diff options
author | Theo Buehler <tb@cvs.openbsd.org> | 2018-07-16 17:32:40 +0000 |
---|---|---|
committer | Theo Buehler <tb@cvs.openbsd.org> | 2018-07-16 17:32:40 +0000 |
commit | 70e51c85b3041f1f6ad99ad1436bb47bcf27295b (patch) | |
tree | a53283c3d9e20253c0a2af75cde1f0c5295e9459 /lib/libcrypto/ec/ecp_smpl.c | |
parent | 59a1d24b00b3cdac9c10197495d901b8d5b49fa5 (diff) |
Recommit Billy Brumley's ECC constant time patch with a fix for sparc64
from Nicola Tuveri (who spotted the omission of ecp_nist.c from the PR).
discussed with jsing
tested by jsg
Diffstat (limited to 'lib/libcrypto/ec/ecp_smpl.c')
-rw-r--r-- | lib/libcrypto/ec/ecp_smpl.c | 250 |
1 files changed, 249 insertions, 1 deletions
diff --git a/lib/libcrypto/ec/ecp_smpl.c b/lib/libcrypto/ec/ecp_smpl.c index eabad4bd864..a25fd1df846 100644 --- a/lib/libcrypto/ec/ecp_smpl.c +++ b/lib/libcrypto/ec/ecp_smpl.c @@ -1,4 +1,4 @@ -/* $OpenBSD: ecp_smpl.c,v 1.21 2018/07/15 16:27:39 tb Exp $ */ +/* $OpenBSD: ecp_smpl.c,v 1.22 2018/07/16 17:32:39 tb Exp $ */ /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> * for the OpenSSL project. * Includes code written by Bodo Moeller for the OpenSSL project. @@ -103,6 +103,9 @@ EC_GFp_simple_method(void) .point_cmp = ec_GFp_simple_cmp, .make_affine = ec_GFp_simple_make_affine, .points_make_affine = ec_GFp_simple_points_make_affine, + .mul_generator_ct = ec_GFp_simple_mul_generator_ct, + .mul_single_ct = ec_GFp_simple_mul_single_ct, + .mul_double_nonct = ec_GFp_simple_mul_double_nonct, .field_mul = ec_GFp_simple_field_mul, .field_sqr = ec_GFp_simple_field_sqr }; @@ -1409,3 +1412,248 @@ ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN { return BN_mod_sqr(r, a, &group->field, ctx); } + +#define EC_POINT_BN_set_flags(P, flags) do { \ + BN_set_flags(&(P)->X, (flags)); \ + BN_set_flags(&(P)->Y, (flags)); \ + BN_set_flags(&(P)->Z, (flags)); \ +} while(0) + +#define EC_POINT_CSWAP(c, a, b, w, t) do { \ + if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ + !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ + !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ + goto err; \ + t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ + (a)->Z_is_one ^= (t); \ + (b)->Z_is_one ^= (t); \ +} while(0) + +/* + * This function computes (in constant time) a point multiplication over the + * EC group. + * + * At a high level, it is Montgomery ladder with conditional swaps. + * + * It performs either a fixed point multiplication + * (scalar * generator) + * when point is NULL, or a variable point multiplication + * (scalar * point) + * when point is not NULL. + * + * scalar should be in the range [0,n) otherwise all constant time bets are off. + * + * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, + * which of course are not constant time themselves. + * + * The product is stored in r. + * + * Returns 1 on success, 0 otherwise. + */ +static int +ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, + const EC_POINT *point, BN_CTX *ctx) +{ + int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; + EC_POINT *s = NULL; + BIGNUM *k = NULL; + BIGNUM *lambda = NULL; + BIGNUM *cardinality = NULL; + BN_CTX *new_ctx = NULL; + int ret = 0; + + if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) + return 0; + + BN_CTX_start(ctx); + + if ((s = EC_POINT_new(group)) == NULL) + goto err; + + if (point == NULL) { + if (!EC_POINT_copy(s, group->generator)) + goto err; + } else { + if (!EC_POINT_copy(s, point)) + goto err; + } + + EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); + + if ((cardinality = BN_CTX_get(ctx)) == NULL) + goto err; + if ((lambda = BN_CTX_get(ctx)) == NULL) + goto err; + if ((k = BN_CTX_get(ctx)) == NULL) + goto err; + if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) + goto err; + + /* + * Group cardinalities are often on a word boundary. + * So when we pad the scalar, some timing diff might + * pop if it needs to be expanded due to carries. + * So expand ahead of time. + */ + cardinality_bits = BN_num_bits(cardinality); + group_top = cardinality->top; + if ((bn_wexpand(k, group_top + 1) == NULL) || + (bn_wexpand(lambda, group_top + 1) == NULL)) + goto err; + + if (!BN_copy(k, scalar)) + goto err; + + BN_set_flags(k, BN_FLG_CONSTTIME); + + if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { + /* + * This is an unusual input, and we don't guarantee + * constant-timeness + */ + if (!BN_nnmod(k, k, cardinality, ctx)) + goto err; + } + + if (!BN_add(lambda, k, cardinality)) + goto err; + BN_set_flags(lambda, BN_FLG_CONSTTIME); + if (!BN_add(k, lambda, cardinality)) + goto err; + /* + * lambda := scalar + cardinality + * k := scalar + 2*cardinality + */ + kbit = BN_is_bit_set(lambda, cardinality_bits); + if (!BN_swap_ct(kbit, k, lambda, group_top + 1)) + goto err; + + group_top = group->field.top; + if ((bn_wexpand(&s->X, group_top) == NULL) || + (bn_wexpand(&s->Y, group_top) == NULL) || + (bn_wexpand(&s->Z, group_top) == NULL) || + (bn_wexpand(&r->X, group_top) == NULL) || + (bn_wexpand(&r->Y, group_top) == NULL) || + (bn_wexpand(&r->Z, group_top) == NULL)) + goto err; + + /* top bit is a 1, in a fixed pos */ + if (!EC_POINT_copy(r, s)) + goto err; + + EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); + + if (!EC_POINT_dbl(group, s, s, ctx)) + goto err; + + pbit = 0; + + /* + * The ladder step, with branches, is + * + * k[i] == 0: S = add(R, S), R = dbl(R) + * k[i] == 1: R = add(S, R), S = dbl(S) + * + * Swapping R, S conditionally on k[i] leaves you with state + * + * k[i] == 0: T, U = R, S + * k[i] == 1: T, U = S, R + * + * Then perform the ECC ops. + * + * U = add(T, U) + * T = dbl(T) + * + * Which leaves you with state + * + * k[i] == 0: U = add(R, S), T = dbl(R) + * k[i] == 1: U = add(S, R), T = dbl(S) + * + * Swapping T, U conditionally on k[i] leaves you with state + * + * k[i] == 0: R, S = T, U + * k[i] == 1: R, S = U, T + * + * Which leaves you with state + * + * k[i] == 0: S = add(R, S), R = dbl(R) + * k[i] == 1: R = add(S, R), S = dbl(S) + * + * So we get the same logic, but instead of a branch it's a + * conditional swap, followed by ECC ops, then another conditional swap. + * + * Optimization: The end of iteration i and start of i-1 looks like + * + * ... + * CSWAP(k[i], R, S) + * ECC + * CSWAP(k[i], R, S) + * (next iteration) + * CSWAP(k[i-1], R, S) + * ECC + * CSWAP(k[i-1], R, S) + * ... + * + * So instead of two contiguous swaps, you can merge the condition + * bits and do a single swap. + * + * k[i] k[i-1] Outcome + * 0 0 No Swap + * 0 1 Swap + * 1 0 Swap + * 1 1 No Swap + * + * This is XOR. pbit tracks the previous bit of k. + */ + + for (i = cardinality_bits - 1; i >= 0; i--) { + kbit = BN_is_bit_set(k, i) ^ pbit; + EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); + if (!EC_POINT_add(group, s, r, s, ctx)) + goto err; + if (!EC_POINT_dbl(group, r, r, ctx)) + goto err; + /* + * pbit logic merges this cswap with that of the + * next iteration + */ + pbit ^= kbit; + } + /* one final cswap to move the right value into r */ + EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); + + ret = 1; + + err: + EC_POINT_free(s); + if (ctx != NULL) + BN_CTX_end(ctx); + BN_CTX_free(new_ctx); + + return ret; +} + +#undef EC_POINT_BN_set_flags +#undef EC_POINT_CSWAP + +int +ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *scalar, BN_CTX *ctx) +{ + return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); +} + +int +ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) +{ + return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); +} + +int +ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, + const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, + BN_CTX *ctx) +{ + return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); +} |