summaryrefslogtreecommitdiff
path: root/gnu
diff options
context:
space:
mode:
authorPascal Stumpf <pascal@cvs.openbsd.org>2016-09-03 22:47:02 +0000
committerPascal Stumpf <pascal@cvs.openbsd.org>2016-09-03 22:47:02 +0000
commit807edb5007d648972cac964f4d9a30bae985f682 (patch)
treeca7778a2715f931a12e3e3e15d1414ed0cfde644 /gnu
parent0321dc16ecb1a7a77af14225a29d9a1b9bcc4563 (diff)
Use the space freed up by sparc and zaurus to import LLVM.
ok hackroom@
Diffstat (limited to 'gnu')
-rw-r--r--gnu/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp813
-rw-r--r--gnu/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp3128
-rw-r--r--gnu/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp151
3 files changed, 971 insertions, 3121 deletions
diff --git a/gnu/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp b/gnu/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
index 04aa3c9b1e2..ec354c209ca 100644
--- a/gnu/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
+++ b/gnu/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
@@ -16,33 +16,30 @@
//
//===----------------------------------------------------------------------===//
+#include "PPC.h"
#include "InstPrinter/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCExpr.h"
-#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
-#include "PPC.h"
-#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetStreamer.h"
#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/BinaryFormat/ELF.h"
-#include "llvm/BinaryFormat/MachO.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/AsmPrinter.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
-#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
@@ -52,28 +49,22 @@
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
-#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
-#include "llvm/MC/SectionKind.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <memory>
-#include <new>
-
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "asmprinter"
namespace {
-
class PPCAsmPrinter : public AsmPrinter {
protected:
MapVector<MCSymbol *, MCSymbol *> TOC;
@@ -85,16 +76,12 @@ public:
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
- StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
-
- MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
-
- bool doInitialization(Module &M) override {
- if (!TOC.empty())
- TOC.clear();
- return AsmPrinter::doInitialization(M);
+ const char *getPassName() const override {
+ return "PowerPC Assembly Printer";
}
+ MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
+
void EmitInstruction(const MachineInstr *MI) override;
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
@@ -113,9 +100,7 @@ public:
void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<PPCSubtarget>();
- bool Changed = AsmPrinter::runOnMachineFunction(MF);
- emitXRayTable();
- return Changed;
+ return AsmPrinter::runOnMachineFunction(MF);
}
};
@@ -126,7 +111,7 @@ public:
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
- StringRef getPassName() const override {
+ const char *getPassName() const override {
return "Linux PPC Assembly Printer";
}
@@ -137,7 +122,6 @@ public:
void EmitFunctionBodyStart() override;
void EmitFunctionBodyEnd() override;
- void EmitInstruction(const MachineInstr *MI) override;
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
@@ -148,15 +132,33 @@ public:
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
- StringRef getPassName() const override {
+ const char *getPassName() const override {
return "Darwin PPC Assembly Printer";
}
bool doFinalization(Module &M) override;
void EmitStartOfAsmFile(Module &M) override;
+
+ void EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs);
};
+} // end of anonymous namespace
+
+/// stripRegisterPrefix - This method strips the character prefix from a
+/// register name so that only the number is left. Used by for linux asm.
+static const char *stripRegisterPrefix(const char *RegName) {
+ switch (RegName[0]) {
+ case 'r':
+ case 'f':
+ case 'q': // for QPX
+ case 'v':
+ if (RegName[1] == 's')
+ return RegName + 2;
+ return RegName + 1;
+ case 'c': if (RegName[1] == 'r') return RegName + 2;
+ }
-} // end anonymous namespace
+ return RegName;
+}
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
@@ -165,15 +167,11 @@ void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
switch (MO.getType()) {
case MachineOperand::MO_Register: {
- unsigned Reg = PPCInstrInfo::getRegNumForOperand(MI->getDesc(),
- MO.getReg(), OpNo);
-
- const char *RegName = PPCInstPrinter::getRegisterName(Reg);
-
+ const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget->isDarwin())
- RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
+ RegName = stripRegisterPrefix(RegName);
O << RegName;
return;
}
@@ -197,14 +195,29 @@ void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
MCSymbol *SymToPrint;
// External or weakly linked global variables need non-lazily-resolved stubs
- if (Subtarget->hasLazyResolverStub(GV)) {
- SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
- MachineModuleInfoImpl::StubValueTy &StubSym =
- MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(
- SymToPrint);
- if (!StubSym.getPointer())
- StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
- !GV->hasInternalLinkage());
+ if (TM.getRelocationModel() != Reloc::Static &&
+ !GV->isStrongDefinitionForLinker()) {
+ if (!GV->hasHiddenVisibility()) {
+ SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(
+ SymToPrint);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
+ } else if (GV->isDeclaration() || GV->hasCommonLinkage() ||
+ GV->hasAvailableExternallyLinkage()) {
+ SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
+
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(
+ SymToPrint);
+ if (!StubSym.getPointer())
+ StubSym = MachineModuleInfoImpl::
+ StubValueTy(getSymbol(GV), !GV->hasInternalLinkage());
+ } else {
+ SymToPrint = getSymbol(GV);
+ }
} else {
SymToPrint = getSymbol(GV);
}
@@ -250,21 +263,6 @@ bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
- case 'x':
- if(!MI->getOperand(OpNo).isReg())
- return true;
- // This operand uses VSX numbering.
- // If the operand is a VMX register, convert it to a VSX register.
- unsigned Reg = MI->getOperand(OpNo).getReg();
- if (PPCInstrInfo::isVRRegister(Reg))
- Reg = PPC::VSX32 + (Reg - PPC::V0);
- else if (PPCInstrInfo::isVFRegister(Reg))
- Reg = PPC::VSX32 + (Reg - PPC::VF0);
- const char *RegName;
- RegName = PPCInstPrinter::getRegisterName(Reg);
- RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
- O << RegName;
- return false;
}
}
@@ -289,7 +287,7 @@ bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
{
const char *RegName = "r0";
if (!Subtarget->isDarwin())
- RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
+ RegName = stripRegisterPrefix(RegName);
O << RegName << ", ";
printOperand(MI, OpNo, O);
return false;
@@ -327,7 +325,7 @@ MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
}
void PPCAsmPrinter::EmitEndOfAsmFile(Module &M) {
- emitStackMaps(SM);
+ SM.serializeToStackMapSection();
}
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
@@ -362,10 +360,11 @@ void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
- const MachineOperand &CalleeMO = Opers.getCallTarget();
+ const MachineOperand &CalleeMO =
+ Opers.getMetaOper(PatchPointOpers::TargetPos);
if (CalleeMO.isImm()) {
- int64_t CallTarget = CalleeMO.getImm();
+ int64_t CallTarget = Opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
if (CallTarget) {
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
"High 16 bits of call target should be zero.");
@@ -392,7 +391,7 @@ void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
.addImm(CallTarget & 0xFFFF));
// Save the current TOC pointer before the remote call.
- int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
+ int TOCSaveOffset = Subtarget->isELFv2ABI() ? 24 : 40;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
@@ -444,7 +443,7 @@ void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
EncodedBytes *= 4;
// Emit padding.
- unsigned NumBytes = Opers.getNumPatchBytes();
+ unsigned NumBytes = Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 4 == 0 &&
@@ -471,7 +470,7 @@ void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
"GETtls[ld]ADDR[32] must read GPR3");
if (!Subtarget->isPPC64() && !Subtarget->isDarwin() &&
- isPositionIndependent())
+ TM.getRelocationModel() == Reloc::PIC_)
Kind = MCSymbolRefExpr::VK_PLT;
const MCSymbolRefExpr *TlsRef =
MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
@@ -493,35 +492,9 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCInst TmpInst;
bool isPPC64 = Subtarget->isPPC64();
bool isDarwin = TM.getTargetTriple().isOSDarwin();
- const Module *M = MF->getFunction().getParent();
+ const Module *M = MF->getFunction()->getParent();
PICLevel::Level PL = M->getPICLevel();
-#ifndef NDEBUG
- // Validate that SPE and FPU are mutually exclusive in codegen
- if (!MI->isInlineAsm()) {
- for (const MachineOperand &MO: MI->operands()) {
- if (MO.isReg()) {
- unsigned Reg = MO.getReg();
- if (Subtarget->hasSPE()) {
- if (PPC::F4RCRegClass.contains(Reg) ||
- PPC::F8RCRegClass.contains(Reg) ||
- PPC::QBRCRegClass.contains(Reg) ||
- PPC::QFRCRegClass.contains(Reg) ||
- PPC::QSRCRegClass.contains(Reg) ||
- PPC::VFRCRegClass.contains(Reg) ||
- PPC::VRRCRegClass.contains(Reg) ||
- PPC::VSFRCRegClass.contains(Reg) ||
- PPC::VSSRCRegClass.contains(Reg)
- )
- llvm_unreachable("SPE targets cannot have FPRegs!");
- } else {
- if (PPC::SPERCRegClass.contains(Reg))
- llvm_unreachable("SPE register found in FPU-targeted code!");
- }
- }
- }
- }
-#endif
// Lower multi-instruction pseudo operations.
switch (MI->getOpcode()) {
default: break;
@@ -533,7 +506,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return LowerPATCHPOINT(SM, *MI);
case PPC::MoveGOTtoLR: {
- // Transform %lr = MoveGOTtoLR
+ // Transform %LR = MoveGOTtoLR
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
@@ -554,7 +527,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
}
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8: {
- // Transform %lr = MovePCtoLR
+ // Transform %LR = MovePCtoLR
// Into this, where the label is the PIC base:
// bl L1$pb
// L1$pb:
@@ -572,69 +545,39 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::UpdateGBR: {
- // Transform %rd = UpdateGBR(%rt, %ri)
- // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
- // add %rd, %rt, %ri
- // or into (if secure plt mode is on):
- // addis r30, r30, .LTOC - .L0$pb@ha
- // addi r30, r30, .LTOC - .L0$pb@l
+ // Transform %Rd = UpdateGBR(%Rt, %Ri)
+ // Into: lwz %Rt, .L0$poff - .L0$pb(%Ri)
+ // add %Rd, %Rt, %Ri
// Get the offset from the GOT Base Register to the GOT
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
- if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
- unsigned PICR = TmpInst.getOperand(0).getReg();
- MCSymbol *LTOCSymbol = OutContext.getOrCreateSymbol(StringRef(".LTOC"));
- const MCExpr *PB =
- MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
- OutContext);
-
- const MCExpr *LTOCDeltaExpr =
- MCBinaryExpr::createSub(MCSymbolRefExpr::create(LTOCSymbol, OutContext),
- PB, OutContext);
-
- const MCExpr *LTOCDeltaHi =
- PPCMCExpr::createHa(LTOCDeltaExpr, false, OutContext);
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
- .addReg(PICR)
- .addReg(PICR)
- .addExpr(LTOCDeltaHi));
+ MCSymbol *PICOffset =
+ MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
+ TmpInst.setOpcode(PPC::LWZ);
+ const MCExpr *Exp =
+ MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
+ const MCExpr *PB =
+ MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
+ MCSymbolRefExpr::VK_None,
+ OutContext);
+ const MCOperand TR = TmpInst.getOperand(1);
+ const MCOperand PICR = TmpInst.getOperand(0);
+
+ // Step 1: lwz %Rt, .L$poff - .L$pb(%Ri)
+ TmpInst.getOperand(1) =
+ MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
+ TmpInst.getOperand(0) = TR;
+ TmpInst.getOperand(2) = PICR;
+ EmitToStreamer(*OutStreamer, TmpInst);
- const MCExpr *LTOCDeltaLo =
- PPCMCExpr::createLo(LTOCDeltaExpr, false, OutContext);
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
- .addReg(PICR)
- .addReg(PICR)
- .addExpr(LTOCDeltaLo));
- return;
- } else {
- MCSymbol *PICOffset =
- MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
- TmpInst.setOpcode(PPC::LWZ);
- const MCExpr *Exp =
- MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
- const MCExpr *PB =
- MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
- MCSymbolRefExpr::VK_None,
- OutContext);
- const MCOperand TR = TmpInst.getOperand(1);
- const MCOperand PICR = TmpInst.getOperand(0);
-
- // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
- TmpInst.getOperand(1) =
- MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
- TmpInst.getOperand(0) = TR;
- TmpInst.getOperand(2) = PICR;
- EmitToStreamer(*OutStreamer, TmpInst);
-
- TmpInst.setOpcode(PPC::ADD4);
- TmpInst.getOperand(0) = PICR;
- TmpInst.getOperand(1) = TR;
- TmpInst.getOperand(2) = PICR;
- EmitToStreamer(*OutStreamer, TmpInst);
- return;
- }
+ TmpInst.setOpcode(PPC::ADD4);
+ TmpInst.getOperand(0) = PICR;
+ TmpInst.getOperand(1) = TR;
+ TmpInst.getOperand(2) = PICR;
+ EmitToStreamer(*OutStreamer, TmpInst);
+ return;
}
case PPC::LWZtoc: {
- // Transform %r3 = LWZtoc @min1, %r2
+ // Transform %R3 = LWZtoc <ga:@min1>, %R2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LWZ, and the global address operand to be a
@@ -654,7 +597,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
else if (MO.isBlockAddress())
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
- if (PL == PICLevel::SmallPIC) {
+ if (PL == PICLevel::Small) {
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
OutContext);
@@ -678,7 +621,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
case PPC::LDtocCPT:
case PPC::LDtocBA:
case PPC::LDtoc: {
- // Transform %x3 = LDtoc @min1, %x2
+ // Transform %X3 = LDtoc <ga:@min1>, %X2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD, and the global address operand to be a
@@ -709,7 +652,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
}
case PPC::ADDIStocHA: {
- // Transform %xd = ADDIStocHA %x2, @sym
+ // Transform %Xd = ADDIStocHA %X2, <ga:@sym>
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDIS8. If the global address is external, has
@@ -744,19 +687,12 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
OutContext);
-
- if (!MO.isJTI() && MO.getOffset())
- Exp = MCBinaryExpr::createAdd(Exp,
- MCConstantExpr::create(MO.getOffset(),
- OutContext),
- OutContext);
-
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocL: {
- // Transform %xd = LDtocL @sym, %xs
+ // Transform %Xd = LDtocL <ga:@sym>, %Xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD. If the global address is external, has
@@ -783,11 +719,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
else if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
MOSymbol = getSymbol(GV);
- LLVM_DEBUG(
- unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
- assert((GVFlags & PPCII::MO_NLP_FLAG) &&
- "LDtocL used on symbol that could be accessed directly is "
- "invalid. Must match ADDIStocHA."));
+ DEBUG(
+ unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
+ assert((GVFlags & PPCII::MO_NLP_FLAG) &&
+ "LDtocL used on symbol that could be accessed directly is "
+ "invalid. Must match ADDIStocHA."));
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
@@ -799,7 +735,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDItocL: {
- // Transform %xd = ADDItocL %xs, @sym
+ // Transform %Xd = ADDItocL %Xs, <ga:@sym>
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDI8. If the global address is external, then
@@ -812,9 +748,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
- LLVM_DEBUG(unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
- assert(!(GVFlags & PPCII::MO_NLP_FLAG) &&
- "Interposable definitions must use indirect access."));
+ DEBUG(
+ unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
+ assert (
+ !(GVFlags & PPCII::MO_NLP_FLAG) &&
+ "Interposable definitions must use indirect access."));
MOSymbol = getSymbol(GV);
} else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
@@ -828,8 +766,8 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDISgotTprelHA: {
- // Transform: %xd = ADDISgotTprelHA %x2, @sym
- // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
+ // Transform: %Xd = ADDISgotTprelHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
@@ -845,7 +783,7 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
}
case PPC::LDgotTprelL:
case PPC::LDgotTprelL32: {
- // Transform %xd = LDgotTprelL @sym, %xs
+ // Transform %Xd = LDgotTprelL <ga:@sym>, %Xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD.
@@ -906,8 +844,8 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDIStlsgdHA: {
- // Transform: %xd = ADDIStlsgdHA %x2, @sym
- // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
+ // Transform: %Xd = ADDIStlsgdHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
@@ -922,11 +860,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDItlsgdL:
- // Transform: %xd = ADDItlsgdL %xs, @sym
- // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
+ // Transform: %Xd = ADDItlsgdL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@got@tlsgd@l
case PPC::ADDItlsgdL32: {
- // Transform: %rd = ADDItlsgdL32 %rs, @sym
- // Into: %rd = ADDI %rs, sym@got@tlsgd
+ // Transform: %Rd = ADDItlsgdL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@got@tlsgd
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
@@ -942,17 +880,17 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::GETtlsADDR:
- // Transform: %x3 = GETtlsADDR %x3, @sym
+ // Transform: %X3 = GETtlsADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
case PPC::GETtlsADDR32: {
- // Transform: %r3 = GETtlsADDR32 %r3, @sym
+ // Transform: %R3 = GETtlsADDR32 %R3, <ga:@sym>
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
return;
}
case PPC::ADDIStlsldHA: {
- // Transform: %xd = ADDIStlsldHA %x2, @sym
- // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
+ // Transform: %Xd = ADDIStlsldHA %X2, <ga:@sym>
+ // Into: %Xd = ADDIS8 %X2, sym@got@tlsld@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
@@ -967,11 +905,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDItlsldL:
- // Transform: %xd = ADDItlsldL %xs, @sym
- // Into: %xd = ADDI8 %xs, sym@got@tlsld@l
+ // Transform: %Xd = ADDItlsldL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@got@tlsld@l
case PPC::ADDItlsldL32: {
- // Transform: %rd = ADDItlsldL32 %rs, @sym
- // Into: %rd = ADDI %rs, sym@got@tlsld
+ // Transform: %Rd = ADDItlsldL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@got@tlsld
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
@@ -987,20 +925,20 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::GETtlsldADDR:
- // Transform: %x3 = GETtlsldADDR %x3, @sym
+ // Transform: %X3 = GETtlsldADDR %X3, <ga:@sym>
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
case PPC::GETtlsldADDR32: {
- // Transform: %r3 = GETtlsldADDR32 %r3, @sym
+ // Transform: %R3 = GETtlsldADDR32 %R3, <ga:@sym>
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
return;
}
case PPC::ADDISdtprelHA:
- // Transform: %xd = ADDISdtprelHA %xs, @sym
- // Into: %xd = ADDIS8 %xs, sym@dtprel@ha
+ // Transform: %Xd = ADDISdtprelHA %Xs, <ga:@sym>
+ // Into: %Xd = ADDIS8 %Xs, sym@dtprel@ha
case PPC::ADDISdtprelHA32: {
- // Transform: %rd = ADDISdtprelHA32 %rs, @sym
- // Into: %rd = ADDIS %rs, sym@dtprel@ha
+ // Transform: %Rd = ADDISdtprelHA32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDIS %Rs, sym@dtprel@ha
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
@@ -1016,11 +954,11 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
return;
}
case PPC::ADDIdtprelL:
- // Transform: %xd = ADDIdtprelL %xs, @sym
- // Into: %xd = ADDI8 %xs, sym@dtprel@l
+ // Transform: %Xd = ADDIdtprelL %Xs, <ga:@sym>
+ // Into: %Xd = ADDI8 %Xs, sym@dtprel@l
case PPC::ADDIdtprelL32: {
- // Transform: %rd = ADDIdtprelL32 %rs, @sym
- // Into: %rd = ADDI %rs, sym@dtprel@l
+ // Transform: %Rd = ADDIdtprelL32 %Rs, <ga:@sym>
+ // Into: %Rd = ADDI %Rs, sym@dtprel@l
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
@@ -1037,8 +975,8 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
case PPC::MFOCRF:
case PPC::MFOCRF8:
if (!Subtarget->hasMFOCRF()) {
- // Transform: %r3 = MFOCRF %cr7
- // Into: %r3 = MFCR ;; cr7
+ // Transform: %R3 = MFOCRF %CR7
+ // Into: %R3 = MFCR ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
OutStreamer->AddComment(PPCInstPrinter::
@@ -1051,8 +989,8 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
case PPC::MTOCRF:
case PPC::MTOCRF8:
if (!Subtarget->hasMFOCRF()) {
- // Transform: %cr7 = MTOCRF %r3
- // Into: MTCRF mask, %r3 ;; cr7
+ // Transform: %CR7 = MTOCRF %R3
+ // Into: MTCRF mask, %R3 ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
@@ -1090,144 +1028,6 @@ void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
EmitToStreamer(*OutStreamer, TmpInst);
}
-void PPCLinuxAsmPrinter::EmitInstruction(const MachineInstr *MI) {
- if (!Subtarget->isPPC64())
- return PPCAsmPrinter::EmitInstruction(MI);
-
- switch (MI->getOpcode()) {
- default:
- return PPCAsmPrinter::EmitInstruction(MI);
- case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
- // .begin:
- // b .end # lis 0, FuncId[16..32]
- // nop # li 0, FuncId[0..15]
- // std 0, -8(1)
- // mflr 0
- // bl __xray_FunctionEntry
- // mtlr 0
- // .end:
- //
- // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
- // of instructions change.
- MCSymbol *BeginOfSled = OutContext.createTempSymbol();
- MCSymbol *EndOfSled = OutContext.createTempSymbol();
- OutStreamer->EmitLabel(BeginOfSled);
- EmitToStreamer(*OutStreamer,
- MCInstBuilder(PPC::B).addExpr(
- MCSymbolRefExpr::create(EndOfSled, OutContext)));
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
- EmitToStreamer(
- *OutStreamer,
- MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
- EmitToStreamer(*OutStreamer,
- MCInstBuilder(PPC::BL8_NOP)
- .addExpr(MCSymbolRefExpr::create(
- OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
- OutContext)));
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
- OutStreamer->EmitLabel(EndOfSled);
- recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER);
- break;
- }
- case TargetOpcode::PATCHABLE_RET: {
- unsigned RetOpcode = MI->getOperand(0).getImm();
- MCInst RetInst;
- RetInst.setOpcode(RetOpcode);
- for (const auto &MO :
- make_range(std::next(MI->operands_begin()), MI->operands_end())) {
- MCOperand MCOp;
- if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this, false))
- RetInst.addOperand(MCOp);
- }
-
- bool IsConditional;
- if (RetOpcode == PPC::BCCLR) {
- IsConditional = true;
- } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
- RetOpcode == PPC::TCRETURNai8) {
- break;
- } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
- IsConditional = false;
- } else {
- EmitToStreamer(*OutStreamer, RetInst);
- break;
- }
-
- MCSymbol *FallthroughLabel;
- if (IsConditional) {
- // Before:
- // bgtlr cr0
- //
- // After:
- // ble cr0, .end
- // .p2align 3
- // .begin:
- // blr # lis 0, FuncId[16..32]
- // nop # li 0, FuncId[0..15]
- // std 0, -8(1)
- // mflr 0
- // bl __xray_FunctionExit
- // mtlr 0
- // blr
- // .end:
- //
- // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
- // of instructions change.
- FallthroughLabel = OutContext.createTempSymbol();
- EmitToStreamer(
- *OutStreamer,
- MCInstBuilder(PPC::BCC)
- .addImm(PPC::InvertPredicate(
- static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
- .addReg(MI->getOperand(2).getReg())
- .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
- RetInst = MCInst();
- RetInst.setOpcode(PPC::BLR8);
- }
- // .p2align 3
- // .begin:
- // b(lr)? # lis 0, FuncId[16..32]
- // nop # li 0, FuncId[0..15]
- // std 0, -8(1)
- // mflr 0
- // bl __xray_FunctionExit
- // mtlr 0
- // b(lr)?
- //
- // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
- // of instructions change.
- OutStreamer->EmitCodeAlignment(8);
- MCSymbol *BeginOfSled = OutContext.createTempSymbol();
- OutStreamer->EmitLabel(BeginOfSled);
- EmitToStreamer(*OutStreamer, RetInst);
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
- EmitToStreamer(
- *OutStreamer,
- MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
- EmitToStreamer(*OutStreamer,
- MCInstBuilder(PPC::BL8_NOP)
- .addExpr(MCSymbolRefExpr::create(
- OutContext.getOrCreateSymbol("__xray_FunctionExit"),
- OutContext)));
- EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
- EmitToStreamer(*OutStreamer, RetInst);
- if (IsConditional)
- OutStreamer->EmitLabel(FallthroughLabel);
- recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT);
- break;
- }
- case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
- llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
- case TargetOpcode::PATCHABLE_TAIL_CALL:
- // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
- // normal function exit from a tail exit.
- llvm_unreachable("Tail call is handled in the normal case. See comments "
- "around this assert.");
- }
-}
-
void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
PPCTargetStreamer *TS =
@@ -1238,10 +1038,10 @@ void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
}
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
- !isPositionIndependent())
+ TM.getRelocationModel() != Reloc::PIC_)
return AsmPrinter::EmitStartOfAsmFile(M);
- if (M.getPICLevel() == PICLevel::SmallPIC)
+ if (M.getPICLevel() == PICLevel::Small)
return AsmPrinter::EmitStartOfAsmFile(M);
OutStreamer->SwitchSection(OutContext.getELFSection(
@@ -1267,13 +1067,13 @@ void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
// linux/ppc32 - Normal entry label.
if (!Subtarget->isPPC64() &&
- (!isPositionIndependent() ||
- MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
+ (TM.getRelocationModel() != Reloc::PIC_ ||
+ MF->getFunction()->getParent()->getPICLevel() == PICLevel::Small))
return AsmPrinter::EmitFunctionEntryLabel();
if (!Subtarget->isPPC64()) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
- if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
+ if (PPCFI->usesPICBase()) {
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol();
MCSymbol *PICBase = MF->getPICBaseSymbol();
OutStreamer->EmitLabel(RelocSymbol);
@@ -1295,7 +1095,7 @@ void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
if (Subtarget->isELFv2ABI()) {
// In the Large code model, we allow arbitrary displacements between
// the text section and its associated TOC section. We place the
- // full 8-byte offset to the TOC in memory immediately preceding
+ // full 8-byte offset to the TOC in memory immediatedly preceding
// the function global entry point.
if (TM.getCodeModel() == CodeModel::Large
&& !MF->getRegInfo().use_empty(PPC::X2)) {
@@ -1360,12 +1160,10 @@ bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
E = TOC.end(); I != E; ++I) {
OutStreamer->EmitLabel(I->second);
MCSymbol *S = I->first;
- if (isPPC64) {
+ if (isPPC64)
TS.emitTCEntry(*S);
- } else {
- OutStreamer->EmitValueToAlignment(4);
+ else
OutStreamer->EmitSymbolValue(S, 4);
- }
}
}
@@ -1408,9 +1206,6 @@ void PPCLinuxAsmPrinter::EmitFunctionBodyStart() {
if (Subtarget->isELFv2ABI()
// Only do all that if the function uses r2 in the first place.
&& !MF->getRegInfo().use_empty(PPC::X2)) {
- // Note: The logic here must be synchronized with the code in the
- // branch-selection pass which sets the offset of the first block in the
- // function. This matters because it affects the alignment.
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol();
@@ -1498,7 +1293,6 @@ void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
"ppc750",
"ppc970",
"ppcA2",
- "ppce500",
"ppce500mc",
"ppce5500",
"power3",
@@ -1508,10 +1302,8 @@ void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
"power6",
"power6x",
"power7",
- // FIXME: why is power8 missing here?
"ppc64",
- "ppc64le",
- "power9"
+ "ppc64le"
};
// Get the numerically largest directive.
@@ -1558,67 +1350,241 @@ void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}
+static MCSymbol *GetLazyPtr(MCSymbol *Sym, MCContext &Ctx) {
+ // Remove $stub suffix, add $lazy_ptr.
+ StringRef NoStub = Sym->getName().substr(0, Sym->getName().size()-5);
+ return Ctx.getOrCreateSymbol(NoStub + "$lazy_ptr");
+}
+
+static MCSymbol *GetAnonSym(MCSymbol *Sym, MCContext &Ctx) {
+ // Add $tmp suffix to $stub, yielding $stub$tmp.
+ return Ctx.getOrCreateSymbol(Sym->getName() + "$tmp");
+}
+
+void PPCDarwinAsmPrinter::
+EmitFunctionStubs(const MachineModuleInfoMachO::SymbolListTy &Stubs) {
+ bool isPPC64 = getDataLayout().getPointerSizeInBits() == 64;
+
+ // Construct a local MCSubtargetInfo and shadow EmitToStreamer here.
+ // This is because the MachineFunction won't exist (but have not yet been
+ // freed) and since we're at the global level we can use the default
+ // constructed subtarget.
+ std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
+ TM.getTargetTriple().str(), TM.getTargetCPU(),
+ TM.getTargetFeatureString()));
+ auto EmitToStreamer = [&STI] (MCStreamer &S, const MCInst &Inst) {
+ S.EmitInstruction(Inst, *STI);
+ };
+
+ const TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
+
+ // .lazy_symbol_pointer
+ MCSection *LSPSection = TLOFMacho.getLazySymbolPointerSection();
+
+ // Output stubs for dynamically-linked functions
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ MCSection *StubSection = OutContext.getMachOSection(
+ "__TEXT", "__picsymbolstub1",
+ MachO::S_SYMBOL_STUBS | MachO::S_ATTR_PURE_INSTRUCTIONS, 32,
+ SectionKind::getText());
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer->SwitchSection(StubSection);
+ EmitAlignment(4);
+
+ MCSymbol *Stub = Stubs[i].first;
+ MCSymbol *RawSym = Stubs[i].second.getPointer();
+ MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
+ MCSymbol *AnonSymbol = GetAnonSym(Stub, OutContext);
+
+ OutStreamer->EmitLabel(Stub);
+ OutStreamer->EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ const MCExpr *Anon = MCSymbolRefExpr::create(AnonSymbol, OutContext);
+ const MCExpr *LazyPtrExpr = MCSymbolRefExpr::create(LazyPtr, OutContext);
+ const MCExpr *Sub =
+ MCBinaryExpr::createSub(LazyPtrExpr, Anon, OutContext);
+
+ // mflr r0
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR).addReg(PPC::R0));
+ // bcl 20, 31, AnonSymbol
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCLalways).addExpr(Anon));
+ OutStreamer->EmitLabel(AnonSymbol);
+ // mflr r11
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR).addReg(PPC::R11));
+ // addis r11, r11, ha16(LazyPtr - AnonSymbol)
+ const MCExpr *SubHa16 = PPCMCExpr::createHa(Sub, true, OutContext);
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
+ .addReg(PPC::R11)
+ .addReg(PPC::R11)
+ .addExpr(SubHa16));
+ // mtlr r0
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR).addReg(PPC::R0));
+
+ // ldu r12, lo16(LazyPtr - AnonSymbol)(r11)
+ // lwzu r12, lo16(LazyPtr - AnonSymbol)(r11)
+ const MCExpr *SubLo16 = PPCMCExpr::createLo(Sub, true, OutContext);
+ EmitToStreamer(*OutStreamer, MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
+ .addReg(PPC::R12)
+ .addExpr(SubLo16).addExpr(SubLo16)
+ .addReg(PPC::R11));
+ // mtctr r12
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
+ // bctr
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTR));
+
+ OutStreamer->SwitchSection(LSPSection);
+ OutStreamer->EmitLabel(LazyPtr);
+ OutStreamer->EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ MCSymbol *DyldStubBindingHelper =
+ OutContext.getOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
+ if (isPPC64) {
+ // .quad dyld_stub_binding_helper
+ OutStreamer->EmitSymbolValue(DyldStubBindingHelper, 8);
+ } else {
+ // .long dyld_stub_binding_helper
+ OutStreamer->EmitSymbolValue(DyldStubBindingHelper, 4);
+ }
+ }
+ OutStreamer->AddBlankLine();
+ return;
+ }
+
+ MCSection *StubSection = OutContext.getMachOSection(
+ "__TEXT", "__symbol_stub1",
+ MachO::S_SYMBOL_STUBS | MachO::S_ATTR_PURE_INSTRUCTIONS, 16,
+ SectionKind::getText());
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ MCSymbol *Stub = Stubs[i].first;
+ MCSymbol *RawSym = Stubs[i].second.getPointer();
+ MCSymbol *LazyPtr = GetLazyPtr(Stub, OutContext);
+ const MCExpr *LazyPtrExpr = MCSymbolRefExpr::create(LazyPtr, OutContext);
+
+ OutStreamer->SwitchSection(StubSection);
+ EmitAlignment(4);
+ OutStreamer->EmitLabel(Stub);
+ OutStreamer->EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ // lis r11, ha16(LazyPtr)
+ const MCExpr *LazyPtrHa16 =
+ PPCMCExpr::createHa(LazyPtrExpr, true, OutContext);
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LIS)
+ .addReg(PPC::R11)
+ .addExpr(LazyPtrHa16));
+
+ // ldu r12, lo16(LazyPtr)(r11)
+ // lwzu r12, lo16(LazyPtr)(r11)
+ const MCExpr *LazyPtrLo16 =
+ PPCMCExpr::createLo(LazyPtrExpr, true, OutContext);
+ EmitToStreamer(*OutStreamer, MCInstBuilder(isPPC64 ? PPC::LDU : PPC::LWZU)
+ .addReg(PPC::R12)
+ .addExpr(LazyPtrLo16).addExpr(LazyPtrLo16)
+ .addReg(PPC::R11));
+
+ // mtctr r12
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR).addReg(PPC::R12));
+ // bctr
+ EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTR));
+
+ OutStreamer->SwitchSection(LSPSection);
+ OutStreamer->EmitLabel(LazyPtr);
+ OutStreamer->EmitSymbolAttribute(RawSym, MCSA_IndirectSymbol);
+
+ MCSymbol *DyldStubBindingHelper =
+ OutContext.getOrCreateSymbol(StringRef("dyld_stub_binding_helper"));
+ if (isPPC64) {
+ // .quad dyld_stub_binding_helper
+ OutStreamer->EmitSymbolValue(DyldStubBindingHelper, 8);
+ } else {
+ // .long dyld_stub_binding_helper
+ OutStreamer->EmitSymbolValue(DyldStubBindingHelper, 4);
+ }
+ }
+
+ OutStreamer->AddBlankLine();
+}
+
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
bool isPPC64 = getDataLayout().getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
- if (MMI) {
- MachineModuleInfoMachO &MMIMacho =
- MMI->getObjFileInfo<MachineModuleInfoMachO>();
-
- if (MAI->doesSupportExceptionHandling()) {
- // Add the (possibly multiple) personalities to the set of global values.
- // Only referenced functions get into the Personalities list.
- for (const Function *Personality : MMI->getPersonalities()) {
- if (Personality) {
- MCSymbol *NLPSym =
- getSymbolWithGlobalValueBase(Personality, "$non_lazy_ptr");
- MachineModuleInfoImpl::StubValueTy &StubSym =
- MMIMacho.getGVStubEntry(NLPSym);
- StubSym =
- MachineModuleInfoImpl::StubValueTy(getSymbol(Personality), true);
- }
+ MachineModuleInfoMachO &MMIMacho =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetFnStubList();
+ if (!Stubs.empty())
+ EmitFunctionStubs(Stubs);
+
+ if (MAI->doesSupportExceptionHandling() && MMI) {
+ // Add the (possibly multiple) personalities to the set of global values.
+ // Only referenced functions get into the Personalities list.
+ for (const Function *Personality : MMI->getPersonalities()) {
+ if (Personality) {
+ MCSymbol *NLPSym =
+ getSymbolWithGlobalValueBase(Personality, "$non_lazy_ptr");
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ MMIMacho.getGVStubEntry(NLPSym);
+ StubSym =
+ MachineModuleInfoImpl::StubValueTy(getSymbol(Personality), true);
}
}
+ }
- // Output stubs for dynamically-linked functions.
- MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
-
- // Output macho stubs for external and common global variables.
- if (!Stubs.empty()) {
- // Switch with ".non_lazy_symbol_pointer" directive.
- OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
- EmitAlignment(isPPC64 ? 3 : 2);
-
- for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
- // L_foo$stub:
- OutStreamer->EmitLabel(Stubs[i].first);
- // .indirect_symbol _foo
- MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
- OutStreamer->EmitSymbolAttribute(MCSym.getPointer(),
- MCSA_IndirectSymbol);
-
- if (MCSym.getInt())
- // External to current translation unit.
- OutStreamer->EmitIntValue(0, isPPC64 ? 8 : 4 /*size*/);
- else
- // Internal to current translation unit.
- //
- // When we place the LSDA into the TEXT section, the type info
- // pointers
- // need to be indirect and pc-rel. We accomplish this by using NLPs.
- // However, sometimes the types are local to the file. So we need to
- // fill in the value for the NLP in those cases.
- OutStreamer->EmitValue(
- MCSymbolRefExpr::create(MCSym.getPointer(), OutContext),
- isPPC64 ? 8 : 4 /*size*/);
- }
+ // Output stubs for dynamically-linked functions.
+ Stubs = MMIMacho.GetGVStubList();
+
+ // Output macho stubs for external and common global variables.
+ if (!Stubs.empty()) {
+ // Switch with ".non_lazy_symbol_pointer" directive.
+ OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ // L_foo$stub:
+ OutStreamer->EmitLabel(Stubs[i].first);
+ // .indirect_symbol _foo
+ MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
+ OutStreamer->EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
+
+ if (MCSym.getInt())
+ // External to current translation unit.
+ OutStreamer->EmitIntValue(0, isPPC64 ? 8 : 4/*size*/);
+ else
+ // Internal to current translation unit.
+ //
+ // When we place the LSDA into the TEXT section, the type info pointers
+ // need to be indirect and pc-rel. We accomplish this by using NLPs.
+ // However, sometimes the types are local to the file. So we need to
+ // fill in the value for the NLP in those cases.
+ OutStreamer->EmitValue(MCSymbolRefExpr::create(MCSym.getPointer(),
+ OutContext),
+ isPPC64 ? 8 : 4/*size*/);
+ }
- Stubs.clear();
- OutStreamer->AddBlankLine();
+ Stubs.clear();
+ OutStreamer->AddBlankLine();
+ }
+
+ Stubs = MMIMacho.GetHiddenGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer->SwitchSection(getObjFileLowering().getDataSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ // L_foo$stub:
+ OutStreamer->EmitLabel(Stubs[i].first);
+ // .long _foo
+ OutStreamer->EmitValue(MCSymbolRefExpr::
+ create(Stubs[i].second.getPointer(),
+ OutContext),
+ isPPC64 ? 8 : 4/*size*/);
}
+
+ Stubs.clear();
+ OutStreamer->AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
@@ -1645,10 +1611,7 @@ createPPCAsmPrinterPass(TargetMachine &tm,
// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmPrinter() {
- TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
- createPPCAsmPrinterPass);
- TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
- createPPCAsmPrinterPass);
- TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
- createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC64LETarget, createPPCAsmPrinterPass);
}
diff --git a/gnu/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/gnu/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
index 70e9049a2ab..1eaa8118ba0 100644
--- a/gnu/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ b/gnu/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -12,78 +12,34 @@
//
//===----------------------------------------------------------------------===//
-#include "MCTargetDesc/PPCMCTargetDesc.h"
-#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
-#include "PPCISelLowering.h"
+#include "MCTargetDesc/PPCPredicates.h"
#include "PPCMachineFunctionInfo.h"
-#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
-#include "llvm/CodeGen/ISDOpcodes.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <new>
-#include <tuple>
-#include <utility>
-
+#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-codegen"
-STATISTIC(NumSextSetcc,
- "Number of (sext(setcc)) nodes expanded into GPR sequence.");
-STATISTIC(NumZextSetcc,
- "Number of (zext(setcc)) nodes expanded into GPR sequence.");
-STATISTIC(SignExtensionsAdded,
- "Number of sign extensions for compare inputs added.");
-STATISTIC(ZeroExtensionsAdded,
- "Number of zero extensions for compare inputs added.");
-STATISTIC(NumLogicOpsOnComparison,
- "Number of logical ops on i1 values calculated in GPR.");
-STATISTIC(OmittedForNonExtendUses,
- "Number of compares not eliminated as they have non-extending uses.");
-STATISTIC(NumP9Setb,
- "Number of compares lowered to setb.");
-
// FIXME: Remove this once the bug has been fixed!
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
@@ -103,36 +59,11 @@ static cl::opt<bool> EnableBranchHint(
cl::desc("Enable static hinting of branches on ppc"),
cl::Hidden);
-static cl::opt<bool> EnableTLSOpt(
- "ppc-tls-opt", cl::init(true),
- cl::desc("Enable tls optimization peephole"),
- cl::Hidden);
+namespace llvm {
+ void initializePPCDAGToDAGISelPass(PassRegistry&);
+}
-enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
- ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
- ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
-
-static cl::opt<ICmpInGPRType> CmpInGPR(
- "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
- cl::desc("Specify the types of comparisons to emit GPR-only code for."),
- cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
- clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
- clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
- clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
- clEnumValN(ICGPR_NonExtIn, "nonextin",
- "Only comparisons where inputs don't need [sz]ext."),
- clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
- clEnumValN(ICGPR_ZextI32, "zexti32",
- "Only i32 comparisons with zext result."),
- clEnumValN(ICGPR_ZextI64, "zexti64",
- "Only i64 comparisons with zext result."),
- clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
- clEnumValN(ICGPR_SextI32, "sexti32",
- "Only i32 comparisons with sext result."),
- clEnumValN(ICGPR_SextI64, "sexti64",
- "Only i64 comparisons with sext result.")));
namespace {
-
//===--------------------------------------------------------------------===//
/// PPCDAGToDAGISel - PPC specific code to select PPC machine
/// instructions for SelectionDAG operations.
@@ -142,10 +73,11 @@ namespace {
const PPCSubtarget *PPCSubTarget;
const PPCTargetLowering *PPCLowering;
unsigned GlobalBaseReg;
-
public:
- explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(tm, OptLevel), TM(tm) {}
+ explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
+ : SelectionDAGISel(tm), TM(tm) {
+ initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
+ }
bool runOnMachineFunction(MachineFunction &MF) override {
// Make sure we re-emit a set of the global base reg if necessary
@@ -163,26 +95,20 @@ namespace {
void PreprocessISelDAG() override;
void PostprocessISelDAG() override;
- /// getI16Imm - Return a target constant with the specified value, of type
- /// i16.
- inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
- }
-
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
- inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
+ inline SDValue getI32Imm(unsigned Imm, SDLoc dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
- inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
+ inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
- inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
+ inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) {
return CurDAG->getTargetConstant(
Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
}
@@ -196,34 +122,24 @@ namespace {
/// base register. Return the virtual register that holds this value.
SDNode *getGlobalBaseReg();
- void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
+ SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
- void Select(SDNode *N) override;
-
- bool tryBitfieldInsert(SDNode *N);
- bool tryBitPermutation(SDNode *N);
- bool tryIntCompareInGPR(SDNode *N);
-
- // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
- // an X-Form load instruction with the offset being a relocation coming from
- // the PPCISD::ADD_TLS.
- bool tryTLSXFormLoad(LoadSDNode *N);
- // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
- // an X-Form store instruction with the offset being a relocation coming from
- // the PPCISD::ADD_TLS.
- bool tryTLSXFormStore(StoreSDNode *N);
+ SDNode *Select(SDNode *N) override;
+
+ SDNode *SelectBitfieldInsert(SDNode *N);
+ SDNode *SelectBitPermutation(SDNode *N);
+
/// SelectCC - Select a comparison of the specified values with the
/// specified condition code, returning the CR# of the expression.
- SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- const SDLoc &dl);
+ SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
/// SelectAddrImm - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement [r+imm].
bool SelectAddrImm(SDValue N, SDValue &Disp,
SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
}
/// SelectAddrImmOffs - Return true if the operand is valid for a preinc
@@ -256,11 +172,7 @@ namespace {
/// a base register plus a signed 16-bit displacement that is a multiple of 4.
/// Suitable for use by STD and friends.
bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
- }
-
- bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
}
// Select an address into a single register.
@@ -277,6 +189,7 @@ namespace {
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override {
+
switch(ConstraintID) {
default:
errs() << "ConstraintID: " << ConstraintID << "\n";
@@ -307,7 +220,7 @@ namespace {
void InsertVRSaveCode(MachineFunction &MF);
- StringRef getPassName() const override {
+ const char *getPassName() const override {
return "PowerPC DAG->DAG Pattern Instruction Selection";
}
@@ -315,7 +228,7 @@ namespace {
#include "PPCGenDAGISel.inc"
private:
- bool trySETCC(SDNode *N);
+ SDNode *SelectSETCC(SDNode *N);
void PeepholePPC64();
void PeepholePPC64ZExt();
@@ -327,11 +240,9 @@ private:
bool AllUsersSelectZero(SDNode *N);
void SwapAllSelectUsers(SDNode *N);
- bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
- void transferMemOperands(SDNode *N, SDNode *Result);
+ SDNode *transferMemOperands(SDNode *N, SDNode *Result);
};
-
-} // end anonymous namespace
+}
/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
@@ -397,6 +308,7 @@ void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
}
}
+
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
@@ -406,13 +318,13 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
- const Module *M = MF->getFunction().getParent();
+ const Module *M = MF->getFunction()->getParent();
DebugLoc dl;
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
if (PPCSubTarget->isTargetELF()) {
GlobalBaseReg = PPC::R30;
- if (M->getPICLevel() == PICLevel::SmallPIC) {
+ if (M->getPICLevel() == PICLevel::Small) {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
@@ -427,22 +339,12 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
}
} else {
GlobalBaseReg =
- RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
+ RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
}
} else {
- // We must ensure that this sequence is dominated by the prologue.
- // FIXME: This is a bit of a big hammer since we don't get the benefits
- // of shrink-wrapping whenever we emit this instruction. Considering
- // this is used in any function where we emit a jump table, this may be
- // a significant limitation. We should consider inserting this in the
- // block where it is used and then commoning this sequence up if it
- // appears in multiple places.
- // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
- // MovePCtoLR8.
- MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
- GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
+ GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
}
@@ -452,6 +354,26 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
.getNode();
}
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (N->getOpcode() != ISD::Constant)
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
+}
+
+static bool isIntS16Immediate(SDValue Op, short &Imm) {
+ return isIntS16Immediate(Op.getNode(), Imm);
+}
+
+
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
/// operand. If so Imm will receive the 32-bit value.
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
@@ -478,12 +400,6 @@ static bool isInt32Immediate(SDValue N, unsigned &Imm) {
return isInt32Immediate(N.getNode(), Imm);
}
-/// isInt64Immediate - This method tests to see if the value is a 64-bit
-/// constant operand. If so Imm will receive the 64-bit value.
-static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
- return isInt64Immediate(N.getNode(), Imm);
-}
-
static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
const SDValue &DestMBB) {
assert(isa<BasicBlockSDNode>(DestMBB));
@@ -491,7 +407,7 @@ static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
- const Instruction *BBTerm = BB->getTerminator();
+ const TerminatorInst *BBTerm = BB->getTerminator();
if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
@@ -519,10 +435,10 @@ static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
return PPC::BR_NO_HINT;
- LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName()
- << "::" << BB->getName() << "'\n"
- << " -> " << TBB->getName() << ": " << TProb << "\n"
- << " -> " << FBB->getName() << ": " << FProb << "\n");
+ DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
+ << BB->getName() << "'\n"
+ << " -> " << TBB->getName() << ": " << TProb << "\n"
+ << " -> " << FBB->getName() << ": " << FProb << "\n");
const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
@@ -542,17 +458,16 @@ static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
&& isInt32Immediate(N->getOperand(1).getNode(), Imm);
}
-void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
+SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
SDLoc dl(SN);
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
if (SN->hasOneUse())
- CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
- getSmallIPtrImm(Offset, dl));
- else
- ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
- getSmallIPtrImm(Offset, dl)));
+ return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
+ getSmallIPtrImm(Offset, dl));
+ return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
+ getSmallIPtrImm(Offset, dl));
}
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
@@ -597,102 +512,19 @@ bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
return false;
}
-bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
- SDValue Base = ST->getBasePtr();
- if (Base.getOpcode() != PPCISD::ADD_TLS)
- return false;
- SDValue Offset = ST->getOffset();
- if (!Offset.isUndef())
- return false;
-
- SDLoc dl(ST);
- EVT MemVT = ST->getMemoryVT();
- EVT RegVT = ST->getValue().getValueType();
-
- unsigned Opcode;
- switch (MemVT.getSimpleVT().SimpleTy) {
- default:
- return false;
- case MVT::i8: {
- Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
- break;
- }
- case MVT::i16: {
- Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
- break;
- }
- case MVT::i32: {
- Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
- break;
- }
- case MVT::i64: {
- Opcode = PPC::STDXTLS;
- break;
- }
- }
- SDValue Chain = ST->getChain();
- SDVTList VTs = ST->getVTList();
- SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
- Chain};
- SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
- transferMemOperands(ST, MN);
- ReplaceNode(ST, MN);
- return true;
-}
-
-bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
- SDValue Base = LD->getBasePtr();
- if (Base.getOpcode() != PPCISD::ADD_TLS)
- return false;
- SDValue Offset = LD->getOffset();
- if (!Offset.isUndef())
- return false;
-
- SDLoc dl(LD);
- EVT MemVT = LD->getMemoryVT();
- EVT RegVT = LD->getValueType(0);
- unsigned Opcode;
- switch (MemVT.getSimpleVT().SimpleTy) {
- default:
- return false;
- case MVT::i8: {
- Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
- break;
- }
- case MVT::i16: {
- Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
- break;
- }
- case MVT::i32: {
- Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
- break;
- }
- case MVT::i64: {
- Opcode = PPC::LDXTLS;
- break;
- }
- }
- SDValue Chain = LD->getChain();
- SDVTList VTs = LD->getVTList();
- SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
- SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
- transferMemOperands(LD, MN);
- ReplaceNode(LD, MN);
- return true;
-}
-
-/// Turn an or of two masked values into the rotate left word immediate then
-/// mask insert (rlwimi) instruction.
-bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
+/// SelectBitfieldInsert - turn an or of two masked values into
+/// the rotate left word immediate then mask insert (rlwimi) instruction.
+SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc dl(N);
- KnownBits LKnown = CurDAG->computeKnownBits(Op0);
- KnownBits RKnown = CurDAG->computeKnownBits(Op1);
+ APInt LKZ, LKO, RKZ, RKO;
+ CurDAG->computeKnownBits(Op0, LKZ, LKO);
+ CurDAG->computeKnownBits(Op1, RKZ, RKO);
- unsigned TargetMask = LKnown.Zero.getZExtValue();
- unsigned InsertMask = RKnown.Zero.getZExtValue();
+ unsigned TargetMask = LKZ.getZExtValue();
+ unsigned InsertMask = RKZ.getZExtValue();
if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
unsigned Op0Opc = Op0.getOpcode();
@@ -724,6 +556,8 @@ bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
unsigned MB, ME;
if (isRunOfOnes(InsertMask, MB, ME)) {
+ SDValue Tmp1, Tmp2;
+
if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
isInt32Immediate(Op1.getOperand(1), Value)) {
Op1 = Op1.getOperand(0);
@@ -733,8 +567,9 @@ bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
// The AND mask might not be a constant, and we need to make sure that
// if we're going to fold the masking with the insert, all bits not
// know to be zero in the mask are known to be one.
- KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
- bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
+ APInt MKZ, MKO;
+ CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
+ bool CanFoldMask = InsertMask == MKO.getZExtValue();
unsigned SHOpc = Op1.getOperand(0).getOpcode();
if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
@@ -749,16 +584,15 @@ bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
SH &= 31;
SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
- return true;
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
}
}
- return false;
+ return nullptr;
}
// Predict the number of instructions that would be generated by calling
-// selectI64Imm(N).
-static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
+// SelectInt64(N).
+static unsigned SelectInt64CountDirect(int64_t Imm) {
// Assume no remaining bits.
unsigned Remainder = 0;
// Assume no shift required.
@@ -802,13 +636,6 @@ static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
// If no shift, we're done.
if (!Shift) return Result;
- // If Hi word == Lo word,
- // we can use rldimi to insert the Lo word into Hi word.
- if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
- ++Result;
- return Result;
- }
-
// Shift for next step if the upper 32-bits were not zero.
if (Imm)
++Result;
@@ -826,20 +653,17 @@ static uint64_t Rot64(uint64_t Imm, unsigned R) {
return (Imm << R) | (Imm >> (64 - R));
}
-static unsigned selectI64ImmInstrCount(int64_t Imm) {
- unsigned Count = selectI64ImmInstrCountDirect(Imm);
-
- // If the instruction count is 1 or 2, we do not need further analysis
- // since rotate + load constant requires at least 2 instructions.
- if (Count <= 2)
+static unsigned SelectInt64Count(int64_t Imm) {
+ unsigned Count = SelectInt64CountDirect(Imm);
+ if (Count == 1)
return Count;
for (unsigned r = 1; r < 63; ++r) {
uint64_t RImm = Rot64(Imm, r);
- unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
+ unsigned RCount = SelectInt64CountDirect(RImm) + 1;
Count = std::min(Count, RCount);
- // See comments in selectI64Imm for an explanation of the logic below.
+ // See comments in SelectInt64 for an explanation of the logic below.
unsigned LS = findLastSet(RImm);
if (LS != r-1)
continue;
@@ -847,17 +671,16 @@ static unsigned selectI64ImmInstrCount(int64_t Imm) {
uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
uint64_t RImmWithOnes = RImm | OnesMask;
- RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
+ RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
Count = std::min(Count, RCount);
}
return Count;
}
-// Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
+// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
// (above) needs to be kept in sync with this function.
-static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
- int64_t Imm) {
+static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
// Assume no remaining bits.
unsigned Remainder = 0;
// Assume no shift required.
@@ -893,10 +716,8 @@ static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
// Simple value.
if (isInt<16>(Imm)) {
- uint64_t SextImm = SignExtend64(Lo, 16);
- SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
// Just the Lo bits.
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
+ Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
} else if (Lo) {
// Handle the Hi bits.
unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
@@ -912,14 +733,6 @@ static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
// If no shift, we're done.
if (!Shift) return Result;
- // If Hi word == Lo word,
- // we can use rldimi to insert the Lo word into Hi word.
- if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
- SDValue Ops[] =
- { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
- return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
- }
-
// Shift for next step if the upper 32-bits were not zero.
if (Imm) {
Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
@@ -941,14 +754,10 @@ static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
return Result;
}
-static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
- int64_t Imm) {
- unsigned Count = selectI64ImmInstrCountDirect(Imm);
-
- // If the instruction count is 1 or 2, we do not need further analysis
- // since rotate + load constant requires at least 2 instructions.
- if (Count <= 2)
- return selectI64ImmDirect(CurDAG, dl, Imm);
+static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
+ unsigned Count = SelectInt64CountDirect(Imm);
+ if (Count == 1)
+ return SelectInt64Direct(CurDAG, dl, Imm);
unsigned RMin = 0;
@@ -957,7 +766,7 @@ static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
for (unsigned r = 1; r < 63; ++r) {
uint64_t RImm = Rot64(Imm, r);
- unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
+ unsigned RCount = SelectInt64CountDirect(RImm) + 1;
if (RCount < Count) {
Count = RCount;
RMin = r;
@@ -980,7 +789,7 @@ static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
uint64_t RImmWithOnes = RImm | OnesMask;
- RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
+ RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
if (RCount < Count) {
Count = RCount;
RMin = r;
@@ -990,90 +799,27 @@ static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
}
if (!RMin)
- return selectI64ImmDirect(CurDAG, dl, Imm);
+ return SelectInt64Direct(CurDAG, dl, Imm);
auto getI32Imm = [CurDAG, dl](unsigned Imm) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
};
- SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
+ SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
getI32Imm(64 - RMin), getI32Imm(MaskEnd));
}
-static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
- unsigned MaxTruncation = 0;
- // Cannot use range-based for loop here as we need the actual use (i.e. we
- // need the operand number corresponding to the use). A range-based for
- // will unbox the use and provide an SDNode*.
- for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
- Use != UseEnd; ++Use) {
- unsigned Opc =
- Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
- switch (Opc) {
- default: return 0;
- case ISD::TRUNCATE:
- if (Use->isMachineOpcode())
- return 0;
- MaxTruncation =
- std::max(MaxTruncation, Use->getValueType(0).getSizeInBits());
- continue;
- case ISD::STORE: {
- if (Use->isMachineOpcode())
- return 0;
- StoreSDNode *STN = cast<StoreSDNode>(*Use);
- unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
- if (MemVTSize == 64 || Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, MemVTSize);
- continue;
- }
- case PPC::STW8:
- case PPC::STWX8:
- case PPC::STWU8:
- case PPC::STWUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 32u);
- continue;
- case PPC::STH8:
- case PPC::STHX8:
- case PPC::STHU8:
- case PPC::STHUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 16u);
- continue;
- case PPC::STB8:
- case PPC::STBX8:
- case PPC::STBU8:
- case PPC::STBUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 8u);
- continue;
- }
- }
- return MaxTruncation;
-}
-
// Select a 64-bit constant.
-static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
+static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
SDLoc dl(N);
// Get 64 bit value.
int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
- if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
- uint64_t SextImm = SignExtend64(Imm, MinSize);
- SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
- if (isInt<16>(SextImm))
- return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
- }
- return selectI64Imm(CurDAG, dl, Imm);
+ return SelectInt64(CurDAG, dl, Imm);
}
namespace {
-
class BitPermutationSelector {
struct ValueBit {
SDValue V;
@@ -1082,14 +828,9 @@ class BitPermutationSelector {
// lowest-order bit.
unsigned Idx;
- // ConstZero means a bit we need to mask off.
- // Variable is a bit comes from an input variable.
- // VariableKnownToBeZero is also a bit comes from an input variable,
- // but it is known to be already zero. So we do not need to mask them.
enum Kind {
ConstZero,
- Variable,
- VariableKnownToBeZero
+ Variable
} K;
ValueBit(SDValue V, unsigned I, Kind K = Variable)
@@ -1098,11 +839,11 @@ class BitPermutationSelector {
: V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
bool isZero() const {
- return K == ConstZero || K == VariableKnownToBeZero;
+ return K == ConstZero;
}
bool hasValue() const {
- return K == Variable || K == VariableKnownToBeZero;
+ return K == Variable;
}
SDValue getValue() const {
@@ -1135,8 +876,8 @@ class BitPermutationSelector {
BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
: V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
Repl32Coalesced(false) {
- LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
- << " [" << S << ", " << E << "]\n");
+ DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
+ " [" << S << ", " << E << "]\n");
}
};
@@ -1144,12 +885,14 @@ class BitPermutationSelector {
// associated with each) used to choose the lowering method.
struct ValueRotInfo {
SDValue V;
- unsigned RLAmt = std::numeric_limits<unsigned>::max();
- unsigned NumGroups = 0;
- unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
- bool Repl32 = false;
+ unsigned RLAmt;
+ unsigned NumGroups;
+ unsigned FirstGroupStartIdx;
+ bool Repl32;
- ValueRotInfo() = default;
+ ValueRotInfo()
+ : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
+ Repl32(false) {}
// For sorting (in reverse order) by NumGroups, and then by
// FirstGroupStartIdx.
@@ -1165,130 +908,91 @@ class BitPermutationSelector {
return true;
else if (NumGroups < Other.NumGroups)
return false;
- else if (RLAmt == 0 && Other.RLAmt != 0)
- return true;
- else if (RLAmt != 0 && Other.RLAmt == 0)
- return false;
else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
return true;
return false;
}
};
- using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
- using ValueBitsMemoizer =
- DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
- ValueBitsMemoizer Memoizer;
-
- // Return a pair of bool and a SmallVector pointer to a memoization entry.
- // The bool is true if something interesting was deduced, otherwise if we're
+ // Return true if something interesting was deduced, return false if we're
// providing only a generic representation of V (or something else likewise
- // uninteresting for instruction selection) through the SmallVector.
- std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
- unsigned NumBits) {
- auto &ValueEntry = Memoizer[V];
- if (ValueEntry)
- return std::make_pair(ValueEntry->first, &ValueEntry->second);
- ValueEntry.reset(new ValueBitsMemoizedValue());
- bool &Interesting = ValueEntry->first;
- SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
- Bits.resize(NumBits);
-
+ // uninteresting for instruction selection).
+ bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
switch (V.getOpcode()) {
default: break;
case ISD::ROTL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned RotAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
- for (unsigned i = 0; i < NumBits; ++i)
- Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
- return std::make_pair(Interesting = true, &Bits);
+ return true;
}
break;
case ISD::SHL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned ShiftAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
- for (unsigned i = ShiftAmt; i < NumBits; ++i)
+ for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
Bits[i] = LHSBits[i - ShiftAmt];
for (unsigned i = 0; i < ShiftAmt; ++i)
Bits[i] = ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting = true, &Bits);
+ return true;
}
break;
case ISD::SRL:
if (isa<ConstantSDNode>(V.getOperand(1))) {
unsigned ShiftAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
- for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
+ for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
Bits[i] = LHSBits[i + ShiftAmt];
- for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
+ for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
Bits[i] = ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting = true, &Bits);
+ return true;
}
break;
case ISD::AND:
if (isa<ConstantSDNode>(V.getOperand(1))) {
uint64_t Mask = V.getConstantOperandVal(1);
- const SmallVector<ValueBit, 64> *LHSBits;
+ SmallVector<ValueBit, 64> LHSBits(Bits.size());
+ bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
+
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ if (((Mask >> i) & 1) == 1)
+ Bits[i] = LHSBits[i];
+ else
+ Bits[i] = ValueBit(ValueBit::ConstZero);
+
// Mark this as interesting, only if the LHS was also interesting. This
// prevents the overall procedure from matching a single immediate 'and'
// (which is non-optimal because such an and might be folded with other
// things if we don't select it here).
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
-
- for (unsigned i = 0; i < NumBits; ++i)
- if (((Mask >> i) & 1) == 1)
- Bits[i] = (*LHSBits)[i];
- else {
- // AND instruction masks this bit. If the input is already zero,
- // we have nothing to do here. Otherwise, make the bit ConstZero.
- if ((*LHSBits)[i].isZero())
- Bits[i] = (*LHSBits)[i];
- else
- Bits[i] = ValueBit(ValueBit::ConstZero);
- }
-
- return std::make_pair(Interesting, &Bits);
+ return LHSTrivial;
}
break;
case ISD::OR: {
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
- const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
+ SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
+ getValueBits(V.getOperand(0), LHSBits);
+ getValueBits(V.getOperand(1), RHSBits);
bool AllDisjoint = true;
- SDValue LastVal = SDValue();
- unsigned LastIdx = 0;
- for (unsigned i = 0; i < NumBits; ++i) {
- if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
- // If both inputs are known to be zero and one is ConstZero and
- // another is VariableKnownToBeZero, we can select whichever
- // we like. To minimize the number of bit groups, we select
- // VariableKnownToBeZero if this bit is the next bit of the same
- // input variable from the previous bit. Otherwise, we select
- // ConstZero.
- if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
- LHSBits[i].getValueBitIndex() == LastIdx + 1)
- Bits[i] = LHSBits[i];
- else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
- RHSBits[i].getValueBitIndex() == LastIdx + 1)
- Bits[i] = RHSBits[i];
- else
- Bits[i] = ValueBit(ValueBit::ConstZero);
- }
- else if (LHSBits[i].isZero())
+ for (unsigned i = 0; i < Bits.size(); ++i)
+ if (LHSBits[i].isZero())
Bits[i] = RHSBits[i];
else if (RHSBits[i].isZero())
Bits[i] = LHSBits[i];
@@ -1296,119 +1000,24 @@ class BitPermutationSelector {
AllDisjoint = false;
break;
}
- // We remember the value and bit index of this bit.
- if (Bits[i].hasValue()) {
- LastVal = Bits[i].getValue();
- LastIdx = Bits[i].getValueBitIndex();
- }
- else {
- if (LastVal) LastVal = SDValue();
- LastIdx = 0;
- }
- }
if (!AllDisjoint)
break;
- return std::make_pair(Interesting = true, &Bits);
- }
- case ISD::ZERO_EXTEND: {
- // We support only the case with zero extension from i32 to i64 so far.
- if (V.getValueType() != MVT::i64 ||
- V.getOperand(0).getValueType() != MVT::i32)
- break;
-
- const SmallVector<ValueBit, 64> *LHSBits;
- const unsigned NumOperandBits = 32;
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
- NumOperandBits);
-
- for (unsigned i = 0; i < NumOperandBits; ++i)
- Bits[i] = (*LHSBits)[i];
-
- for (unsigned i = NumOperandBits; i < NumBits; ++i)
- Bits[i] = ValueBit(ValueBit::ConstZero);
-
- return std::make_pair(Interesting, &Bits);
- }
- case ISD::TRUNCATE: {
- EVT FromType = V.getOperand(0).getValueType();
- EVT ToType = V.getValueType();
- // We support only the case with truncate from i64 to i32.
- if (FromType != MVT::i64 || ToType != MVT::i32)
- break;
- const unsigned NumAllBits = FromType.getSizeInBits();
- SmallVector<ValueBit, 64> *InBits;
- std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
- NumAllBits);
- const unsigned NumValidBits = ToType.getSizeInBits();
-
- // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
- // So, we cannot include this truncate.
- bool UseUpper32bit = false;
- for (unsigned i = 0; i < NumValidBits; ++i)
- if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
- UseUpper32bit = true;
- break;
- }
- if (UseUpper32bit)
- break;
-
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = (*InBits)[i];
-
- return std::make_pair(Interesting, &Bits);
- }
- case ISD::AssertZext: {
- // For AssertZext, we look through the operand and
- // mark the bits known to be zero.
- const SmallVector<ValueBit, 64> *LHSBits;
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
- NumBits);
-
- EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
- const unsigned NumValidBits = FromType.getSizeInBits();
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = (*LHSBits)[i];
-
- // These bits are known to be zero.
- for (unsigned i = NumValidBits; i < NumBits; ++i)
- Bits[i] = ValueBit((*LHSBits)[i].getValue(),
- (*LHSBits)[i].getValueBitIndex(),
- ValueBit::VariableKnownToBeZero);
-
- return std::make_pair(Interesting, &Bits);
+ return true;
}
- case ISD::LOAD:
- LoadSDNode *LD = cast<LoadSDNode>(V);
- if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
- EVT VT = LD->getMemoryVT();
- const unsigned NumValidBits = VT.getSizeInBits();
-
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = ValueBit(V, i);
-
- // These bits are known to be zero.
- for (unsigned i = NumValidBits; i < NumBits; ++i)
- Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
-
- // Zero-extending load itself cannot be optimized. So, it is not
- // interesting by itself though it gives useful information.
- return std::make_pair(Interesting = false, &Bits);
- }
- break;
}
- for (unsigned i = 0; i < NumBits; ++i)
+ for (unsigned i = 0; i < Bits.size(); ++i)
Bits[i] = ValueBit(V, i);
- return std::make_pair(Interesting = false, &Bits);
+ return false;
}
// For each value (except the constant ones), compute the left-rotate amount
// to get it from its original to final position.
void computeRotationAmounts() {
- NeedMask = false;
+ HasZeros = false;
RLAmt.resize(Bits.size());
for (unsigned i = 0; i < Bits.size(); ++i)
if (Bits[i].hasValue()) {
@@ -1418,7 +1027,7 @@ class BitPermutationSelector {
else
RLAmt[i] = Bits.size() - (VBI - i);
} else if (Bits[i].isZero()) {
- NeedMask = true;
+ HasZeros = true;
RLAmt[i] = UINT32_MAX;
} else {
llvm_unreachable("Unknown value bit type");
@@ -1434,7 +1043,6 @@ class BitPermutationSelector {
unsigned LastRLAmt = RLAmt[0];
SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
unsigned LastGroupStartIdx = 0;
- bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
for (unsigned i = 1; i < Bits.size(); ++i) {
unsigned ThisRLAmt = RLAmt[i];
SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
@@ -1447,20 +1055,10 @@ class BitPermutationSelector {
LastGroupStartIdx = 0;
}
- // If this bit is known to be zero and the current group is a bit group
- // of zeros, we do not need to terminate the current bit group even the
- // Value or RLAmt does not match here. Instead, we terminate this group
- // when the first non-zero bit appears later.
- if (IsGroupOfZeros && Bits[i].isZero())
- continue;
-
// If this bit has the same underlying value and the same rotate factor as
// the last one, then they're part of the same group.
if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
- // We cannot continue the current group if this bits is not known to
- // be zero in a bit group of zeros.
- if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
- continue;
+ continue;
if (LastValue.getNode())
BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
@@ -1468,7 +1066,6 @@ class BitPermutationSelector {
LastRLAmt = ThisRLAmt;
LastValue = ThisValue;
LastGroupStartIdx = i;
- IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
}
if (LastValue.getNode())
BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
@@ -1486,7 +1083,7 @@ class BitPermutationSelector {
BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
- LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
+ DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
BitGroups.erase(BitGroups.begin());
}
@@ -1494,9 +1091,7 @@ class BitPermutationSelector {
}
// Take all (SDValue, RLAmt) pairs and sort them by the number of groups
- // associated with each. If the number of groups are same, we prefer a group
- // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
- // instruction. If there is a degeneracy, pick the one that occurs
+ // associated with each. If there is a degeneracy, pick the one that occurs
// first (in the final value).
void collectValueRotInfo() {
ValueRots.clear();
@@ -1517,7 +1112,7 @@ class BitPermutationSelector {
for (auto &I : ValueRots) {
ValueRotsVec.push_back(I.second);
}
- llvm::sort(ValueRotsVec);
+ std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
}
// In 64-bit mode, rlwinm and friends have a rotation operator that
@@ -1566,20 +1161,6 @@ class BitPermutationSelector {
};
for (auto &BG : BitGroups) {
- // If this bit group has RLAmt of 0 and will not be merged with
- // another bit group, we don't benefit from Repl32. We don't mark
- // such group to give more freedom for later instruction selection.
- if (BG.RLAmt == 0) {
- auto PotentiallyMerged = [this](BitGroup & BG) {
- for (auto &BG2 : BitGroups)
- if (&BG != &BG2 && BG.V == BG2.V &&
- (BG2.RLAmt == 0 || BG2.RLAmt == 32))
- return true;
- return false;
- };
- if (!PotentiallyMerged(BG))
- continue;
- }
if (BG.StartIdx < 32 && BG.EndIdx < 32) {
if (IsAllLow32(BG)) {
if (BG.RLAmt >= 32) {
@@ -1589,9 +1170,9 @@ class BitPermutationSelector {
BG.Repl32 = true;
- LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
- << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
- << BG.StartIdx << ", " << BG.EndIdx << "]\n");
+ DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
+ BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
+ " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
}
}
}
@@ -1605,11 +1186,11 @@ class BitPermutationSelector {
if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
- LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
- << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
- << I->StartIdx << ", " << I->EndIdx
- << "] with group with range [" << IP->StartIdx << ", "
- << IP->EndIdx << "]\n");
+ DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
+ I->V.getNode() << " RLAmt = " << I->RLAmt <<
+ " [" << I->StartIdx << ", " << I->EndIdx <<
+ "] with group with range [" <<
+ IP->StartIdx << ", " << IP->EndIdx << "]\n");
IP->EndIdx = I->EndIdx;
IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
@@ -1628,17 +1209,17 @@ class BitPermutationSelector {
"bit group ends at index 63 but there is another?");
auto IN = BitGroups.begin();
- if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
+ if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
(I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
IsAllLow32(*I)) {
- LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
- << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
- << ", " << I->EndIdx
- << "] with 32-bit replicated groups with ranges ["
- << IP->StartIdx << ", " << IP->EndIdx << "] and ["
- << IN->StartIdx << ", " << IN->EndIdx << "]\n");
+ DEBUG(dbgs() << "\tcombining bit group for " <<
+ I->V.getNode() << " RLAmt = " << I->RLAmt <<
+ " [" << I->StartIdx << ", " << I->EndIdx <<
+ "] with 32-bit replicated groups with ranges [" <<
+ IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
+ IN->StartIdx << ", " << IN->EndIdx << "]\n");
if (IP == IN) {
// There is only one other group; change it to cover the whole
@@ -1671,7 +1252,7 @@ class BitPermutationSelector {
}
}
- SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
+ SDValue getI32Imm(unsigned Imm, SDLoc dl) {
return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
}
@@ -1686,39 +1267,10 @@ class BitPermutationSelector {
return ~Mask;
}
- // This method extends an input value to 64 bit if input is 32-bit integer.
- // While selecting instructions in BitPermutationSelector in 64-bit mode,
- // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
- // In such case, we extend it to 64 bit to be consistent with other values.
- SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
- if (V.getValueSizeInBits() == 64)
- return V;
-
- assert(V.getValueSizeInBits() == 32);
- SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
- MVT::i64), 0);
- SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
- MVT::i64, ImDef, V,
- SubRegIdx), 0);
- return ExtVal;
- }
-
- SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
- if (V.getValueSizeInBits() == 32)
- return V;
-
- assert(V.getValueSizeInBits() == 64);
- SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
- MVT::i32, V, SubRegIdx), 0);
- return SubVal;
- }
-
// Depending on the number of groups for a particular value, it might be
// better to rotate, mask explicitly (using andi/andis), and then or the
// result. Select this part of the result first.
- void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
+ void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
if (BPermRewriterNoMasking)
return;
@@ -1758,27 +1310,27 @@ class BitPermutationSelector {
(unsigned) (ANDIMask != 0 && ANDISMask != 0) +
(unsigned) (bool) Res;
- LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
- << " RL: " << VRI.RLAmt << ":"
- << "\n\t\t\tisel using masking: " << NumAndInsts
- << " using rotates: " << VRI.NumGroups << "\n");
+ DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
+ " RL: " << VRI.RLAmt << ":" <<
+ "\n\t\t\tisel using masking: " << NumAndInsts <<
+ " using rotates: " << VRI.NumGroups << "\n");
if (NumAndInsts >= VRI.NumGroups)
continue;
- LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
+ DEBUG(dbgs() << "\t\t\t\tusing masking\n");
if (InstCnt) *InstCnt += NumAndInsts;
SDValue VRot;
if (VRI.RLAmt) {
SDValue Ops[] =
- { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
- getI32Imm(0, dl), getI32Imm(31, dl) };
+ { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
+ getI32Imm(31, dl) };
VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
Ops), 0);
} else {
- VRot = TruncateToInt32(VRI.V, dl);
+ VRot = VRI.V;
}
SDValue ANDIVal, ANDISVal;
@@ -1825,17 +1377,17 @@ class BitPermutationSelector {
// If we've not yet selected a 'starting' instruction, and we have no zeros
// to fill in, select the (Value, RLAmt) with the highest priority (largest
// number of groups), and start with this rotated value.
- if ((!NeedMask || LateMask) && !Res) {
+ if ((!HasZeros || LateMask) && !Res) {
ValueRotInfo &VRI = ValueRotsVec[0];
if (VRI.RLAmt) {
if (InstCnt) *InstCnt += 1;
SDValue Ops[] =
- { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
- getI32Imm(0, dl), getI32Imm(31, dl) };
+ { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
+ getI32Imm(31, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
0);
} else {
- Res = TruncateToInt32(VRI.V, dl);
+ Res = VRI.V;
}
// Now, remove all groups with this underlying value and rotation factor.
@@ -1850,13 +1402,13 @@ class BitPermutationSelector {
for (auto &BG : BitGroups) {
if (!Res) {
SDValue Ops[] =
- { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
+ { BG.V, getI32Imm(BG.RLAmt, dl),
getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
} else {
SDValue Ops[] =
- { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
+ { Res, BG.V, getI32Imm(BG.RLAmt, dl),
getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
@@ -1914,8 +1466,8 @@ class BitPermutationSelector {
// For 64-bit values, not all combinations of rotates and masks are
// available. Produce one if it is available.
- SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
- bool Repl32, unsigned MaskStart, unsigned MaskEnd,
+ SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
+ unsigned MaskStart, unsigned MaskEnd,
unsigned *InstCnt = nullptr) {
// In the notation used by the instructions, 'start' and 'end' are reversed
// because bits are counted from high to low order.
@@ -1931,30 +1483,27 @@ class BitPermutationSelector {
assert(InstMaskStart >= 32 && "Mask cannot start out of range");
assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
+ { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
+ getI32Imm(InstMaskEnd - 32, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
Ops), 0);
}
if (InstMaskEnd == 63) {
SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
+ { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
}
if (InstMaskStart == 0) {
SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskEnd, dl) };
+ { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
}
if (InstMaskEnd == 63 - RLAmt) {
SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
+ { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
}
@@ -1978,8 +1527,8 @@ class BitPermutationSelector {
// For 64-bit values, not all combinations of rotates and masks are
// available. Produce a rotate-mask-and-insert if one is available.
- SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
- unsigned RLAmt, bool Repl32, unsigned MaskStart,
+ SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
+ bool Repl32, unsigned MaskStart,
unsigned MaskEnd, unsigned *InstCnt = nullptr) {
// In the notation used by the instructions, 'start' and 'end' are reversed
// because bits are counted from high to low order.
@@ -1995,16 +1544,15 @@ class BitPermutationSelector {
assert(InstMaskStart >= 32 && "Mask cannot start out of range");
assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
SDValue Ops[] =
- { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
+ { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
+ getI32Imm(InstMaskEnd - 32, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
Ops), 0);
}
if (InstMaskEnd == 63 - RLAmt) {
SDValue Ops[] =
- { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
+ { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
}
@@ -2026,7 +1574,7 @@ class BitPermutationSelector {
return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
}
- void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
+ void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
if (BPermRewriterNoMasking)
return;
@@ -2098,26 +1646,23 @@ class BitPermutationSelector {
NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
(unsigned) (ANDIMask != 0 && ANDISMask != 0);
else
- NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
+ NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
unsigned NumRLInsts = 0;
bool FirstBG = true;
- bool MoreBG = false;
for (auto &BG : BitGroups) {
- if (!MatchingBG(BG)) {
- MoreBG = true;
+ if (!MatchingBG(BG))
continue;
- }
NumRLInsts +=
SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
!FirstBG);
FirstBG = false;
}
- LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
- << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
- << "\n\t\t\tisel using masking: " << NumAndInsts
- << " using rotates: " << NumRLInsts << "\n");
+ DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
+ " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
+ "\n\t\t\tisel using masking: " << NumAndInsts <<
+ " using rotates: " << NumRLInsts << "\n");
// When we'd use andi/andis, we bias toward using the rotates (andi only
// has a record form, and is cracked on POWER cores). However, when using
@@ -2125,13 +1670,10 @@ class BitPermutationSelector {
// because that exposes more opportunities for CSE.
if (NumAndInsts > NumRLInsts)
continue;
- // When merging multiple bit groups, instruction or is used.
- // But when rotate is used, rldimi can inert the rotated value into any
- // register, so instruction or can be avoided.
- if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
+ if (Use32BitInsts && NumAndInsts == NumRLInsts)
continue;
- LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
+ DEBUG(dbgs() << "\t\t\t\tusing masking\n");
if (InstCnt) *InstCnt += NumAndInsts;
@@ -2154,14 +1696,10 @@ class BitPermutationSelector {
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
- ExtendToInt64(VRot, dl),
- getI32Imm(ANDIMask, dl)),
- 0);
+ VRot, getI32Imm(ANDIMask, dl)), 0);
if (ANDISMask != 0)
ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
- ExtendToInt64(VRot, dl),
- getI32Imm(ANDISMask, dl)),
- 0);
+ VRot, getI32Imm(ANDISMask, dl)), 0);
if (!ANDIVal)
TotalVal = ANDISVal;
@@ -2169,21 +1707,19 @@ class BitPermutationSelector {
TotalVal = ANDIVal;
else
TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
+ ANDIVal, ANDISVal), 0);
} else {
- TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
+ TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
TotalVal =
SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
- ExtendToInt64(VRot, dl), TotalVal),
- 0);
+ VRot, TotalVal), 0);
}
if (!Res)
Res = TotalVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(Res, dl), TotalVal),
- 0);
+ Res, TotalVal), 0);
// Now, remove all groups with this underlying value and rotation
// factor.
@@ -2204,7 +1740,7 @@ class BitPermutationSelector {
// If we've not yet selected a 'starting' instruction, and we have no zeros
// to fill in, select the (Value, RLAmt) with the highest priority (largest
// number of groups), and start with this rotated value.
- if ((!NeedMask || LateMask) && !Res) {
+ if ((!HasZeros || LateMask) && !Res) {
// If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
// groups will come first, and so the VRI representing the largest number
// of groups might not be first (it might be the first Repl32 groups).
@@ -2303,10 +1839,10 @@ class BitPermutationSelector {
SDValue ANDIVal, ANDISVal;
if (ANDIMask != 0)
ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
- ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0);
+ Res, getI32Imm(ANDIMask, dl)), 0);
if (ANDISMask != 0)
ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
- ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0);
+ Res, getI32Imm(ANDISMask, dl)), 0);
if (!ANDIVal)
Res = ANDISVal;
@@ -2314,14 +1850,14 @@ class BitPermutationSelector {
Res = ANDIVal;
else
Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
+ ANDIVal, ANDISVal), 0);
} else {
- if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
+ if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
- SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
+ SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
Res =
SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
- ExtendToInt64(Res, dl), MaskVal), 0);
+ Res, MaskVal), 0);
}
}
@@ -2352,12 +1888,13 @@ class BitPermutationSelector {
}
void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
- BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
+ BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F),
+ BitGroups.end());
}
SmallVector<ValueBit, 64> Bits;
- bool NeedMask;
+ bool HasZeros;
SmallVector<unsigned, 64> RLAmt;
SmallVector<BitGroup, 16> BitGroups;
@@ -2375,21 +1912,18 @@ public:
// rotate-and-shift/shift/and/or instructions, using a set of heuristics
// known to produce optimial code for common cases (like i32 byte swapping).
SDNode *Select(SDNode *N) {
- Memoizer.clear();
- auto Result =
- getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
- if (!Result.first)
+ Bits.resize(N->getValueType(0).getSizeInBits());
+ if (!getValueBits(SDValue(N, 0), Bits))
return nullptr;
- Bits = std::move(*Result.second);
- LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
- " selection for: ");
- LLVM_DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "Considering bit-permutation-based instruction"
+ " selection for: ");
+ DEBUG(N->dump(CurDAG));
- // Fill it RLAmt and set NeedMask.
+ // Fill it RLAmt and set HasZeros.
computeRotationAmounts();
- if (!NeedMask)
+ if (!HasZeros)
return Select(N, false);
// We currently have two techniques for handling results with zeros: early
@@ -2400,1231 +1934,34 @@ public:
// set of bit groups, and then mask in the zeros at the end. With early
// masking, we only insert the non-zero parts of the result at every step.
- unsigned InstCnt = 0, InstCntLateMask = 0;
- LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
+ unsigned InstCnt, InstCntLateMask;
+ DEBUG(dbgs() << "\tEarly masking:\n");
SDNode *RN = Select(N, false, &InstCnt);
- LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
+ DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
- LLVM_DEBUG(dbgs() << "\tLate masking:\n");
+ DEBUG(dbgs() << "\tLate masking:\n");
SDNode *RNLM = Select(N, true, &InstCntLateMask);
- LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
- << " instructions\n");
+ DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
+ " instructions\n");
if (InstCnt <= InstCntLateMask) {
- LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
+ DEBUG(dbgs() << "\tUsing early-masking for isel\n");
return RN;
}
- LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
+ DEBUG(dbgs() << "\tUsing late-masking for isel\n");
return RNLM;
}
};
+} // anonymous namespace
-class IntegerCompareEliminator {
- SelectionDAG *CurDAG;
- PPCDAGToDAGISel *S;
- // Conversion type for interpreting results of a 32-bit instruction as
- // a 64-bit value or vice versa.
- enum ExtOrTruncConversion { Ext, Trunc };
-
- // Modifiers to guide how an ISD::SETCC node's result is to be computed
- // in a GPR.
- // ZExtOrig - use the original condition code, zero-extend value
- // ZExtInvert - invert the condition code, zero-extend value
- // SExtOrig - use the original condition code, sign-extend value
- // SExtInvert - invert the condition code, sign-extend value
- enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
-
- // Comparisons against zero to emit GPR code sequences for. Each of these
- // sequences may need to be emitted for two or more equivalent patterns.
- // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
- // matters as well as the extension type: sext (-1/0), zext (1/0).
- // GEZExt - (zext (LHS >= 0))
- // GESExt - (sext (LHS >= 0))
- // LEZExt - (zext (LHS <= 0))
- // LESExt - (sext (LHS <= 0))
- enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
-
- SDNode *tryEXTEND(SDNode *N);
- SDNode *tryLogicOpOfCompares(SDNode *N);
- SDValue computeLogicOpInGPR(SDValue LogicOp);
- SDValue signExtendInputIfNeeded(SDValue Input);
- SDValue zeroExtendInputIfNeeded(SDValue Input);
- SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
- SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
- ZeroCompare CmpTy);
- SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
-
-public:
- IntegerCompareEliminator(SelectionDAG *DAG,
- PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
- assert(CurDAG->getTargetLoweringInfo()
- .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
- "Only expecting to use this on 64 bit targets.");
- }
- SDNode *Select(SDNode *N) {
- if (CmpInGPR == ICGPR_None)
- return nullptr;
- switch (N->getOpcode()) {
- default: break;
- case ISD::ZERO_EXTEND:
- if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_SextI64)
- return nullptr;
- LLVM_FALLTHROUGH;
- case ISD::SIGN_EXTEND:
- if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
- CmpInGPR == ICGPR_ZextI64)
- return nullptr;
- return tryEXTEND(N);
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- return tryLogicOpOfCompares(N);
- }
- return nullptr;
- }
-};
-
-static bool isLogicOp(unsigned Opc) {
- return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
-}
-// The obvious case for wanting to keep the value in a GPR. Namely, the
-// result of the comparison is actually needed in a GPR.
-SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
- assert((N->getOpcode() == ISD::ZERO_EXTEND ||
- N->getOpcode() == ISD::SIGN_EXTEND) &&
- "Expecting a zero/sign extend node!");
- SDValue WideRes;
- // If we are zero-extending the result of a logical operation on i1
- // values, we can keep the values in GPRs.
- if (isLogicOp(N->getOperand(0).getOpcode()) &&
- N->getOperand(0).getValueType() == MVT::i1 &&
- N->getOpcode() == ISD::ZERO_EXTEND)
- WideRes = computeLogicOpInGPR(N->getOperand(0));
- else if (N->getOperand(0).getOpcode() != ISD::SETCC)
- return nullptr;
- else
- WideRes =
- getSETCCInGPR(N->getOperand(0),
- N->getOpcode() == ISD::SIGN_EXTEND ?
- SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
-
- if (!WideRes)
- return nullptr;
-
- SDLoc dl(N);
- bool Input32Bit = WideRes.getValueType() == MVT::i32;
- bool Output32Bit = N->getValueType(0) == MVT::i32;
-
- NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
- NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
-
- SDValue ConvOp = WideRes;
- if (Input32Bit != Output32Bit)
- ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
- ExtOrTruncConversion::Trunc);
- return ConvOp.getNode();
-}
-
-// Attempt to perform logical operations on the results of comparisons while
-// keeping the values in GPRs. Without doing so, these would end up being
-// lowered to CR-logical operations which suffer from significant latency and
-// low ILP.
-SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
- if (N->getValueType(0) != MVT::i1)
- return nullptr;
- assert(isLogicOp(N->getOpcode()) &&
- "Expected a logic operation on setcc results.");
- SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
- if (!LoweredLogical)
- return nullptr;
-
- SDLoc dl(N);
- bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
- unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
- SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
- SDValue LHS = LoweredLogical.getOperand(0);
- SDValue RHS = LoweredLogical.getOperand(1);
- SDValue WideOp;
- SDValue OpToConvToRecForm;
-
- // Look through any 32-bit to 64-bit implicit extend nodes to find the
- // opcode that is input to the XORI.
- if (IsBitwiseNegate &&
- LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
- OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
- else if (IsBitwiseNegate)
- // If the input to the XORI isn't an extension, that's what we're after.
- OpToConvToRecForm = LoweredLogical.getOperand(0);
- else
- // If this is not an XORI, it is a reg-reg logical op and we can convert
- // it to record-form.
- OpToConvToRecForm = LoweredLogical;
-
- // Get the record-form version of the node we're looking to use to get the
- // CR result from.
- uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
- int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
-
- // Convert the right node to record-form. This is either the logical we're
- // looking at or it is the input node to the negation (if we're looking at
- // a bitwise negation).
- if (NewOpc != -1 && IsBitwiseNegate) {
- // The input to the XORI has a record-form. Use it.
- assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
- "Expected a PPC::XORI8 only for bitwise negation.");
- // Emit the record-form instruction.
- std::vector<SDValue> Ops;
- for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
- Ops.push_back(OpToConvToRecForm.getOperand(i));
-
- WideOp =
- SDValue(CurDAG->getMachineNode(NewOpc, dl,
- OpToConvToRecForm.getValueType(),
- MVT::Glue, Ops), 0);
- } else {
- assert((NewOpc != -1 || !IsBitwiseNegate) &&
- "No record form available for AND8/OR8/XOR8?");
- WideOp =
- SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
- MVT::i64, MVT::Glue, LHS, RHS), 0);
- }
-
- // Select this node to a single bit from CR0 set by the record-form node
- // just created. For bitwise negation, use the EQ bit which is the equivalent
- // of negating the result (i.e. it is a bit set when the result of the
- // operation is zero).
- SDValue SRIdxVal =
- CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
- SDValue CRBit =
- SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
- MVT::i1, CR0Reg, SRIdxVal,
- WideOp.getValue(1)), 0);
- return CRBit.getNode();
-}
-
-// Lower a logical operation on i1 values into a GPR sequence if possible.
-// The result can be kept in a GPR if requested.
-// Three types of inputs can be handled:
-// - SETCC
-// - TRUNCATE
-// - Logical operation (AND/OR/XOR)
-// There is also a special case that is handled (namely a complement operation
-// achieved with xor %a, -1).
-SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
- assert(isLogicOp(LogicOp.getOpcode()) &&
- "Can only handle logic operations here.");
- assert(LogicOp.getValueType() == MVT::i1 &&
- "Can only handle logic operations on i1 values here.");
- SDLoc dl(LogicOp);
- SDValue LHS, RHS;
-
- // Special case: xor %a, -1
- bool IsBitwiseNegation = isBitwiseNot(LogicOp);
-
- // Produces a GPR sequence for each operand of the binary logic operation.
- // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
- // the value in a GPR and for logic operations, it will recursively produce
- // a GPR sequence for the operation.
- auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
- unsigned OperandOpcode = Operand.getOpcode();
- if (OperandOpcode == ISD::SETCC)
- return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
- else if (OperandOpcode == ISD::TRUNCATE) {
- SDValue InputOp = Operand.getOperand(0);
- EVT InVT = InputOp.getValueType();
- return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
- PPC::RLDICL, dl, InVT, InputOp,
- S->getI64Imm(0, dl),
- S->getI64Imm(63, dl)), 0);
- } else if (isLogicOp(OperandOpcode))
- return computeLogicOpInGPR(Operand);
- return SDValue();
- };
- LHS = getLogicOperand(LogicOp.getOperand(0));
- RHS = getLogicOperand(LogicOp.getOperand(1));
-
- // If a GPR sequence can't be produced for the LHS we can't proceed.
- // Not producing a GPR sequence for the RHS is only a problem if this isn't
- // a bitwise negation operation.
- if (!LHS || (!RHS && !IsBitwiseNegation))
- return SDValue();
-
- NumLogicOpsOnComparison++;
-
- // We will use the inputs as 64-bit values.
- if (LHS.getValueType() == MVT::i32)
- LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
- if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
- RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
-
- unsigned NewOpc;
- switch (LogicOp.getOpcode()) {
- default: llvm_unreachable("Unknown logic operation.");
- case ISD::AND: NewOpc = PPC::AND8; break;
- case ISD::OR: NewOpc = PPC::OR8; break;
- case ISD::XOR: NewOpc = PPC::XOR8; break;
- }
-
- if (IsBitwiseNegation) {
- RHS = S->getI64Imm(1, dl);
- NewOpc = PPC::XORI8;
- }
-
- return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
-
-}
-
-/// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
-/// Otherwise just reinterpret it as a 64-bit value.
-/// Useful when emitting comparison code for 32-bit values without using
-/// the compare instruction (which only considers the lower 32-bits).
-SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
- assert(Input.getValueType() == MVT::i32 &&
- "Can only sign-extend 32-bit values here.");
- unsigned Opc = Input.getOpcode();
-
- // The value was sign extended and then truncated to 32-bits. No need to
- // sign extend it again.
- if (Opc == ISD::TRUNCATE &&
- (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
- Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
- // The input is a sign-extending load. All ppc sign-extending loads
- // sign-extend to the full 64-bits.
- if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
- // We don't sign-extend constants.
- if (InputConst)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- SDLoc dl(Input);
- SignExtensionsAdded++;
- return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
- MVT::i64, Input), 0);
-}
-
-/// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
-/// Otherwise just reinterpret it as a 64-bit value.
-/// Useful when emitting comparison code for 32-bit values without using
-/// the compare instruction (which only considers the lower 32-bits).
-SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
- assert(Input.getValueType() == MVT::i32 &&
- "Can only zero-extend 32-bit values here.");
- unsigned Opc = Input.getOpcode();
-
- // The only condition under which we can omit the actual extend instruction:
- // - The value is a positive constant
- // - The value comes from a load that isn't a sign-extending load
- // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
- bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
- (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
- Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
- if (IsTruncateOfZExt)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
- if (InputConst && InputConst->getSExtValue() >= 0)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
- // The input is a load that doesn't sign-extend (it will be zero-extended).
- if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
-
- // None of the above, need to zero-extend.
- SDLoc dl(Input);
- ZeroExtensionsAdded++;
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
- S->getI64Imm(0, dl),
- S->getI64Imm(32, dl)), 0);
-}
-
-// Handle a 32-bit value in a 64-bit register and vice-versa. These are of
-// course not actual zero/sign extensions that will generate machine code,
-// they're just a way to reinterpret a 32 bit value in a register as a
-// 64 bit value and vice-versa.
-SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
- ExtOrTruncConversion Conv) {
- SDLoc dl(NatWidthRes);
-
- // For reinterpreting 32-bit values as 64 bit values, we generate
- // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
- if (Conv == ExtOrTruncConversion::Ext) {
- SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
- SDValue SubRegIdx =
- CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
- ImDef, NatWidthRes, SubRegIdx), 0);
- }
-
- assert(Conv == ExtOrTruncConversion::Trunc &&
- "Unknown convertion between 32 and 64 bit values.");
- // For reinterpreting 64-bit values as 32-bit values, we just need to
- // EXTRACT_SUBREG (i.e. extract the low word).
- SDValue SubRegIdx =
- CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
- NatWidthRes, SubRegIdx), 0);
-}
-
-// Produce a GPR sequence for compound comparisons (<=, >=) against zero.
-// Handle both zero-extensions and sign-extensions.
-SDValue
-IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
- ZeroCompare CmpTy) {
- EVT InVT = LHS.getValueType();
- bool Is32Bit = InVT == MVT::i32;
- SDValue ToExtend;
-
- // Produce the value that needs to be either zero or sign extended.
- switch (CmpTy) {
- case ZeroCompare::GEZExt:
- case ZeroCompare::GESExt:
- ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
- dl, InVT, LHS, LHS), 0);
- break;
- case ZeroCompare::LEZExt:
- case ZeroCompare::LESExt: {
- if (Is32Bit) {
- // Upper 32 bits cannot be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- ToExtend =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Neg, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- } else {
- SDValue Addi =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(~0ULL, dl)), 0);
- ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- Addi, LHS), 0);
- }
- break;
- }
- }
-
- // For 64-bit sequences, the extensions are the same for the GE/LE cases.
- if (!Is32Bit &&
- (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- ToExtend, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- if (!Is32Bit &&
- (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
- S->getI64Imm(63, dl)), 0);
-
- assert(Is32Bit && "Should have handled the 32-bit sequences above.");
- // For 32-bit sequences, the extensions differ between GE/LE cases.
- switch (CmpTy) {
- case ZeroCompare::GEZExt: {
- SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
- case ZeroCompare::GESExt:
- return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
- S->getI32Imm(31, dl)), 0);
- case ZeroCompare::LEZExt:
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
- S->getI32Imm(1, dl)), 0);
- case ZeroCompare::LESExt:
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
- S->getI32Imm(-1, dl)), 0);
- }
-
- // The above case covers all the enumerators so it can't have a default clause
- // to avoid compiler warnings.
- llvm_unreachable("Unknown zero-comparison type.");
-}
-
-/// Produces a zero-extended result of comparing two 32-bit values according to
-/// the passed condition code.
-SDValue
-IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
- CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
- // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
- case ISD::SETNE: {
- // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
- // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
- S->getI32Imm(31, dl) };
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
- S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETGE: {
- // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
- // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
- if(IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
-
- // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
- // by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
- // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
- if(IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- }
-
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Sub =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
- S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
- 0);
- return
- SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
- MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETGT: {
- // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
- // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
- // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
- // Handle SETLT -1 (which is equivalent to SETGE 0).
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
-
- if (IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
- }
- // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
- // (%b < %a) by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
- // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
- // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
- // Handle SETLT 1 (which is equivalent to SETLE 0).
- if (IsRHSOne) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- }
-
- if (IsRHSZero) {
- SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
-
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- SUBFNode, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETUGE:
- // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
- // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue SrdiNode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Subtract, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
- S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETUGT:
- // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
- // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Subtract, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- }
-}
-
-/// Produces a sign-extended result of comparing two 32-bit values according to
-/// the passed condition code.
-SDValue
-IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
- CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
-
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (sext (setcc %a, %b, seteq)) ->
- // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
- // (sext (setcc %a, 0, seteq)) ->
- // (ashr (shl (ctlz %a), 58), 63)
- SDValue CountInput = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Cntlzw =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
- SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
- S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
- SDValue Slwi =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
- }
- case ISD::SETNE: {
- // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
- // flip the bit, finally take 2's complement.
- // (sext (setcc %a, %b, setne)) ->
- // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
- // Same as above, but the first xor is not needed.
- // (sext (setcc %a, 0, setne)) ->
- // (neg (xor (lshr (ctlz %a), 5), 1))
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] =
- { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
- SDValue Xori =
- SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
- S->getI32Imm(1, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
- }
- case ISD::SETGE: {
- // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
- // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
-
- // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
- // by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
- // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
-
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 0);
- SDValue Srdi =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- SUBFNode, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
- S->getI32Imm(-1, dl)), 0);
- }
- case ISD::SETGT: {
- // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
- // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
- // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- if (IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
- S->getI64Imm(63, dl)), 0);
- }
- // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
- // (%b < %a) by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
- // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
- // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
- if (IsRHSOne) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- }
- if (IsRHSZero)
- return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
- S->getI32Imm(31, dl)), 0);
-
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- SUBFNode, S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETUGE:
- // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
- // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
- S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
- 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
- S->getI32Imm(-1, dl)), 0);
- }
- case ISD::SETUGT:
- // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
- // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- Subtract, S->getI64Imm(63, dl)), 0);
- }
- }
-}
-
-/// Produces a zero-extended result of comparing two 64-bit values according to
-/// the passed condition code.
-SDValue
-IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
- // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
- S->getI64Imm(58, dl),
- S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETNE: {
- // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
- // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
- // {addcz.reg, addcz.CA} = (addcarry %a, -1)
- // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue AC =
- SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
- Xor, S->getI32Imm(~0U, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
- Xor, AC.getValue(1)), 0);
- }
- case ISD::SETGE: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setge)) ->
- // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
- // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setge)) ->
- // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
- // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- SDValue ShiftL =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue ShiftR =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
- S->getI64Imm(63, dl)), 0);
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- ShiftR, ShiftL, SubtractCarry), 0);
- }
- case ISD::SETGT: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setgt)) ->
- // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- if (IsRHSZero) {
- SDValue Addi =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(~0ULL, dl)), 0);
- SDValue Nor =
- SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setlt)) ->
- // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
- if (IsRHSOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- if (IsRHSZero)
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SRADINode =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- LHS, S->getI64Imm(63, dl)), 0);
- SDValue SRDINode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- RHS, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ADDE8Node =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- SRDINode, SRADINode, SUBFC8Carry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- ADDE8Node, S->getI64Imm(1, dl)), 0);
- }
- case ISD::SETUGE:
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue SUBFE8Node =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
- LHS, LHS, SUBFC8Carry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
- SUBFE8Node, S->getI64Imm(1, dl)), 0);
- }
- case ISD::SETUGT:
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ExtSub =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
- LHS, LHS, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
- ExtSub), 0);
- }
- }
-}
-
-/// Produces a sign-extended result of comparing two 64-bit values according to
-/// the passed condition code.
-SDValue
-IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
- // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
- // {addcz.reg, addcz.CA} = (addcarry %a, -1)
- // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
- SDValue AddInput = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Addic =
- SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
- AddInput, S->getI32Imm(~0U, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
- Addic, Addic.getValue(1)), 0);
- }
- case ISD::SETNE: {
- // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
- // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
- // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
- // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue SC =
- SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
- Xor, S->getI32Imm(0, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
- SC, SC.getValue(1)), 0);
- }
- case ISD::SETGE: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setge)) ->
- // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
- // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setge)) ->
- // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
- // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- SDValue ShiftR =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
- S->getI64Imm(63, dl)), 0);
- SDValue ShiftL =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue Adde =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- ShiftR, ShiftL, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
- }
- case ISD::SETGT: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setgt)) ->
- // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- if (IsRHSZero) {
- SDValue Add =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(-1, dl)), 0);
- SDValue Nor =
- SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
- S->getI64Imm(63, dl)), 0);
- }
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isNullValue();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setlt)) ->
- // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
- if (IsRHSOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- if (IsRHSZero) {
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
- S->getI64Imm(63, dl)), 0);
- }
- SDValue SRADINode =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- LHS, S->getI64Imm(63, dl)), 0);
- SDValue SRDINode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- RHS, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ADDE8Node =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
- SRDINode, SRADINode, SUBFC8Carry), 0);
- SDValue XORI8Node =
- SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- ADDE8Node, S->getI64Imm(1, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
- XORI8Node), 0);
- }
- case ISD::SETUGE:
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue ExtSub =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
- LHS, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
- ExtSub, ExtSub), 0);
- }
- case ISD::SETUGT:
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
- SDValue SubCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
- LHS, LHS, SubCarry), 0);
- }
- }
-}
-
-/// Do all uses of this SDValue need the result in a GPR?
-/// This is meant to be used on values that have type i1 since
-/// it is somewhat meaningless to ask if values of other types
-/// should be kept in GPR's.
-static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
- assert(Compare.getOpcode() == ISD::SETCC &&
- "An ISD::SETCC node required here.");
-
- // For values that have a single use, the caller should obviously already have
- // checked if that use is an extending use. We check the other uses here.
- if (Compare.hasOneUse())
- return true;
- // We want the value in a GPR if it is being extended, used for a select, or
- // used in logical operations.
- for (auto CompareUse : Compare.getNode()->uses())
- if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
- CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
- CompareUse->getOpcode() != ISD::SELECT &&
- !isLogicOp(CompareUse->getOpcode())) {
- OmittedForNonExtendUses++;
- return false;
- }
- return true;
-}
-
-/// Returns an equivalent of a SETCC node but with the result the same width as
-/// the inputs. This can also be used for SELECT_CC if either the true or false
-/// values is a power of two while the other is zero.
-SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
- SetccInGPROpts ConvOpts) {
- assert((Compare.getOpcode() == ISD::SETCC ||
- Compare.getOpcode() == ISD::SELECT_CC) &&
- "An ISD::SETCC node required here.");
-
- // Don't convert this comparison to a GPR sequence because there are uses
- // of the i1 result (i.e. uses that require the result in the CR).
- if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
- return SDValue();
-
- SDValue LHS = Compare.getOperand(0);
- SDValue RHS = Compare.getOperand(1);
-
- // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
- int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
- ISD::CondCode CC =
- cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
- EVT InputVT = LHS.getValueType();
- if (InputVT != MVT::i32 && InputVT != MVT::i64)
- return SDValue();
-
- if (ConvOpts == SetccInGPROpts::ZExtInvert ||
- ConvOpts == SetccInGPROpts::SExtInvert)
- CC = ISD::getSetCCInverse(CC, true);
-
- bool Inputs32Bit = InputVT == MVT::i32;
-
- SDLoc dl(Compare);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
- bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
- ConvOpts == SetccInGPROpts::SExtInvert;
-
- if (IsSext && Inputs32Bit)
- return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
- else if (Inputs32Bit)
- return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
- else if (IsSext)
- return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
- return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
-}
-
-} // end anonymous namespace
-
-bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
- if (N->getValueType(0) != MVT::i32 &&
- N->getValueType(0) != MVT::i64)
- return false;
-
- // This optimization will emit code that assumes 64-bit registers
- // so we don't want to run it in 32-bit mode. Also don't run it
- // on functions that are not to be optimized.
- if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
- return false;
-
- switch (N->getOpcode()) {
- default: break;
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: {
- IntegerCompareEliminator ICmpElim(CurDAG, this);
- if (SDNode *New = ICmpElim.Select(N)) {
- ReplaceNode(N, New);
- return true;
- }
- }
- }
- return false;
-}
-
-bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
+SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
- return false;
+ return nullptr;
if (!UseBitPermRewriter)
- return false;
+ return nullptr;
switch (N->getOpcode()) {
default: break;
@@ -3634,21 +1971,17 @@ bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
case ISD::AND:
case ISD::OR: {
BitPermutationSelector BPS(CurDAG);
- if (SDNode *New = BPS.Select(N)) {
- ReplaceNode(N, New);
- return true;
- }
- return false;
+ return BPS.Select(N);
}
}
- return false;
+ return nullptr;
}
/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
-SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- const SDLoc &dl) {
+SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, SDLoc dl) {
// Always select the LHS.
unsigned Opc;
@@ -3688,7 +2021,7 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
getI32Imm(Imm & 0xFFFF, dl)), 0);
Opc = PPC::CMPLW;
} else {
- int16_t SImm;
+ short SImm;
if (isIntS16Immediate(RHS, SImm))
return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
getI32Imm((int)SImm & 0xFFFF,
@@ -3735,7 +2068,7 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
getI64Imm(Imm & 0xFFFF, dl)), 0);
Opc = PPC::CMPLD;
} else {
- int16_t SImm;
+ short SImm;
if (isIntS16Immediate(RHS, SImm))
return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
getI64Imm(SImm & 0xFFFF, dl)),
@@ -3743,63 +2076,10 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
Opc = PPC::CMPD;
}
} else if (LHS.getValueType() == MVT::f32) {
- if (PPCSubTarget->hasSPE()) {
- switch (CC) {
- default:
- case ISD::SETEQ:
- case ISD::SETNE:
- Opc = PPC::EFSCMPEQ;
- break;
- case ISD::SETLT:
- case ISD::SETGE:
- case ISD::SETOLT:
- case ISD::SETOGE:
- case ISD::SETULT:
- case ISD::SETUGE:
- Opc = PPC::EFSCMPLT;
- break;
- case ISD::SETGT:
- case ISD::SETLE:
- case ISD::SETOGT:
- case ISD::SETOLE:
- case ISD::SETUGT:
- case ISD::SETULE:
- Opc = PPC::EFSCMPGT;
- break;
- }
- } else
- Opc = PPC::FCMPUS;
- } else if (LHS.getValueType() == MVT::f64) {
- if (PPCSubTarget->hasSPE()) {
- switch (CC) {
- default:
- case ISD::SETEQ:
- case ISD::SETNE:
- Opc = PPC::EFDCMPEQ;
- break;
- case ISD::SETLT:
- case ISD::SETGE:
- case ISD::SETOLT:
- case ISD::SETOGE:
- case ISD::SETULT:
- case ISD::SETUGE:
- Opc = PPC::EFDCMPLT;
- break;
- case ISD::SETGT:
- case ISD::SETLE:
- case ISD::SETOGT:
- case ISD::SETOLE:
- case ISD::SETUGT:
- case ISD::SETULE:
- Opc = PPC::EFDCMPGT;
- break;
- }
- } else
- Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
+ Opc = PPC::FCMPUS;
} else {
- assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
- assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
- Opc = PPC::XSCMPUQP;
+ assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
+ Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
}
return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
}
@@ -3975,7 +2255,7 @@ static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
}
}
-bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
+SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
SDLoc dl(N);
unsigned Imm;
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
@@ -3996,22 +2276,20 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
case ISD::SETNE: {
if (isPPC64) break;
SDValue AD =
SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(~0U, dl)), 0);
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
+ AD.getValue(1));
}
case ISD::SETLT: {
SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
case ISD::SETGT: {
SDValue T =
@@ -4019,8 +2297,7 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
}
} else if (Imm == ~0U) { // setcc op, -1
@@ -4031,20 +2308,18 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
if (isPPC64) break;
Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(1, dl)), 0);
- CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDValue(CurDAG->getMachineNode(PPC::LI, dl,
- MVT::i32,
- getI32Imm(0, dl)),
- 0), Op.getValue(1));
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(CurDAG->getMachineNode(PPC::LI, dl,
+ MVT::i32,
+ getI32Imm(0, dl)),
+ 0), Op.getValue(1));
case ISD::SETNE: {
if (isPPC64) break;
Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Op, getI32Imm(~0U, dl));
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
- SDValue(AD, 1));
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
+ Op, SDValue(AD, 1));
}
case ISD::SETLT: {
SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
@@ -4053,15 +2328,14 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
Op), 0);
SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
case ISD::SETGT: {
SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
getI32Imm(31, dl) };
Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
+ getI32Imm(1, dl));
}
}
}
@@ -4073,8 +2347,8 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
// Altivec Vector compare instructions do not set any CR register by default and
// vector compare operations return the same type as the operands.
if (LHS.getValueType().isVector()) {
- if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
- return false;
+ if (PPCSubTarget->hasQPX())
+ return nullptr;
EVT VecVT = LHS.getValueType();
bool Swap, Negate;
@@ -4086,29 +2360,22 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
EVT ResVT = VecVT.changeVectorElementTypeToInteger();
if (Negate) {
SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
- CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
- ResVT, VCmp, VCmp);
- return true;
+ return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
+ PPC::VNOR,
+ ResVT, VCmp, VCmp);
}
- CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
- return true;
+ return CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
}
if (PPCSubTarget->useCRBits())
- return false;
+ return nullptr;
bool Inv;
unsigned Idx = getCRIdxForSetCC(CC, Inv);
SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
SDValue IntCR;
- // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
- // The correct compare instruction is already set by SelectCC()
- if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
- Idx = 1;
- }
-
// Force the ccreg into CR7.
SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
@@ -4121,208 +2388,31 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
getI32Imm(31, dl), getI32Imm(31, dl) };
- if (!Inv) {
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
+ if (!Inv)
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
// Get the specified bit.
SDValue Tmp =
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
- return true;
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
}
-/// Does this node represent a load/store node whose address can be represented
-/// with a register plus an immediate that's a multiple of \p Val:
-bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
- LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
- StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
- SDValue AddrOp;
- if (LDN)
- AddrOp = LDN->getOperand(1);
- else if (STN)
- AddrOp = STN->getOperand(2);
-
- // If the address points a frame object or a frame object with an offset,
- // we need to check the object alignment.
- short Imm = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
- AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
- AddrOp)) {
- // If op0 is a frame index that is under aligned, we can't do it either,
- // because it is translated to r31 or r1 + slot + offset. We won't know the
- // slot number until the stack frame is finalized.
- const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
- unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
- if ((SlotAlign % Val) != 0)
- return false;
-
- // If we have an offset, we need further check on the offset.
- if (AddrOp.getOpcode() != ISD::ADD)
- return true;
- }
-
- if (AddrOp.getOpcode() == ISD::ADD)
- return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
-
- // If the address comes from the outside, the offset will be zero.
- return AddrOp.getOpcode() == ISD::CopyFromReg;
-}
-
-void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
+SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
// Transfer memoperands.
- MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
- CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+ return Result;
}
-static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
- bool &NeedSwapOps, bool &IsUnCmp) {
-
- assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
-
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue TrueRes = N->getOperand(2);
- SDValue FalseRes = N->getOperand(3);
- ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
- if (!TrueConst)
- return false;
-
- assert((N->getSimpleValueType(0) == MVT::i64 ||
- N->getSimpleValueType(0) == MVT::i32) &&
- "Expecting either i64 or i32 here.");
-
- // We are looking for any of:
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
- // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq)
- // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq)
- int64_t TrueResVal = TrueConst->getSExtValue();
- if ((TrueResVal < -1 || TrueResVal > 1) ||
- (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
- (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
- (TrueResVal == 0 &&
- (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
- return false;
-
- bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC;
- SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0);
- if (SetOrSelCC.getOpcode() != ISD::SETCC &&
- SetOrSelCC.getOpcode() != ISD::SELECT_CC)
- return false;
-
- // Without this setb optimization, the outer SELECT_CC will be manually
- // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
- // transforms pseduo instruction to isel instruction. When there are more than
- // one use for result like zext/sext, with current optimization we only see
- // isel is replaced by setb but can't see any significant gain. Since
- // setb has longer latency than original isel, we should avoid this. Another
- // point is that setb requires comparison always kept, it can break the
- // oppotunity to get the comparison away if we have in future.
- if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
- return false;
-
- SDValue InnerLHS = SetOrSelCC.getOperand(0);
- SDValue InnerRHS = SetOrSelCC.getOperand(1);
- ISD::CondCode InnerCC =
- cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
- // If the inner comparison is a select_cc, make sure the true/false values are
- // 1/-1 and canonicalize it if needed.
- if (InnerIsSel) {
- ConstantSDNode *SelCCTrueConst =
- dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
- ConstantSDNode *SelCCFalseConst =
- dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
- if (!SelCCTrueConst || !SelCCFalseConst)
- return false;
- int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
- int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
- // The values must be -1/1 (requiring a swap) or 1/-1.
- if (SelCCTVal == -1 && SelCCFVal == 1) {
- std::swap(InnerLHS, InnerRHS);
- } else if (SelCCTVal != 1 || SelCCFVal != -1)
- return false;
- }
-
- // Canonicalize unsigned case
- if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
- IsUnCmp = true;
- InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
- }
-
- bool InnerSwapped = false;
- if (LHS == InnerRHS && RHS == InnerLHS)
- InnerSwapped = true;
- else if (LHS != InnerLHS || RHS != InnerRHS)
- return false;
-
- switch (CC) {
- // (select_cc lhs, rhs, 0, \
- // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
- case ISD::SETEQ:
- if (!InnerIsSel)
- return false;
- if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
- return false;
- NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
- break;
-
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
- // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
- // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
- case ISD::SETULT:
- if (!IsUnCmp && InnerCC != ISD::SETNE)
- return false;
- IsUnCmp = true;
- LLVM_FALLTHROUGH;
- case ISD::SETLT:
- if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
- (InnerCC == ISD::SETLT && InnerSwapped))
- NeedSwapOps = (TrueResVal == 1);
- else
- return false;
- break;
-
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
- // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
- // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
- case ISD::SETUGT:
- if (!IsUnCmp && InnerCC != ISD::SETNE)
- return false;
- IsUnCmp = true;
- LLVM_FALLTHROUGH;
- case ISD::SETGT:
- if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
- (InnerCC == ISD::SETGT && InnerSwapped))
- NeedSwapOps = (TrueResVal == -1);
- else
- return false;
- break;
-
- default:
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
- LLVM_DEBUG(N->dump());
-
- return true;
-}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
-void PPCDAGToDAGISel::Select(SDNode *N) {
+SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
SDLoc dl(N);
if (N->isMachineOpcode()) {
N->setNodeId(-1);
- return; // Already selected.
+ return nullptr; // Already selected.
}
// In case any misguided DAG-level optimizations form an ADD with a
@@ -4333,68 +2423,40 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
llvm_unreachable("Invalid ADD with TargetConstant operand");
// Try matching complex bit permutations before doing anything else.
- if (tryBitPermutation(N))
- return;
-
- // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
- if (tryIntCompareInGPR(N))
- return;
+ if (SDNode *NN = SelectBitPermutation(N))
+ return NN;
switch (N->getOpcode()) {
default: break;
- case ISD::Constant:
- if (N->getValueType(0) == MVT::i64) {
- ReplaceNode(N, selectI64Imm(CurDAG, N));
- return;
- }
+ case ISD::Constant: {
+ if (N->getValueType(0) == MVT::i64)
+ return SelectInt64(CurDAG, N);
break;
+ }
- case ISD::SETCC:
- if (trySETCC(N))
- return;
+ case ISD::SETCC: {
+ SDNode *SN = SelectSETCC(N);
+ if (SN)
+ return SN;
break;
-
- case PPCISD::CALL: {
- const Module *M = MF->getFunction().getParent();
-
- if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
- (!TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt()) ||
- !PPCSubTarget->isTargetELF() || M->getPICLevel() == PICLevel::SmallPIC)
- break;
-
- SDValue Op = N->getOperand(1);
-
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- if (GA->getTargetFlags() == PPCII::MO_PLT)
- getGlobalBaseReg();
- }
- else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
- if (ES->getTargetFlags() == PPCII::MO_PLT)
- getGlobalBaseReg();
- }
}
- break;
-
case PPCISD::GlobalBaseReg:
- ReplaceNode(N, getGlobalBaseReg());
- return;
+ return getGlobalBaseReg();
case ISD::FrameIndex:
- selectFrameIndex(N, N);
- return;
+ return getFrameIndex(N, N);
case PPCISD::MFOCRF: {
SDValue InFlag = N->getOperand(1);
- ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
- N->getOperand(0), InFlag));
- return;
+ return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
+ N->getOperand(0), InFlag);
}
- case PPCISD::READ_TIME_BASE:
- ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
- MVT::Other, N->getOperand(0)));
- return;
+ case PPCISD::READ_TIME_BASE: {
+ return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
+ MVT::Other, N->getOperand(0));
+ }
case PPCISD::SRA_ADDZE: {
SDValue N0 = N->getOperand(0);
@@ -4406,43 +2468,27 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDNode *Op =
CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
N0, ShiftAmt);
- CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
- SDValue(Op, 1));
- return;
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
+ SDValue(Op, 0), SDValue(Op, 1));
} else {
assert(N->getValueType(0) == MVT::i32 &&
"Expecting i64 or i32 in PPCISD::SRA_ADDZE");
SDNode *Op =
CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
N0, ShiftAmt);
- CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
- SDValue(Op, 1));
- return;
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1));
}
}
- case ISD::STORE: {
- // Change TLS initial-exec D-form stores to X-form stores.
- StoreSDNode *ST = cast<StoreSDNode>(N);
- if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
- ST->getAddressingMode() != ISD::PRE_INC)
- if (tryTLSXFormStore(ST))
- return;
- break;
- }
case ISD::LOAD: {
// Handle preincrement loads.
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT LoadedVT = LD->getMemoryVT();
// Normal loads are handled by code generated from the .td file.
- if (LD->getAddressingMode() != ISD::PRE_INC) {
- // Change TLS initial-exec D-form loads to X-form loads.
- if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
- if (tryTLSXFormLoad(LD))
- return;
+ if (LD->getAddressingMode() != ISD::PRE_INC)
break;
- }
SDValue Offset = LD->getOffset();
if (Offset.getOpcode() == ISD::TargetConstant ||
@@ -4478,12 +2524,11 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Ops[] = { Offset, Base, Chain };
- SDNode *MN = CurDAG->getMachineNode(
- Opcode, dl, LD->getValueType(0),
- PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
+ return transferMemOperands(
+ N, CurDAG->getMachineNode(
+ Opcode, dl, LD->getValueType(0),
+ PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
+ Ops));
} else {
unsigned Opcode;
bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
@@ -4518,12 +2563,11 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Ops[] = { Base, Offset, Chain };
- SDNode *MN = CurDAG->getMachineNode(
- Opcode, dl, LD->getValueType(0),
- PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
+ return transferMemOperands(
+ N, CurDAG->getMachineNode(
+ Opcode, dl, LD->getValueType(0),
+ PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
+ Ops));
}
}
@@ -4538,8 +2582,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Val = N->getOperand(0).getOperand(0);
SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
// If this is just a masked value where the input is not handled above, and
// is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
@@ -4549,8 +2592,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Val = N->getOperand(0);
SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
// If this is a 64-bit zero-extension mask, emit rldicl.
if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
@@ -4559,23 +2601,6 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
MB = 64 - countTrailingOnes(Imm64);
SH = 0;
- if (Val.getOpcode() == ISD::ANY_EXTEND) {
- auto Op0 = Val.getOperand(0);
- if ( Op0.getOpcode() == ISD::SRL &&
- isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
-
- auto ResultType = Val.getNode()->getValueType(0);
- auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
- ResultType);
- SDValue IDVal (ImDef, 0);
-
- Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
- ResultType, IDVal, Op0.getOperand(0),
- getI32Imm(1, dl)), 0);
- SH = 64 - Imm;
- }
- }
-
// If the operand is a logical right shift, we can fold it into this
// instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
// for n <= mb. The right shift is really a left rotate followed by a
@@ -4589,26 +2614,12 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
}
SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
}
- // If this is a negated 64-bit zero-extension mask,
- // i.e. the immediate is a sequence of ones from most significant side
- // and all zero for reminder, we should use rldicr.
- if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
- isMask_64(~Imm64)) {
- SDValue Val = N->getOperand(0);
- MB = 63 - countTrailingOnes(~Imm64);
- SH = 0;
- SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
- return;
- }
-
// AND X, 0 -> 0, not "rlwinm 32".
if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
ReplaceUses(SDValue(N, 0), N->getOperand(1));
- return;
+ return nullptr;
}
// ISD::OR doesn't get all the bitfield insertion fun.
// (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
@@ -4634,8 +2645,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
N->getOperand(0).getOperand(1),
getI32Imm(0, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
- return;
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
}
}
@@ -4644,73 +2654,29 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
}
case ISD::OR: {
if (N->getValueType(0) == MVT::i32)
- if (tryBitfieldInsert(N))
- return;
+ if (SDNode *I = SelectBitfieldInsert(N))
+ return I;
- int16_t Imm;
+ short Imm;
if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
isIntS16Immediate(N->getOperand(1), Imm)) {
- KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
+ APInt LHSKnownZero, LHSKnownOne;
+ CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
// If this is equivalent to an add, then we can fold it with the
// FrameIndex calculation.
- if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
- selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
- return;
- }
- }
-
- // OR with a 32-bit immediate can be handled by ori + oris
- // without creating an immediate in a GPR.
- uint64_t Imm64 = 0;
- bool IsPPC64 = PPCSubTarget->isPPC64();
- if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
- (Imm64 & ~0xFFFFFFFFuLL) == 0) {
- // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
- uint64_t ImmHi = Imm64 >> 16;
- uint64_t ImmLo = Imm64 & 0xFFFF;
- if (ImmHi != 0 && ImmLo != 0) {
- SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
- N->getOperand(0),
- getI16Imm(ImmLo, dl));
- SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
- CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
- return;
- }
+ if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
+ return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
}
// Other cases are autogenerated.
break;
}
- case ISD::XOR: {
- // XOR with a 32-bit immediate can be handled by xori + xoris
- // without creating an immediate in a GPR.
- uint64_t Imm64 = 0;
- bool IsPPC64 = PPCSubTarget->isPPC64();
- if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
- (Imm64 & ~0xFFFFFFFFuLL) == 0) {
- // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
- uint64_t ImmHi = Imm64 >> 16;
- uint64_t ImmLo = Imm64 & 0xFFFF;
- if (ImmHi != 0 && ImmLo != 0) {
- SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- N->getOperand(0),
- getI16Imm(ImmLo, dl));
- SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
- CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
- return;
- }
- }
-
- break;
- }
case ISD::ADD: {
- int16_t Imm;
+ short Imm;
if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
- isIntS16Immediate(N->getOperand(1), Imm)) {
- selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
- return;
- }
+ isIntS16Immediate(N->getOperand(1), Imm))
+ return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
break;
}
@@ -4721,8 +2687,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
// Other cases are autogenerated.
@@ -4735,8 +2700,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH, dl), getI32Imm(MB, dl),
getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
}
// Other cases are autogenerated.
@@ -4762,9 +2726,9 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
- CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
- SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
- return;
+ return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
+ CR0Reg, SRIdxVal,
+ SDValue(AndI.getNode(), 1) /* glue */);
}
case ISD::SELECT_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
@@ -4777,31 +2741,6 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
N->getOperand(0).getValueType() == MVT::i1)
break;
- if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) {
- bool NeedSwapOps = false;
- bool IsUnCmp = false;
- if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- if (NeedSwapOps)
- std::swap(LHS, RHS);
-
- // Make use of SelectCC to generate the comparison to set CR bits, for
- // equality comparisons having one literal operand, SelectCC probably
- // doesn't need to materialize the whole literal and just use xoris to
- // check it first, it leads the following comparison result can't
- // exactly represent GT/LT relationship. So to avoid this we specify
- // SETGT/SETUGT here instead of SETEQ.
- SDValue GenCC =
- SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
- CurDAG->SelectNodeTo(
- N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
- N->getValueType(0), GenCC);
- NumP9Setb++;
- return;
- }
- }
-
// Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
if (!isPPC64)
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
@@ -4814,9 +2753,9 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDNode *Tmp =
CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
N->getOperand(0), getI32Imm(~0U, dl));
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
- N->getOperand(0), SDValue(Tmp, 1));
- return;
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
+ SDValue(Tmp, 0), N->getOperand(0),
+ SDValue(Tmp, 1));
}
SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
@@ -4847,8 +2786,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
NotC, N->getOperand(3)), 0);
- CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
}
unsigned BROpc = getPredicateForSetCC(CC);
@@ -4858,24 +2796,16 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SelectCCOp = PPC::SELECT_CC_I4;
else if (N->getValueType(0) == MVT::i64)
SelectCCOp = PPC::SELECT_CC_I8;
- else if (N->getValueType(0) == MVT::f32) {
+ else if (N->getValueType(0) == MVT::f32)
if (PPCSubTarget->hasP8Vector())
SelectCCOp = PPC::SELECT_CC_VSSRC;
- else if (PPCSubTarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE4;
else
SelectCCOp = PPC::SELECT_CC_F4;
- } else if (N->getValueType(0) == MVT::f64) {
+ else if (N->getValueType(0) == MVT::f64)
if (PPCSubTarget->hasVSX())
SelectCCOp = PPC::SELECT_CC_VSFRC;
- else if (PPCSubTarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE;
else
SelectCCOp = PPC::SELECT_CC_F8;
- } else if (N->getValueType(0) == MVT::f128)
- SelectCCOp = PPC::SELECT_CC_F16;
- else if (PPCSubTarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE;
else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
SelectCCOp = PPC::SELECT_CC_QFRC;
else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
@@ -4890,9 +2820,15 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
getI32Imm(BROpc, dl) };
- CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
- return;
+ return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
}
+ case ISD::VSELECT:
+ if (PPCSubTarget->hasVSX()) {
+ SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
+ return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
+ }
+
+ break;
case ISD::VECTOR_SHUFFLE:
if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
N->getValueType(0) == MVT::v2i64)) {
@@ -4920,11 +2856,8 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
SDValue Chain = LD->getChain();
SDValue Ops[] = { Base, Offset, Chain };
- MachineMemOperand *MemOp = LD->getMemOperand();
- SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
- N->getValueType(0), Ops);
- CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
- return;
+ return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
+ N->getValueType(0), Ops);
}
}
@@ -4940,8 +2873,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
MVT::i32);
SDValue Ops[] = { Op1, Op2, DMV };
- CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
}
break;
@@ -4949,11 +2881,10 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case PPCISD::BDZ: {
bool IsPPC64 = PPCSubTarget->isPPC64();
SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
- CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
- ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
- : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
- MVT::Other, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
+ (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
+ (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
+ MVT::Other, Ops);
}
case PPCISD::COND_BRANCH: {
// Op #0 is the Chain.
@@ -4969,8 +2900,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue Pred = getI32Imm(PCC, dl);
SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
N->getOperand(0), N->getOperand(4) };
- CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
}
case ISD::BR_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
@@ -4989,21 +2919,11 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
}
- // A signed comparison of i1 values produces the opposite result to an
- // unsigned one if the condition code includes less-than or greater-than.
- // This is because 1 is the most negative signed i1 number and the most
- // positive unsigned i1 number. The CR-logical operations used for such
- // comparisons are non-commutative so for signed comparisons vs. unsigned
- // ones, the input operands just need to be swapped.
- if (ISD::isSignedIntSetCC(CC))
- Swap = !Swap;
-
SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
N->getOperand(Swap ? 3 : 2),
N->getOperand(Swap ? 2 : 3)), 0);
- CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
- N->getOperand(0));
- return;
+ return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
+ BitComp, N->getOperand(4), N->getOperand(0));
}
if (EnableBranchHint)
@@ -5012,8 +2932,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
N->getOperand(4), N->getOperand(0) };
- CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
- return;
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
}
case ISD::BRIND: {
// FIXME: Should custom lower this.
@@ -5023,19 +2942,15 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
Chain), 0);
- CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
- return;
+ return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
}
case PPCISD::TOC_ENTRY: {
assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
"Only supported for 64-bit ABI and 32-bit SVR4");
if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
SDValue GA = N->getOperand(0);
- SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
- N->getOperand(1));
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
+ return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
+ MVT::i32, GA, N->getOperand(1)));
}
// For medium and large code model, we generate two instructions as
@@ -5047,37 +2962,39 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
// The first source operand is a TargetGlobalAddress or a TargetJumpTable.
// If it must be toc-referenced according to PPCSubTarget, we generate:
- // LDtocL(@sym, ADDIStocHA(%x2, @sym))
+ // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
// Otherwise we generate:
- // ADDItocL(ADDIStocHA(%x2, @sym), @sym)
+ // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
SDValue GA = N->getOperand(0);
SDValue TOCbase = N->getOperand(1);
SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
TOCbase, GA);
- if (PPCLowering->isAccessedAsGotIndirect(GA)) {
- // If it is access as got-indirect, we need an extra LD to load
- // the address.
- SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
- SDValue(Tmp, 0));
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
+
+ if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
+ CModel == CodeModel::Large)
+ return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
+ MVT::i64, GA, SDValue(Tmp, 0)));
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
+ const GlobalValue *GV = G->getGlobal();
+ unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
+ if (GVFlags & PPCII::MO_NLP_FLAG) {
+ return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
+ MVT::i64, GA, SDValue(Tmp, 0)));
+ }
}
- // Build the address relative to the TOC-pointer..
- ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
- SDValue(Tmp, 0), GA));
- return;
+ return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
+ SDValue(Tmp, 0), GA);
}
- case PPCISD::PPC32_PICGOT:
+ case PPCISD::PPC32_PICGOT: {
// Generate a PIC-safe GOT reference.
assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
"PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
- CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
- PPCLowering->getPointerTy(CurDAG->getDataLayout()),
- MVT::i32);
- return;
-
+ return CurDAG->SelectNodeTo(
+ N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(CurDAG->getDataLayout()),
+ MVT::i32);
+ }
case PPCISD::VADD_SPLAT: {
// This expands into one of three sequences, depending on whether
// the first operand is odd or even, positive or negative.
@@ -5118,8 +3035,8 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDValue EltVal = getI32Imm(Elt >> 1, dl);
SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
SDValue TmpVal = SDValue(Tmp, 0);
- ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
- return;
+ return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
+
} else if (Elt > 0) {
// Elt is odd and positive, in the range [17,31].
//
@@ -5131,9 +3048,9 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
EltVal = getI32Imm(-16, dl);
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
- SDValue(Tmp2, 0)));
- return;
+ return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
+ SDValue(Tmp2, 0));
+
} else {
// Elt is odd and negative, in the range [-31,-17].
//
@@ -5145,14 +3062,13 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
EltVal = getI32Imm(-16, dl);
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
- SDValue(Tmp2, 0)));
- return;
+ return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
+ SDValue(Tmp2, 0));
}
}
}
- SelectCode(N);
+ return SelectCode(N);
}
// If the target supports the cmpb instruction, do the idiom recognition here.
@@ -5178,7 +3094,7 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue RHS, LHS;
- bool BytesFound[8] = {false, false, false, false, false, false, false, false};
+ bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint64_t Mask = 0, Alt = 0;
auto IsByteSelectCC = [this](SDValue O, unsigned &b,
@@ -5217,7 +3133,7 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
isa<ConstantSDNode>(Op0.getOperand(1))) {
- unsigned Bits = Op0.getValueSizeInBits();
+ unsigned Bits = Op0.getValueType().getSizeInBits();
if (b != Bits/8-1)
return false;
if (Op0.getConstantOperandVal(1) != Bits-8)
@@ -5245,9 +3161,9 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
// Now we need to make sure that the upper bytes are known to be
// zero.
- unsigned Bits = Op0.getValueSizeInBits();
- if (!CurDAG->MaskedValueIsZero(
- Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
+ unsigned Bits = Op0.getValueType().getSizeInBits();
+ if (!CurDAG->MaskedValueIsZero(Op0,
+ APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
return false;
LHS = Op0.getOperand(0);
@@ -5280,7 +3196,7 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
} else if (Op.getOpcode() == ISD::SRL) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
- unsigned Bits = Op.getValueSizeInBits();
+ unsigned Bits = Op.getValueType().getSizeInBits();
if (b != Bits/8-1)
return false;
if (Op.getConstantOperandVal(1) != Bits-8)
@@ -5415,13 +3331,11 @@ void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
O0.getNode(), O1.getNode());
};
- // FIXME: When the semantics of the interaction between select and undef
- // are clearly defined, it may turn out to be unnecessary to break here.
SDValue TrueRes = TryFold(ConstTrue);
- if (!TrueRes || TrueRes.isUndef())
+ if (!TrueRes)
break;
SDValue FalseRes = TryFold(ConstFalse);
- if (!FalseRes || FalseRes.isUndef())
+ if (!FalseRes)
break;
// For us to materialize these using one instruction, we must be able to
@@ -5441,7 +3355,8 @@ void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
}
void PPCDAGToDAGISel::PreprocessISelDAG() {
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
@@ -5461,11 +3376,11 @@ void PPCDAGToDAGISel::PreprocessISelDAG() {
foldBoolExts(Res, N);
if (Res) {
- LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(Res.getNode()->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(Res.getNode()->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
MadeChange = true;
@@ -5479,6 +3394,7 @@ void PPCDAGToDAGISel::PreprocessISelDAG() {
/// PostprocessISelDAG - Perform some late peephole optimizations
/// on the DAG representation.
void PPCDAGToDAGISel::PostprocessISelDAG() {
+
// Skip peepholes at -O0.
if (TM.getOptLevel() == CodeGenOpt::None)
return;
@@ -5494,6 +3410,10 @@ void PPCDAGToDAGISel::PostprocessISelDAG() {
// be folded with the isel so that we don't need to materialize a register
// containing zero.
bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
+ // If we're not using isel, then this does not matter.
+ if (!PPCSubTarget->hasISEL())
+ return false;
+
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
@@ -5542,13 +3462,13 @@ void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
User->getOperand(2),
User->getOperand(1));
- LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
- LLVM_DEBUG(User->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(ResNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
+ DEBUG(User->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
- ReplaceUses(User, ResNode);
+ ReplaceUses(User, ResNode);
}
}
@@ -5588,8 +3508,7 @@ void PPCDAGToDAGISel::PeepholeCROps() {
Op.getOperand(0) == Op.getOperand(1))
Op2Not = true;
}
- LLVM_FALLTHROUGH;
- }
+ } // fallthrough
case PPC::BC:
case PPC::BCn:
case PPC::SELECT_I4:
@@ -5599,8 +3518,6 @@ void PPCDAGToDAGISel::PeepholeCROps() {
case PPC::SELECT_QFRC:
case PPC::SELECT_QSRC:
case PPC::SELECT_QBRC:
- case PPC::SELECT_SPE:
- case PPC::SELECT_SPE4:
case PPC::SELECT_VRRC:
case PPC::SELECT_VSFRC:
case PPC::SELECT_VSSRC:
@@ -5648,12 +3565,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CRNAND:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5687,12 +3603,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(1).
getOperand(0),
MachineNode->getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CROR:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5720,12 +3635,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CRXOR:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5760,12 +3674,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CRNOR:
if (Op1Set || Op2Set)
@@ -5794,12 +3707,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(1).
getOperand(0),
MachineNode->getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CREQV:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5834,12 +3746,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
+ MachineNode->getOperand(1)),
SelectSwap = true;
- }
break;
case PPC::CRANDC:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5870,12 +3781,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0));
+ MachineNode->getOperand(0)),
SelectSwap = true;
- }
break;
case PPC::CRORC:
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
@@ -5906,12 +3816,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
MVT::i1, MachineNode->getOperand(0),
MachineNode->getOperand(1).
getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
+ else if (AllUsersSelectZero(MachineNode))
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0));
+ MachineNode->getOperand(0)),
SelectSwap = true;
- }
break;
case PPC::SELECT_I4:
case PPC::SELECT_I8:
@@ -5920,8 +3829,6 @@ void PPCDAGToDAGISel::PeepholeCROps() {
case PPC::SELECT_QFRC:
case PPC::SELECT_QSRC:
case PPC::SELECT_QBRC:
- case PPC::SELECT_SPE:
- case PPC::SELECT_SPE4:
case PPC::SELECT_VRRC:
case PPC::SELECT_VSFRC:
case PPC::SELECT_VSSRC:
@@ -5960,11 +3867,11 @@ void PPCDAGToDAGISel::PeepholeCROps() {
SwapAllSelectUsers(MachineNode);
if (ResNode != MachineNode) {
- LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
- LLVM_DEBUG(MachineNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(ResNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
+ DEBUG(MachineNode->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(ResNode->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
ReplaceUses(MachineNode, ResNode);
IsModified = true;
@@ -6020,9 +3927,8 @@ static bool PeepholePPC64ZExtGather(SDValue Op32,
return true;
}
- // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
- if (Op32.getMachineOpcode() == PPC::CNTLZW ||
- Op32.getMachineOpcode() == PPC::CNTTZW) {
+ // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
+ if (Op32.getMachineOpcode() == PPC::CNTLZW) {
ToPromote.insert(Op32.getNode());
return true;
}
@@ -6133,7 +4039,8 @@ void PPCDAGToDAGISel::PeepholePPC64ZExt() {
// unnecessary. When that happens, we remove it here, and redefine the
// relevant 32-bit operation to be a 64-bit operation.
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
@@ -6216,7 +4123,6 @@ void PPCDAGToDAGISel::PeepholePPC64ZExt() {
case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
- case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
case PPC::OR: NewOpcode = PPC::OR8; break;
case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
@@ -6258,25 +4164,25 @@ void PPCDAGToDAGISel::PeepholePPC64ZExt() {
else
NewVTs.push_back(VTs.VTs[i]);
- LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
- LLVM_DEBUG(PN->dump(CurDAG));
+ DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
+ DEBUG(PN->dump(CurDAG));
CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(PN->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(PN->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
}
// Now we replace the original zero extend and its associated INSERT_SUBREG
// with the value feeding the INSERT_SUBREG (which has now been promoted to
// return an i64).
- LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\nNew: ");
+ DEBUG(Op32.getNode()->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
ReplaceUses(N, Op32.getNode());
}
@@ -6290,7 +4196,8 @@ void PPCDAGToDAGISel::PeepholePPC64() {
if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
return;
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
+ SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
+ ++Position;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
@@ -6300,37 +4207,28 @@ void PPCDAGToDAGISel::PeepholePPC64() {
unsigned FirstOp;
unsigned StorageOpcode = N->getMachineOpcode();
- bool RequiresMod4Offset = false;
switch (StorageOpcode) {
default: continue;
- case PPC::LWA:
- case PPC::LD:
- case PPC::DFLOADf64:
- case PPC::DFLOADf32:
- RequiresMod4Offset = true;
- LLVM_FALLTHROUGH;
case PPC::LBZ:
case PPC::LBZ8:
+ case PPC::LD:
case PPC::LFD:
case PPC::LFS:
case PPC::LHA:
case PPC::LHA8:
case PPC::LHZ:
case PPC::LHZ8:
+ case PPC::LWA:
case PPC::LWZ:
case PPC::LWZ8:
FirstOp = 0;
break;
- case PPC::STD:
- case PPC::DFSTOREf64:
- case PPC::DFSTOREf32:
- RequiresMod4Offset = true;
- LLVM_FALLTHROUGH;
case PPC::STB:
case PPC::STB8:
+ case PPC::STD:
case PPC::STFD:
case PPC::STFS:
case PPC::STH:
@@ -6352,6 +4250,13 @@ void PPCDAGToDAGISel::PeepholePPC64() {
if (!Base.isMachineOpcode())
continue;
+ // On targets with fusion, we don't want this to fire and remove a fusion
+ // opportunity, unless a) it results in another fusion opportunity or
+ // b) optimizing for size.
+ if (PPCSubTarget->hasFusion() &&
+ (!MF->getFunction()->optForSize() && !Base.hasOneUse()))
+ continue;
+
unsigned Flags = 0;
bool ReplaceFlags = true;
@@ -6377,7 +4282,9 @@ void PPCDAGToDAGISel::PeepholePPC64() {
// For these cases, the immediate may not be divisible by 4, in
// which case the fold is illegal for DS-form instructions. (The
// other cases provide aligned addresses and are always safe.)
- if (RequiresMod4Offset &&
+ if ((StorageOpcode == PPC::LWA ||
+ StorageOpcode == PPC::LD ||
+ StorageOpcode == PPC::STD) &&
(!isa<ConstantSDNode>(Base.getOperand(1)) ||
Base.getConstantOperandVal(1) % 4 != 0))
continue;
@@ -6394,73 +4301,25 @@ void PPCDAGToDAGISel::PeepholePPC64() {
}
SDValue ImmOpnd = Base.getOperand(1);
-
- // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
- // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
- // we might have needed different @ha relocation values for the offset
- // pointers).
- int MaxDisplacement = 7;
+ int MaxDisplacement = 0;
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
const GlobalValue *GV = GA->getGlobal();
- MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
+ MaxDisplacement = GV->getAlignment() - 1;
}
- bool UpdateHBase = false;
- SDValue HBase = Base.getOperand(0);
-
int Offset = N->getConstantOperandVal(FirstOp);
- if (ReplaceFlags) {
- if (Offset < 0 || Offset > MaxDisplacement) {
- // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
- // one use, then we can do this for any offset, we just need to also
- // update the offset (i.e. the symbol addend) on the addis also.
- if (Base.getMachineOpcode() != PPC::ADDItocL)
- continue;
-
- if (!HBase.isMachineOpcode() ||
- HBase.getMachineOpcode() != PPC::ADDIStocHA)
- continue;
-
- if (!Base.hasOneUse() || !HBase.hasOneUse())
- continue;
-
- SDValue HImmOpnd = HBase.getOperand(1);
- if (HImmOpnd != ImmOpnd)
- continue;
-
- UpdateHBase = true;
- }
- } else {
- // If we're directly folding the addend from an addi instruction, then:
- // 1. In general, the offset on the memory access must be zero.
- // 2. If the addend is a constant, then it can be combined with a
- // non-zero offset, but only if the result meets the encoding
- // requirements.
- if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
- Offset += C->getSExtValue();
-
- if (RequiresMod4Offset && (Offset % 4) != 0)
- continue;
-
- if (!isInt<16>(Offset))
- continue;
-
- ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
- ImmOpnd.getValueType());
- } else if (Offset != 0) {
- continue;
- }
- }
+ if (Offset < 0 || Offset > MaxDisplacement)
+ continue;
// We found an opportunity. Reverse the operands from the add
// immediate and substitute them into the load or store. If
// needed, update the target flags for the immediate operand to
// reflect the necessary relocation information.
- LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
- LLVM_DEBUG(Base->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nN: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
+ DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
+ DEBUG(Base->dump(CurDAG));
+ DEBUG(dbgs() << "\nN: ");
+ DEBUG(N->dump(CurDAG));
+ DEBUG(dbgs() << "\n");
// If the relocation information isn't already present on the
// immediate operand, add it now.
@@ -6471,8 +4330,9 @@ void PPCDAGToDAGISel::PeepholePPC64() {
// We can't perform this optimization for data whose alignment
// is insufficient for the instruction encoding.
if (GV->getAlignment() < 4 &&
- (RequiresMod4Offset || (Offset % 4) != 0)) {
- LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
+ (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
+ StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
+ DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
continue;
}
ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
@@ -6492,20 +4352,28 @@ void PPCDAGToDAGISel::PeepholePPC64() {
(void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
N->getOperand(2));
- if (UpdateHBase)
- (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
- ImmOpnd);
-
// The add-immediate may now be dead, in which case remove it.
if (Base.getNode()->use_empty())
CurDAG->RemoveDeadNode(Base.getNode());
}
}
+
/// createPPCISelDag - This pass converts a legalized DAG into a
/// PowerPC-specific DAG, ready for instruction scheduling.
///
-FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
- CodeGenOpt::Level OptLevel) {
- return new PPCDAGToDAGISel(TM, OptLevel);
+FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
+ return new PPCDAGToDAGISel(TM);
+}
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
+ PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
+ nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce);
}
+
diff --git a/gnu/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp b/gnu/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
index e731c0bc0c2..44a692d4bb4 100644
--- a/gnu/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
+++ b/gnu/llvm/lib/Target/PowerPC/PPCMCInstLower.cpp
@@ -12,21 +12,21 @@
//
//===----------------------------------------------------------------------===//
-#include "MCTargetDesc/PPCMCExpr.h"
#include "PPC.h"
+#include "MCTargetDesc/PPCMCExpr.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
-#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
@@ -34,39 +34,71 @@ static MachineModuleInfoMachO &getMachOMMI(AsmPrinter &AP) {
return AP.MMI->getObjFileInfo<MachineModuleInfoMachO>();
}
-static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO,
- AsmPrinter &AP) {
+
+static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO, AsmPrinter &AP){
const TargetMachine &TM = AP.TM;
- Mangler &Mang = TM.getObjFileLowering()->getMangler();
+ Mangler *Mang = AP.Mang;
const DataLayout &DL = AP.getDataLayout();
MCContext &Ctx = AP.OutContext;
+ bool isDarwin = TM.getTargetTriple().isOSDarwin();
SmallString<128> Name;
StringRef Suffix;
- if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG)
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB) {
+ if (isDarwin)
+ Suffix = "$stub";
+ } else if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG)
Suffix = "$non_lazy_ptr";
if (!Suffix.empty())
Name += DL.getPrivateGlobalPrefix();
+ unsigned PrefixLen = Name.size();
+
if (!MO.isGlobal()) {
assert(MO.isSymbol() && "Isn't a symbol reference");
Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
} else {
const GlobalValue *GV = MO.getGlobal();
- TM.getNameWithPrefix(Name, GV, Mang);
+ TM.getNameWithPrefix(Name, GV, *Mang);
}
+ unsigned OrigLen = Name.size() - PrefixLen;
+
Name += Suffix;
MCSymbol *Sym = Ctx.getOrCreateSymbol(Name);
+ StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
+
+ // If the target flags on the operand changes the name of the symbol, do that
+ // before we return the symbol.
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB && isDarwin) {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI(AP).getFnStubEntry(Sym);
+ if (StubSym.getPointer())
+ return Sym;
+
+ if (MO.isGlobal()) {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AP.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ } else {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(Ctx.getOrCreateSymbol(OrigName), false);
+ }
+ return Sym;
+ }
// If the symbol reference is actually to a non_lazy_ptr, not to the symbol,
// then add the suffix.
if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG) {
MachineModuleInfoMachO &MachO = getMachOMMI(AP);
-
- MachineModuleInfoImpl::StubValueTy &StubSym = MachO.getGVStubEntry(Sym);
-
+
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ (MO.getTargetFlags() & PPCII::MO_NLP_HIDDEN_FLAG) ?
+ MachO.getHiddenGVStubEntry(Sym) : MachO.getGVStubEntry(Sym);
+
if (!StubSym.getPointer()) {
assert(MO.isGlobal() && "Extern symbol not handled yet");
StubSym = MachineModuleInfoImpl::
@@ -75,7 +107,7 @@ static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO,
}
return Sym;
}
-
+
return Sym;
}
@@ -107,20 +139,10 @@ static MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol,
break;
}
- if (MO.getTargetFlags() == PPCII::MO_PLT)
+ if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB && !isDarwin)
RefKind = MCSymbolRefExpr::VK_PLT;
- const MachineFunction *MF = MO.getParent()->getParent()->getParent();
- const PPCSubtarget *Subtarget = &(MF->getSubtarget<PPCSubtarget>());
- const TargetMachine &TM = Printer.TM;
const MCExpr *Expr = MCSymbolRefExpr::create(Symbol, RefKind, Ctx);
- // -msecure-plt option works only in PIC mode. If secure plt mode
- // is on add 32768 to symbol.
- if (Subtarget->isSecurePlt() && TM.isPositionIndependent() &&
- MO.getTargetFlags() == PPCII::MO_PLT)
- Expr = MCBinaryExpr::createAdd(Expr,
- MCConstantExpr::create(32768, Ctx),
- Ctx);
if (!MO.isJTI() && MO.getOffset())
Expr = MCBinaryExpr::createAdd(Expr,
@@ -130,7 +152,7 @@ static MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol,
// Subtract off the PIC base if required.
if (MO.getTargetFlags() & PPCII::MO_PIC_FLAG) {
const MachineFunction *MF = MO.getParent()->getParent()->getParent();
-
+
const MCExpr *PB = MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
Expr = MCBinaryExpr::createSub(Expr, PB, Ctx);
}
@@ -151,50 +173,47 @@ static MCOperand GetSymbolRef(const MachineOperand &MO, const MCSymbol *Symbol,
void llvm::LowerPPCMachineInstrToMCInst(const MachineInstr *MI, MCInst &OutMI,
AsmPrinter &AP, bool isDarwin) {
OutMI.setOpcode(MI->getOpcode());
-
+
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
MCOperand MCOp;
- if (LowerPPCMachineOperandToMCOperand(MI->getOperand(i), MCOp, AP,
- isDarwin))
- OutMI.addOperand(MCOp);
- }
-}
-
-bool llvm::LowerPPCMachineOperandToMCOperand(const MachineOperand &MO,
- MCOperand &OutMO, AsmPrinter &AP,
- bool isDarwin) {
- switch (MO.getType()) {
- default:
- llvm_unreachable("unknown operand type");
- case MachineOperand::MO_Register:
- assert(!MO.getSubReg() && "Subregs should be eliminated!");
- assert(MO.getReg() > PPC::NoRegister &&
- MO.getReg() < PPC::NUM_TARGET_REGS &&
- "Invalid register for this target!");
- OutMO = MCOperand::createReg(MO.getReg());
- return true;
- case MachineOperand::MO_Immediate:
- OutMO = MCOperand::createImm(MO.getImm());
- return true;
- case MachineOperand::MO_MachineBasicBlock:
- OutMO = MCOperand::createExpr(
- MCSymbolRefExpr::create(MO.getMBB()->getSymbol(), AP.OutContext));
- return true;
- case MachineOperand::MO_GlobalAddress:
- case MachineOperand::MO_ExternalSymbol:
- OutMO = GetSymbolRef(MO, GetSymbolFromOperand(MO, AP), AP, isDarwin);
- return true;
- case MachineOperand::MO_JumpTableIndex:
- OutMO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP, isDarwin);
- return true;
- case MachineOperand::MO_ConstantPoolIndex:
- OutMO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP, isDarwin);
- return true;
- case MachineOperand::MO_BlockAddress:
- OutMO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()), AP,
- isDarwin);
- return true;
- case MachineOperand::MO_RegisterMask:
- return false;
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ assert(!MO.getSubReg() && "Subregs should be eliminated!");
+ assert(MO.getReg() > PPC::NoRegister &&
+ MO.getReg() < PPC::NUM_TARGET_REGS &&
+ "Invalid register for this target!");
+ MCOp = MCOperand::createReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::createImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
+ MO.getMBB()->getSymbol(), AP.OutContext));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = GetSymbolRef(MO, GetSymbolFromOperand(MO, AP), AP, isDarwin);
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP, isDarwin);
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP, isDarwin);
+ break;
+ case MachineOperand::MO_BlockAddress:
+ MCOp = GetSymbolRef(MO,AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP,
+ isDarwin);
+ break;
+ case MachineOperand::MO_RegisterMask:
+ continue;
+ }
+
+ OutMI.addOperand(MCOp);
}
}