip2]; + $i->{c_dirty} = 0; + $i->{p_dirty} = 0; + return $i; +} + +# +# Attribute access/set routines +# + +sub cartesian {$_[0]->{c_dirty} ? + $_[0]->update_cartesian : $_[0]->{'cartesian'}} +sub polar {$_[0]->{p_dirty} ? + $_[0]->update_polar : $_[0]->{'polar'}} + +sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] } +sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] } + +# +# ->update_cartesian +# +# Recompute and return the cartesian form, given accurate polar form. +# +sub update_cartesian { + my $self = shift; + my ($r, $t) = @{$self->{'polar'}}; + $self->{c_dirty} = 0; + return $self->{'cartesian'} = [$r * cos $t, $r * sin $t]; +} + +# +# +# ->update_polar +# +# Recompute and return the polar form, given accurate cartesian form. +# +sub update_polar { + my $self = shift; + my ($x, $y) = @{$self->{'cartesian'}}; + $self->{p_dirty} = 0; + return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; + return $self->{'polar'} = [sqrt($x*$x + $y*$y), atan2($y, $x)]; +} + +# +# (plus) +# +# Computes z1+z2. +# +sub plus { + my ($z1, $z2, $regular) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + $z2 = cplx($z2) unless ref $z2; + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + unless (defined $regular) { + $z1->set_cartesian([$re1 + $re2, $im1 + $im2]); + return $z1; + } + return (ref $z1)->make($re1 + $re2, $im1 + $im2); +} + +# +# (minus) +# +# Computes z1-z2. +# +sub minus { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = @{$z1->cartesian}; + $z2 = cplx($z2) unless ref $z2; + my ($re2, $im2) = @{$z2->cartesian}; + unless (defined $inverted) { + $z1->set_cartesian([$re1 - $re2, $im1 - $im2]); + return $z1; + } + return $inverted ? + (ref $z1)->make($re2 - $re1, $im2 - $im1) : + (ref $z1)->make($re1 - $re2, $im1 - $im2); + +} + +# +# (multiply) +# +# Computes z1*z2. +# +sub multiply { + my ($z1, $z2, $regular) = @_; + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = @{$z2->polar}; + my $t = $t1 + $t2; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + unless (defined $regular) { + $z1->set_polar([$r1 * $r2, $t]); + return $z1; + } + return (ref $z1)->emake($r1 * $r2, $t); + } else { + my ($x1, $y1) = @{$z1->cartesian}; + if (ref $z2) { + my ($x2, $y2) = @{$z2->cartesian}; + return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); + } else { + return (ref $z1)->make($x1*$z2, $y1*$z2); + } + } +} + +# +# _divbyzero +# +# Die on division by zero. +# +sub _divbyzero { + my $mess = "$_[0]: Division by zero.\n"; + + if (defined $_[1]) { + $mess .= "(Because in the definition of $_[0], the divisor "; + $mess .= "$_[1] " unless ($_[1] eq '0'); + $mess .= "is 0)\n"; + } + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# (divide) +# +# Computes z1/z2. +# +sub divide { + my ($z1, $z2, $inverted) = @_; + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = @{$z2->polar}; + my $t; + if ($inverted) { + _divbyzero "$z2/0" if ($r1 == 0); + $t = $t2 - $t1; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return (ref $z1)->emake($r2 / $r1, $t); + } else { + _divbyzero "$z1/0" if ($r2 == 0); + $t = $t1 - $t2; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return (ref $z1)->emake($r1 / $r2, $t); + } + } else { + my ($d, $x2, $y2); + if ($inverted) { + ($x2, $y2) = @{$z1->cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z2/0" if $d == 0; + return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); + } else { + my ($x1, $y1) = @{$z1->cartesian}; + if (ref $z2) { + ($x2, $y2) = @{$z2->cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z1/0" if $d == 0; + my $u = ($x1*$x2 + $y1*$y2)/$d; + my $v = ($y1*$x2 - $x1*$y2)/$d; + return (ref $z1)->make($u, $v); + } else { + _divbyzero "$z1/0" if $z2 == 0; + return (ref $z1)->make($x1/$z2, $y1/$z2); + } + } + } +} + +# +# _zerotozero +# +# Die on zero raised to the zeroth. +# +sub _zerotozero { + my $mess = "The zero raised to the zeroth power is not defined.\n"; + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# (power) +# +# Computes z1**z2 = exp(z2 * log z1)). +# +sub power { + my ($z1, $z2, $inverted) = @_; + my $z1z = $z1 == 0; + my $z2z = $z2 == 0; + _zerotozero if ($z1z and $z2z); + if ($inverted) { + return 0 if ($z2z); + return 1 if ($z1z or $z2 == 1); + } else { + return 0 if ($z1z); + return 1 if ($z2z or $z1 == 1); + } + return $inverted ? exp($z1 * log $z2) : exp($z2 * log $z1); +} + +# +# (spaceship) +# +# Computes z1 <=> z2. +# Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i. +# +sub spaceship { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); + my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + my $sgn = $inverted ? -1 : 1; + return $sgn * ($re1 <=> $re2) if $re1 != $re2; + return $sgn * ($im1 <=> $im2); +} + +# +# (negate) +# +# Computes -z. +# +sub negate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->polar}; + $t = ($t <= 0) ? $t + pi : $t - pi; + return (ref $z)->emake($r, $t); + } + my ($re, $im) = @{$z->cartesian}; + return (ref $z)->make(-$re, -$im); +} + +# +# (conjugate) +# +# Compute complex's conjugate. +# +sub conjugate { + my ($z) = @_; + if ($z->{c_dirty}) { + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake($r, -$t); + } + my ($re, $im) = @{$z->cartesian}; + return (ref $z)->make($re, -$im); +} + +# +# (abs) +# +# Compute complex's norm (rho). +# +sub abs { + my ($z) = @_; + my ($r, $t) = @{$z->polar}; + return $r; +} + +# +# arg +# +# Compute complex's argument (theta). +# +sub arg { + my ($z) = @_; + return ($z < 0 ? pi : 0) unless ref $z; + my ($r, $t) = @{$z->polar}; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return $t; } +# +# (sqrt) +# +# Compute sqrt(z). +# +sub sqrt { + my ($z) = @_; + return $z >= 0 ? sqrt($z) : cplx(0, sqrt(-$z)) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return cplx($re < 0 ? (0, sqrt(-$re)) : (sqrt($re), 0)) if $im == 0; + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake(sqrt($r), $t/2); +} + +# +# cbrt +# +# Compute cbrt(z) (cubic root). +# +sub cbrt { + my ($z) = @_; + return $z < 0 ? -exp(log(-$z)/3) : ($z > 0 ? exp(log($z)/3): 0) + unless ref $z; + my ($r, $t) = @{$z->polar}; + return (ref $z)->emake(exp(log($r)/3), $t/3); +} + +# +# _rootbad +# +# Die on bad root. +# +sub _rootbad { + my $mess = "Root $_[0] not defined, root must be positive integer.\n"; + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# root +# +# Computes all nth root for z, returning an array whose size is n. +# `n' must be a positive integer. +# +# The roots are given by (for k = 0..n-1): +# +# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) +# +sub root { + my ($z, $n) = @_; + _rootbad($n) if ($n < 1 or int($n) != $n); + my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); + my @root; + my $k; + my $theta_inc = pit2 / $n; + my $rho = $r ** (1/$n); + my $theta; + my $complex = ref($z) || $package; + for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) { + push(@root, $complex->emake($rho, $theta)); + } + return @root; +} + +# +# Re +# +# Return Re(z). +# sub Re { - my($x,$y) = @{$_[0]}; - $x; + my ($z) = @_; + return $z unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return $re; } +# +# Im +# +# Return Im(z). +# sub Im { - my($x,$y) = @{$_[0]}; - $y; + my ($z) = @_; + return 0 unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return $im; } -sub arg { - my($x,$y) = @{$_[0]}; - atan2($y,$x); +# +# (exp) +# +# Computes exp(z). +# +sub exp { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + return (ref $z)->emake(exp($x), $y); +} + +# +# _logofzero +# +# Die on logarithm of zero. +# +sub _logofzero { + my $mess = "$_[0]: Logarithm of zero.\n"; + + if (defined $_[1]) { + $mess .= "(Because in the definition of $_[0], the argument "; + $mess .= "$_[1] " unless ($_[1] eq '0'); + $mess .= "is 0)\n"; + } + + my @up = caller(1); + + $mess .= "Died at $up[1] line $up[2].\n"; + + die $mess; +} + +# +# (log) +# +# Compute log(z). +# +sub log { + my ($z) = @_; + unless (ref $z) { + _logofzero("log") if $z == 0; + return $z > 0 ? log($z) : cplx(log(-$z), pi); + } + my ($r, $t) = @{$z->polar}; + _logofzero("log") if $r == 0; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return (ref $z)->make(log($r), $t); +} + +# +# ln +# +# Alias for log(). +# +sub ln { Math::Complex::log(@_) } + +# +# log10 +# +# Compute log10(z). +# + +sub log10 { + return Math::Complex::log($_[0]) * uplog10; +} + +# +# logn +# +# Compute logn(z,n) = log(z) / log(n) +# +sub logn { + my ($z, $n) = @_; + $z = cplx($z, 0) unless ref $z; + my $logn = $logn{$n}; + $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n) + return log($z) / $logn; +} + +# +# (cos) +# +# Compute cos(z) = (exp(iz) + exp(-iz))/2. +# +sub cos { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + my $ey = exp($y); + my $ey_1 = 1 / $ey; + return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, + sin($x) * ($ey_1 - $ey)/2); +} + +# +# (sin) +# +# Compute sin(z) = (exp(iz) - exp(-iz))/2. +# +sub sin { + my ($z) = @_; + my ($x, $y) = @{$z->cartesian}; + my $ey = exp($y); + my $ey_1 = 1 / $ey; + return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, + cos($x) * ($ey - $ey_1)/2); +} + +# +# tan +# +# Compute tan(z) = sin(z) / cos(z). +# +sub tan { + my ($z) = @_; + my $cz = cos($z); + _divbyzero "tan($z)", "cos($z)" if ($cz == 0); + return sin($z) / $cz; +} + +# +# sec +# +# Computes the secant sec(z) = 1 / cos(z). +# +sub sec { + my ($z) = @_; + my $cz = cos($z); + _divbyzero "sec($z)", "cos($z)" if ($cz == 0); + return 1 / $cz; +} + +# +# csc +# +# Computes the cosecant csc(z) = 1 / sin(z). +# +sub csc { + my ($z) = @_; + my $sz = sin($z); + _divbyzero "csc($z)", "sin($z)" if ($sz == 0); + return 1 / $sz; +} + +# +# cosec +# +# Alias for csc(). +# +sub cosec { Math::Complex::csc(@_) } + +# +# cot +# +# Computes cot(z) = cos(z) / sin(z). +# +sub cot { + my ($z) = @_; + my $sz = sin($z); + _divbyzero "cot($z)", "sin($z)" if ($sz == 0); + return cos($z) / $sz; +} + +# +# cotan +# +# Alias for cot(). +# +sub cotan { Math::Complex::cot(@_) } + +# +# acos +# +# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). +# +sub acos { + my $z = $_[0]; + return atan2(sqrt(1-$z*$z), $z) if (! ref $z) && abs($z) <= 1; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); + my $t1 = sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = atan2(sqrt(1-$beta*$beta), $beta); + my $v = log($alpha + sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return $package->make($u, $v); +} + +# +# asin +# +# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). +# +sub asin { + my $z = $_[0]; + return atan2($z, sqrt(1-$z*$z)) if (! ref $z) && abs($z) <= 1; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); + my $t1 = sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = atan2($beta, sqrt(1-$beta*$beta)); + my $v = -log($alpha + sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return $package->make($u, $v); +} + +# +# atan +# +# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). +# +sub atan { + my ($z) = @_; + return atan2($z, 1) unless ref $z; + _divbyzero "atan(i)" if ( $z == i); + _divbyzero "atan(-i)" if (-$z == i); + my $log = log((i + $z) / (i - $z)); + $ip2 = 0.5 * i unless defined $ip2; + return $ip2 * $log; +} + +# +# asec +# +# Computes the arc secant asec(z) = acos(1 / z). +# +sub asec { + my ($z) = @_; + _divbyzero "asec($z)", $z if ($z == 0); + return acos(1 / $z); +} + +# +# acsc +# +# Computes the arc cosecant acsc(z) = asin(1 / z). +# +sub acsc { + my ($z) = @_; + _divbyzero "acsc($z)", $z if ($z == 0); + return asin(1 / $z); +} + +# +# acosec +# +# Alias for acsc(). +# +sub acosec { Math::Complex::acsc(@_) } + +# +# acot +# +# Computes the arc cotangent acot(z) = atan(1 / z) +# +sub acot { + my ($z) = @_; + return ($z >= 0) ? atan2(1, $z) : atan2(-1, -$z) unless ref $z; + _divbyzero "acot(i)", if ( $z == i); + _divbyzero "acot(-i)" if (-$z == i); + return atan(1 / $z); +} + +# +# acotan +# +# Alias for acot(). +# +sub acotan { Math::Complex::acot(@_) } + +# +# cosh +# +# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. +# +sub cosh { + my ($z) = @_; + my $ex; + unless (ref $z) { + $ex = exp($z); + return ($ex + 1/$ex)/2; + } + my ($x, $y) = @{$z->cartesian}; + $ex = exp($x); + my $ex_1 = 1 / $ex; + return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, + sin($y) * ($ex - $ex_1)/2); +} + +# +# sinh +# +# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. +# +sub sinh { + my ($z) = @_; + my $ex; + unless (ref $z) { + $ex = exp($z); + return ($ex - 1/$ex)/2; + } + my ($x, $y) = @{$z->cartesian}; + $ex = exp($x); + my $ex_1 = 1 / $ex; + return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, + sin($y) * ($ex + $ex_1)/2); +} + +# +# tanh +# +# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). +# +sub tanh { + my ($z) = @_; + my $cz = cosh($z); + _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); + return sinh($z) / $cz; +} + +# +# sech +# +# Computes the hyperbolic secant sech(z) = 1 / cosh(z). +# +sub sech { + my ($z) = @_; + my $cz = cosh($z); + _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); + return 1 / $cz; +} + +# +# csch +# +# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). +# +sub csch { + my ($z) = @_; + my $sz = sinh($z); + _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); + return 1 / $sz; +} + +# +# cosech +# +# Alias for csch(). +# +sub cosech { Math::Complex::csch(@_) } + +# +# coth +# +# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). +# +sub coth { + my ($z) = @_; + my $sz = sinh($z); + _divbyzero "coth($z)", "sinh($z)" if ($sz == 0); + return cosh($z) / $sz; +} + +# +# cotanh +# +# Alias for coth(). +# +sub cotanh { Math::Complex::coth(@_) } + +# +# acosh +# +# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). +# +sub acosh { + my ($z) = @_; + unless (ref $z) { + return log($z + sqrt($z*$z-1)) if $z >= 1; + $z = cplx($z, 0); + } + my ($re, $im) = @{$z->cartesian}; + if ($im == 0) { + return cplx(log($re + sqrt($re*$re - 1)), 0) if $re >= 1; + return cplx(0, atan2(sqrt(1-$re*$re), $re)) if abs($re) <= 1; + } + return log($z + sqrt($z*$z - 1)); +} + +# +# asinh +# +# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1)) +# +sub asinh { + my ($z) = @_; + return log($z + sqrt($z*$z + 1)); +} + +# +# atanh +# +# Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). +# +sub atanh { + my ($z) = @_; + unless (ref $z) { + return log((1 + $z)/(1 - $z))/2 if abs($z) < 1; + $z = cplx($z, 0); + } + _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); + _logofzero 'atanh(-1)' if ($z == -1); + return 0.5 * log((1 + $z) / (1 - $z)); +} + +# +# asech +# +# Computes the hyperbolic arc secant asech(z) = acosh(1 / z). +# +sub asech { + my ($z) = @_; + _divbyzero 'asech(0)', $z if ($z == 0); + return acosh(1 / $z); } +# +# acsch +# +# Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). +# +sub acsch { + my ($z) = @_; + _divbyzero 'acsch(0)', $z if ($z == 0); + return asinh(1 / $z); +} + +# +# acosech +# +# Alias for acosh(). +# +sub acosech { Math::Complex::acsch(@_) } + +# +# acoth +# +# Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). +# +sub acoth { + my ($z) = @_; + unless (ref $z) { + return log(($z + 1)/($z - 1))/2 if abs($z) > 1; + $z = cplx($z, 0); + } + _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); + _logofzero 'acoth(-1)' if ($z == -1); + return log((1 + $z) / ($z - 1)) / 2; +} + +# +# acotanh +# +# Alias for acot(). +# +sub acotanh { Math::Complex::acoth(@_) } + +# +# (atan2) +# +# Compute atan(z1/z2). +# +sub atan2 { + my ($z1, $z2, $inverted) = @_; + my ($re1, $im1, $re2, $im2); + if ($inverted) { + ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + ($re2, $im2) = @{$z1->cartesian}; + } else { + ($re1, $im1) = @{$z1->cartesian}; + ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + } + if ($im2 == 0) { + return cplx(atan2($re1, $re2), 0) if $im1 == 0; + return cplx(($im1<=>0) * pip2, 0) if $re2 == 0; + } + my $w = atan($z1/$z2); + my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); + $u += pi if $re2 < 0; + $u -= pit2 if $u > pi; + return cplx($u, $v); +} + +# +# display_format +# ->display_format +# +# Set (fetch if no argument) display format for all complex numbers that +# don't happen to have overridden it via ->display_format +# +# When called as a method, this actually sets the display format for +# the current object. +# +# Valid object formats are 'c' and 'p' for cartesian and polar. The first +# letter is used actually, so the type can be fully spelled out for clarity. +# +sub display_format { + my $self = shift; + my $format = undef; + + if (ref $self) { # Called as a method + $format = shift; + } else { # Regular procedure call + $format = $self; + undef $self; + } + + if (defined $self) { + return defined $self->{display} ? $self->{display} : $display + unless defined $format; + return $self->{display} = $format; + } + + return $display unless defined $format; + return $display = $format; +} + +# +# (stringify) +# +# Show nicely formatted complex number under its cartesian or polar form, +# depending on the current display format: +# +# . If a specific display format has been recorded for this object, use it. +# . Otherwise, use the generic current default for all complex numbers, +# which is a package global variable. +# sub stringify { - my($x,$y) = @{$_[0]}; - my($re,$im); + my ($z) = shift; + my $format; - $re = $x if ($x); - if ($y == 1) {$im = 'i';} - elsif ($y == -1){$im = '-i';} - elsif ($y) {$im = "${y}i"; } + $format = $display; + $format = $z->{display} if defined $z->{display}; - local $_ = $re.'+'.$im; - s/\+-/-/; - s/^\+//; - s/[\+-]$//; - $_ = 0 if ($_ eq ''); - return $_; + return $z->stringify_polar if $format =~ /^p/i; + return $z->stringify_cartesian; +} + +# +# ->stringify_cartesian +# +# Stringify as a cartesian representation 'a+bi'. +# +sub stringify_cartesian { + my $z = shift; + my ($x, $y) = @{$z->cartesian}; + my ($re, $im); + my $eps = 1e-14; + + $x = int($x + ($x < 0 ? -1 : 1) * $eps) + if int(abs($x)) != int(abs($x) + $eps); + $y = int($y + ($y < 0 ? -1 : 1) * $eps) + if int(abs($y)) != int(abs($y) + $eps); + + $re = "$x" if abs($x) >= $eps; + if ($y == 1) { $im = 'i' } + elsif ($y == -1) { $im = '-i' } + elsif (abs($y) >= $eps) { $im = $y . "i" } + + my $str = ''; + $str = $re if defined $re; + $str .= "+$im" if defined $im; + $str =~ s/\+-/-/; + $str =~ s/^\+//; + $str = '0' unless $str; + + return $str; +} + +# +# ->stringify_polar +# +# Stringify as a polar representation '[r,t]'. +# +sub stringify_polar { + my $z = shift; + my ($r, $t) = @{$z->polar}; + my $theta; + my $eps = 1e-14; + + return '[0,0]' if $r <= $eps; + + my $nt = $t / pit2; + $nt = ($nt - int($nt)) * pit2; + $nt += pit2 if $nt < 0; # Range [0, 2pi] + + if (abs($nt) <= $eps) { $theta = 0 } + elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } + + if (defined $theta) { + $r = int($r + ($r < 0 ? -1 : 1) * $eps) + if int(abs($r)) != int(abs($r) + $eps); + $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) + if ($theta ne 'pi' and + int(abs($theta)) != int(abs($theta) + $eps)); + return "\[$r,$theta\]"; + } + + # + # Okay, number is not a real. Try to identify pi/n and friends... + # + + $nt -= pit2 if $nt > pi; + my ($n, $k, $kpi); + + for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { + $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); + if (abs($kpi/$n - $nt) <= $eps) { + $theta = ($nt < 0 ? '-':''). + ($k == 1 ? 'pi':"${k}pi").'/'.abs($n); + last; + } + } + + $theta = $nt unless defined $theta; + + $r = int($r + ($r < 0 ? -1 : 1) * $eps) + if int(abs($r)) != int(abs($r) + $eps); + $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps) + if ($theta !~ m(^-?\d*pi/\d+$) and + int(abs($theta)) != int(abs($theta) + $eps)); + + return "\[$r,$theta\]"; } 1; @@ -125,39 +1200,393 @@ __END__ =head1 NAME -Math::Complex - complex numbers package +Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS - use Math::Complex; - $i = new Math::Complex; + use Math::Complex; + + $z = Math::Complex->make(5, 6); + $t = 4 - 3*i + $z; + $j = cplxe(1, 2*pi/3); =head1 DESCRIPTION -Complex numbers declared as +This package lets you create and manipulate complex numbers. By default, +I<Perl> limits itself to real numbers, but an extra C<use> statement brings +full complex support, along with a full set of mathematical functions +typically associated with and/or extended to complex numbers. + +If you wonder what complex numbers are, they were invented to be able to solve +the following equation: + + x*x = -1 + +and by definition, the solution is noted I<i> (engineers use I<j> instead since +I<i> usually denotes an intensity, but the name does not matter). The number +I<i> is a pure I<imaginary> number. + +The arithmetics with pure imaginary numbers works just like you would expect +it with real numbers... you just have to remember that + + i*i = -1 + +so you have: + + 5i + 7i = i * (5 + 7) = 12i + 4i - 3i = i * (4 - 3) = i + 4i * 2i = -8 + 6i / 2i = 3 + 1 / i = -i + +Complex numbers are numbers that have both a real part and an imaginary +part, and are usually noted: + + a + bi + +where C<a> is the I<real> part and C<b> is the I<imaginary> part. The +arithmetic with complex numbers is straightforward. You have to +keep track of the real and the imaginary parts, but otherwise the +rules used for real numbers just apply: + + (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i + (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i + +A graphical representation of complex numbers is possible in a plane +(also called the I<complex plane>, but it's really a 2D plane). +The number + + z = a + bi + +is the point whose coordinates are (a, b). Actually, it would +be the vector originating from (0, 0) to (a, b). It follows that the addition +of two complex numbers is a vectorial addition. + +Since there is a bijection between a point in the 2D plane and a complex +number (i.e. the mapping is unique and reciprocal), a complex number +can also be uniquely identified with polar coordinates: + + [rho, theta] + +where C<rho> is the distance to the origin, and C<theta> the angle between +the vector and the I<x> axis. There is a notation for this using the +exponential form, which is: + + rho * exp(i * theta) + +where I<i> is the famous imaginary number introduced above. Conversion +between this form and the cartesian form C<a + bi> is immediate: + + a = rho * cos(theta) + b = rho * sin(theta) + +which is also expressed by this formula: + + z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) + +In other words, it's the projection of the vector onto the I<x> and I<y> +axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> +the I<argument> of the complex number. The I<norm> of C<z> will be +noted C<abs(z)>. + +The polar notation (also known as the trigonometric +representation) is much more handy for performing multiplications and +divisions of complex numbers, whilst the cartesian notation is better +suited for additions and subtractions. Real numbers are on the I<x> +axis, and therefore I<theta> is zero or I<pi>. - $i = Math::Complex->new(1,1); +All the common operations that can be performed on a real number have +been defined to work on complex numbers as well, and are merely +I<extensions> of the operations defined on real numbers. This means +they keep their natural meaning when there is no imaginary part, provided +the number is within their definition set. -can be manipulated with overloaded math operators. The operators +For instance, the C<sqrt> routine which computes the square root of +its argument is only defined for non-negative real numbers and yields a +non-negative real number (it is an application from B<R+> to B<R+>). +If we allow it to return a complex number, then it can be extended to +negative real numbers to become an application from B<R> to B<C> (the +set of complex numbers): - + - * / neg ~ abs cos sin exp sqrt + sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i -are supported as well as +It can also be extended to be an application from B<C> to B<C>, +whilst its restriction to B<R> behaves as defined above by using +the following definition: - "" (stringify) + sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) -The methods +Indeed, a negative real number can be noted C<[x,pi]> (the modulus +I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative +number) and the above definition states that - Re Im arg + sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i -are also provided. +which is exactly what we had defined for negative real numbers above. + +All the common mathematical functions defined on real numbers that +are extended to complex numbers share that same property of working +I<as usual> when the imaginary part is zero (otherwise, it would not +be called an extension, would it?). + +A I<new> operation possible on a complex number that is +the identity for real numbers is called the I<conjugate>, and is noted +with an horizontal bar above the number, or C<~z> here. + + z = a + bi + ~z = a - bi + +Simple... Now look: + + z * ~z = (a + bi) * (a - bi) = a*a + b*b + +We saw that the norm of C<z> was noted C<abs(z)> and was defined as the +distance to the origin, also known as: + + rho = abs(z) = sqrt(a*a + b*b) + +so + + z * ~z = abs(z) ** 2 + +If z is a pure real number (i.e. C<b == 0>), then the above yields: + + a * a = abs(a) ** 2 + +which is true (C<abs> has the regular meaning for real number, i.e. stands +for the absolute value). This example explains why the norm of C<z> is +noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet +is the regular C<abs> we know when the complex number actually has no +imaginary part... This justifies I<a posteriori> our use of the C<abs> +notation for the norm. + +=head1 OPERATIONS + +Given the following notations: + + z1 = a + bi = r1 * exp(i * t1) + z2 = c + di = r2 * exp(i * t2) + z = <any complex or real number> + +the following (overloaded) operations are supported on complex numbers: + + z1 + z2 = (a + c) + i(b + d) + z1 - z2 = (a - c) + i(b - d) + z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) + z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) + z1 ** z2 = exp(z2 * log z1) + ~z1 = a - bi + abs(z1) = r1 = sqrt(a*a + b*b) + sqrt(z1) = sqrt(r1) * exp(i * t1/2) + exp(z1) = exp(a) * exp(i * b) + log(z1) = log(r1) + i*t1 + sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) + cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) + atan2(z1, z2) = atan(z1/z2) + +The following extra operations are supported on both real and complex +numbers: + + Re(z) = a + Im(z) = b + arg(z) = t + + cbrt(z) = z ** (1/3) + log10(z) = log(z) / log(10) + logn(z, n) = log(z) / log(n) + + tan(z) = sin(z) / cos(z) + + csc(z) = 1 / sin(z) + sec(z) = 1 / cos(z) + cot(z) = 1 / tan(z) + + asin(z) = -i * log(i*z + sqrt(1-z*z)) + acos(z) = -i * log(z + i*sqrt(1-z*z)) + atan(z) = i/2 * log((i+z) / (i-z)) + + acsc(z) = asin(1 / z) + asec(z) = acos(1 / z) + acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) + + sinh(z) = 1/2 (exp(z) - exp(-z)) + cosh(z) = 1/2 (exp(z) + exp(-z)) + tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) + + csch(z) = 1 / sinh(z) + sech(z) = 1 / cosh(z) + coth(z) = 1 / tanh(z) + + asinh(z) = log(z + sqrt(z*z+1)) + acosh(z) = log(z + sqrt(z*z-1)) + atanh(z) = 1/2 * log((1+z) / (1-z)) + + acsch(z) = asinh(1 / z) + asech(z) = acosh(1 / z) + acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) + +I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, I<coth>, +I<acosech>, I<acotanh>, have aliases I<ln>, I<cosec>, I<cotan>, +I<acosec>, I<acotan>, I<cosech>, I<cotanh>, I<acosech>, I<acotanh>, +respectively. + +The I<root> function is available to compute all the I<n> +roots of some complex, where I<n> is a strictly positive integer. +There are exactly I<n> such roots, returned as a list. Getting the +number mathematicians call C<j> such that: + + 1 + j + j*j = 0; + +is a simple matter of writing: + + $j = ((root(1, 3))[1]; + +The I<k>th root for C<z = [r,t]> is given by: + + (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) + +The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In +order to ensure its restriction to real numbers is conform to what you +would expect, the comparison is run on the real part of the complex +number first, and imaginary parts are compared only when the real +parts match. + +=head1 CREATION + +To create a complex number, use either: + + $z = Math::Complex->make(3, 4); + $z = cplx(3, 4); + +if you know the cartesian form of the number, or + + $z = 3 + 4*i; + +if you like. To create a number using the polar form, use either: + + $z = Math::Complex->emake(5, pi/3); + $x = cplxe(5, pi/3); + +instead. The first argument is the modulus, the second is the angle +(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a +notation for complex numbers in the polar form). + +It is possible to write: + + $x = cplxe(-3, pi/4); + +but that will be silently converted into C<[3,-3pi/4]>, since the modulus +must be non-negative (it represents the distance to the origin in the complex +plane). + +=head1 STRINGIFICATION + +When printed, a complex number is usually shown under its cartesian +form I<a+bi>, but there are legitimate cases where the polar format +I<[r,t]> is more appropriate. + +By calling the routine C<Math::Complex::display_format> and supplying either +C<"polar"> or C<"cartesian">, you override the default display format, +which is C<"cartesian">. Not supplying any argument returns the current +setting. + +This default can be overridden on a per-number basis by calling the +C<display_format> method instead. As before, not supplying any argument +returns the current display format for this number. Otherwise whatever you +specify will be the new display format for I<this> particular number. + +For instance: + + use Math::Complex; + + Math::Complex::display_format('polar'); + $j = ((root(1, 3))[1]; + print "j = $j\n"; # Prints "j = [1,2pi/3] + $j->display_format('cartesian'); + print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" + +The polar format attempts to emphasize arguments like I<k*pi/n> +(where I<n> is a positive integer and I<k> an integer within [-9,+9]). + +=head1 USAGE + +Thanks to overloading, the handling of arithmetics with complex numbers +is simple and almost transparent. + +Here are some examples: + + use Math::Complex; + + $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 + print "j = $j, j**3 = ", $j ** 3, "\n"; + print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; + + $z = -16 + 0*i; # Force it to be a complex + print "sqrt($z) = ", sqrt($z), "\n"; + + $k = exp(i * 2*pi/3); + print "$j - $k = ", $j - $k, "\n"; + +=head1 ERRORS DUE TO DIVISION BY ZERO + +The division (/) and the following functions + + tan + sec + csc + cot + asec + acsc + atan + acot + tanh + sech + csch + coth + atanh + asech + acsch + acoth + +cannot be computed for all arguments because that would mean dividing +by zero or taking logarithm of zero. These situations cause fatal +runtime errors looking like this + + cot(0): Division by zero. + (Because in the definition of cot(0), the divisor sin(0) is 0) + Died at ... + +or + + atanh(-1): Logarithm of zero. + Died at... + +For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, +C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the +C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the +C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the +C<atan>, C<acot>, the argument cannot be C<i> (the imaginary unit). +For the C<atan>, C<acoth>, the argument cannot be C<-i> (the negative +imaginary unit). For the C<tan>, C<sec>, C<tanh>, C<sech>, the +argument cannot be I<pi/2 + k * pi>, where I<k> is any integer. =head1 BUGS -sqrt() should return two roots, but only returns one. +Saying C<use Math::Complex;> exports many mathematical routines in the +caller environment and even overrides some (C<sqrt>, C<log>). +This is construed as a feature by the Authors, actually... ;-) + +All routines expect to be given real or complex numbers. Don't attempt to +use BigFloat, since Perl has currently no rule to disambiguate a '+' +operation (for instance) between two overloaded entities. =head1 AUTHORS -Dave Nadler, Tom Christiansen, Tim Bunce, Larry Wall. +Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> and +Jarkko Hietaniemi <F<jhi@iki.fi>>. + +Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. =cut + +# eof |