summaryrefslogtreecommitdiff
path: root/sys/arch/hp300/include/vmparam.h
diff options
context:
space:
mode:
authorTheo de Raadt <deraadt@cvs.openbsd.org>1995-10-18 08:53:40 +0000
committerTheo de Raadt <deraadt@cvs.openbsd.org>1995-10-18 08:53:40 +0000
commitd6583bb2a13f329cf0332ef2570eb8bb8fc0e39c (patch)
treeece253b876159b39c620e62b6c9b1174642e070e /sys/arch/hp300/include/vmparam.h
initial import of NetBSD tree
Diffstat (limited to 'sys/arch/hp300/include/vmparam.h')
-rw-r--r--sys/arch/hp300/include/vmparam.h249
1 files changed, 249 insertions, 0 deletions
diff --git a/sys/arch/hp300/include/vmparam.h b/sys/arch/hp300/include/vmparam.h
new file mode 100644
index 00000000000..85f9bf25311
--- /dev/null
+++ b/sys/arch/hp300/include/vmparam.h
@@ -0,0 +1,249 @@
+/* $NetBSD: vmparam.h,v 1.7 1994/10/26 07:26:52 cgd Exp $ */
+
+/*
+ * Copyright (c) 1988 University of Utah.
+ * Copyright (c) 1982, 1986, 1990, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * the Systems Programming Group of the University of Utah Computer
+ * Science Department.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * from: Utah $Hdr: vmparam.h 1.16 91/01/18$
+ *
+ * @(#)vmparam.h 8.2 (Berkeley) 4/19/94
+ */
+
+/*
+ * Machine dependent constants for HP300
+ */
+/*
+ * USRTEXT is the start of the user text/data space, while USRSTACK
+ * is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
+ * the number of pages from the beginning of the P0 region to the
+ * beginning of the text and from the beginning of the P1 region to the
+ * beginning of the stack respectively.
+ *
+ * NOTE: the ONLY reason that HIGHPAGES is 0x100 instead of UPAGES (3)
+ * is for HPUX compatibility. Why?? Because HPUX's debuggers
+ * have the user's stack hard-wired at FFF00000 for post-mortems,
+ * and we must be compatible...
+ */
+#define USRTEXT NBPG
+#define USRSTACK (-HIGHPAGES*NBPG) /* Start of user stack */
+#define BTOPUSRSTACK (0x100000-HIGHPAGES) /* btop(USRSTACK) */
+#define P1PAGES 0x100000
+#define LOWPAGES 0
+#define HIGHPAGES (0x100000/NBPG)
+
+/*
+ * Virtual memory related constants, all in bytes
+ */
+#ifndef MAXTSIZ
+#define MAXTSIZ (8*1024*1024) /* max text size */
+#endif
+#ifndef DFLDSIZ
+#define DFLDSIZ (16*1024*1024) /* initial data size limit */
+#endif
+#ifndef MAXDSIZ
+#define MAXDSIZ (64*1024*1024) /* max data size */
+#endif
+#ifndef DFLSSIZ
+#define DFLSSIZ (512*1024) /* initial stack size limit */
+#endif
+#ifndef MAXSSIZ
+#define MAXSSIZ MAXDSIZ /* max stack size */
+#endif
+
+/*
+ * Default sizes of swap allocation chunks (see dmap.h).
+ * The actual values may be changed in vminit() based on MAXDSIZ.
+ * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024.
+ * DMMIN should be at least ctod(1) so that vtod() works.
+ * vminit() insures this.
+ */
+#define DMMIN 32 /* smallest swap allocation */
+#define DMMAX 4096 /* largest potential swap allocation */
+
+/*
+ * Sizes of the system and user portions of the system page table.
+ */
+/* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
+#define SYSPTSIZE (2 * NPTEPG) /* 8mb */
+#define USRPTSIZE (1 * NPTEPG) /* 4mb */
+
+/*
+ * PTEs for mapping user space into the kernel for phyio operations.
+ * One page is enough to handle 4Mb of simultaneous raw IO operations.
+ */
+#ifndef USRIOSIZE
+#define USRIOSIZE (1 * NPTEPG) /* 4mb */
+#endif
+
+/*
+ * PTEs for system V style shared memory.
+ * This is basically slop for kmempt which we actually allocate (malloc) from.
+ */
+#ifndef SHMMAXPGS
+#define SHMMAXPGS 1024 /* 4mb */
+#endif
+
+/*
+ * External IO space map size.
+ * By default we make it large enough to map up to 3 DIO-II devices and
+ * the complete DIO space. For a 320-only configuration (which has no
+ * DIO-II) you could define a considerably smaller region.
+ */
+#ifndef EIOMAPSIZE
+#define EIOMAPSIZE 3584 /* 14mb */
+#endif
+
+/*
+ * Boundary at which to place first MAPMEM segment if not explicitly
+ * specified. Should be a power of two. This allows some slop for
+ * the data segment to grow underneath the first mapped segment.
+ */
+#define MMSEG 0x200000
+
+/*
+ * The size of the clock loop.
+ */
+#define LOOPPAGES (maxfree - firstfree)
+
+/*
+ * The time for a process to be blocked before being very swappable.
+ * This is a number of seconds which the system takes as being a non-trivial
+ * amount of real time. You probably shouldn't change this;
+ * it is used in subtle ways (fractions and multiples of it are, that is, like
+ * half of a ``long time'', almost a long time, etc.)
+ * It is related to human patience and other factors which don't really
+ * change over time.
+ */
+#define MAXSLP 20
+
+/*
+ * A swapped in process is given a small amount of core without being bothered
+ * by the page replacement algorithm. Basically this says that if you are
+ * swapped in you deserve some resources. We protect the last SAFERSS
+ * pages against paging and will just swap you out rather than paging you.
+ * Note that each process has at least UPAGES+CLSIZE pages which are not
+ * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
+ * number just means a swapped in process is given around 25k bytes.
+ * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
+ * so we loan each swapped in process memory worth 100$, or just admit
+ * that we don't consider it worthwhile and swap it out to disk which costs
+ * $30/mb or about $0.75.
+ */
+#define SAFERSS 4 /* nominal ``small'' resident set size
+ protected against replacement */
+
+/*
+ * DISKRPM is used to estimate the number of paging i/o operations
+ * which one can expect from a single disk controller.
+ */
+#define DISKRPM 60
+
+/*
+ * Klustering constants. Klustering is the gathering
+ * of pages together for pagein/pageout, while clustering
+ * is the treatment of hardware page size as though it were
+ * larger than it really is.
+ *
+ * KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
+ * units. Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
+ * ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
+ * unless you like "big push" panics.
+ */
+
+#define KLMAX (4/CLSIZE)
+#define KLSEQL (2/CLSIZE) /* in klust if vadvise(VA_SEQL) */
+#define KLIN (4/CLSIZE) /* default data/stack in klust */
+#define KLTXT (4/CLSIZE) /* default text in klust */
+#define KLOUT (4/CLSIZE)
+
+/*
+ * KLSDIST is the advance or retard of the fifo reclaim for sequential
+ * processes data space.
+ */
+#define KLSDIST 3 /* klusters advance/retard for seq. fifo */
+
+/*
+ * Paging thresholds (see vm_sched.c).
+ * Strategy of 1/19/85:
+ * lotsfree is 512k bytes, but at most 1/4 of memory
+ * desfree is 200k bytes, but at most 1/8 of memory
+ */
+#define LOTSFREE (512 * 1024)
+#define LOTSFREEFRACT 4
+#define DESFREE (200 * 1024)
+#define DESFREEFRACT 8
+
+/*
+ * There are two clock hands, initially separated by HANDSPREAD bytes
+ * (but at most all of user memory). The amount of time to reclaim
+ * a page once the pageout process examines it increases with this
+ * distance and decreases as the scan rate rises.
+ */
+#define HANDSPREAD (2 * 1024 * 1024)
+
+/*
+ * The number of times per second to recompute the desired paging rate
+ * and poke the pagedaemon.
+ */
+#define RATETOSCHEDPAGING 4
+
+/*
+ * Believed threshold (in megabytes) for which interleaved
+ * swapping area is desirable.
+ */
+#define LOTSOFMEM 2
+
+/*
+ * Mach derived constants
+ */
+
+/* user/kernel map constants */
+#define VM_MIN_ADDRESS ((vm_offset_t)0)
+#define VM_MAXUSER_ADDRESS ((vm_offset_t)0xFFF00000)
+#define VM_MAX_ADDRESS ((vm_offset_t)0xFFF00000)
+#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0)
+#define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)0xFFFFF000)
+
+/* virtual sizes (bytes) for various kernel submaps */
+#define VM_MBUF_SIZE (NMBCLUSTERS*MCLBYTES)
+#define VM_KMEM_SIZE (NKMEMCLUSTERS*CLBYTES)
+#define VM_PHYS_SIZE (USRIOSIZE*CLBYTES)
+
+/* # of kernel PT pages (initial only, can grow dynamically) */
+#define VM_KERNEL_PT_PAGES ((vm_size_t)2) /* XXX: SYSPTSIZE */
+
+/* pcb base */
+#define pcbb(p) ((u_int)(p)->p_addr)