diff options
author | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
---|---|---|
committer | Theo de Raadt <deraadt@cvs.openbsd.org> | 1995-10-18 08:53:40 +0000 |
commit | d6583bb2a13f329cf0332ef2570eb8bb8fc0e39c (patch) | |
tree | ece253b876159b39c620e62b6c9b1174642e070e /sys/arch/pc532/stand/inflate.c |
initial import of NetBSD tree
Diffstat (limited to 'sys/arch/pc532/stand/inflate.c')
-rw-r--r-- | sys/arch/pc532/stand/inflate.c | 1433 |
1 files changed, 1433 insertions, 0 deletions
diff --git a/sys/arch/pc532/stand/inflate.c b/sys/arch/pc532/stand/inflate.c new file mode 100644 index 00000000000..3ebe08c086a --- /dev/null +++ b/sys/arch/pc532/stand/inflate.c @@ -0,0 +1,1433 @@ +/* + * Copyright (c) 1995 Matthias Pfaller. + * + * Most of this code is from the unzip512 distribution and was put + * in the public domain by Mark Adler 1994. + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Matthias Pfaller. + * 4. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * $Id: inflate.c,v 1.1 1995/10/18 08:51:23 deraadt Exp $ + */ + +#include <sys/param.h> +#include <sys/reboot.h> +#include <a.out.h> +#include "stand.h" +#include "samachdep.h" + +#ifndef EOF +#define EOF -1 +#endif +typedef unsigned char uch; /* code assumes unsigned bytes; these type- */ +typedef unsigned short ush; /* defs replace byte/UWORD/ULONG (which are */ +typedef unsigned long ulg; /* predefined on some systems) & match zip */ + +extern int qflag; +extern uch slide[]; +extern ulg crc_32_tab[]; + +#define NEXTBYTE nextbyte() +#define FLUSH(n) flush(n) +#define WSIZE 0x8000 +#define memzero(dest, len) bzero(dest, len) + +/* Function prototypes */ +#ifndef OF +# ifdef __STDC__ +# define OF(a) a +# else /* !__STDC__ */ +# define OF(a) () +# endif /* ?__STDC__ */ +#endif + +/* From: funzip.c -- put in the public domain by Mark Adler */ + +#define VERSION "3.83 of 28 August 1994" + +/* + + All funzip does is take a zip file from stdin and decompress the + first entry to stdout. The entry has to be either deflated or + stored. If the entry is encrypted, then the decryption password + must be supplied on the command line as the first argument. + + funzip needs to be linked with inflate.o and crypt.o compiled from + the unzip source. If decryption is desired, the full version of + crypt.c (and crypt.h) from zcrypt21.zip or later must be used. + + */ + +/* compression methods */ +#define STORED 0 +#define DEFLATED 8 + +/* PKZIP header definitions */ +#define ZIPMAG 0x4b50 /* two-byte zip lead-in */ +#define LOCREM 0x0403 /* remaining two bytes in zip signature */ +#define LOCSIG 0x04034b50L /* full signature */ +#define LOCFLG 4 /* offset of bit flag */ +#define CRPFLG 1 /* bit for encrypted entry */ +#define EXTFLG 8 /* bit for extended local header */ +#define LOCHOW 6 /* offset of compression method */ +#define LOCTIM 8 /* file mod time (for decryption) */ +#define LOCCRC 12 /* offset of crc */ +#define LOCSIZ 16 /* offset of compressed size */ +#define LOCLEN 20 /* offset of uncompressed length */ +#define LOCFIL 24 /* offset of file name field length */ +#define LOCEXT 26 /* offset of extra field length */ +#define LOCHDR 28 /* size of local header, including LOCREM */ +#define EXTHDR 16 /* size of extended local header, inc sig */ + +/* GZIP header definitions */ +#define GZPMAG 0x8b1f /* two-byte gzip lead-in */ +#define GZPHOW 0 /* offset of method number */ +#define GZPFLG 1 /* offset of gzip flags */ +#define GZPMUL 2 /* bit for multiple-part gzip file */ +#define GZPISX 4 /* bit for extra field present */ +#define GZPISF 8 /* bit for filename present */ +#define GZPISC 16 /* bit for comment present */ +#define GZPISE 32 /* bit for encryption */ +#define GZPTIM 2 /* offset of Unix file modification time */ +#define GZPEXF 6 /* offset of extra flags */ +#define GZPCOS 7 /* offset of operating system compressed on */ +#define GZPHDR 8 /* length of minimal gzip header */ + +/* Macros for getting two-byte and four-byte header values */ +#define SH(p) ((ush)(uch)((p)[0]) | ((ush)(uch)((p)[1]) << 8)) +#define LG(p) ((ulg)(SH(p)) | ((ulg)(SH((p)+2)) << 16)) + +/* Function prototypes */ +ulg updcrc OF((uch *, ulg)); +int inflate OF((void)); +void err OF((int, char *)); + +/* Globals */ +uch *outptr; /* points to next byte in output buffer */ +ulg outcnt; /* bytes in output buffer */ +ulg outsiz; /* total bytes written to out */ +int encrypted; /* flag to turn on decryption */ +int qflag = 1; /* turn off messages in inflate.c */ +uch slide[WSIZE]; +uch *addr, *load, *esym; +extern uch *r3, *r6, *r7; +int bsize; + +/* Masks for inflate.c */ +ush mask_bits[] = { + 0x0000, + 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, + 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff +}; + +extern uch input_data[]; +uch *datap = input_data; +struct exec x; + +int nextbyte() +{ + extern int input_len; + + if (!(input_len & 0x1fff)) + twiddle(); + if (input_len-- > 0) + return(*datap++); + else + return(EOF); +} + +int nextblock(p, n) +char *p; +int n; +{ + extern int input_len; + + twiddle(); + if (input_len < n) + return(0); + memcpy(p, datap, n); + input_len -= n; + datap += n; + return(n); +} + +ulg updcrc(s, n) +uch *s; /* pointer to bytes to pump through */ +ulg n; /* number of bytes in s[] */ +/* Run a set of bytes through the crc shift register. If s is a NULL + pointer, then initialize the crc shift register contents instead. + Return the current crc in either case. */ +{ + register ulg c; /* temporary variable */ + + static ulg crc = 0xffffffffL; /* shift register contents */ + + if (s == (uch *)NULL) + c = 0xffffffffL; + else + { + c = crc; + while (n--) + c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8); + } + crc = c; + return c ^ 0xffffffffL; /* (instead of ~c for 64-bit machines) */ +} + +void nextstate() +{ + static int state = 0; + + switch (state) { + case 0: + if (N_BADMAG(x)) + panic("Bad exec format\n"); + load = addr = (uch *)(x.a_entry & 0x00ffff00); + printf("Uncompressing @ 0x%x\n", addr); + bsize = x.a_text; + if (N_GETMAGIC(x) == ZMAGIC) { + bcopy(&x, addr, sizeof(x)); + addr += sizeof(x); + bsize -= sizeof(x); + } + printf("%d", x.a_text); + state = 1; + break; + + case 1: + if (N_GETMAGIC(x) == NMAGIC) + while ((int)addr & CLOFSET) + *addr++ = 0; + bsize = x.a_data; + printf("+%d", x.a_data); + state = 2; + break; + + case 2: + printf("+%d", x.a_bss); + bzero(addr, x.a_bss ); + addr += x.a_bss; + bcopy(&x.a_syms, addr, sizeof(x.a_syms)); + addr += sizeof(x.a_syms); + printf(" [%d+", x.a_syms); + if (x.a_syms) { + bsize = x.a_syms + sizeof(int); + state = 3; + break; + } + printf("0]"); + + case 4: + printf(" total 0x%x", addr); + x.a_entry &= 0xffffff; + printf(" start 0x%x\n", x.a_entry); +#define round_to_size(x,t) \ + (((int)(x) + sizeof(t) - 1) & ~(sizeof(t) - 1)) + esym = (char *)round_to_size(addr - load, int); +#undef round_to_size + state = -1; + break; + + case 3: + printf("%d]", ((int *)addr)[-1]); + bsize = ((int *)addr)[-1] - sizeof(int); + state = 4; + break; + + case -1: + printf("Already at EOF\n"); + break; + } +} + +int flush(w) /* used by inflate.c (FLUSH macro) */ +ulg w; /* number of bytes to flush */ +{ + uch *p = slide; + + updcrc(slide, w); + outsiz += w; + + while (bsize <= w) { + bcopy(p, addr, bsize); + p += bsize; + addr += bsize; + w -= bsize; + nextstate(); + } + if (w) { + bcopy(p, addr, w); + addr += w; + bsize -= w; + } + return(0); +} + +main() +{ + ush n; + uch h[LOCHDR]; /* first local header (GZPHDR < LOCHDR) */ + int g = 0; /* true if gzip format */ + char *s = ""; + + cninit(); + + addr = (uch *)&x; + bsize = sizeof(x); + + /* read local header, check validity, and skip name and extra fields */ + n = nextbyte(); n |= nextbyte() << 8; + if (n == ZIPMAG) + { + if (nextblock((char *)h, LOCHDR) != LOCHDR || SH(h) != LOCREM) + panic("invalid zip file"); + if (SH(h + LOCHOW) != STORED && SH(h + LOCHOW) != DEFLATED) + panic("first entry not deflated or stored--can't funzip"); + for (n = SH(h + LOCFIL); n--; ) g = nextbyte(); + for (n = SH(h + LOCEXT); n--; ) g = nextbyte(); + g = 0; + encrypted = h[LOCFLG] & CRPFLG; + } + else if (n == GZPMAG) + { + if (nextblock((char *)h, GZPHDR) != GZPHDR) + panic("invalid gzip file"); + if (h[GZPHOW] != DEFLATED) + panic("gzip file not deflated"); + if (h[GZPFLG] & GZPMUL) + panic("cannot handle multi-part gzip files"); + if (h[GZPFLG] & GZPISX) + { + n = nextbyte(); n |= nextbyte() << 8; + while (n--) g = nextbyte(); + } + if (h[GZPFLG] & GZPISF) + while ((g = nextbyte()) != 0 && g != EOF) ; + if (h[GZPFLG] & GZPISC) + while ((g = nextbyte()) != 0 && g != EOF) ; + g = 1; + encrypted = h[GZPFLG] & GZPISE; + } + else + panic("input not a zip or gzip file"); + + /* if entry encrypted, decrypt and validate encryption header */ + if (encrypted) + panic("cannot decrypt entry (need to recompile with full crypt.c)"); + + /* prepare output buffer and crc */ + outptr = slide; + outcnt = 0L; + outsiz = 0L; + updcrc(NULL, 0L); + + /* decompress */ + if (g || h[LOCHOW]) + { /* deflated entry */ + int r; + + if ((r = inflate()) != 0) + if (r == 3) + panic("out of memory"); + else + panic("invalid compressed data--format violated"); + inflate_free(); + } + else + { /* stored entry */ + register ulg n; + + n = LG(h + LOCLEN); + if (n != LG(h + LOCSIZ)) { + printf("len %ld, siz %ld\n", n, LG(h + LOCSIZ)); + panic("invalid compressed data--length mismatch"); + } + while (n--) { + ush c = nextbyte(); + *outptr++ = (uch)c; + if (++outcnt == WSIZE) /* do FlushOutput() */ + { + flush(outcnt); + outptr = slide; + outcnt = 0L; + } + } + if (outcnt) /* flush one last time; no need to reset outptr/outcnt */ + flush(outcnt); + } + + /* if extended header, get it */ + if (g) + { + if (nextblock((char *)h + LOCCRC, 8) != 8) + panic("gzip file ended prematurely"); + } + else + if ((h[LOCFLG] & EXTFLG) && + nextblock((char *)h + LOCCRC - 4, EXTHDR) != EXTHDR) + panic("zip file ended prematurely"); + + /* validate decompression */ + if (LG(h + LOCCRC) != updcrc(slide, 0L)) + panic("invalid compressed data--crc error"); + if (LG(h + (g ? LOCSIZ : LOCLEN)) != outsiz) + panic("invalid compressed data--length error"); + + /* check if there are more entries */ + if (!g && nextblock((char *)h, 4) == 4 && LG(h) == LOCSIG) + printf("funzip warning: zip file has more than one entry--rest ignored\n"); + + asm(" movd %0,r3" : : "g" (r3)); /* magic */ + asm(" movd %0,r4" : : "g" (esym)); + asm(" movd %0,r5" : : "g" (load)); + asm(" movd %0,r6" : : "g" (r6)); /* devtype */ + asm(" movd %0,r7" : : "g" (r7)); /* howto */ + + (*((int (*)()) x.a_entry))(); +} + +/* Table of CRC-32's of all single-byte values (made by makecrc.c) */ +ulg crc_32_tab[] = { + 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, + 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, + 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, + 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, + 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, + 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, + 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, + 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, + 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, + 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, + 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, + 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, + 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, + 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, + 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, + 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, + 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, + 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, + 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, + 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, + 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, + 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, + 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, + 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, + 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, + 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, + 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, + 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, + 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, + 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, + 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, + 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, + 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, + 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, + 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, + 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, + 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, + 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, + 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, + 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, + 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, + 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, + 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, + 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, + 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, + 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, + 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, + 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, + 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, + 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, + 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, + 0x2d02ef8dL +}; + +/* From: inflate.c -- put in the public domain by Mark Adler + version c14o, 23 August 1994 */ + +/* + Inflate deflated (PKZIP's method 8 compressed) data. The compression + method searches for as much of the current string of bytes (up to a + length of 258) in the previous 32K bytes. If it doesn't find any + matches (of at least length 3), it codes the next byte. Otherwise, it + codes the length of the matched string and its distance backwards from + the current position. There is a single Huffman code that codes both + single bytes (called "literals") and match lengths. A second Huffman + code codes the distance information, which follows a length code. Each + length or distance code actually represents a base value and a number + of "extra" (sometimes zero) bits to get to add to the base value. At + the end of each deflated block is a special end-of-block (EOB) literal/ + length code. The decoding process is basically: get a literal/length + code; if EOB then done; if a literal, emit the decoded byte; if a + length then get the distance and emit the referred-to bytes from the + sliding window of previously emitted data. + + There are (currently) three kinds of inflate blocks: stored, fixed, and + dynamic. The compressor outputs a chunk of data at a time and decides + which method to use on a chunk-by-chunk basis. A chunk might typically + be 32K to 64K, uncompressed. If the chunk is uncompressible, then the + "stored" method is used. In this case, the bytes are simply stored as + is, eight bits per byte, with none of the above coding. The bytes are + preceded by a count, since there is no longer an EOB code. + + If the data is compressible, then either the fixed or dynamic methods + are used. In the dynamic method, the compressed data is preceded by + an encoding of the literal/length and distance Huffman codes that are + to be used to decode this block. The representation is itself Huffman + coded, and so is preceded by a description of that code. These code + descriptions take up a little space, and so for small blocks, there is + a predefined set of codes, called the fixed codes. The fixed method is + used if the block ends up smaller that way (usually for quite small + chunks); otherwise the dynamic method is used. In the latter case, the + codes are customized to the probabilities in the current block and so + can code it much better than the pre-determined fixed codes can. + + The Huffman codes themselves are decoded using a mutli-level table + lookup, in order to maximize the speed of decoding plus the speed of + building the decoding tables. See the comments below that precede the + lbits and dbits tuning parameters. + */ + + +/* + Notes beyond the 1.93a appnote.txt: + + 1. Distance pointers never point before the beginning of the output + stream. + 2. Distance pointers can point back across blocks, up to 32k away. + 3. There is an implied maximum of 7 bits for the bit length table and + 15 bits for the actual data. + 4. If only one code exists, then it is encoded using one bit. (Zero + would be more efficient, but perhaps a little confusing.) If two + codes exist, they are coded using one bit each (0 and 1). + 5. There is no way of sending zero distance codes--a dummy must be + sent if there are none. (History: a pre 2.0 version of PKZIP would + store blocks with no distance codes, but this was discovered to be + too harsh a criterion.) Valid only for 1.93a. 2.04c does allow + zero distance codes, which is sent as one code of zero bits in + length. + 6. There are up to 286 literal/length codes. Code 256 represents the + end-of-block. Note however that the static length tree defines + 288 codes just to fill out the Huffman codes. Codes 286 and 287 + cannot be used though, since there is no length base or extra bits + defined for them. Similarily, there are up to 30 distance codes. + However, static trees define 32 codes (all 5 bits) to fill out the + Huffman codes, but the last two had better not show up in the data. + 7. Unzip can check dynamic Huffman blocks for complete code sets. + The exception is that a single code would not be complete (see #4). + 8. The five bits following the block type is really the number of + literal codes sent minus 257. + 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits + (1+6+6). Therefore, to output three times the length, you output + three codes (1+1+1), whereas to output four times the same length, + you only need two codes (1+3). Hmm. + 10. In the tree reconstruction algorithm, Code = Code + Increment + only if BitLength(i) is not zero. (Pretty obvious.) + 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) + 12. Note: length code 284 can represent 227-258, but length code 285 + really is 258. The last length deserves its own, short code + since it gets used a lot in very redundant files. The length + 258 is special since 258 - 3 (the min match length) is 255. + 13. The literal/length and distance code bit lengths are read as a + single stream of lengths. It is possible (and advantageous) for + a repeat code (16, 17, or 18) to go across the boundary between + the two sets of lengths. + */ + + +#define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */ + +/* + inflate.h must supply the uch slide[WSIZE] array and the NEXTBYTE, + FLUSH() and memzero macros. If the window size is not 32K, it + should also define WSIZE. If INFMOD is defined, it can include + compiled functions to support the NEXTBYTE and/or FLUSH() macros. + There are defaults for NEXTBYTE and FLUSH() below for use as + examples of what those functions need to do. Normally, you would + also want FLUSH() to compute a crc on the data. inflate.h also + needs to provide these typedefs: + + typedef unsigned char uch; + typedef unsigned short ush; + typedef unsigned long ulg; + + This module uses the external functions malloc() and free() (and + probably memset() or bzero() in the memzero() macro). Their + prototypes are normally found in <string.h> and <stdlib.h>. + */ + +/* Warning: the fwrite above might not work on 16-bit compilers, since + 0x8000 might be interpreted as -32,768 by the library function. */ + +/* Huffman code lookup table entry--this entry is four bytes for machines + that have 16-bit pointers (e.g. PC's in the small or medium model). + Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 + means that v is a literal, 16 < e < 32 means that v is a pointer to + the next table, which codes e - 16 bits, and lastly e == 99 indicates + an unused code. If a code with e == 99 is looked up, this implies an + error in the data. */ +struct huft { + uch e; /* number of extra bits or operation */ + uch b; /* number of bits in this code or subcode */ + union { + ush n; /* literal, length base, or distance base */ + struct huft *t; /* pointer to next level of table */ + } v; +}; + +int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *, + struct huft **, int *)); +int huft_free OF((struct huft *)); +int inflate_codes OF((struct huft *, struct huft *, int, int)); +int inflate_stored OF((void)); +int inflate_fixed OF((void)); +int inflate_dynamic OF((void)); +int inflate_block OF((int *)); +int inflate OF((void)); +int inflate_free OF((void)); + + +/* The inflate algorithm uses a sliding 32K byte window on the uncompressed + stream to find repeated byte strings. This is implemented here as a + circular buffer. The index is updated simply by incrementing and then + and'ing with 0x7fff (32K-1). */ +/* It is left to other modules to supply the 32K area. It is assumed + to be usable as if it were declared "uch slide[32768];" or as just + "uch *slide;" and then malloc'ed in the latter case. The definition + must be in unzip.h, included above. */ +unsigned wp; /* current position in slide */ + + +/* Tables for deflate from PKZIP's appnote.txt. */ +static unsigned border[] = { /* Order of the bit length code lengths */ + 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; +static ush cplens[] = { /* Copy lengths for literal codes 257..285 */ + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; + /* note: see note #13 above about the 258 in this list. */ +static ush cplext[] = { /* Extra bits for literal codes 257..285 */ + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, + 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ +static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, + 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, + 8193, 12289, 16385, 24577}; +static ush cpdext[] = { /* Extra bits for distance codes */ + 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, + 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, + 12, 12, 13, 13}; + +/* And'ing with mask[n] masks the lower n bits */ +ush mask[] = { + 0x0000, + 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, + 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff +}; + + +/* Macros for inflate() bit peeking and grabbing. + The usage is: + + NEEDBITS(j) + x = b & mask[j]; + DUMPBITS(j) + + where NEEDBITS makes sure that b has at least j bits in it, and + DUMPBITS removes the bits from b. The macros use the variable k + for the number of bits in b. Normally, b and k are register + variables for speed, and are initialized at the begining of a + routine that uses these macros from a global bit buffer and count. + + In order to not ask for more bits than there are in the compressed + stream, the Huffman tables are constructed to only ask for just + enough bits to make up the end-of-block code (value 256). Then no + bytes need to be "returned" to the buffer at the end of the last + block. See the huft_build() routine. + */ + +ulg bb; /* bit buffer */ +unsigned bk; /* bits in bit buffer */ + +#ifndef CHECK_EOF +# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}} +#else +# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\ + b|=((ulg)c)<<k;k+=8;}} +#endif /* Piet Plomp: change "return 1" to "break" */ + +#define DUMPBITS(n) {b>>=(n);k-=(n);} + + +/* + Huffman code decoding is performed using a multi-level table lookup. + The fastest way to decode is to simply build a lookup table whose + size is determined by the longest code. However, the time it takes + to build this table can also be a factor if the data being decoded + is not very long. The most common codes are necessarily the + shortest codes, so those codes dominate the decoding time, and hence + the speed. The idea is you can have a shorter table that decodes the + shorter, more probable codes, and then point to subsidiary tables for + the longer codes. The time it costs to decode the longer codes is + then traded against the time it takes to make longer tables. + + This results of this trade are in the variables lbits and dbits + below. lbits is the number of bits the first level table for literal/ + length codes can decode in one step, and dbits is the same thing for + the distance codes. Subsequent tables are also less than or equal to + those sizes. These values may be adjusted either when all of the + codes are shorter than that, in which case the longest code length in + bits is used, or when the shortest code is *longer* than the requested + table size, in which case the length of the shortest code in bits is + used. + + There are two different values for the two tables, since they code a + different number of possibilities each. The literal/length table + codes 286 possible values, or in a flat code, a little over eight + bits. The distance table codes 30 possible values, or a little less + than five bits, flat. The optimum values for speed end up being + about one bit more than those, so lbits is 8+1 and dbits is 5+1. + The optimum values may differ though from machine to machine, and + possibly even between compilers. Your mileage may vary. + */ + + +int lbits = 9; /* bits in base literal/length lookup table */ +int dbits = 6; /* bits in base distance lookup table */ + + +/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ +#define BMAX 16 /* maximum bit length of any code (16 for explode) */ +#define N_MAX 288 /* maximum number of codes in any set */ + + +unsigned hufts; /* track memory usage */ + +void *malloc(n) +int n; +{ + void *p; + p = alloc(n + sizeof(n)); + if (!p) + return(NULL); + *((int *)p) = n; + p += sizeof(n); + return(p); +} + +int huft_build(b, n, s, d, e, t, m) +unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ +unsigned n; /* number of codes (assumed <= N_MAX) */ +unsigned s; /* number of simple-valued codes (0..s-1) */ +ush *d; /* list of base values for non-simple codes */ +ush *e; /* list of extra bits for non-simple codes */ +struct huft **t; /* result: starting table */ +int *m; /* maximum lookup bits, returns actual */ +/* Given a list of code lengths and a maximum table size, make a set of + tables to decode that set of codes. Return zero on success, one if + the given code set is incomplete (the tables are still built in this + case), two if the input is invalid (all zero length codes or an + oversubscribed set of lengths), and three if not enough memory. + The code with value 256 is special, and the tables are constructed + so that no bits beyond that code are fetched when that code is + decoded. */ +{ + unsigned a; /* counter for codes of length k */ + unsigned c[BMAX+1]; /* bit length count table */ + unsigned el; /* length of EOB code (value 256) */ + unsigned f; /* i repeats in table every f entries */ + int g; /* maximum code length */ + int h; /* table level */ + register unsigned i; /* counter, current code */ + register unsigned j; /* counter */ + register int k; /* number of bits in current code */ + int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */ + int *l = lx+1; /* stack of bits per table */ + register unsigned *p; /* pointer into c[], b[], or v[] */ + register struct huft *q; /* points to current table */ + struct huft r; /* table entry for structure assignment */ + struct huft *u[BMAX]; /* table stack */ + static unsigned v[N_MAX]; /* values in order of bit length */ + register int w; /* bits before this table == (l * h) */ + unsigned x[BMAX+1]; /* bit offsets, then code stack */ + unsigned *xp; /* pointer into x */ + int y; /* number of dummy codes added */ + unsigned z; /* number of entries in current table */ + + + /* Generate counts for each bit length */ + el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */ + memzero((char *)c, sizeof(c)); + p = b; i = n; + do { + c[*p]++; p++; /* assume all entries <= BMAX */ + } while (--i); + if (c[0] == n) /* null input--all zero length codes */ + { + *t = (struct huft *)NULL; + *m = 0; + return 0; + } + + + /* Find minimum and maximum length, bound *m by those */ + for (j = 1; j <= BMAX; j++) + if (c[j]) + break; + k = j; /* minimum code length */ + if ((unsigned)*m < j) + *m = j; + for (i = BMAX; i; i--) + if (c[i]) + break; + g = i; /* maximum code length */ + if ((unsigned)*m > i) + *m = i; + + + /* Adjust last length count to fill out codes, if needed */ + for (y = 1 << j; j < i; j++, y <<= 1) + if ((y -= c[j]) < 0) + return 2; /* bad input: more codes than bits */ + if ((y -= c[i]) < 0) + return 2; + c[i] += y; + + + /* Generate starting offsets into the value table for each length */ + x[1] = j = 0; + p = c + 1; xp = x + 2; + while (--i) { /* note that i == g from above */ + *xp++ = (j += *p++); + } + + + /* Make a table of values in order of bit lengths */ + p = b; i = 0; + do { + if ((j = *p++) != 0) + v[x[j]++] = i; + } while (++i < n); + + + /* Generate the Huffman codes and for each, make the table entries */ + x[0] = i = 0; /* first Huffman code is zero */ + p = v; /* grab values in bit order */ + h = -1; /* no tables yet--level -1 */ + w = l[-1] = 0; /* no bits decoded yet */ + u[0] = (struct huft *)NULL; /* just to keep compilers happy */ + q = (struct huft *)NULL; /* ditto */ + z = 0; /* ditto */ + + /* go through the bit lengths (k already is bits in shortest code) */ + for (; k <= g; k++) + { + a = c[k]; + while (a--) + { + /* here i is the Huffman code of length k bits for value *p */ + /* make tables up to required level */ + while (k > w + l[h]) + { + w += l[h++]; /* add bits already decoded */ + + /* compute minimum size table less than or equal to *m bits */ + z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */ + if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ + { /* too few codes for k-w bit table */ + f -= a + 1; /* deduct codes from patterns left */ + xp = c + k; + while (++j < z) /* try smaller tables up to z bits */ + { + if ((f <<= 1) <= *++xp) + break; /* enough codes to use up j bits */ + f -= *xp; /* else deduct codes from patterns */ + } + } + if ((unsigned)w + j > el && (unsigned)w < el) + j = el - w; /* make EOB code end at table */ + z = 1 << j; /* table entries for j-bit table */ + l[h] = j; /* set table size in stack */ + + /* allocate and link in new table */ + if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == + (struct huft *)NULL) + { + if (h) + huft_free(u[0]); + return 3; /* not enough memory */ + } + hufts += z + 1; /* track memory usage */ + *t = q + 1; /* link to list for huft_free() */ + *(t = &(q->v.t)) = (struct huft *)NULL; + u[h] = ++q; /* table starts after link */ + + /* connect to last table, if there is one */ + if (h) + { + x[h] = i; /* save pattern for backing up */ + r.b = (uch)l[h-1]; /* bits to dump before this table */ + r.e = (uch)(16 + j); /* bits in this table */ + r.v.t = q; /* pointer to this table */ + j = (i & ((1 << w) - 1)) >> (w - l[h-1]); + u[h-1][j] = r; /* connect to last table */ + } + } + + /* set up table entry in r */ + r.b = (uch)(k - w); + if (p >= v + n) + r.e = 99; /* out of values--invalid code */ + else if (*p < s) + { + r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ + r.v.n = *p++; /* simple code is just the value */ + } + else + { + r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ + r.v.n = d[*p++ - s]; + } + + /* fill code-like entries with r */ + f = 1 << (k - w); + for (j = i >> w; j < z; j += f) + q[j] = r; + + /* backwards increment the k-bit code i */ + for (j = 1 << (k - 1); i & j; j >>= 1) + i ^= j; + i ^= j; + + /* backup over finished tables */ + while ((i & ((1 << w) - 1)) != x[h]) + w -= l[--h]; /* don't need to update q */ + } + } + + + /* return actual size of base table */ + *m = l[0]; + + + /* Return true (1) if we were given an incomplete table */ + return y != 0 && g != 1; +} + + + +int huft_free(t) +struct huft *t; /* table to free */ +/* Free the malloc'ed tables built by huft_build(), which makes a linked + list of the tables it made, with the links in a dummy first entry of + each table. */ +{ + register struct huft *p, *q; + + + /* Go through linked list, freeing from the malloced (t[-1]) address. */ + p = t; + while (p != (struct huft *)NULL) + { + q = (--p)->v.t; + free(((void *)p) - sizeof(int), ((int *)p)[-1]); + p = q; + } + return 0; +} + + + +#ifdef ASM_INFLATECODES +# define inflate_codes(tl,td,bl,bd) flate_codes(tl,td,bl,bd,(uch *)slide) + int flate_codes OF((struct huft *, struct huft *, int, int, uch *)); + +#else + +int inflate_codes(tl, td, bl, bd) +struct huft *tl, *td; /* literal/length and distance decoder tables */ +int bl, bd; /* number of bits decoded by tl[] and td[] */ +/* inflate (decompress) the codes in a deflated (compressed) block. + Return an error code or zero if it all goes ok. */ +{ + register unsigned e; /* table entry flag/number of extra bits */ + unsigned n, d; /* length and index for copy */ + unsigned w; /* current window position */ + struct huft *t; /* pointer to table entry */ + unsigned ml, md; /* masks for bl and bd bits */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local copies of globals */ + b = bb; /* initialize bit buffer */ + k = bk; + w = wp; /* initialize window position */ + + + /* inflate the coded data */ + ml = mask[bl]; /* precompute masks for speed */ + md = mask[bd]; + while (1) /* do until end of block */ + { + NEEDBITS((unsigned)bl) + if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) + do { + if (e == 99) + return 1; + DUMPBITS(t->b) + e -= 16; + NEEDBITS(e) + } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16); + DUMPBITS(t->b) + if (e == 16) /* then it's a literal */ + { + slide[w++] = (uch)t->v.n; + if (w == WSIZE) + { + FLUSH(w); + w = 0; + } + } + else /* it's an EOB or a length */ + { + /* exit if end of block */ + if (e == 15) + break; + + /* get length of block to copy */ + NEEDBITS(e) + n = t->v.n + ((unsigned)b & mask[e]); + DUMPBITS(e); + + /* decode distance of block to copy */ + NEEDBITS((unsigned)bd) + if ((e = (t = td + ((unsigned)b & md))->e) > 16) + do { + if (e == 99) + return 1; + DUMPBITS(t->b) + e -= 16; + NEEDBITS(e) + } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16); + DUMPBITS(t->b) + NEEDBITS(e) + d = w - t->v.n - ((unsigned)b & mask[e]); + DUMPBITS(e) + + /* do the copy */ + do { + n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); +#ifndef NOMEMCPY + if (w - d >= e) /* (this test assumes unsigned comparison) */ + { + memcpy(slide + w, slide + d, e); + w += e; + d += e; + } + else /* do it slow to avoid memcpy() overlap */ +#endif /* !NOMEMCPY */ + do { + slide[w++] = slide[d++]; + } while (--e); + if (w == WSIZE) + { + FLUSH(w); + w = 0; + } + } while (n); + } + } + + + /* restore the globals from the locals */ + wp = w; /* restore global window pointer */ + bb = b; /* restore global bit buffer */ + bk = k; + + + /* done */ + return 0; +} + +#endif /* ASM_INFLATECODES */ + + + +int inflate_stored() +/* "decompress" an inflated type 0 (stored) block. */ +{ + unsigned n; /* number of bytes in block */ + unsigned w; /* current window position */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local copies of globals */ + b = bb; /* initialize bit buffer */ + k = bk; + w = wp; /* initialize window position */ + + + /* go to byte boundary */ + n = k & 7; + DUMPBITS(n); + + + /* get the length and its complement */ + NEEDBITS(16) + n = ((unsigned)b & 0xffff); + DUMPBITS(16) + NEEDBITS(16) + if (n != (unsigned)((~b) & 0xffff)) + return 1; /* error in compressed data */ + DUMPBITS(16) + + + /* read and output the compressed data */ + while (n--) + { + NEEDBITS(8) + slide[w++] = (uch)b; + if (w == WSIZE) + { + FLUSH(w); + w = 0; + } + DUMPBITS(8) + } + + + /* restore the globals from the locals */ + wp = w; /* restore global window pointer */ + bb = b; /* restore global bit buffer */ + bk = k; + return 0; +} + + +/* Globals for literal tables (built once) */ +struct huft *fixed_tl = (struct huft *)NULL; +struct huft *fixed_td; +int fixed_bl, fixed_bd; + +int inflate_fixed() +/* decompress an inflated type 1 (fixed Huffman codes) block. We should + either replace this with a custom decoder, or at least precompute the + Huffman tables. */ +{ + /* if first time, set up tables for fixed blocks */ + if (fixed_tl == (struct huft *)NULL) + { + int i; /* temporary variable */ + static unsigned l[288]; /* length list for huft_build */ + + /* literal table */ + for (i = 0; i < 144; i++) + l[i] = 8; + for (; i < 256; i++) + l[i] = 9; + for (; i < 280; i++) + l[i] = 7; + for (; i < 288; i++) /* make a complete, but wrong code set */ + l[i] = 8; + fixed_bl = 7; + if ((i = huft_build(l, 288, 257, cplens, cplext, + &fixed_tl, &fixed_bl)) != 0) + { + fixed_tl = (struct huft *)NULL; + return i; + } + + /* distance table */ + for (i = 0; i < 30; i++) /* make an incomplete code set */ + l[i] = 5; + fixed_bd = 5; + if ((i = huft_build(l, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd)) > 1) + { + huft_free(fixed_tl); + fixed_tl = (struct huft *)NULL; + return i; + } + } + + + /* decompress until an end-of-block code */ + return inflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd) != 0; +} + + + +int inflate_dynamic() +/* decompress an inflated type 2 (dynamic Huffman codes) block. */ +{ + int i; /* temporary variables */ + unsigned j; + unsigned l; /* last length */ + unsigned m; /* mask for bit lengths table */ + unsigned n; /* number of lengths to get */ + struct huft *tl; /* literal/length code table */ + struct huft *td; /* distance code table */ + int bl; /* lookup bits for tl */ + int bd; /* lookup bits for td */ + unsigned nb; /* number of bit length codes */ + unsigned nl; /* number of literal/length codes */ + unsigned nd; /* number of distance codes */ +#ifdef PKZIP_BUG_WORKAROUND + static unsigned ll[288+32]; /* literal/length and distance code lengths */ +#else + static unsigned ll[286+30]; /* literal/length and distance code lengths */ +#endif + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local bit buffer */ + b = bb; + k = bk; + + + /* read in table lengths */ + NEEDBITS(5) + nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ + DUMPBITS(5) + NEEDBITS(5) + nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ + DUMPBITS(5) + NEEDBITS(4) + nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ + DUMPBITS(4) +#ifdef PKZIP_BUG_WORKAROUND + if (nl > 288 || nd > 32) +#else + if (nl > 286 || nd > 30) +#endif + return 1; /* bad lengths */ + + + /* read in bit-length-code lengths */ + for (j = 0; j < nb; j++) + { + NEEDBITS(3) + ll[border[j]] = (unsigned)b & 7; + DUMPBITS(3) + } + for (; j < 19; j++) + ll[border[j]] = 0; + + + /* build decoding table for trees--single level, 7 bit lookup */ + bl = 7; + if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) + { + if (i == 1) + huft_free(tl); + return i; /* incomplete code set */ + } + + + /* read in literal and distance code lengths */ + n = nl + nd; + m = mask[bl]; + i = l = 0; + while ((unsigned)i < n) + { + NEEDBITS((unsigned)bl) + j = (td = tl + ((unsigned)b & m))->b; + DUMPBITS(j) + j = td->v.n; + if (j < 16) /* length of code in bits (0..15) */ + ll[i++] = l = j; /* save last length in l */ + else if (j == 16) /* repeat last length 3 to 6 times */ + { + NEEDBITS(2) + j = 3 + ((unsigned)b & 3); + DUMPBITS(2) + if ((unsigned)i + j > n) + return 1; + while (j--) + ll[i++] = l; + } + else if (j == 17) /* 3 to 10 zero length codes */ + { + NEEDBITS(3) + j = 3 + ((unsigned)b & 7); + DUMPBITS(3) + if ((unsigned)i + j > n) + return 1; + while (j--) + ll[i++] = 0; + l = 0; + } + else /* j == 18: 11 to 138 zero length codes */ + { + NEEDBITS(7) + j = 11 + ((unsigned)b & 0x7f); + DUMPBITS(7) + if ((unsigned)i + j > n) + return 1; + while (j--) + ll[i++] = 0; + l = 0; + } + } + + + /* free decoding table for trees */ + huft_free(tl); + + + /* restore the global bit buffer */ + bb = b; + bk = k; + + + /* build the decoding tables for literal/length and distance codes */ + bl = lbits; + if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) + { + return i; /* incomplete code set */ + } + bd = dbits; + if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) + { + if (i == 1 && !qflag) { +#ifdef PKZIP_BUG_WORKAROUND + i = 0; + } +#else + huft_free(td); + } + huft_free(tl); + return i; /* incomplete code set */ +#endif + } + + + /* decompress until an end-of-block code */ + if (inflate_codes(tl, td, bl, bd)) + return 1; + + + /* free the decoding tables, return */ + huft_free(tl); + huft_free(td); + return 0; +} + + + +int inflate_block(e) +int *e; /* last block flag */ +/* decompress an inflated block */ +{ + unsigned t; /* block type */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local bit buffer */ + b = bb; + k = bk; + + + /* read in last block bit */ + NEEDBITS(1) + *e = (int)b & 1; + DUMPBITS(1) + + + /* read in block type */ + NEEDBITS(2) + t = (unsigned)b & 3; + DUMPBITS(2) + + + /* restore the global bit buffer */ + bb = b; + bk = k; + + + /* inflate that block type */ + if (t == 2) + return inflate_dynamic(); + if (t == 0) + return inflate_stored(); + if (t == 1) + return inflate_fixed(); + + + /* bad block type */ + return 2; +} + + + +int inflate() +/* decompress an inflated entry */ +{ + int e; /* last block flag */ + int r; /* result code */ + unsigned h; /* maximum struct huft's malloc'ed */ + + + /* initialize window, bit buffer */ + wp = 0; + bk = 0; + bb = 0; + + + /* decompress until the last block */ + h = 0; + do { + hufts = 0; + if ((r = inflate_block(&e)) != 0) + return r; + if (hufts > h) + h = hufts; + } while (!e); + + + /* flush out slide */ + FLUSH(wp); + + + /* return success */ + return 0; +} + + + +int inflate_free() +{ + if (fixed_tl != (struct huft *)NULL) + { + huft_free(fixed_td); + huft_free(fixed_tl); + fixed_td = fixed_tl = (struct huft *)NULL; + } + return 0; +} |